1
|
Zhang Y, Hong S, Zhang F, Yao K, Jin S, Gao S, Liu Y, Li Y, Zhang C. Immunoproteasome subunit PSMB8 promotes skeletal muscle regeneration by regulating macrophage phenotyping switch in mice. Am J Physiol Cell Physiol 2025; 328:C1716-C1729. [PMID: 40241316 DOI: 10.1152/ajpcell.00965.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Immunoproteasomes regulate the degradation of ubiquitin-coupled proteins and cell differentiation. However, its precise role in skeletal muscle regeneration remains unclear. In this study, we found that expression of the immunoproteasome subunit, PSMB8, increased significantly in young muscles after cardiotoxin-induced injury, whereas its expression was downregulated in injured aged mice. Genetic knockout or pharmacological inhibition of the immunoproteasome subunit, PSMB8, resulted in impaired muscle regeneration and increased interstitial fibrosis. PSMB8 inhibition by short interfering RNA (siRNA) or inhibitor decreased the differentiation ability of myoblasts. There was increased infiltration of inflammatory cells, especially Ly6Chi proinflammatory macrophages, in Psmb8 deficient muscles. In vitro, Psmb8-deficient macrophages expressed higher levels of proinflammatory cytokines and lower levels of anti-inflammatory cytokines after phagocytosis of myoblast debris, which was associated with increased activation of the NF-κB signaling pathway. Inhibition of the NF-κB pathway improves the regeneration ability and attenuates interstitial fibrosis in Psmb8-deficient muscles after injury. The overexpression of Psmb8 by adenovirus could also improve the regenerative ability of aged muscles.NEW & NOTEWORTHY The immunoproteasome subunit, PSMB8, is essential for efficient muscle regeneration and may be a new therapeutic target for age-related muscle atrophy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Kexin Yao
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shuhui Jin
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
2
|
Zhang C, Liu Y, Xu J, Li W, Zhou X, Ye Y, Lei Y, Yan S, Zhou Q, Lyu C, Cai Z, Hong Y, Yang Y. Zhi-Huang plaster alleviates acute soft tissue injury by promoting chemotaxis of regulatory T cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119925. [PMID: 40334759 DOI: 10.1016/j.jep.2025.119925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Affiliation(s)
- Chenglin Zhang
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jialing Xu
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjie Li
- Shanghai Innovation Center of Traditional Chinese Medicine health Service, Shanghai, 201203, China
| | - Xiaoying Zhou
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuhan Ye
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanyuan Lei
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaojun Yan
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qinfeng Zhou
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunming Lyu
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zengliang Cai
- Sports Department of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine health Service, Shanghai, 201203, China
| | - Yang Yang
- Science and Technology Experiment Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
de Menezes YKT, Lee J, Cheng-Zhang JQ, Johnson MA, Ranatunga RN, Kemaladewi DU. Targeting Galectin-3 to modulate inflammation in LAMA2-deficient congenital muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642905. [PMID: 40161708 PMCID: PMC11952532 DOI: 10.1101/2025.03.12.642905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
LAMA2-deficient congenital muscular dystrophy (LAMA2-CMD) is a severe neuromuscular disorder characterized by muscle degeneration, chronic inflammation, and fibrosis. While inflammation is one the hallmarks of LAMA2-CMD, the immune cell composition in laminin-deficient muscles remains understudied. Consequently, targeted pharmacological intervention to reduce inflammation remains underexplored. Here, we characterized the immune landscape in the dyW mouse model of LAMA2-CMD using RNA sequencing and flow cytometry. Transcriptomic analysis of dyW quadriceps femoris muscle identified 2,143 differentially expressed genes, with most upregulated genes linked to immune-related pathways. Lgals3 (Galectin-3) was significantly upregulated and identified as a key upstream regulator of the immune-related pathways. Flow cytometry revealed elevated leukocyte (CD45⁺) infiltration, with macrophages as the predominant population. Pro-inflammatory (M1) macrophages were increased, whereas anti-inflammatory (M2) macrophages remained low, indicating persistent and unresolved inflammation. Notably, Galectin-3 + macrophages were significantly enriched, suggesting that Galectin-3 drives inflammation in LAMA2-CMD. Treatment of dyW mice with TD-139, a Galectin-3 inhibitor, reduced leukocyte infiltration, decreased Galectin-3 + macrophages, and shifted macrophage polarization toward an M2 anti-inflammatory profile. RNA sequencing of TD-139-treated dyW muscles showed upregulation of muscle contraction pathways and downregulation of fibrosis-related genes. These findings highlight Galectin-3 + macrophages as key contributors to LAMA2-CMD pathophysiology and support further exploration of TD-139 as a potential therapeutic strategy for LAMA2-CMD and other dystrophic conditions driven by chronic inflammation.
Collapse
|
4
|
Prylutskyy Y, Nozdrenko D, Motuziuk O, Prylutska S, Vareniuk I, Nurishchenko N, Franskevych D, Soroсa V, Bogutska K, Ritter U. C 60 fullerene promotes post-traumatic recovery of the rat muscle gastrocnemius. Nanomedicine (Lond) 2025; 20:571-584. [PMID: 39933788 PMCID: PMC11881861 DOI: 10.1080/17435889.2025.2461988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
AIM The remarkable antioxidant capabilities of biocompatible and safe C60 fullerenes have extensive applications in biomedicine. This study is the first to present an investigation into the effect of water-soluble C60 fullerenes on post-traumatic recovery of the muscle gastrocnemius in rats. METHODS Tensometry was used to investigate the biomechanical parameters of muscle contraction, specifically the times of reaching and holding the maximum force response of the muscle, and the return of muscle contraction force to the initial value after cessation of stimulation. Blood biochemical indicators were assessed, including concentrations of c-reactive protein, lactate, creatinine, and reduced glutathione, as well as superoxide dismutase and catalase activities 5, 10, and 15 days after initiating open muscle injury. Histopathological analysis was also performed to examine the rat muscle gastrocnemius damage on day 15 after the onset of injury. RESULTS It was found that C60 fullerenes reduced the stiffness of injured skeletal muscle, thereby slowing the development of fibrosis, and inhibiting the inflammatory process due to their antioxidant properties. There was also a reduction in histopathological features of muscle damage. CONCLUSION These findings suggest using of carbon nanoparticles to correct pathological conditions that may occur during the physiological repair of damaged muscle tissues.
Collapse
Affiliation(s)
- Yuriy Prylutskyy
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro Nozdrenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olexandr Motuziuk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| | - Svitlana Prylutska
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Kyiv, Ukraine
| | - Igor Vareniuk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Natalia Nurishchenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Daria Franskevych
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Vasil Soroсa
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kateryna Bogutska
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, Germany
| |
Collapse
|
5
|
Pacilio S, Lombardi S, Costa R, Paris F, Petrocelli G, Marrazzo P, Cenacchi G, Alviano F. Role of Perinatal Stem Cell Secretome as Potential Therapy for Muscular Dystrophies. Biomedicines 2025; 13:458. [PMID: 40002871 PMCID: PMC11852414 DOI: 10.3390/biomedicines13020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammation mechanisms play a critical role in muscle homeostasis, and in Muscular Dystrophies (MDs), the myofiber damage triggers chronic inflammation which significantly controls the disease progression. Immunomodulatory strategies able to target inflammatory pathways and mitigate the immune-mediated damage in MDs may provide new therapeutic options. Owing to its capacity of influencing the immune response and enhancing tissue repair, stem cells' secretome has been proposed as an adjunct or standalone treatment for MDs. In this review study, we discuss the challenging points related to the inflammation condition characterizing MD pathology and provide a concise summary of the literature supporting the potential of perinatal stem cells in targeting and modulating the MD inflammation.
Collapse
Affiliation(s)
- Serafina Pacilio
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Sara Lombardi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Francesca Paris
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Pasquale Marrazzo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| |
Collapse
|
6
|
Nery NM, Ferreira E Ferreira AA, Santana HM, Serrath SN, Reis VP, Paloschi MV, Silva MDS, Magalhães JGS, Cruz LF, Shibayama TY, Setubal SS, Zuliani JP. Bone marrow-derived dendritic cells play a role in attenuating inflammation on Bothrops jararacussu venom muscle damage. J Biotechnol 2025; 398:29-40. [PMID: 39615791 DOI: 10.1016/j.jbiotec.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
The immune system is regulated by dendritic cells (DCs), which are highly specialized cells for presenting antigens. They are thought of as natural sentinels that start the immune response triggered by naive T cells against invasive infections. DCs participate in the initial stage of muscle damage in conjunction with monocytes, macrophages, and myogenic cells. The goal of this study was to determine whether DCs might mitigate tissue damage and aid in the regeneration of the gastrocnemius muscle following envenomation with Bothrops jararacussu venom (BjV). Mature bone marrow dendritic cells (BMDCs) were used to treat mice in an experimental envenomation model with BjV by activation with lipopolysaccharide (LPS). BMDCs were injected into the gastrocnemius muscle at the same site of the BjV injury, in a single dose, 3 h after envenomation, and envenoming effects were observed at different periods for 7 days. In both untreated (NT) and treated (T) groups tissue necrosis, leukocyte influx, and hemorrhage at the injury site were observed. Results showed an increase in serum and tissue CK as well as IL-6, TNF-α, and IL-1β release in the first hours after envenoming. In contrast, after treatment with BMDCs results obtained demonstrated an attenuated local effect with a small leukocyte influx, decreased or non-existent necrosis and hemorrhage, as well as a reduction in both serum and tissue CK levels as well as cytokine release and, consequently, the onset of a moderate regenerative process. The present study's findings concluded that BjV causes a severe inflammatory reaction at the site of injury and that treating envenoming with BMDCs in the muscle was crucial for minimizing damage to the muscle and the inflammatory reaction and promoting the early onset of the tissue repair process.
Collapse
Affiliation(s)
- N M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - A A Ferreira E Ferreira
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - H M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - S N Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - V P Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - M V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - M D S Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - J G S Magalhães
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - L F Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - T Y Shibayama
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - S S Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - J P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
7
|
Cockrell C, Vodovotz Y, Zamora R, An G. The Wound Environment Agent-based Model (WEABM): a digital twin platform for characterization and complex therapeutic discovery for volumetric muscle loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.595972. [PMID: 38895374 PMCID: PMC11185759 DOI: 10.1101/2024.06.04.595972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Volumetric Muscle Loss (VML) injuries are characterized by significant loss of muscle mass, usually due to trauma or surgical resection, often with a residual open wound in clinical settings and subsequent loss of limb function due to the replacement of the lost muscle mass with non-functional scar. Being able to regrow functional muscle in VML injuries is a complex control problem that needs to override robust, evolutionarily conserved healing processes aimed at rapidly closing the defect in lieu of restoration of function. We propose that discovering and implementing this complex control can be accomplished by the development of a Medical Digital Twin of VML. Digital Twins (DTs) are the subject of a recent report from the National Academies of Science, Engineering and Medicine (NASEM), which provides guidance as to the definition, capabilities and research challenges associated with the development and implementation of DTs. Specifically, DTs are defined as dynamic computational models that can be personalized to an individual real world "twin" and are connected to that twin via an ongoing data link. DTs can be used to provide control on the real-world twin that is, by the ongoing data connection, adaptive. We have developed an anatomic scale cell-level agent-based model of VML termed the Wound Environment Agent Based Model (WEABM) that can serve as the computational specification for a DT of VML. Simulations of the WEABM provided fundamental insights into the biology of VML, and we used the WEABM in our previously developed pipeline for simulation-based Deep Reinforcement Learning (DRL) to train an artificial intelligence (AI) to implement a robust generalizable control policy aimed at increasing the healing of VML with functional muscle. The insights into VML obtained include: 1) a competition between fibrosis and myogenesis due to spatial constraints on available edges of intact myofibrils to initiate the myoblast differentiation process, 2) the need to biologically "close" the wound from atmospheric/environmental exposure, which represents an ongoing inflammatory stimulus that promotes fibrosis and 3) that selective, multimodal and adaptive local mediator-level control can shift the trajectory of healing away from a highly evolutionarily beneficial imperative to close the wound via fibrosis. Control discovery with the WEABM identified the following design principles: 1) multimodal adaptive tissue-level mediator control to mitigate pro-inflammation as well as the pro-fibrotic aspects of compensatory anti-inflammation, 2) tissue-level mediator manipulation to promote myogenesis, 3) the use of an engineered extracellular matrix (ECM) to functionally close the wound and 4) the administration of an anti-fibrotic agent focused on the collagen-producing function of fibroblasts and myofibroblasts. The WEABM-trained DRL AI integrates these control modalities and provides design specifications for a potential device that can implement the required wound sensing and intervention delivery capabilities needed. The proposed cyber-physical system integrates the control AI with a physical sense-and-actuate device that meets the tenets of DTs put forth in the NASEM report and can serve as an example schema for the future development of Medical DTs.
Collapse
Affiliation(s)
- Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh
- McGowan Institute of Regenerative Medicine, University of Pittsburgh
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine
| |
Collapse
|
8
|
Liu N, Dong J, Li L, Zhou D, Liu F. The Function and Mechanism of Anti-Inflammatory Factor Metrnl Prevents the Progression of Inflammatory-Mediated Pathological Bone Osteolytic Diseases. J Inflamm Res 2024; 17:1607-1619. [PMID: 38495340 PMCID: PMC10942011 DOI: 10.2147/jir.s455790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Metrnl, recently identified as an adipokine, is a secreted protein notably expressed in white adipose tissue, barrier tissues, and activated macrophages. This adipokine plays a pivotal role in counteracting obesity-induced insulin resistance. It enhances adipose tissue functionality by promoting adipocyte differentiation, activating metabolic pathways, and exerting anti-inflammatory effects. Extensive research has identified Metrnl as a key player in modulating inflammatory responses and as an integral regulator of muscle regeneration. These findings position Metrnl as a promising biomarker and potential therapeutic target in treating inflammation-associated pathologies. Despite this, the specific anti-inflammatory mechanisms of Metrnl in immune-mediated osteolysis and arthritis remain elusive, warranting further investigation. In this review, we will briefly elaborate on the role of Metrnl in anti-inflammation function in inflammation-related osteolysis, arthritis, and pathological bone resorption, which could facilitate Metrnl's clinical application as a novel therapeutic strategy to prevent bone loss. While the pathogenesis of elbow stiffness remains elusive, current literature suggests that Metrnl likely exerts a pivotal role in its development.
Collapse
Affiliation(s)
- Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
9
|
Nandana MB, Bharatha M, Vishwanath BS, Rajaiah R. Naja naja snake venom-induced local toxicities in mice is by inflammasome activation. Toxicon 2024; 238:107590. [PMID: 38163462 DOI: 10.1016/j.toxicon.2023.107590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Snake bite envenomation causes tissue damage resulting in acute and chronic inflammatory responses. Inflammasome activation is one of the factors involved in tissue damage in a mouse model of snake envenomation. The present study examines the potency of Indian Big Four snake venoms in the activation of inflammasome and its role in local and systemic tissue toxicity. Among Indian Big Four snake venoms, Naja naja venom activated NLRP3 inflammasome in mouse macrophages. Activation of NLRP3 inflammasome was also observed in mouse foot paw and thigh muscle upon administration of N. naja venom. Intraperitoneal administration of N. naja venom cause systemic lung damage showed activation of NLRP3 inflammasome. Treatment with MCC950, a selective NLRP3 inflammasome inhibitor effectively inhibited N. naja venom-induced activation of caspase-1 and liberation of IL-1β in macrophages. In mice, MCC950 partially inhibited the activation of NLRP3 inflammasome in N. naja venom administered foot paw and thigh muscle. In conclusion, the present data showed that inflammasome is one of the host responses involved in N. naja snake venom-induced toxicities. The inhibition of inflammasome activation will provide new insight into better management of snake bite-induced local tissue damage.
Collapse
Affiliation(s)
- Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, 570006, India.
| |
Collapse
|
10
|
Robberechts R, Poffé C. Defining ketone supplementation: the evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am J Physiol Cell Physiol 2024; 326:C143-C160. [PMID: 37982172 DOI: 10.1152/ajpcell.00485.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-β-hydroxybutyrate (βHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Yang X, Liang J, Shu Y, Wei L, Wen C, Luo H, Ma L, Qin T, Wang B, Zeng S, Liu Y, Zhou C. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis. J Cell Biochem 2024; 125:115-126. [PMID: 38079224 DOI: 10.1002/jcb.30510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
Asperosaponin VI (ASA VI) is a bioactive triterpenoid saponin extracted from Diptychus roots, of Diptyl, and has previously shown protective functions in rheumatoid arthritis and sepsis. This study investigates the effects and molecular mechanisms of ASA VI on skeletal muscle regeneration in a cardiotoxin (CTX)-induced skeletal muscle injury mouse model. Mice were subjected to CTX-induced injury in the tibialis anterior and C2C12 myotubes were treated with CTX. Muscle fiber histology was analyzed at 7 and 14 days postinjury. Apoptosis and autophagy-related protein expression were evaluated t s by Western blot, and muscle regeneration markers were quantified by quantitative polymerase chain reaction. Docking studies, cell viability assessments, and glycogen synthase kinase-3β (GSK-3β) activation analyses were performed to elucidate the mechanism. ASA VI was observed to improve muscle interstitial fibrosis, remodeling, and performance in CTX-treated mice, thereby increased skeletal muscle size, weight, and locomotion. Furthermore, ASA VI modulated the expression of apoptosis and autophagy-related proteins through GSK-3β inhibition and activated the transcription of regeneration genes. Our results suggest that ASA VI mitigates skeletal muscle injury by modulating apoptosis and autophagy via GSK-3β signaling and promotes regeneration, thus presenting a probable therapeutic agent for skeletal muscle injury.
Collapse
Affiliation(s)
- Xinru Yang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Liang
- Department of Pediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Shu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Wei
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Wen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqing Ma
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tian Qin
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Liu
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Chun Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Lorio M, Lewandrowski KU, Coric D, Phillips F, Shaffrey CI. International Society for the Advancement of Spine Surgery Statement: Restorative Neurostimulation for Chronic Mechanical Low Back Pain Resulting From Neuromuscular Instability. Int J Spine Surg 2023; 17:728-750. [PMID: 37562978 PMCID: PMC10623686 DOI: 10.14444/8525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
This International Society for the Advancement of Spine Surgery statement has been generated to respond to growing requests for background, supporting literature and evidence, and proper coding for restorative neurostimulation for chronic low back pain. Chronic low back pain describes the diverse experience of a significant proportion of the population. Conservative management of these patients remains the predominant care pathway, but for many patients, symptom relief is poor. The application of new techniques in patients who have exhausted traditional care paradigms should be undertaken with a detailed understanding of the pathology being treated, the mechanisms involved, and the data supporting efficacy. This statement on restorative neurostimulation places this technology in the context of the current understanding of the etiology of mechanical low back pain and the currently available evidence for this technique. In an appropriately selected cohort with a specific subset of chronic low back pain symptoms, this technique may provide benefit to payers and patients.
Collapse
Affiliation(s)
- Morgan Lorio
- Advanced Orthopedics, Altamonte Springs, FL, USA
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, The Surgical Institute of Tucson, Tucson, AZ, USA
- Department of Orthopedics, Fundación Universitaria Sanitas, Bogotá, DC, Colombia
- Department of Orthopedics Hospital Universitário Gaffre e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Domagoj Coric
- Neuroscience Institute, Carolinas Healthcare System and Carolina Neurosurgery & Spine Associates, Charlotte, NC, USA
| | - Frank Phillips
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
13
|
Son Y, Kim BY, Kim M, Kim J, Kwon RJ, Kim K. Glucocorticoids Impair the 7α-Hydroxycholesterol-Enhanced Innate Immune Response. Immune Netw 2023; 23:e40. [PMID: 37970232 PMCID: PMC10643330 DOI: 10.4110/in.2023.23.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
Glucocorticoids suppress the vascular inflammation that occurs under hypercholesterolemia, as demonstrated in an animal model fed a high-cholesterol diet. However, the molecular mechanisms underlying these beneficial effects remain poorly understood. Because cholesterol is oxidized to form cholesterol oxides (oxysterols) that are capable of inducing inflammation, we investigated whether glucocorticoids affect the immune responses evoked by 7α-hydroxycholesterol (7αOHChol). The treatment of human THP-1 monocytic cells with dexamethasone (Dex) and prednisolone (Pdn) downregulated the expression of pattern recognition receptors (PRRs), such as TLR6 and CD14, and diminished 7αOHChol-enhanced response to FSL-1, a TLR2/6 ligand, and lipopolysaccharide, which interacts with CD14 to initiate immune responses, as determined by the reduced secretion of IL-23 and CCL2, respectively. Glucocorticoids weakened the 7αOHChol-induced production of CCL2 and CCR5 ligands, which was accompanied by decreased migration of monocytic cells and CCR5-expressing Jurkat T cells. Treatment with Dex or Pdn also reduced the phosphorylation of the Akt-1 Src, ERK1/2, and p65 subunits. These results indicate that both Dex and Pdn impair the expression of PRRs and their downstream products, chemokine production, and phosphorylation of signaling molecules. Collectively, glucocorticoids suppress the innate immune response and activation of monocytic cells to an inflammatory phenotype enhanced or induced by 7αOHChol, which may contribute to the anti-inflammatory effects in hypercholesterolemic conditions.
Collapse
Affiliation(s)
- Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Bo-Young Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Miran Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jaesung Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
14
|
Gaffney LS, Fisher MB, Freytes DO. Tendon Extracellular Matrix Promotes Myotendinous Junction Protein Expression in Engineered Muscle Tissue under Both Static and Mechanically Stimulated Culture Conditions. J Tissue Eng Regen Med 2023; 2023:6658543. [PMID: 40226411 PMCID: PMC11918950 DOI: 10.1155/2023/6658543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 04/15/2025]
Abstract
Studying the crosstalk between the muscle and tendon tissue is an important yet understudied area in musculoskeletal research. In vitro models can help elucidate the function and repair of the myotendinous junction (MTJ) under static and dynamic culture conditions using engineered muscle tissues. The goal of this study was to culture engineered muscle tissues in a novel bioreactor in both static and mechanically stimulated cultures and evaluate the expression of MTJ-specific proteins within the muscle-tendon unit(paxillin and type XXII collagen). C2C12 myoblasts were seeded in hydrogels made from type I collagen ortendon-derived extracellular matrix (tECM) and allowed to form around movable anchors. Engineered tissues were allowed to form and stabilize for 10 days. After 10 days in the culture, stimulated cultures were cyclically stimulated for 3 hours per day for 2 and 4 weeks alongside static cultures. Strain values at the maximum displacement of the anchors averaged about 0.10, a target that has been shown to induce myogenic phenotype in C2C12s. Protein expression of paxillin after 2 weeks did not differ between hydrogel materials in static cultures but increased by 62% in tECM when mechanically stimulated. These differences continued after 4 weeks, with 31% and 57% increases in tECM tissues relative to type I collagen. Expression of type XXII collagen was similarly influenced by hydrogel material and culture conditions. Overall, this research combined a relevant microenvironment to study muscle and tendon interactions with a novel bioreactor to apply mechanical strain, an important regulator of the formation and maintenance of the native MTJ.
Collapse
Affiliation(s)
- Lewis S. Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, NC 25799, USA
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Jiang Z, Liao H, Wu L, Hu W, Yang L, Chen B, Ning Z, Tang J, Xu R, Chen M, Guo F, Liu S. Association between blood eosinophil count and Duchenne muscular dystrophy severity and prognosis: a retrospective cohort study. Ital J Pediatr 2023; 49:83. [PMID: 37443128 DOI: 10.1186/s13052-023-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a rare hereditary muscular disease. The role of eosinophils in DMD has not been clarified. This study aims to evaluate the association between peripheral blood eosinophil count and severity and prognosis of DMD. METHODS A retrospective cohort study was performed for 145 DMD patients between January 2012 and December 2020. Clinical data of 150 healthy children were collected as a control group. Logistic regression and Cox regression analyses were used to explore the influences of eosinophil count on DMD severity and prognosis. RESULTS Eosinophil count in DMD group was lower than the control group (Z = 2.163, P = 0.031). It was negatively correlated with Vignos scale score, Spearman correlation coefficient was p = 0.245, P = 0.040 (at admission), p = 0.137, P = 0.032 (at follow-up); was a protective factor for high Vignos scale score at admission [odds ratio (OR) = 0.038, 95%CI: 0.002-0.752, P = 0.032] and follow-up (OR = 0.033,95%CI: 0.001-0.121, P = 0.039). The Cox regression analysis indicated that elevated eosinophil count was correlated with better therapeutic efficacy for DMD patients [hazard ratio (HR) = 2.218, 95%CI: 1.154-3.924, P = 0.016]. CONCLUSION Eosinophil count in peripheral blood was correlated with the severity of DMD. It could indicate the therapeutic efficacy and prognosis of DMD patients to a certain extent. Eosinophils may be a potentially valuable biomarker or therapeutic target for DMD.
Collapse
Affiliation(s)
- Zhi Jiang
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China.
| | - Hongmei Liao
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China.
| | - Liwen Wu
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Wenjing Hu
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Liming Yang
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Bo Chen
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Zeshu Ning
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Jingwen Tang
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Rong Xu
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Mei Chen
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Feng Guo
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| | - Shulei Liu
- Departmentof Neurology, Hunan Children's Hospital, Yuhua District, No.86, Zi Yuan Road, Changsha, 410007, China
| |
Collapse
|
16
|
Mázala DAG, Hindupur R, Moon YJ, Shaikh F, Gamu IH, Alladi D, Panci G, Weiss-Gayet M, Chazaud B, Partridge TA, Novak JS, Jaiswal JK. Altered muscle niche contributes to myogenic deficit in the D2-mdx model of severe DMD. Cell Death Discov 2023; 9:224. [PMID: 37402716 PMCID: PMC10319851 DOI: 10.1038/s41420-023-01503-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Lack of dystrophin expression is the underlying genetic basis for Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2-mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2-mdx muscles is associated with an enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports the excessive accumulation of fibroadipogenic progenitors (FAPs), leading to increased fibrosis. Unexpectedly, the extent of damage and degeneration in juvenile D2-mdx muscle is significantly reduced in adults, and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance regenerative myogenesis in the adult D2-mdx muscle, reaching levels comparable to the milder B10-mdx model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with juvenile D2-mdx FAPs reduces their fusion efficacy. Wild-type juvenile D2 mice also manifest regenerative myogenic deficit and glucocorticoid treatment improves their muscle regeneration. Our findings indicate that aberrant stromal cell responses contribute to poor regenerative myogenesis and greater muscle degeneration in juvenile D2-mdx muscles and reversal of this reduces pathology in adult D2-mdx muscle, identifying these responses as a potential therapeutic target for the treatment of DMD.
Collapse
Affiliation(s)
- Davi A G Mázala
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, 21252, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Young Jae Moon
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Department of Biochemistry and Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Fatima Shaikh
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Iteoluwakishi H Gamu
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Dhruv Alladi
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Georgiana Panci
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA.
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA.
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
17
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
18
|
Mázala DAG, Hindupur R, Moon YJ, Shaikh F, Gamu IH, Alladi D, Panci G, Weiss-Gayet M, Chazaud B, Partridge TA, Novak JS, Jaiswal JK. Altered muscle niche contributes to myogenic deficit in the D2- mdx model of severe DMD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534413. [PMID: 37034785 PMCID: PMC10081277 DOI: 10.1101/2023.03.27.534413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lack of dystrophin is the genetic basis for the Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2- mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2- mdx muscles is associated with enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports excessive accumulation of fibroadipogenic progenitors (FAPs). Unexpectedly, the extent of damage and degeneration of juvenile D2- mdx muscle is reduced in adults and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance myogenesis in the adult D2- mdx muscle, reaching levels comparable to the milder (B10- mdx ) mouse model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with the juvenile D2- mdx FAPs reduced their fusion efficacy and in vivo glucocorticoid treatment of juvenile D2 mouse improved muscle regeneration. Our findings indicate that aberrant stromal cell response contributes to poor myogenesis and greater muscle degeneration in dystrophic juvenile D2- mdx muscles and reversal of this reduces pathology in adult D2- mdx mouse muscle, identifying these as therapeutic targets to treat dystrophic DMD muscles.
Collapse
Affiliation(s)
- Davi A. G. Mázala
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, 21252, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Young Jae Moon
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Biochemistry and Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Fatima Shaikh
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Iteoluwakishi H. Gamu
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Dhruv Alladi
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Georgiana Panci
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Terence A. Partridge
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - James S. Novak
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| |
Collapse
|
19
|
Son Y, Lorenz WW, Paton CM. Linoleic acid-induced ANGPTL4 inhibits C2C12 skeletal muscle differentiation by suppressing Wnt/β-catenin. J Nutr Biochem 2023; 116:109324. [PMID: 36963729 DOI: 10.1016/j.jnutbio.2023.109324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Skeletal muscle differentiation is an essential process in embryonic development as well as regeneration and repair throughout the lifespan. It is well-known that dietary fat intake impacts biological and physiological function in skeletal muscle, however, understanding of the contribution of nutritional factors in skeletal muscle differentiation is limited. Therefore, the objective of the current study was to evaluate the effects of free fatty acids (FFAs) on skeletal muscle differentiation in vitro. We used C2C12 murine myoblasts and treated them with various FFAs, which revealed a unique response of angiopoietin-like protein-4 (ANGPTL4) with linoleic acid (LA) treatment that was associated with reduced differentiation. LA significantly inhibited myotube formation and lowered the protein expression of myogenic regulatory factors, including MyoD and MyoG and increased Pax7 during cell differentiation. Next, recombinant ANGPTL4 protein or siRNA knockdown of ANGPTL4 was employed to examine its role in skeletal muscle differentiation, and we confirmed that ANGPTL4 knockdown at day 2 and -6 of differentiation restored myotube formation in the presence of LA. RNA-sequencing analysis revealed that ANGPTL4-mediated inhibition of skeletal muscle differentiation at day 2 as well as LA at day 2 or -6 led to a reduction in Wnt/β-catenin signaling pathways. We confirmed that LA reduced Wnt11 and Axin2 while increasing expression of the Wnt inhibitor, Dkk2. ANGPTL4 knockdown increased β-catenin protein in the nucleus in response to LA and increased Axin2 and Wnt11 expression. Taken together, these results demonstrate that LA induced ANGPTL4 inhibits C2C12 differentiation by suppressing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yura Son
- Department of Nutritional Sciences
| | - W Walter Lorenz
- Georgia Genomics and Bioinformatics Core and Institute of Bioinformatics
| | - Chad M Paton
- Department of Nutritional Sciences; Department of Food Science & Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
20
|
Gallo CC, Honda TSB, Alves PT, Han SW. Macrophages mobilized by the overexpression of the macrophage-colony stimulating factor promote efficient recovery of the ischemic muscle functionality. Life Sci 2023; 317:121478. [PMID: 36758666 DOI: 10.1016/j.lfs.2023.121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
AIMS Narrowing or occlusion of arteries that supply the limbs can evolve to critical limb ischemia. M-CSF promotes proliferation, differentiation and survival of monocytes and macrophages, and polarization of macrophages to M2-subtype, which are essential elements for vessel formation and tissue repair. Based on these properties of M-CSF, we hypothesize that transfection of M-CSF into ischemic limbs may promote vessel formation and repair of ischemic limbs. MAIN METHODS Hindlimb ischemia was surgically induced in 10-12 weeks old Balb/c and gene therapy was performed with intramuscular application of either uP-MCSF or uP plasmids (100 μg). Macrophage and monocyte subpopulations were assessed by flow cytometry and blood flow was monitored by Laser Doppler Perfusion Imaging (LDPI). Thirty days after transfection, we assessed gastrocnemius mass and muscle force, subsequently collecting the muscle for histology. KEY FINDINGS We successfully developed the uP-MCSF plasmid, which increases M-CSF expression in the muscle transiently. Thirty days after uP-MCSF gene therapy in ischemic muscles, the treated group presented: improved muscle force, reduced fibrosis and increased arteriogenesis, although LDPI analysis did not show any significant difference in blood flow among groups. Noteworthy, we observed a temporary increase in MHCIIhighCD206high macrophages after uP-MCSF transfection. SIGNIFICANCE M-CSF gene therapy improved ischemic muscle functionality by promoting arteriogenesis and decreasing fibrosis, likely through increased MHCIIhighCD206high macrophages and not via classically known M2-macrophages.
Collapse
Affiliation(s)
- Camila Congentino Gallo
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tâmisa Seeko Bandeira Honda
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Patrícia Terra Alves
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sang Won Han
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil..
| |
Collapse
|
21
|
Zhang M, Lin Y, Chen R, Yu H, Li Y, Chen M, Dou C, Yin P, Zhang L, Tang P. Ghost messages: cell death signals spread. Cell Commun Signal 2023; 21:6. [PMID: 36624476 PMCID: PMC9830882 DOI: 10.1186/s12964-022-01004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a mystery in various forms. Whichever type of cell death, this is always accompanied by active or passive molecules release. The recent years marked the renaissance of the study of these molecules showing they can signal to and communicate with recipient cells and regulate physio- or pathological events. This review summarizes the defined forms of messages cells could spread while dying, the effects of these signals on the target tissue/cells, and how these types of communications regulate physio- or pathological processes. By doing so, this review hopes to identify major unresolved questions in the field, formulate new hypothesis worthy of further investigation, and when possible, provide references for the search of novel diagnostic/therapeutics agents. Video abstract.
Collapse
Affiliation(s)
- Mingming Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yuan Lin
- grid.412463.60000 0004 1762 6325Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Ruijing Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Haikuan Yu
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yi Li
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ce Dou
- grid.410570.70000 0004 1760 6682Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Pengbin Yin
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Licheng Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Peifu Tang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| |
Collapse
|
22
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
23
|
Kharraz Y, Lukesova V, Serrano AL, Davison A, Muñoz-Cánoves P. Full spectrum cytometry improves the resolution of highly autofluorescent biological samples: Identification of myeloid cells in regenerating skeletal muscles. Cytometry A 2022; 101:862-876. [PMID: 35608022 DOI: 10.1002/cyto.a.24568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023]
Abstract
Autofluorescence (AF) is an intrinsic characteristic of cells caused by the presence of fluorescent biological compounds within the cell; these can include structural proteins (e.g., collagen and elastin), cellular organelles, and metabolites (e.g., aromatic amino acids). In flow cytometric studies, the presence of AF can lead to reduced antigen and population resolution, as well as the presence of artifacts due to false positive events. Here, we describe a methodology that uses the inherent ability of full spectrum cytometry to treat AF as a fluorochrome and to thereby separate it from the other fluorochromes of the assay. This method can be applied to complex inflamed tissues; for instance, in regenerating skeletal muscle we have developed a 16-color panel targeting highly autofluorescent myeloid cells. This represents a first step toward overcoming technological limitations in flow cytometry due to AF.
Collapse
Affiliation(s)
- Yacine Kharraz
- Application Department, Cytek Biosciences, Inc., Fremont, California, USA
| | - Vera Lukesova
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Adam Davison
- Application Department, Cytek Biosciences, Inc., Fremont, California, USA
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
24
|
Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death Dis 2022; 13:680. [PMID: 35931697 PMCID: PMC9356005 DOI: 10.1038/s41419-022-05142-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023]
Abstract
Skeletal muscle repair and regeneration after injury is a multi-stage process, involving a dynamic inflammatory microenvironment consisting of a complex network formed by the interaction of immune cells and their secreted cytokines. The homeostasis of the inflammatory microenvironment determines whether skeletal muscle repair tissues will ultimately form scar tissue or regenerative tissue. Regulatory T cells (Tregs) regulate homeostasis within the immune system and self-immune tolerance, and play a crucial role in skeletal muscle repair and regeneration. Dysregulated Tregs function leads to abnormal repair. In this review, we discuss the role and mechanisms of Tregs in skeletal muscle repair and regeneration after injury and provide new strategies for Treg immunotherapy in skeletal muscle diseases.
Collapse
|
25
|
Salvianolic Acid B Alleviates Limb Ischemia in Mice via Promoting SIRT1/PI3K/AKT Pathway-Mediated M2 Macrophage Polarization. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1112394. [PMID: 35656466 PMCID: PMC9155924 DOI: 10.1155/2022/1112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Salvianolic acid B (Sal B) is an effective treatment agent for ischemic disease in China. However, Sal B's effects on peripheral arterial disease (PAD) and its mechanism remains poorly understood. Macrophage polarization plays a crucial role in PAD. Nevertheless, treatment modalities that increase the population of anti-inflammatory (M2) macrophages are limited. This study aimed to explore the protective effects of Sal B on limb perfusion and investigate the mechanism of Sal B-induced macrophage polarization. C57BL/6 male mice (6 weeks) were randomized into control, Model + NS, and Model + Sal B groups (n = 5). Then, we established a hind limb ischemia mouse model to assess the Sal B's role (15 mg/kg/d) in PAD. We quantified the blood perfusion via laser speckle contrast imaging (LSCI) and measured the capillary density and muscle edema with CD31 and H&E staining. The Sal B-induced macrophage polarization was confirmed by qPCR and ELISA. The results showed that the Sal B group exhibited a significant improvement in the blood perfusion, capillary density, muscle edema, and M2 markers gene expressions. Cell migration and tube formation were promoted in the endothelial cells stimulated with a culture supernatant from Sal B-treated macrophages. In contrast, endothelial functions improved by Sal B-treated macrophages were impaired in groups treated with SIRT1 and PI3K inhibitors. These findings provide evidence for Sal B's protective role in PAD and demonstrate the enhancement of macrophage polarization via the SIRT1/PI3K/AKT pathway.
Collapse
|
26
|
Shen Y, Wang X, Wang Y, Guo X, Yu K, Dong K, Guo Y, Cai C, Li B. Bilayer silk fibroin/sodium alginate scaffold promotes vascularization and advances inflammation stage in full-thickness wound. Biofabrication 2022; 14. [PMID: 35617935 DOI: 10.1088/1758-5090/ac73b7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
An ideal wound dressing for full-thickness wound regeneration should offer desirable biocompatibility, adequate mechanical properties, barrier function, and cellular regulation. Here, a bilayer scaffold resembling the hierarchical structure of human skin was developed using silk fibroin and sodium alginate. The upper membrane was prepared through casting and functioned as the epidermis, whereas the lower porous scaffold was prepared by freeze-drying and mimicked extracellular matrix structures. The membrane had nonporous structure, desirable mechanical properties, moderate hydrophilic surface, and suitable water vapor transmission rate, whereas the porous scaffold revealed 157.61 ± 41.67 µm pore size, 86.10 ± 3.60% porosity, and capability of stimulating fibroblast proliferation. The combination of the two structures reinforced the tensile strength by 5-fold and provided protection from wound dehydration. A suitable degradation rate reduced potential administration frequency. Furthermore, an in vivo rabbit full-thickness wound healing test demonstrated that the bilayer scaffold facilitated wound closure, granulation tissue formation, re-epithelialization and skin component transition towards normal skin by providing a moist wound environment, advancing the inflammation stage, and stimulating angiogenesis. Collectively, as an off-the-shelf and cell-free wound dressing with single topical administration, the bilayer scaffold is a promising wound dressing for full-thickness wound regeneration.
Collapse
Affiliation(s)
- Ying Shen
- Biomedical Material and Engineering Research Center, Wuhan University of Technology, Wuhan 430070, Wuhan, Hubei, 430070, CHINA
| | - Xinyu Wang
- Biomedical Material and Engineering Research Center, Wuhan University of Technology, Wuhan 430070, Wuhan, Hubei, 430070, CHINA
| | - Yiyu Wang
- Taizhou University, Taizhou, Taizhou, Zhejiang, 317000, CHINA
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430300, CHINA
| | - Keda Yu
- Department of Orthopedics, Wuhan Union Hospital, Wuhan, Wuhan, Hubei, 430300, CHINA
| | - Kuo Dong
- Biomedical Material and Engineering Research Center, Wuhan University of Technology, Wuhan 430070, Wuhan, Hubei, 430070, CHINA
| | - Yajin Guo
- Biomedical Material and Engineering Research Center, Wuhan University of Technology, Wuhan 430070, Wuhan, Hubei, 430070, CHINA
| | - Cuiling Cai
- Biomedical Material and Engineering Research Center, Wuhan University of Technology, Wuhan 430070, Wuhan, Hubei, 430070, CHINA
| | - Binbin Li
- Biomedical Material and Engineering Research Center, Wuhan University of Technology, Wuhan 430070, Wuhan, Hubei, 430070, CHINA
| |
Collapse
|
27
|
Ma Q, Zhang N, You Y, Zhu J, Yu Z, Chen H, Xie X, Yu H. CXCR4 blockade in macrophage promotes angiogenesis in ischemic hindlimb by modulating autophagy. J Mol Cell Cardiol 2022; 169:57-70. [PMID: 35597127 DOI: 10.1016/j.yjmcc.2022.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Chemokine receptor CXCR4 plays a crucial role in leukocyte recruitment and inflammation regulation to influence tissue repair in ischemic diseases. Here we assessed the effect of CXCR4 expression in macrophages on angiogenesis in the ischemic hindlimb of a mouse. Inflammatory cells were increased in the ischemic muscles of hindlimb, and CXCR4 was highly expressed in the infiltrated macrophages but not in neutrophils. Myeloid-specific CXCR4 knockout attenuated macrophage infiltration and subsequent reduced inflammatory response in the ischemic hindlimb, accompanied with better blood reperfusion and higher capillary density as compared with that in LysM Cre+/- (Cre) mice. Similar outcomes were also observed in CRE mice whose bone marrow cells were replaced with those from CXCR4-deficient mice. Gene ontology cluster analysis reviewed that Decorin, a negative regulator of angiogenesis, was reduced in CXCR4-deficient macrophages. CXCR4-deficient macrophages were less inducible into M1 phase by lipopolysaccharide and more favorable for M2 polarization under oxygen/glucose deprivation condition. Enhanced autophagy was detected in CXCR4-deficient macrophages, which was associated with less expression of both Decorin and the inflammatory cytokines. In summary, myeloid-specific CXCR4 deficiency reduced monocyte infiltration and the secretion of inflammatory cytokines and Decorin from macrophages, thus blunting inflammation response and promoting angiogenesis in the ischemic hindlimb.
Collapse
Affiliation(s)
- Qunchao Ma
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Ning Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Yayu You
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Zhaosheng Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Haibo Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Xiaojie Xie
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| |
Collapse
|
28
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
29
|
Colapicchioni V, Millozzi F, Parolini O, Palacios D. Nanomedicine, a valuable tool for skeletal muscle disorders: Challenges, promises, and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1777. [PMID: 35092179 PMCID: PMC9285803 DOI: 10.1002/wnan.1777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Muscular dystrophies are a group of rare genetic disorders characterized by progressive muscle weakness, which, in the most severe forms, leads to the patient's death due to cardiorespiratory problems. There is still no cure available for these diseases and significant effort is being placed into developing new strategies to either correct the genetic defect or to compensate muscle loss by stimulating skeletal muscle regeneration. However, the vast anatomical extension of the target tissue poses great challenges to these goals, highlighting the need for complementary strategies. Nanomedicine is an actively evolving field that merges nanotechnologies with biomedical and pharmaceutical sciences. It holds great potential in regenerative medicine, both in supporting tissue engineering and regeneration, and in optimizing drug and oligonucleotide delivery and gene therapy strategies. In this review, we will summarize the state‐of‐the‐art in the field of nanomedicine applied to skeletal muscle regeneration. We will discuss the recent work toward the development of nanopatterned scaffolds for tissue engineering, the efforts in the synthesis of organic and inorganic nanoparticles for gene therapy and drug delivery applications, as well as their use as immune modulators. Although nanomedicine holds great promise for muscle and other degenerative diseases, many challenges still need to be systematically addressed to assure a smooth transition from the bench to the bedside. This article is categorized under:Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Collapse
Affiliation(s)
- Valentina Colapicchioni
- Italian National Research Council, Institute for Atmospheric Pollution Research (CNR-IIA), Rome, Italy.,Mhetra LLC, Miami, Florida, USA
| | - Francesco Millozzi
- Histology and Embryology Unit, DAHFMO, Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
30
|
Trolese MC, Scarpa C, Melfi V, Fabbrizio P, Sironi F, Rossi M, Bendotti C, Nardo G. Boosting the peripheral immune response in the skeletal muscles improved motor function in ALS transgenic mice. Mol Ther 2022; 30:2760-2784. [PMID: 35477657 PMCID: PMC9372324 DOI: 10.1016/j.ymthe.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP1) is one of the most powerful pro-inflammatory chemokines. However, its signalling is pivotal in driving injured axon and muscle regeneration.
Collapse
Affiliation(s)
- Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlotta Scarpa
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Valentina Melfi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Martina Rossi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;.
| |
Collapse
|
31
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Dey P, Soyer MA, Dey BK. MicroRNA-24-3p promotes skeletal muscle differentiation and regeneration by regulating HMGA1. Cell Mol Life Sci 2022; 79:170. [PMID: 35238991 PMCID: PMC11072726 DOI: 10.1007/s00018-022-04168-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Numerous studies have established the critical roles of microRNAs in regulating post-transcriptional gene expression in diverse biological processes. Here, we report on the role and mechanism of miR-24-3p in skeletal muscle differentiation and regeneration. miR-24-3p promotes myoblast differentiation and skeletal muscle regeneration by directly targeting high mobility group AT-hook 1 (HMGA1) and regulating it and its direct downstream target, the inhibitor of differentiation 3 (ID3). miR-24-3p knockdown in neonatal mice increases PAX7-positive proliferating muscle stem cells (MuSCs) by derepressing Hmga1 and Id3. Similarly, inhibition of miR-24-3p in the tibialis anterior muscle prevents Hmga1 and Id3 downregulation and impairs regeneration. These findings provide evidence that the miR-24-3p/HMGA1/ID3 axis is required for MuSC differentiation and skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Paromita Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Miles A Soyer
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bijan K Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
33
|
Wang XH, Mitch WE, Price SR. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 2022; 18:138-152. [PMID: 34750550 DOI: 10.1038/s41581-021-00498-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Loss of muscle proteins is a deleterious consequence of chronic kidney disease (CKD) that causes a decrease in muscle strength and function, and can lead to a reduction in quality of life and increased risk of morbidity and mortality. The effectiveness of current treatment strategies in preventing or reversing muscle protein losses is limited. The limitations largely stem from the systemic nature of diseases such as CKD, which stimulate skeletal muscle protein degradation pathways while simultaneously activating mechanisms that impair muscle protein synthesis and repair. Stimuli that initiate muscle protein loss include metabolic acidosis, insulin and IGF1 resistance, changes in hormones, cytokines, inflammatory processes and decreased appetite. A growing body of evidence suggests that signalling molecules secreted from muscle can enter the circulation and subsequently interact with recipient organs, including the kidneys, while conversely, pathological events in the kidney can adversely influence protein metabolism in skeletal muscle, demonstrating the existence of crosstalk between kidney and muscle. Together, these signals, whether direct or indirect, induce changes in the levels of regulatory and effector proteins via alterations in mRNAs, microRNAs and chromatin epigenetic responses. Advances in our understanding of the signals and processes that mediate muscle loss in CKD and other muscle wasting conditions will support the future development of therapeutic strategies to reduce muscle loss.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, USA
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. .,Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
34
|
Manneken JD, Dauer MVP, Currie PD. Dynamics of muscle growth and regeneration: Lessons from the teleost. Exp Cell Res 2021; 411:112991. [PMID: 34958765 DOI: 10.1016/j.yexcr.2021.112991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.
Collapse
Affiliation(s)
- Jessica D Manneken
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Mervyn V P Dauer
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; EMBL Australia, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
35
|
Lia A, Annese T, Fornaro M, Giannini M, D'Abbicco D, Errede M, Lorusso L, Amati A, Tampoia M, Trojano M, Virgintino D, Ribatti D, Serlenga L, Iannone F, Girolamo F. Perivascular and endomysial macrophages expressing VEGF and CXCL12 promote angiogenesis in anti-HMGCR immune-mediated necrotizing myopathy. Rheumatology (Oxford) 2021; 61:3448-3460. [PMID: 34864921 DOI: 10.1093/rheumatology/keab900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To study the phenotype of macrophage infiltrates and their role in angiogenesis in different Idiopathic Inflammatory Myopathies (IIMs). METHODS The density and distribution of the subpopulations of macrophages subsets (M1, inducible nitric oxide+, CD11c+; M2, arginase-1+), endomysial capillaries (CD31+, FLK1+), degenerating (C5b-9+), and regenerating (NCAM+) myofibers, were investigated by immunohistochemistry in human muscle samples of diagnostic biopsies from a large cohort of untreated patients (n: 81) suffering from anti-3-hydroxy-3-methylglutaryl coenzyme A reductase (anti-HMGCR)+ Immune Mediated Necrotizing Myopathy (IMNM), anti-signal recognition particle (anti-SRP)+ IMNM, seronegative IMNM, Dermatomyositis, Polymyositis, Polymyositis with mitochondrial pathology, sporadic Inclusion Body Myositis, Scleromyositis, and anti-Synthetase Syndrome. The samples were compared with mitochondrial myopathy and control muscle samples. RESULTS Compared with the other IIMs and controls, endomysial capillary density (CD) was higher in anti-HMGCR+ IMNM, where M1 and M2 macrophages, detected by confocal microscopy, infiltrated perivascular endomysium and expressed angiogenic molecules such as VEGF-A and CXCL12. These angiogenic macrophages were preferentially associated with CD31+ FLK1+ microvessels in anti-HMGCR+ IMNM. The VEGF-A+ M2 macrophage density was significantly correlated with CD (rS: 0.98; p: 0.0004). Western blot analyses revealed increased expression levels of VEGF-A, FLK1, HIF-1α, and CXCL12 in anti-HMGCR+ IMNM. CD and expression levels of these angiogenic molecules were not increased in anti-SRP+ and seronegative IMNM, offering additional, useful information for differential diagnosis among these IIM subtypes. CONCLUSION Our findings suggest that in IIMs, infiltrating macrophages and microvascular cells interactions play a pivotal role in coordinating myogenesis and angiogenesis. This reciprocal crosstalk seems to distinguish anti-HMGCR associated IMNM.
Collapse
Affiliation(s)
- Anna Lia
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Tiziana Annese
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Marco Fornaro
- Unit of Rheumatology, Department of Emergency and Organ Transplantation, University of Bari, Italy
| | - Margherita Giannini
- Unit of Rheumatology, Department of Emergency and Organ Transplantation, University of Bari, Italy.,Service de Physiologie, Unité d'Explorations Fonctionnelles Musculaires, Hôpitaux Universitaires de Strasbourg, France
| | - Dario D'Abbicco
- Institute of General Surgery "G. Marinaccio", Department of Emergency and Organ Transplantation, University of Bari
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Loredana Lorusso
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Angela Amati
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Marilina Tampoia
- Unit of Clinical Pathology, Ospedale SS., Annunziata, Taranto, Italy
| | - Maria Trojano
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Luigi Serlenga
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Florenzo Iannone
- Unit of Rheumatology, Department of Emergency and Organ Transplantation, University of Bari, Italy
| | - Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| |
Collapse
|
36
|
Feno S, Munari F, Reane DV, Gissi R, Hoang DH, Castegna A, Chazaud B, Viola A, Rizzuto R, Raffaello A. The dominant-negative mitochondrial calcium uniporter subunit MCUb drives macrophage polarization during skeletal muscle regeneration. Sci Signal 2021; 14:eabf3838. [PMID: 34726954 DOI: 10.1126/scisignal.abf3838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Simona Feno
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | | | - Rosanna Gissi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Dieu-Huong Hoang
- INSERM U1217, CNRS 5310, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, 8 Avenue Rockefeller, F-69008 Lyon, France
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy.,IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Bénédicte Chazaud
- INSERM U1217, CNRS 5310, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, 8 Avenue Rockefeller, F-69008 Lyon, France
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy.,Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
| |
Collapse
|
37
|
Abstract
Zika virus (ZIKV) infection became a worldwide concern due to its correlation with the development of microcephaly and other neurological disorders. ZIKV neurotropism is well characterized, but the role of peripheral viral amplification to brain infection remains unknown. Here, we found that ZIKV replicates in human primary skeletal muscle myoblasts, impairing its differentiation into myotubes but not interfering with the integrity of the already-formed muscle fibers. Using mouse models, we showed ZIKV tropism to muscle tissue either during embryogenesis after maternal transmission or when infection occurred after birth. Interestingly, ZIKV replication in the mouse skeletal muscle started immediately after ZIKV inoculation, preceding viral RNA detection in the brain and causing no disruption to the integrity of the blood brain barrier, and remained active for more than 2 weeks, whereas replication in the spleen and liver were not sustained over time. In addition, ZIKV infection of the skeletal muscle induces necrotic lesions, inflammation, and fiber atrophy. We also found a reduction in the expression of regulatory myogenic factors that are essential for muscle repair after injury. Taken together, our results indicate that the skeletal muscle is an early site of viral amplification and lesion that may result in late consequences in muscle development after ZIKV infection. IMPORTANCE Zika Virus (ZIKV) neurotropism and its deleterious effects on central nervous system have been well characterized. However, investigations of the initial replication sites for the establishment of infection and viral spread to neural tissues remain underexplored. A complete description of the range of ZIKV-induced lesions and others factors that can influence the severity of the disease is necessary to prevent ZIKV’s deleterious effects. ZIKV has been shown to access the central nervous system without significantly affecting blood-brain barrier permeability. Here, we demonstrated that skeletal muscle is an earlier site of ZIKV replication, contributing to the increase of peripheral ZIKV load. ZIKV replication in muscle promotes necrotic lesions and inflammation and also impairs myogenesis. Overall, our findings showed that skeletal muscle is involved in pathogenesis and opens new fields in the investigation of the long-term consequences of early infection.
Collapse
|
38
|
Tulangekar A, Sztal TE. Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration. Biomedicines 2021; 9:biomedicines9101366. [PMID: 34680483 PMCID: PMC8533596 DOI: 10.3390/biomedicines9101366] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive, X-linked, neuromuscular disorder caused by mutations in the dystrophin gene. In DMD, the lack of functional dystrophin protein makes the muscle membrane fragile, leaving the muscle fibers prone to damage during contraction. Muscle degeneration in DMD patients is closely associated with a prolonged inflammatory response, and while this is important to stimulate regeneration, inflammation is also thought to exacerbate muscle damage. Neutrophils are one of the first immune cells to be recruited to the damaged muscle and are the first line of defense during tissue injury or infection. Neutrophils can promote inflammation by releasing pro-inflammatory cytokines and compounds, including myeloperoxidase (MPO) and neutrophil elastase (NE), that lead to oxidative stress and are thought to have a role in prolonging inflammation in DMD. In this review, we provide an overview of the roles of the innate immune response, with particular focus on mechanisms used by neutrophils to exacerbate muscle damage and impair regeneration in DMD.
Collapse
|
39
|
Tarnowski M, Kopytko P, Piotrowska K. Epigenetic Regulation of Inflammatory Responses in the Context of Physical Activity. Genes (Basel) 2021; 12:1313. [PMID: 34573295 PMCID: PMC8465911 DOI: 10.3390/genes12091313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications occur in response to environmental changes and play a fundamental role in the regulation of gene expression. PA is found to elicit an inflammatory response, both from the innate and adaptive divisions of the immunological system. The inflammatory reaction is considered a vital trigger of epigenetic changes that in turn modulate inflammatory actions. The tissue responses to PA involve local and general changes. The epigenetic mechanisms involved include: DNA methylation, histone proteins modification and microRNA. All of them affect genetic expression in an inflammatory milieu in physical exercise depending on the magnitude of physiological stress experienced by the exerciser. PA may evoke acute or chronic biochemical and physiological responses and have a positive or negative immunomodulatory effect.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (P.K.); (K.P.)
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (P.K.); (K.P.)
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (P.K.); (K.P.)
| |
Collapse
|
40
|
Shou J, Shi X, Liu X, Chen Y, Chen P, Xiao W. Programmed death-1 promotes contused skeletal muscle regeneration by regulating Treg cells and macrophages. J Transl Med 2021; 101:719-732. [PMID: 33674785 PMCID: PMC8137453 DOI: 10.1038/s41374-021-00542-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Immune cells are involved in skeletal muscle regeneration. The mechanism by which Treg cells are involved in the regeneration of injured skeletal muscle is still unclear. The purpose of this study was to explore the role of programmed death-1 in contused skeletal muscle regeneration, and to clarify the regulation of programmed death-1 on Treg cell generation and macrophage polarization, in order to deepen our understanding of the relationship between the immune system and injured skeletal muscle regeneration. The results show that programmed death-1 knockdown reduced the number of Treg cells and impaired contused skeletal muscle regeneration compared with those of wild-type mice. The number of pro-inflammatory macrophages in the contused skeletal muscle of programmed death-1 knockout mice increased, and the expression of pro-inflammatory factors and oxidative stress factors increased, while the number of anti-inflammatory macrophages and the expression of anti-inflammatory factors, antioxidant stress factors, and muscle regeneration-related factors decreased. These results suggest that programmed death-1 can promote contused skeletal muscle regeneration by regulating Treg cell generation and macrophage polarization.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xinjuan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
41
|
Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, Saccone V. Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Front Bioeng Biotechnol 2021; 9:652970. [PMID: 34095095 PMCID: PMC8172230 DOI: 10.3389/fbioe.2021.652970] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells found in different tissues: bone marrow, peripheral blood, adipose tissues, skeletal muscle, perinatal tissues, and dental pulp. MSCs are able to self-renew and to differentiate into multiple lineages, and they have been extensively used for cell therapy mostly owing to their anti-fibrotic and immunoregulatory properties that have been suggested to be at the basis for their regenerative capability. MSCs exert their effects by releasing a variety of biologically active molecules such as growth factors, chemokines, and cytokines, either as soluble proteins or enclosed in extracellular vesicles (EVs). Analyses of MSC-derived secretome and in particular studies on EVs are attracting great attention from a medical point of view due to their ability to mimic all the therapeutic effects produced by the MSCs (i.e., endogenous tissue repair and regulation of the immune system). MSC-EVs could be advantageous compared with the parental cells because of their specific cargo containing mRNAs, miRNAs, and proteins that can be biologically transferred to recipient cells. MSC-EV storage, transfer, and production are easier; and their administration is also safer than MSC therapy. The skeletal muscle is a very adaptive tissue, but its regenerative potential is altered during acute and chronic conditions. Recent works demonstrate that both MSCs and their secretome are able to help myofiber regeneration enhancing myogenesis and, interestingly, can be manipulated as a novel strategy for therapeutic interventions in muscular diseases like muscular dystrophies or atrophy. In particular, MSC-EVs represent promising candidates for cell free-based muscle regeneration. In this review, we aim to give a complete picture of the therapeutic properties and advantages of MSCs and their products (MSC-derived EVs and secreted factors) relevant for skeletal muscle regeneration in main muscular diseases.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Alessia Ventura
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
42
|
Macrophages and Stem Cells-Two to Tango for Tissue Repair? Biomolecules 2021; 11:biom11050697. [PMID: 34066618 PMCID: PMC8148606 DOI: 10.3390/biom11050697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Macrophages (MCs) are present in all tissues, not only supporting homeostasis, but also playing an important role in organogenesis, post-injury regeneration, and diseases. They are a heterogeneous cell population due to their origin, tissue specificity, and polarization in response to aggression factors, depending on environmental cues. Thus, as pro-inflammatory M1 phagocytic MCs, they contribute to tissue damage and even fibrosis, but the anti-inflammatory M2 phenotype participates in repairing processes and wound healing through a molecular interplay with most cells in adult stem cell niches. In this review, we emphasize MC phenotypic heterogeneity in health and disease, highlighting their systemic and systematic contribution to tissue homeostasis and repair. Unraveling the intervention of both resident and migrated MCs on the behavior of stem cells and the regulation of the stem cell niche is crucial for opening new perspectives for novel therapeutic strategies in different diseases.
Collapse
|
43
|
Vieira WF, Kenzo-Kagawa B, Alvares LE, Cogo JC, Baranauskas V, da Cruz-Höfling MA. Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation. Photochem Photobiol Sci 2021; 20:571-583. [PMID: 33895984 DOI: 10.1007/s43630-021-00041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bruno Kenzo-Kagawa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Carlos Cogo
- Faculty of Biomedical Engineering, Brazil University, Itaquera - São Paulo, SP, Brazil
| | - Vitor Baranauskas
- Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil. .,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
44
|
Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J 2021; 289:2771-2792. [PMID: 33891374 DOI: 10.1111/febs.15895] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The histone deacetylases (HDACs) family of enzymes possess deacylase activity for histone and nonhistone proteins; HDAC11 is the latest discovered HDAC and the only member of class IV. Besides its shared HDAC family catalytical activity, recent studies underline HDAC11 as a multifaceted enzyme with a very efficient long-chain fatty acid deacylase activity, which has open a whole new field of action for this protein. Here, we summarize the importance of HDAC11 in a vast array of cellular pathways, which has been recently highlighted by discoveries about its subcellular localization, biochemical features, and its regulation by microRNAs and long noncoding RNAs, as well as its new targets and interactors. Additionally, we discuss the recent work showing the consequences of HDAC11 dysregulation in brain, skeletal muscle, and adipose tissue, and during regeneration in response to kidney, skeletal muscle, and vascular injuries, underscoring HDAC11 as an emerging hub protein with physiological functions that are much more extensive than previously thought, and with important implications in human diseases.
Collapse
Affiliation(s)
| | - Mònica Suelves
- Germans Trias i Pujol Research Institute, Badalona, Spain
| |
Collapse
|
45
|
Ollewagen T, Myburgh KH, van de Vyver M, Smith C. Rheumatoid cachexia: the underappreciated role of myoblast, macrophage and fibroblast interplay in the skeletal muscle niche. J Biomed Sci 2021; 28:15. [PMID: 33658022 PMCID: PMC7931607 DOI: 10.1186/s12929-021-00714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although rheumatoid arthritis affects 1% of the global population, the role of rheumatoid cachexia, which occurs in up to a third of patients, is relatively neglected as research focus, despite its significant contribution to decreased quality of life in patients. A better understanding of the cellular and molecular processes involved in rheumatoid cachexia, as well as its potential treatment, is dependent on elucidation of the intricate interactions of the cells involved, such as myoblasts, fibroblasts and macrophages. Persistent RA-associated inflammation results in a relative depletion of the capacity for regeneration and repair in the satellite cell niche. The repair that does proceed is suboptimal due to dysregulated communication from the other cellular role players in this multi-cellular environment. This includes the incomplete switch in macrophage phenotype resulting in a lingering pro-inflammatory state within the tissues, as well as fibroblast-associated dysregulation of the dynamic control of the extracellular matrix. Additional to this endogenous dysregulation, some treatment strategies for RA may exacerbate muscle wasting and no multi-cell investigation has been done in this context. This review summarizes the most recent literature characterising clinical RA cachexia and links these features to the roles of and complex communication between multiple cellular contributors in the muscle niche, highlighting the importance of a targeted approach to therapeutic intervention.
Collapse
Affiliation(s)
- T Ollewagen
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - K H Myburgh
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
46
|
Hashimoto M, Kimura S, Kanno C, Yanagawa Y, Watanabe T, Okabe J, Takahashi E, Nagano M, Kitamura H. Macrophage ubiquitin-specific protease 2 contributes to motility, hyperactivation, capacitation, and in vitro fertilization activity of mouse sperm. Cell Mol Life Sci 2021; 78:2929-2948. [PMID: 33104844 PMCID: PMC11073191 DOI: 10.1007/s00018-020-03683-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are innate immune cells that contribute to classical immune functions and tissue homeostasis. Ubiquitin-specific protease 2 (USP2) controls cytokine production in macrophages, but its organ-specific roles are still unknown. In this study, we generated myeloid-selective Usp2 knockout (msUsp2KO) mice and specifically explored the roles of testicular macrophage-derived USP2 in reproduction. The msUsp2KO mice exhibited normal macrophage characteristics in various tissues. In the testis, macrophage Usp2 deficiency negligibly affected testicular macrophage subpopulations, spermatogenesis, and testicular organogenesis. However, frozen-thawed sperm derived from msUsp2KO mice exhibited reduced motility, capacitation, and hyperactivation. In addition, macrophage Usp2 ablation led to a decrease in the sperm population exhibiting high intracellular pH, calcium influx, and mitochondrial membrane potential. Interrupted pronuclei formation in eggs was observed when using frozen-thawed sperm from msUsp2KO mice for in vitro fertilization. Administration of granulocyte macrophage-colony stimulating factor (GM-CSF), whose expression was decreased in testicular macrophages derived from msUsp2KO mice, restored mitochondrial membrane potential and total sperm motility. Our observations demonstrate a distinct role of the deubiquitinating enzyme in organ-specific macrophages that directly affect sperm function.
Collapse
Affiliation(s)
- Mayuko Hashimoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Chihiro Kanno
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Jun Okabe
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Eiki Takahashi
- Research Resources Centre, RIKEN Brain Science Institute, Wako, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
47
|
Zhang B, Huang J, Liu J, Lin F, Ding Z, Xu J. Injectable composite hydrogel promotes osteogenesis and angiogenesis in spinal fusion by optimizing the bone marrow mesenchymal stem cell microenvironment and exosomes secretion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111782. [PMID: 33812569 DOI: 10.1016/j.msec.2020.111782] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
With the development of tissue engineering, it is no longer a challenge to repair and reconstruct bone defects using bone substitutes. However, in spinal fusion surgery, high rates of fusion failure are difficult to avoid. In our study, we designed a new composite hydrogel and found that it has good osteogenesis and angiogenesis effects. We extracted exosomes produced by rBMSCs (rat bone marrow mesenchymal stem cells) cocultured with the hydrogel to investigate their effects on osteogenesis and angiogenesis. The results showed that the PG/TCP (PEGMC with β-TCP) promoted rapid osteogenesis, facilitated spinal fusion at a high rate and quality and had an indirect effect on angiogenesis. We found that PG/TCP affected the rBMSC microenvironment, thus changing the function of exosomes; in a further study, we found that PG/TCP-MSC-Exos played a significant role in osteogenesis, which was coupled to angiogenesis. Thus, PG/TCP showed excellent potential in bone regeneration, especially the PG/0.2TCP.
Collapse
Affiliation(s)
- Baokun Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated No.6 People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated No.6 People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Jingwen Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated No.6 People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Fangqi Lin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated No.6 People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhenyu Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated No.6 People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated No.6 People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
48
|
Li Y, Chen X, Jin R, Chen L, Dang M, Cao H, Dong Y, Cai B, Bai G, Gooding JJ, Liu S, Zou D, Zhang Z, Yang C. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. SCIENCE ADVANCES 2021; 7:7/9/eabd6740. [PMID: 33627421 PMCID: PMC7904259 DOI: 10.1126/sciadv.abd6740] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Current therapeutic strategies such as angiogenic therapy and anti-inflammatory therapy for treating myocardial infarction have limited success. An effective approach may benefit from resolution of excessive inflammation combined with enhancement of angiogenesis. Here, we developed a microRNA-21-5p delivery system using functionalized mesoporous silica nanoparticles (MSNs) with additional intrinsic therapeutic effects. These nanocarriers were encapsulated into an injectable hydrogel matrix (Gel@MSN/miR-21-5p) to enable controlled on-demand microRNA-21 delivery triggered by the local acidic microenvironment. In a porcine model of myocardial infarction, we demonstrated that the released MSN complexes notably inhibited the inflammatory response by inhibiting the polarization of M1 macrophage within the infarcted myocardium, while further microRNA-21-5p delivery by MSNs to endothelial cells markedly promoted local neovascularization and rescued at-risk cardiomyocytes. The synergy of anti-inflammatory and proangiogenic effects effectively reduced infarct size in a porcine model of myocardial infarction.
Collapse
Affiliation(s)
- Yan Li
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Ronghua Jin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Lu Chen
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Dang
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Cao
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yun Dong
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Guo Bai
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine and ARC Australian, Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney 2052, Australia
| | - Shiyu Liu
- Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Duohong Zou
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Zhiyuan Zhang
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chi Yang
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
49
|
Núñez-Álvarez Y, Hurtado E, Muñoz M, García-Tuñon I, Rech GE, Pluvinet R, Sumoy L, Pendás AM, Peinado MA, Suelves M. Loss of HDAC11 accelerates skeletal muscle regeneration in mice. FEBS J 2021; 288:1201-1223. [PMID: 32602219 DOI: 10.1111/febs.15468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 11 (HDAC11) is the latest identified member of the histone deacetylase family of enzymes. It is highly expressed in brain, heart, testis, kidney, and skeletal muscle, although its role in these tissues is poorly understood. Here, we investigate for the first time the consequences of HDAC11 genetic impairment on skeletal muscle regeneration, a process principally dependent on its resident stem cells (satellite cells) in coordination with infiltrating immune cells and stromal cells. Our results show that HDAC11 is dispensable for adult muscle growth and establishment of the satellite cell population, while HDAC11 deficiency advances the regeneration process in response to muscle injury. This effect is not caused by differences in satellite cell activation or proliferation upon injury, but rather by an enhanced capacity of satellite cells to differentiate at early regeneration stages in the absence of HDAC11. Infiltrating HDAC11-deficient macrophages could also contribute to this accelerated muscle regenerative process by prematurely producing high levels of IL-10, a cytokine known to promote myoblast differentiation. Altogether, our results show that HDAC11 depletion advances skeletal muscle regeneration and this finding may have potential implications for designing new strategies for muscle pathologies coursing with chronic damage. DATABASE: Data were deposited in NCBI's Gene Expression Omnibus accessible through GEO Series accession number GSE147423.
Collapse
Affiliation(s)
- Yaiza Núñez-Álvarez
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Erica Hurtado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Mar Muñoz
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Ignacio García-Tuñon
- Institute of Cellular and Molecular Biology of Cancer (CSIC-USAL), Salamanca, Spain
| | - Gabriel E Rech
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Raquel Pluvinet
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Lauro Sumoy
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Alberto M Pendás
- Institute of Cellular and Molecular Biology of Cancer (CSIC-USAL), Salamanca, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Mònica Suelves
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| |
Collapse
|
50
|
Nogo-A Is Critical for Pro-Inflammatory Gene Regulation in Myocytes and Macrophages. Cells 2021; 10:cells10020282. [PMID: 33572505 PMCID: PMC7912613 DOI: 10.3390/cells10020282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nogo-A (Rtn 4A), a member of the reticulon 4 (Rtn4) protein family, is a neurite outgrowth inhibitor protein that is primarily expressed in the central nervous system (CNS). However, previous studies revealed that Nogo-A was upregulated in skeletal muscles of Amyotrophic lateral sclerosis (ALS) patients. Additionally, experiments showed that endoplasmic reticulum (ER) stress marker, C/EBP homologous protein (CHOP), was upregulated in gastrocnemius muscle of a murine model of ALS. We therefore hypothesized that Nogo-A might relate to skeletal muscle diseases. According to our knocking down and overexpression results in muscle cell line (C2C12), we have found that upregulation of Nogo-A resulted in upregulation of CHOP, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while downregulation of Nogo-A led to downregulation of CHOP, IL-6 and TNF-α. Immunofluorescence results showed that Nogo-A and CHOP were expressed by myofibers as well as tissue macrophages. Since resident macrophages share similar functions as bone marrow-derived macrophages (BMDM), we therefore, isolated macrophages from bone marrow to study the role of Nogo-A in activation of these cells. Lipopolysaccharide (LPS)-stimulated BMDM in Nogo-KO mice showed low mRNA expression of CHOP, IL-6 and TNF-α compared to BMDM in wild type (WT) mice. Interestingly, Nogo knockout (KO) BMDM exhibited lower migratory activity and phagocytic ability compared with WT BMDM after LPS treatment. In addition, mice experiments data revealed that upregulation of Nogo-A in notexin- and tunicamycin-treated muscles was associated with upregulation of CHOP, IL-6 and TNF-α in WT group, while in Nogo-KO group resulted in low expression level of CHOP, IL-6 and TNF-α. Furthermore, upregulation of Nogo-A in dystrophin-deficient (mdx) murine model, myopathy and Duchenne muscle dystrophy (DMD) clinical biopsies was associated with upregulation of CHOP, IL-6 and TNF-α. To the best of our knowledge, this is the first study to demonstrate Nogo-A as a regulator of inflammation in diseased muscle and bone marrow macrophages and that deletion of Nogo-A alleviates muscle inflammation and it can be utilized as a therapeutic target for improving muscle diseases.
Collapse
|