1
|
Giannone C, Mess X, He R, Chelazzi MR, Mayer A, Bakunts A, Nguyen T, Bushman Y, Orsi A, Gansen B, Degano M, Buchner J, Sitia R. How J-chain ensures the assembly of immunoglobulin IgM pentamers. EMBO J 2025; 44:505-533. [PMID: 39632981 PMCID: PMC11729874 DOI: 10.1038/s44318-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Polymeric IgM immunoglobulins have high avidity for antigen and complement, and dominate primary antibody responses. They are produced either as assemblies of six µ2L2 subunits (i.e., hexamers), or as pentamers of two µ2L2 subunits and an additional protein termed J-chain (JC), which allows transcytosis across epithelia. The molecular mechanism of IgM assembly with the desired stoichiometry remained unknown. Here, we show in vitro and in cellula that JC outcompetes the sixth IgM subunit during assembly. Before insertion into IgM, JC exists as an ensemble of largely unstructured, protease-sensitive species with heterogeneous, non-native disulfide bonds. The J-chain interacts with the hydrophobic β-sheets selectively exposed by nascent pentamers. Completion of an amyloid-like core triggers JC folding and drives disulfide rearrangements that covalently stabilize JC-containing pentamers. In cells, the quality control factor ERp44 surveys IgM assembly and prevents the secretion of aberrant conformers. This mechanism allows the efficient production of high-avidity IgM for systemic or mucosal immunity.
Collapse
Affiliation(s)
- Chiara Giannone
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, USA.
| | - Xenia Mess
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Ruiming He
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Maria Rita Chelazzi
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Annika Mayer
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Anush Bakunts
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Tuan Nguyen
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Yevheniia Bushman
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Andrea Orsi
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Benedikt Gansen
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Massimo Degano
- Division of Immunology and Infectious Diseases. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Johannes Buchner
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany.
| | - Roberto Sitia
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy.
| |
Collapse
|
2
|
Wu X, Zhang Z, Wang X. Mechanism of salidroside in tumor suppression through the miRNA-mRNA signaling axis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:810-817. [PMID: 39174895 PMCID: PMC11341224 DOI: 10.11817/j.issn.1672-7347.2024.230480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 08/24/2024]
Abstract
With the rapid development of traditional Chinese medicine and the continuous discovery of various anticancer effects of salidroside (sal), it is known that sal inhibits tumor proliferation, invasion and migration by inducing apoptosis and autophagy, regulating the cell cycle, modulating the tumor microenvironment, and controlling cancer-related signaling pathways and molecules. The microRNA (miRNA)-mRNA signaling axis can regulate the expression of target mRNAs by altering miRNA expression, thereby affecting the growth cycle, proliferation, and metabolism of cancer cells. Studies have shown that sal can influence the occurrence and progression of various malignant tumors through the miRNA-mRNA signaling axis, inhibiting the progression of lung cancer, gastric cancer, and nasopharyngeal carcinoma, with a notable time and dose dependence in its antitumor effects. Summarizing the specific mechanism of sal regulating miRNA-mRNA signaling axis to inhibit tumors in recent years can provide a new theoretical basis, diagnosis, and therapeutic methods for the research on prevention and treatment of tumors.
Collapse
Affiliation(s)
- Xiaoxiong Wu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health; Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Xizang Materia Medica of Xizang Medical Research Center of Xizang; School of Medicine, Xizang Minzu University, Xianyang Shaanxi 712082, China.
| | - Zhendong Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health; Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Xizang Materia Medica of Xizang Medical Research Center of Xizang; School of Medicine, Xizang Minzu University, Xianyang Shaanxi 712082, China
| | - Xiaoping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health; Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Xizang Materia Medica of Xizang Medical Research Center of Xizang; School of Medicine, Xizang Minzu University, Xianyang Shaanxi 712082, China.
| |
Collapse
|
3
|
Oskam N, Ooijevaar-de Heer P, Derksen NIL, Kruithof S, de Taeye SW, Vidarsson G, Reijm S, Kissel T, Toes REM, Rispens T. At Critically Low Antigen Densities, IgM Hexamers Outcompete Both IgM Pentamers and IgG1 for Human Complement Deposition and Complement-Dependent Cytotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:16-25. [PMID: 35705253 DOI: 10.4049/jimmunol.2101196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
IgM is secreted as a pentameric polymer containing a peptide called the joining chain (J chain). However, integration of the J chain is not required for IgM assembly and in its absence IgM predominantly forms hexamers. The conformations of pentameric and hexameric IgM are remarkably similar with a hexagonal arrangement in solution. Despite these similarities, hexameric IgM has been reported to be a more potent complement activator than pentameric IgM, but reported relative potencies vary across different studies. Because of these discrepancies, we systematically investigated human IgM-mediated complement activation. We recombinantly generated pentameric and hexameric human IgM (IgM+J and IgM-J, respectively) mAbs and measured their ability to induce complement deposition and complement-dependent cytotoxicity when bound to several Ags at varying densities. At high Ag densities, hexameric and pentameric IgM activate complement to a similar extent as IgG1. However, at low densities, hexameric IgM outcompeted pentameric IgM and even more so IgG1. These differences became progressively more pronounced as antigenic density became critically low. Our findings highlight that the differential potency of hexameric and pentameric IgM for complement activation is profoundly dependent on the nature of its interactions with Ag. Furthermore, it underscores the importance of IgM in immunity because it is a more potent complement activator than IgG1 at low Ag densities.
Collapse
Affiliation(s)
- Nienke Oskam
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands;
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Simone Kruithof
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands; and
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands; and
| | - Sanne Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Hampe L, Harris PWR, Rushton B, Radjainia M, Brimble MA, Mitra AK. Engineering a stable complex of
ERp44
with a designed peptide ligand for analyzing the mode of interaction of
ERp44
with its clients. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lutz Hampe
- School of Biological Sciences The University of Auckland Auckland New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences The University of Auckland Auckland New Zealand
- School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Ben Rushton
- School of Biological Sciences The University of Auckland Auckland New Zealand
- Bernhard‐Nocht Institute for Tropical Medicine Bernhard‐Nocht‐Straße 74, 20359 Hamburg Germany
| | - Mazdak Radjainia
- School of Biological Sciences The University of Auckland Auckland New Zealand
- Thermo Fisher Scientific Eindhoven The Netherlands
| | - Margaret A. Brimble
- School of Biological Sciences The University of Auckland Auckland New Zealand
- School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Alok K. Mitra
- School of Biological Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
5
|
Salidroside suppresses nonsmall cell lung cancer cells proliferation and migration via microRNA-103-3p/Mzb1. Anticancer Drugs 2021; 31:663-671. [PMID: 32304408 DOI: 10.1097/cad.0000000000000926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung cancer is the leading cause of cancer death in both men and women in the worldwide. Metastasis is the leading cause of cancer mortality and is a major hurdle for lung cancer treatment. Salidroside, a glycoside of tyrosol, is isolated from Rhodiola rosea and shows anticancer functions in several cancers. Recently, studies have reported that salidroside could inhibit the proliferation and metastasis of lung cancer; however, we need to explore further mechanism to provide evidence for clinical treatment. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and a key role in carcinogenesis through regulation of their target genes. Consistent with previous reports, we found that salidroside could inhibit the proliferation of nonsmall cell lung cancer (NSCLC) cells, and elevated the level of miR-103-3p. Furthermore, we showed that the level of miR-103-3p was significantly downregulated in NSCLC tissues and NSCLC cell lines A549 and H460 and was significantly correlated with NSCLC proliferation and metastasis. Further studies indicated that an endoplasmic reticulum calcium regulator Mzb1 (marginal zone B and B-1 cell-specific protein) was a direct target gene of miR-103-3p, evidenced by the direct binding of miR-103-3p with the 3' untranslated region of Mzb1. We have also shown that overexpressing Mzb1 was able to inhibit the suppression effect of miR-103-3p on A549 migration and metastasis. These results demonstrate that salidroside suppresses NSCLC proliferation and metastasis by regulating miR-103-3p/Mzb1.
Collapse
|
6
|
Sowa ST, Moilanen A, Biterova E, Saaranen MJ, Lehtiö L, Ruddock LW. High-resolution Crystal Structure of Human pERp1, A Saposin-like Protein Involved in IgA, IgM and Integrin Maturation in the Endoplasmic Reticulum. J Mol Biol 2021; 433:166826. [PMID: 33453188 DOI: 10.1016/j.jmb.2021.166826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/24/2023]
Abstract
The folding of disulfide bond containing proteins in the endoplasmic reticulum (ER) is a complex process that requires protein folding factors, some of which are protein-specific. The ER resident saposin-like protein pERp1 (MZB1, CNPY5) is crucial for the correct folding of IgA, IgM and integrins. pERp1 also plays a role in ER calcium homeostasis and plasma cell mobility. As an important factor for proper IgM maturation and hence immune function, pERp1 is upregulated in many auto-immune diseases. This makes it a potential therapeutic target. pERp1 belongs to the CNPY family of ER resident saposin-like proteins. To date, five of these proteins have been identified. All are implicated in protein folding and all contain a saposin-like domain. All previously structurally characterized saposins are involved in lipid binding. However, there are no reports of CNPY family members interacting with lipids, suggesting a novel function for the saposin fold. However, the molecular mechanisms of their function remain elusive. To date, no structure of any CNPY protein has been reported. Here, we present the high-resolution (1.4 Å) crystal structure of human pERp1 and confirm that it has a saposin-fold with unique structural elements not present in other saposin-fold structures. The implications for the role of CNPY proteins in protein folding in the ER are discussed.
Collapse
Affiliation(s)
- Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Biocenter Oulu, Aapistie 5, 90220 Oulu, Finland.
| | - Antti Moilanen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland.
| | - Ekaterina Biterova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Mirva J Saaranen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland.
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Biocenter Oulu, Aapistie 5, 90220 Oulu, Finland.
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland.
| |
Collapse
|
7
|
Kapoor T, Corrado M, Pearce EL, Pearce EJ, Grosschedl R. MZB1 enables efficient interferon α secretion in stimulated plasmacytoid dendritic cells. Sci Rep 2020; 10:21626. [PMID: 33318509 PMCID: PMC7736851 DOI: 10.1038/s41598-020-78293-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
MZB1 is an endoplasmic reticulum (ER)-resident protein that plays an important role in the humoral immune response by enhancing the interaction of the μ immunoglobulin (Ig) heavy chain with the chaperone GRP94 and by augmenting the secretion of IgM. Here, we show that MZB1 is also expressed in plasmacytoid dendritic cells (pDCs). Mzb1−/− pDCs have a defect in the secretion of interferon (IFN) α upon Toll-like receptor (TLR) 9 stimulation and a reduced ability to enhance B cell differentiation towards plasma cells. Mzb1−/− pDCs do not properly expand the ER upon TLR9 stimulation, which may be accounted for by an impaired activation of ATF6, a regulator of the unfolded protein response (UPR). Pharmacological inhibition of ATF6 cleavage in stimulated wild type pDCs mimics the diminished IFNα secretion by Mzb1−/− pDCs. Thus, MZB1 enables pDCs to secrete high amounts of IFNα by mitigating ER stress via the ATF6-mediated UPR.
Collapse
Affiliation(s)
- Tanya Kapoor
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Mauro Corrado
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
| |
Collapse
|
8
|
Tempio T, Anelli T. The pivotal role of ERp44 in patrolling protein secretion. J Cell Sci 2020; 133:133/21/jcs240366. [PMID: 33173013 DOI: 10.1242/jcs.240366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interactions between protein ligands and receptors are the main language of intercellular communication; hence, how cells select proteins to be secreted or presented on the plasma membrane is a central concern in cell biology. A series of checkpoints are located along the secretory pathway, which ensure the fidelity of such protein signals (quality control). Proteins that pass the checkpoints operated in the endoplasmic reticulum (ER) by the binding immunoglobulin protein (BiP; also known as HSPA5 and GRP78) and the calnexin-calreticulin systems, must still overcome additional scrutiny in the ER-Golgi intermediate compartment (ERGIC) and the Golgi. One of the main players of this process in all metazoans is the ER-resident protein 44 (ERp44); by cycling between the ER and the Golgi, ERp44 controls the localization of key enzymes designed to act in the ER but that are devoid of suitable localization motifs. ERp44 also patrols the secretion of correctly assembled disulfide-linked oligomeric proteins. Here, we discuss the mechanisms driving ERp44 substrate recognition, with important consequences on the definition of 'thiol-mediated quality control'. We also describe how pH and zinc gradients regulate the functional cycle of ERp44, coupling quality control and membrane trafficking along the early secretory compartment.
Collapse
Affiliation(s)
- Tiziana Tempio
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy.,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy .,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
9
|
Blandino R, Baumgarth N. Secreted IgM: New tricks for an old molecule. J Leukoc Biol 2019; 106:1021-1034. [PMID: 31302940 PMCID: PMC6803036 DOI: 10.1002/jlb.3ri0519-161r] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
Secreted IgM (sIgM) is a multifunctional evolutionary conserved antibody that is critical for the maintenance of tissue homeostasis as well as the development of fully protective humoral responses to pathogens. Constitutive secretion of self- and polyreactive natural IgM, produced mainly by B-1 cells, provides a circulating antibody that engages with autoantigens as well as invading pathogens, removing apoptotic and other cell debris and initiating strong immune responses. Pathogen-induced IgM production by B-1 and conventional B-2 cells strengthens this early, passive layer of IgM-mediated immune defense and regulates subsequent IgG production. The varied effects of secreted IgM on immune homeostasis and immune defense are facilitated through its binding to numerous different cell types via different receptors. Recent studies identified a novel function for pentameric IgM, namely as a transporter for the effector protein ″apoptosis-inhibitor of macrophages″ (AIM/CD5L). This review aims to provide a summary of the known functions and effects of sIgM on immune homeostasis and immune defense, and its interaction with its various receptors, and to highlight the many critical immune regulatory functions of this ancient and fascinating immunoglobulin.
Collapse
Affiliation(s)
- Rebecca Blandino
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
| | - Nicole Baumgarth
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
- Dept. Pathology, Microbiology & Immunology, University of California, Davis
| |
Collapse
|
10
|
Anelli T, Panina-Bordignon P. How to Avoid a No-Deal ER Exit. Cells 2019; 8:cells8091051. [PMID: 31500301 PMCID: PMC6769657 DOI: 10.3390/cells8091051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023] Open
Abstract
Efficiency and fidelity of protein secretion are achieved thanks to the presence of different steps, located sequentially in time and space along the secretory compartment, controlling protein folding and maturation. After entering into the endoplasmic reticulum (ER), secretory proteins attain their native structure thanks to specific chaperones and enzymes. Only correctly folded molecules are allowed by quality control (QC) mechanisms to leave the ER and proceed to downstream compartments. Proteins that cannot fold properly are instead retained in the ER to be finally destined to proteasomal degradation. Exiting from the ER requires, in most cases, the use of coated vesicles, departing at the ER exit sites, which will fuse with the Golgi compartment, thus releasing their cargoes. Protein accumulation in the ER can be caused by a too stringent QC or by ineffective transport: these situations could be deleterious for the organism, due to the loss of the secreted protein, and to the cell itself, because of abnormal increase of protein concentration in the ER. In both cases, diseases can arise. In this review, we will describe the pathophysiology of protein folding and transport between the ER and the Golgi compartment.
Collapse
Affiliation(s)
- Tiziana Anelli
- Vita-Salute San Raffaele University, 20132 Milan, Italy.
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Paola Panina-Bordignon
- Vita-Salute San Raffaele University, 20132 Milan, Italy.
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
11
|
Liyanage D, Omeka W, Lee J. Molecular characterization, host defense mechanisms, and functional analysis of ERp44 from big-belly seahorse: A novel member of the teleost thioredoxin family present in the endoplasmic reticulum. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:31-41. [DOI: 10.1016/j.cbpb.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
|
12
|
Schildknegt D, Lodder N, Pandey A, Chatsisvili A, Egmond M, Pena F, Braakman I, van der Sluijs P. Characterization of CNPY5 and its family members. Protein Sci 2019; 28:1276-1289. [PMID: 31050855 PMCID: PMC6566547 DOI: 10.1002/pro.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
The Canopy (CNPY) family consists of four members predicted to be soluble proteins localized to the endoplasmic reticulum (ER). They are involved in a wide array of processes, including angiogenesis, cell adhesion, and host defense. CNPYs are thought to do so via regulation of secretory transport of a diverse group of proteins, such as immunoglobulin M, growth factor receptors, toll‐like receptors, and the low‐density lipoprotein receptor. Thus far, a comparative analysis of the mammalian CNPY family is missing. Bioinformatic analysis shows that mammalian CNPYs, except the CNPY1 homolog, have N‐terminal signal sequences and C‐terminal ER‐retention signals and that mammals have an additional member CNPY5, also known as plasma cell‐induced ER protein 1/marginal zone B cell‐specific protein 1. Canopy proteins are particularly homologous in four hydrophobic alpha‐helical regions and contain three conserved disulfide bonds. This sequence signature is characteristic for the saposin‐like superfamily and strongly argues that CNPYs share this common saposin fold. We showed that CNPY2, 3, 4, and 5 (termed CNPYs) localize to the ER. In radioactive pulse‐chase experiments, we found that CNPYs rapidly form disulfide bonds and fold within minutes into their native forms. Disulfide bonds in native CNPYs remain sensitive to low concentrations of dithiothreitol (DTT) suggesting that the cysteine residues forming them are relatively accessible to solutes. Possible roles of CNPYs in the folding of secretory proteins in the ER are discussed.
Collapse
Affiliation(s)
- Danny Schildknegt
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Naomi Lodder
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Abhinav Pandey
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Maarten Egmond
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Florentina Pena
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Vitale M, Bakunts A, Orsi A, Lari F, Tadè L, Danieli A, Rato C, Valetti C, Sitia R, Raimondi A, Christianson JC, van Anken E. Inadequate BiP availability defines endoplasmic reticulum stress. eLife 2019; 8:41168. [PMID: 30869076 PMCID: PMC6417858 DOI: 10.7554/elife.41168] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
How endoplasmic reticulum (ER) stress leads to cytotoxicity is ill-defined. Previously we showed that HeLa cells readjust homeostasis upon proteostatically driven ER stress, triggered by inducible bulk expression of secretory immunoglobulin M heavy chain (μs) thanks to the unfolded protein response (UPR; Bakunts et al., 2017). Here we show that conditions that prevent that an excess of the ER resident chaperone (and UPR target gene) BiP over µs is restored lead to µs-driven proteotoxicity, i.e. abrogation of HRD1-mediated ER-associated degradation (ERAD), or of the UPR, in particular the ATF6α branch. Such conditions are tolerated instead upon removal of the BiP-sequestering first constant domain (CH1) from µs. Thus, our data define proteostatic ER stress to be a specific consequence of inadequate BiP availability, which both the UPR and ERAD redeem.
Collapse
Affiliation(s)
- Milena Vitale
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Orsi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Lari
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Laura Tadè
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Danieli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Caterina Valetti
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - John C Christianson
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
14
|
Gómez-Fernández P, Urtasun A, Paton AW, Paton JC, Borrego F, Dersh D, Argon Y, Alloza I, Vandenbroeck K. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol 2018; 9:2934. [PMID: 30619294 PMCID: PMC6302113 DOI: 10.3389/fimmu.2018.02934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
The human IL22RA2 gene co-produces three protein isoforms in dendritic cells [IL-22 binding protein isoform-1 (IL-22BPi1), IL-22BPi2, and IL-22BPi3]. Two of these, IL-22BPi2 and IL-22BPi3, are capable of neutralizing the biological activity of IL-22. The function of IL-22BPi1, which differs from IL-22BPi2 through an in-frame 32-amino acid insertion provided by an alternatively spliced exon, remains unknown. Using transfected human cell lines, we demonstrate that IL-22BPi1 is secreted detectably, but at much lower levels than IL-22BPi2, and unlike IL-22BPi2 and IL-22BPi3, is largely retained in the endoplasmic reticulum (ER). As opposed to IL-22BPi2 and IL-22BPi3, IL-22BPi1 is incapable of neutralizing or binding to IL-22 measured in bioassay or assembly-induced IL-22 co-folding assay. We performed interactome analysis to disclose the mechanism underlying the poor secretion of IL-22BPi1 and identified GRP78, GRP94, GRP170, and calnexin as main interactors. Structure-function analysis revealed that, like IL-22BPi2, IL-22BPi1 binds to the substrate-binding domain of GRP78 as well as to the middle domain of GRP94. Ectopic expression of wild-type GRP78 enhanced, and ATPase-defective GRP94 mutant decreased, secretion of both IL-22BPi1 and IL-22BPi2, while neither of both affected IL-22BPi3 secretion. Thus, IL-22BPi1 and IL-22BPi2 are bona fide clients of the ER chaperones GRP78 and GRP94. However, only IL-22BPi1 activates an unfolded protein response (UPR) resulting in increased protein levels of GRP78 and GRP94. Cloning of the IL22RA2 alternatively spliced exon into an unrelated cytokine, IL-2, bestowed similar characteristics on the resulting protein. We also found that CD14++/CD16+ intermediate monocytes produced a higher level of IL22RA2 mRNA than classical and non-classical monocytes, but this difference disappeared in immature dendritic cells (moDC) derived thereof. Upon silencing of IL22RA2 expression in moDC, GRP78 levels were significantly reduced, suggesting that native IL22RA2 expression naturally contributes to upregulating GRP78 levels in these cells. The IL22RA2 alternatively spliced exon was reported to be recruited through a single mutation in the proto-splice site of a Long Terminal Repeat retrotransposon sequence in the ape lineage. Our work suggests that positive selection of IL-22BPi1 was not driven by IL-22 antagonism as in the case of IL-22BPi2 and IL-22BPi3, but by capacity for induction of an UPR response.
Collapse
Affiliation(s)
- Paloma Gómez-Fernández
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Andoni Urtasun
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Adrienne W. Paton
- Research for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - James C. Paton
- Research for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Basque Center for Transfusion and Human Tissues, Galdakao, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Devin Dersh
- Division of Cell Pathology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yair Argon
- Division of Cell Pathology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Morán Luengo T, Mayer MP, Rüdiger SGD. The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends Cell Biol 2018; 29:164-177. [PMID: 30502916 DOI: 10.1016/j.tcb.2018.10.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Conserved families of molecular chaperones assist protein folding in the cell. Here we review the conceptual advances on three major folding routes: (i) spontaneous, chaperone-independent folding; (ii) folding assisted by repetitive Hsp70 cycles; and (iii) folding by the Hsp70-Hsp90 cascades. These chaperones prepare their protein clients for folding on their own, without altering their folding path. A particularly interesting role is reserved for Hsp90. The function of Hsp90 in folding is its ancient function downstream of Hsp70, free of cochaperone regulation and present in all kingdoms of life. Eukaryotic signalling networks, however, embrace Hsp90 by a plethora of cochaperones, transforming the profolding machinery to a folding-on-demand factor. We discuss implications for biology and molecular medicine.
Collapse
Affiliation(s)
- Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
16
|
Zhou J, Henriquez J, Crawford R, Kaminski N. Suppression of the IgM Response by Aryl Hydrocarbon Receptor Activation in Human Primary B Cells Involves Impairment of Immunoglobulin Secretory Processes. Toxicol Sci 2018; 163:319-329. [PMID: 29462421 PMCID: PMC6659029 DOI: 10.1093/toxsci/kfy036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) activation by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is well established at suppressing humoral immunity. Previous studies in mouse B cells revealed that decreased IgM production was due to a significant suppression in the mRNA levels of the immunoglobulin M components (IgH, IgJ, and Igκ chains) and subsequent decrease in IgM synthesis. In contrast, the current study shows that activation of AHR in human B cells also results in a significant suppression of the number of IgM-secreting cells, but this is not due to a decrease in the transcription or translation of IgH, IgJ, and Igκ chains. Instead, the reduced humoral response is due to the impairment of IgM secretion. This is further evidenced by an accumulation of intracellular IgM in human B cells, which indicates that activation of AHR alters distinct regulatory pathways in human and mouse B cells leading to the suppressed primary IgM response. Collectively, these results demonstrate that although AHR activation mediates suppression of humoral immune responses across many different animal species, the mechanism of action is not necessarily conserved across species.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology and Molecular Genetics
- Institute for Integrative Toxicology
| | - Joseph Henriquez
- Institute for Integrative Toxicology
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| | | | - Norbert Kaminski
- Institute for Integrative Toxicology
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
17
|
Miyagawa-Hayashino A, Yoshifuji H, Kitagori K, Ito S, Oku T, Hirayama Y, Salah A, Nakajima T, Kiso K, Yamada N, Haga H, Tsuruyama T. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther 2018; 20:13. [PMID: 29382365 PMCID: PMC5791339 DOI: 10.1186/s13075-018-1511-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which dysregulation of B cells has been recognized. Here, we searched for potential biomarkers of SLE using liquid chromatography-tandem mass spectrometry (LC-MS). Methods Lymph nodes from SLE patients and controls were analyzed by LC-MS. To validate the identified molecules, immunoblotting and immunohistochemistry were performed and B cells from SLE patients were analyzed by quantitative RT-PCR. B-cell subsets from NZB/W F1 mice, which exhibit autoimmune disease resembling human SLE, were analyzed by flow cytometry. Endoplasmic reticulum (ER) stress was induced by tunicamycin and the serum concentration of anti-dsDNA antibodies was determined by ELISA. TUNEL methods and immunoblotting were used to assess the effect of tunicamycin. Results MZB1, which comprises part of a B-cell-specific ER chaperone complex and is a key player in antibody secretion, was one of the differentially expressed proteins identified by LC-MS and confirmed by immunoblotting. Immunohistochemically, larger numbers of MZB1+ cells were located mainly in interfollicular areas and scattered in germinal centers in specimens from SLE patients compared with those from controls. MZB1 colocalized with CD138+ plasma cells and IRTA1+ marginal zone B cells. MZB1 mRNA was increased by 2.1-fold in B cells of SLE patients with active disease (SLE Disease Activity Index 2000 ≥ 6) compared with controls. In aged NZB/W F1 mice, splenic marginal zone B cells and plasma cells showed elevated MZB1 levels. Tunicamycin induced apoptosis of MZB1+ cells in target organs, resulting in decreased serum anti-dsDNA antibody levels. Additionally, MZB1+ cells were increased in synovial tissue specimens from patients with rheumatoid arthritis. Conclusions MZB1 may be a potential therapeutic target in excessive antibody-secreting cells in SLE. Electronic supplementary material The online version of this article (10.1186/s13075-018-1511-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aya Miyagawa-Hayashino
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan. .,Present address: Department of Clinical Pathology, Kansai Medical University, Osaka, Japan.
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kitagori
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Bio Frontier Platform, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuma Oku
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Research Portfolio & Science, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Yoshitaka Hirayama
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Research Portfolio & Science, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Adeeb Salah
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Toshiki Nakajima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaori Kiso
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norishige Yamada
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Bakunts A, Orsi A, Vitale M, Cattaneo A, Lari F, Tadè L, Sitia R, Raimondi A, Bachi A, van Anken E. Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude. eLife 2017; 6:27518. [PMID: 29251598 PMCID: PMC5792092 DOI: 10.7554/elife.27518] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/15/2017] [Indexed: 01/03/2023] Open
Abstract
Insufficient folding capacity of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to restore homeostasis. Yet, how the UPR achieves ER homeostatic readjustment is poorly investigated, as in most studies the ER stress that is elicited cannot be overcome. Here we show that a proteostatic insult, provoked by persistent expression of the secretory heavy chain of immunoglobulin M (µs), is well-tolerated in HeLa cells. Upon µs expression, its levels temporarily eclipse those of the ER chaperone BiP, leading to acute, full-geared UPR activation. Once BiP is in excess again, the UPR transitions to chronic, submaximal activation, indicating that the UPR senses ER stress in a ratiometric fashion. In this process, the ER expands about three-fold and becomes dominated by BiP. As the UPR is essential for successful ER homeostatic readjustment in the HeLa-µs model, it provides an ideal system for dissecting the intricacies of how the UPR evaluates and alleviates ER stress.
Collapse
Affiliation(s)
- Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Orsi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Milena Vitale
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Federica Lari
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Tadè
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
19
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat Commun 2016; 7:10369. [PMID: 26742691 PMCID: PMC4729923 DOI: 10.1038/ncomms10369] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 01/10/2023] Open
Abstract
Aging is associated with hyporesponse to vaccination, whose mechanisms remain unclear. In this study hepatitis B virus (HBV)-naive older adults received three vaccines, including one against HBV. Here we show, using transcriptional and cytometric profiling of whole blood collected before vaccination, that heightened expression of genes that augment B-cell responses and higher memory B-cell frequencies correlate with stronger responses to HBV vaccine. In contrast, higher levels of inflammatory response transcripts and increased frequencies of pro-inflammatory innate cells correlate with weaker responses to this vaccine. Increased numbers of erythrocytes and the haem-induced response also correlate with poor response to the HBV vaccine. A transcriptomics-based pre-vaccination predictor of response to HBV vaccine is built and validated in distinct sets of older adults. This moderately accurate (area under the curve≈65%) but robust signature is supported by flow cytometry and cytokine profiling. This study is the first that identifies baseline predictors and mechanisms of response to the HBV vaccine. Ageing is associated with poor responses to vaccines but the underlying mechanism remains unclear. Here the authors use a systems-based approach to define molecular signatures present before vaccination that correlate with non-responsiveness to hepatitis B vaccination in healthy, elderly adults.
Collapse
|
21
|
Hampe L, Radjainia M, Xu C, Harris PWR, Bashiri G, Goldstone DC, Brimble MA, Wang Y, Mitra AK. Regulation and Quality Control of Adiponectin Assembly by Endoplasmic Reticulum Chaperone ERp44. J Biol Chem 2015; 290:18111-18123. [PMID: 26060250 DOI: 10.1074/jbc.m115.663088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
Adiponectin, a collagenous hormone secreted abundantly from adipocytes, possesses potent antidiabetic and anti-inflammatory properties. Mediated by the conserved Cys(39) located in the variable region of the N terminus, the trimeric (low molecular weight (LMW)) adiponectin subunit assembles into different higher order complexes, e.g. hexamers (middle molecular weight (MMW)) and 12-18-mers (high molecular weight (HMW)), the latter being mostly responsible for the insulin-sensitizing activity of adiponectin. The endoplasmic reticulum (ER) chaperone ERp44 retains adiponectin in the early secretory compartment and tightly controls the oxidative state of Cys(39) and the oligomerization of adiponectin. Using cellular and in vitro assays, we show that ERp44 specifically recognizes the LMW and MMW forms but not the HMW form. Our binding assays with short peptide mimetics of adiponectin suggest that ERp44 intercepts and converts the pool of fully oxidized LMW and MMW adiponectin, but not the HMW form, into reduced trimeric precursors. These ERp44-bound precursors in the cis-Golgi may be transported back to the ER and released to enhance the population of adiponectin intermediates with appropriate oxidative state for HMW assembly, thereby underpinning the process of ERp44 quality control.
Collapse
Affiliation(s)
- Lutz Hampe
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Mazdak Radjainia
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 999007 Hong Kong, China
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Ghader Bashiri
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - David C Goldstone
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 999007 Hong Kong, China
| | - Alok K Mitra
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand.
| |
Collapse
|
22
|
Graner MW, Lillehei KO, Katsanis E. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines. Front Oncol 2015; 4:379. [PMID: 25610811 PMCID: PMC4285071 DOI: 10.3389/fonc.2014.00379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major site of passage for proteins en route to other organelles, to the cell surface, and to the extracellular space. It is also the transport route for peptides generated in the cytosol by the proteasome into the ER for loading onto major histocompatibility complex class I (MHC I) molecules for eventual antigen presentation at the cell surface. Chaperones within the ER are critical for many of these processes; however, outside the ER certain of those chaperones may play important and direct roles in immune responses. In some cases, particular ER chaperones have been utilized as vaccines against tumors or infectious disease pathogens when purified from tumor tissue or recombinantly generated and loaded with antigen. In other cases, the cell surface location of ER chaperones has implications for immune responses as well as possible tumor resistance. We have produced heat-shock protein/chaperone protein-based cancer vaccines called “chaperone-rich cell lysate” (CRCL) that are conglomerates of chaperones enriched from solid tumors by an isoelectric focusing technique. These preparations have been effective against numerous murine tumors, as well as in a canine with an advanced lung carcinoma treated with autologous CRCL. We also published extensive proteomic analyses of CRCL prepared from human surgically resected tumor samples. Of note, these preparations contained at least 10 ER chaperones and a number of other residents, along with many other chaperones/heat-shock proteins. Gene ontology and network analyses utilizing these proteins essentially recapitulate the antigen presentation pathways and interconnections. In conjunction with our current knowledge of cell surface/extracellular ER chaperones, these data collectively suggest that a systems-level view may provide insight into the potent immune stimulatory activities of CRCL with an emphasis on the roles of ER components in those processes.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado School of Medicine , Aurora, CO , USA
| | - Kevin O Lillehei
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado School of Medicine , Aurora, CO , USA
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona , Tucson, AZ , USA
| |
Collapse
|