1
|
Chen J, Zhang S, You Y, Hu S, Tang J, Chen C, Wen W, Tang T, Yu Q, Tong X, Wang C, Zhao W, Fu X, Zhang X, Wang M, Gong W. Investigating the impact of empagliflozin on the retina of diabetic mice. Eur J Ophthalmol 2025; 35:252-261. [PMID: 38653578 DOI: 10.1177/11206721241247585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) frequently results in compromised visual function, with hyperglycemia-induced disruption of the blood-retinal barrier (BRB) through various pathways as a critical mechanism. Existing DR treatments fail to address early and potentially reversible microvascular alterations. This study examined the effects of empagliflozin (EMPA), a selective Sodium-glucose transporter 2 (SGLT2) inhibitor, on the retina of db/db mice. The objective of this study is to investigate the potential role of EMPA in the prevention and delay of DR. METHODS db/db mice were randomly assigned to either the EMPA treatment group (db/db + Emp) or the model group (db/db), while C57 mice served as the normal control group (C57). Mice in the db/db + Emp group received EMPA for eight weeks. Body weight, fasting blood glucose (FBG), and blood VEGF were subsequently measured in all mice, along with the detection of specific inflammatory factors and BRB proteins in the retina. Retinal SGLT2 protein expression was compared using immunohistochemical analysis, and BRB structural changes were observed via electron microscopy. RESULTS EMPA reduced FBG, blood VEGF, and retinal inflammatory factors TNF-α, IL-6, and VEGF levels in the eye tissues of db/db mice. EMPA also increased Claudin-1, Occludin-1, and ZO-1 levels while decreasing ICAM-1 and Fibronectin, thereby preserving BRB function in db/db mice. Immunohistochemistry revealed that EMPA reduced SGLT2 expression in the retina of diabetic mice, and electron microscopy demonstrated that EMPA diminished tight junction damage between retinal vascular endothelial cells and prevented retinal vascular basement membrane thickening in diabetic mice. CONCLUSION EMPA mitigates inflammation and preserves BRB structure and function, suggesting that it may prevent DR or serve as an effective early treatment for DR.
Collapse
Affiliation(s)
- Juan Chen
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Shenghui Zhang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Wen Wen
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Ting Tang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Qingwen Yu
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xuhan Tong
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Wenbin Zhao
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xinyan Fu
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Wenyan Gong
- Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
2
|
Li Z, Wei J, Chen B, Wang Y, Yang S, Wu K, Meng X. The Role of MMP-9 and MMP-9 Inhibition in Different Types of Thyroid Carcinoma. Molecules 2023; 28:molecules28093705. [PMID: 37175113 PMCID: PMC10180081 DOI: 10.3390/molecules28093705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9), one of the most investigated and studied biomarkers of the MMPs family, is a zinc-dependent proteolytic metalloenzyme whose primary function is degrading the extracellular matrix (ECM). It has been proved that MMP-9 expression elevates in multiple pathological conditions, including thyroid carcinoma. MMP-9 has a detectable higher level in malignant or metastatic thyroid tumor tissues than in normal or benign tissues and acts as an additional marker to distinguish different tumor stages because of its close correlations with clinical features, such as lymph node metastasis, TNM stage, tumor size and so on. Natural and non-natural MMP-9 inhibitors suppress its expression, block the progression of diseases, and play a role in therapy consequently. MMP-9 inhibitory molecules also assist in treating thyroid tumors by suppressing the proliferation, invasion, migration, metastasis, viability, adhesion, motility, epithelial-mesenchymal transition (EMT), and other risk factors of different thyroid cancer cells. In a word, discovering and designing MMP-9 inhibitors provide great therapeutic effects and promising clinical values in various types of thyroid carcinoma.
Collapse
Affiliation(s)
- Zhenshengnan Li
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bowen Chen
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoqi Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Yang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Kehui Wu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xianying Meng
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
You Y, Niu Y, Zhang J, Huang S, Ding P, Sun F, Wang X. U0126: Not only a MAPK kinase inhibitor. Front Pharmacol 2022; 13:927083. [PMID: 36091807 PMCID: PMC9452634 DOI: 10.3389/fphar.2022.927083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
U0126, as an inhibitor of the MAPK signaling pathway, is closely related to various biological processes, such as differentiation, cell growth, autophagy, apoptosis, and stress responses. It makes U0126 play an essential role in balancing cellular homeostasis. Although U0126 has been suggested to inhibit various cancers, its complete mechanisms have not been clarified in cancers. This review summarized the most recent and relevant research on the many applications of U0126 and described its role and mechanisms in different cancer cell types. Moreover, some acknowledged functions of U0126 researched in the laboratory were listed in our review. We discussed the probability of using U0126 to restain cancers or suppress the MAPK pathway as a novel way of cancer treatment.
Collapse
Affiliation(s)
- Yijie You
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yunlian Niu
- Department of Neurology, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Jian Zhang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Sheng Huang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Peiyuan Ding
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Fengbing Sun
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
4
|
Giblin MJ, Ontko CD, Penn JS. Effect of cytokine-induced alterations in extracellular matrix composition on diabetic retinopathy-relevant endothelial cell behaviors. Sci Rep 2022; 12:12955. [PMID: 35902594 PMCID: PMC9334268 DOI: 10.1038/s41598-022-12683-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal vascular basement membrane (BM) thickening is an early structural abnormality of diabetic retinopathy (DR). Recent studies suggest that BM thickening contributes to the DR pathological cascade; however, much remains to be elucidated about the exact mechanisms by which BM thickening develops and subsequently drives other pathogenic events in DR. Therefore, we undertook a systematic analysis to understand how human retinal microvascular endothelial cells (hRMEC) and human retinal pericytes (hRP) change their expression of key extracellular matrix (ECM) constituents when treated with diabetes-relevant stimuli designed to model the three major insults of the diabetic environment: hyperglycemia, dyslipidemia, and inflammation. TNFα and IL-1β caused the most potent and consistent changes in ECM expression in both hRMEC and hRP. We also demonstrate that conditioned media from IL-1β-treated human Müller cells caused dose-dependent, significant increases in collagen IV and agrin expression in hRMEC. After narrowing our focus to inflammation-induced changes, we sought to understand how ECM deposited by hRMEC and hRP under inflammatory conditions affects the behavior of naïve hRMEC. Our data demonstrated that diabetes-relevant alterations in ECM composition alone cause both increased adhesion molecule expression by and increased peripheral blood mononuclear cell (PBMC) adhesion to naïve hRMEC. Taken together, these data demonstrate novel roles for inflammation and pericytes in driving BM pathology and suggest that inflammation-induced ECM alterations may advance other pathogenic behaviors in DR, including leukostasis.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA.
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
5
|
Hsieh HL, Yu MC, Cheng LC, Chu MY, Huang TH, Yeh TS, Tsai MM. Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells. World J Gastroenterol 2022; 28:1139-1158. [PMID: 35431500 PMCID: PMC8985486 DOI: 10.3748/wjg.v28.i11.1139] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/23/2021] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric injury is the most common digestive system disease worldwide and involves inflammation, which can lead to gastric ulcer or gastric cancer (GC). Matrix metallopeptidase-9 [MMP-9 (gelatinase-B)] plays an important role in inflammation and GC progression. Quercetin and quercetin-rich diets represent potential food supplements and a source of medications for treating gastric injury given their anti-inflammatory activities. However, the effects and mechanisms of action of quercetin on human chronic gastritis and whether quercetin can relieve symptoms remain unclear. AIM To assess whether tumor necrosis factor-α (TNF-α)-induced MMP-9 expression mediates the anti-inflammatory effects of quercetin in normal human gastric mucosal epithelial cells. METHODS The normal human gastric mucosa epithelial cell line GES-1 was used to establish a normal human gastric epithelial cell model of TNF-α-induced MMP-9 protein overexpression to evaluate the anti-inflammatory effects of quercetin. The cell counting Kit-8 assay was used to evaluate the effects of varying quercetin doses on cell viability in the normal GES-1 cell line. Cell migration was measured using Transwell assay. The expression of proto-oncogene tyrosine-protein kinase Src (c-Src), phospho (p)-c-Src, extracellular-signal-regulated kinase 2 (ERK2), p-ERK1/2, c-Fos, p-c-Fos, nuclear factor kappa B (NF-κB/p65), and p-p65 and the effects of their inhibitors were examined using Western blot analysis and measurement of luciferase activity. p65 expression was detected by immunofluorescence. MMP-9 mRNA and protein levels were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and gelatin zymography, respectively. RESULTS qRT-PCR and gelatin zymography showed that TNF-α induced MMP-9 mRNA and protein expression in a dose- and time-dependent manner. These effects were reduced by the pretreatment of GES-1 cells with quercetin or a TNF-α antagonist (TNFR inhibitor) in a dose- and time-dependent manner. Quercetin and TNF-α antagonists decreased the TNF-α-induced phosphorylation of c-Src, ERK1/2, c-Fos, and p65 in a dose- and time-dependent manner. Quercetin, TNF-α antagonist, PP1, U0126, and tanshinone IIA (TSIIA) reduced TNF-α-induced c-Fos phosphorylation and AP-1-Luciferase (Luc) activity in a dose- and time-dependent manner. Pretreatment with quercetin, TNF-α antagonist, PP1, U0126, or Bay 11-7082 reduced TNF-α-induced p65 phosphorylation and translocation and p65-Luc activity in a dose- and time-dependent manner. TNF-α significantly increased GES-1 cell migration, and these results were reduced by pretreatment with quercetin or a TNF-α antagonist. CONCLUSION Quercetin significantly downregulates TNF-α-induced MMP-9 expression in GES-1 cells via the TNFR-c-Src-ERK1/2 and c-Fos or NF-κB pathways.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Li-Ching Cheng
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Mei-Yi Chu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tzu-Hao Huang
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Giblin MJ, Smith TE, Winkler G, Pendergrass HA, Kim MJ, Capozzi ME, Yang R, McCollum GW, Penn JS. Nuclear factor of activated T-cells (NFAT) regulation of IL-1β-induced retinal vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166238. [PMID: 34343639 PMCID: PMC8565496 DOI: 10.1016/j.bbadis.2021.166238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Chronic low-grade retinal inflammation is an essential contributor to the pathogenesis of diabetic retinopathy (DR). It is characterized by increased retinal cell expression and secretion of a variety of inflammatory cytokines; among these, IL-1β has the reputation of being a major driver of cytokine-induced inflammation. IL-1β and other cytokines drive inflammatory changes that cause damage to retinal cells, leading to the hallmark vascular lesions of DR; these include increased leukocyte adherence, vascular permeability, and capillary cell death. Nuclear factor of activated T-cells (NFAT) is a transcriptional regulator of inflammatory cytokines and adhesion molecules and is expressed in retinal cells. Consequently, it may influence multiple pathogenic steps early in DR. We investigated the NFAT-dependency of IL-1β-induced inflammation in human Müller cells (hMC) and human retinal microvascular endothelial cells (hRMEC). Our results show that an NFAT inhibitor, Inhibitor of NFAT-Calcineurin Association-6 (INCA-6), decreased IL-1β-induced expression of IL-1β and TNFα in hMC, while having no effect on VEGF, CCL2, or CCL5 expression. We also demonstrate that INCA-6 attenuated IL-1β-induced increases of IL-1β, TNFα, IL-6, CCL2, and CCL5 (inflammatory cytokines and chemokines), and ICAM-1 and E-selectin (leukocyte adhesion molecules) expression in hRMEC. INCA-6 similarly inhibited IL-1β-induced increases in leukocyte adhesion in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Finally, INCA-6 rescued IL-1β-induced permeability in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Taken together, these data demonstrate the potential of NFAT inhibition to mitigate retinal inflammation secondary to diabetes.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America.
| | - Taylor E Smith
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Garrett Winkler
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Hannah A Pendergrass
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Minjae J Kim
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, United States of America
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| |
Collapse
|
7
|
Wehbe Z, Hammoud SH, Yassine HM, Fardoun M, El-Yazbi AF, Eid AH. Molecular and Biological Mechanisms Underlying Gender Differences in COVID-19 Severity and Mortality. Front Immunol 2021; 12:659339. [PMID: 34025658 PMCID: PMC8138433 DOI: 10.3389/fimmu.2021.659339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, over two million people have perished due to the recent pandemic caused by SARS-CoV-2. The available epidemiological global data for SARS-CoV-2 portrays a higher rate of severity and mortality in males. Analyzing gender differences in the host mechanisms involved in SARS-CoV-2 infection and progression may offer insight into the more detrimental disease prognosis and clinical outcome in males. Therefore, we outline sexual dimorphisms which exist in particular host factors and elaborate on how they may contribute to the pronounced severity in male COVID-19 patients. This includes disparities detected in comorbidities, the ACE2 receptor, renin-angiotensin system (RAS), signaling molecules involved in SARS-CoV-2 replication, proteases which prime viral S protein, the immune response, and behavioral considerations. Moreover, we discuss sexual disparities associated with other viruses and a possible gender-dependent response to SARS-CoV-2 vaccines. By specifically highlighting these immune-endocrine processes as well as behavioral factors that differentially exist between the genders, we aim to offer a better understanding in the variations of SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hisham Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | | | - Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University Health, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Cytochrome P450-epoxygenated fatty acids inhibit Müller glial inflammation. Sci Rep 2021; 11:9677. [PMID: 33958662 PMCID: PMC8102485 DOI: 10.1038/s41598-021-89000-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Free fatty acid dysregulation in diabetics may elicit the release of inflammatory cytokines from Müller cells (MC), promoting the onset and progression of diabetic retinopathy (DR). Palmitic acid (PA) is elevated in the sera of diabetics and stimulates the production of the DR-relevant cytokines by MC, including IL-1β, which induces the production of itself and other inflammatory cytokines in the retina as well. In this study we propose that experimental elevation of cytochrome P450 epoxygenase (CYP)-derived epoxygenated fatty acids, epoxyeicosatrienoic acid (EET) and epoxydocosapentaenoic acid (EDP), will reduce PA- and IL-1β-induced MC inflammation. Broad-spectrum CYP inhibition by SKF-525a increased MC expression of inflammatory cytokines. Exogenous 11,12-EET and 19,20-EDP significantly decreased PA- and IL-1β-induced MC expression of IL-1β and IL-6. Both epoxygenated fatty acids significantly decreased IL-8 expression in IL-1β-induced MC and TNFα in PA-induced MC. Interestingly, 11,12-EET and 19,20-EDP significantly increased TNFα in IL-1β-treated MC. GSK2256294, a soluble epoxide hydrolase (sEH) inhibitor, significantly reduced PA- and IL-1β-stimulated MC cytokine expression. 11,12-EET and 19,20-EDP were also found to decrease PA- and IL-1β-induced NFκB-dependent transcriptional activity. These data suggest that experimental elevation of 11,12-EET and 19,20-EDP decreases MC inflammation in part by blocking NFκB-dependent transcription and may represent a viable therapeutic strategy for inhibition of early retinal inflammation in DR.
Collapse
|
9
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
10
|
Capozzi ME, Savage SR, McCollum GW, Hammer SS, Ramos CJ, Yang R, Bretz CA, Penn JS. The peroxisome proliferator-activated receptor-β/δ antagonist GSK0660 mitigates retinal cell inflammation and leukostasis. Exp Eye Res 2020; 190:107885. [PMID: 31758977 PMCID: PMC7426872 DOI: 10.1016/j.exer.2019.107885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy (DR) is triggered by retinal cell damage stimulated by the diabetic milieu, including increased levels of intraocular free fatty acids. Free fatty acids may serve as an initiator of inflammatory cytokine release from Müller cells, and the resulting cytokines are potent stimulators of retinal endothelial pathology, such as leukostasis, vascular permeability, and basement membrane thickening. Our previous studies have elucidated a role for peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in promoting several steps in the pathologic cascade in DR, including angiogenesis and expression of inflammatory mediators. Furthermore, PPARβ/δ is a known target of lipid signaling, suggesting a potential role for this transcription factor in fatty acid-induced retinal inflammation. Therefore, we hypothesized that PPARβ/δ stimulates both the induction of inflammatory mediators by Müller cells as well the paracrine induction of leukostasis in endothelial cells (EC) by Müller cell inflammatory products. To test this, we used the PPARβ/δ inhibitor, GSK0660, in primary human Müller cells (HMC), human retinal microvascular endothelial cells (HRMEC) and mouse retina. We found that palmitic acid (PA) activation of PPARβ/δ in HMC leads to the production of pro-angiogenic and/or inflammatory cytokines that may constitute DR-relevant upstream paracrine inflammatory signals to EC and other retinal cells. Downstream, EC transduce these signals and increase their synthesis and release of chemokines such as CCL8 and CXCL10 that regulate leukostasis and other cellular events related to vascular inflammation in DR. Our results indicate that PPARβ/δ inhibition mitigates these upstream (MC) as well as downstream (EC) inflammatory signaling events elicited by metabolic stimuli and inflammatory cytokines. Therefore, our data suggest that PPARβ/δ inhibition is a potential therapeutic strategy against early DR pathology.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA.
| | - Sara R Savage
- Department of Pharmacology, Vanderbilt University, USA
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Sandra S Hammer
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Colin A Bretz
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - John S Penn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA; Department of Pharmacology, Vanderbilt University, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA; Department of Cell and Developmental Biology, Vanderbilt University, USA
| |
Collapse
|
11
|
Carroll LS, Uehara H, Fang D, Choi S, Zhang X, Singh M, Sandhu Z, Cummins PM, Curtis TM, Stitt AW, Archer BJ, Ambati BK. Intravitreal AAV2.COMP-Ang1 Attenuates Deep Capillary Plexus Expansion in the Aged Diabetic Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:2494-2502. [PMID: 31185088 PMCID: PMC6559753 DOI: 10.1167/iovs.18-26182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We determine whether intravitreal angiopoietin-1 combined with the short coiled-coil domain of cartilage oligomeric matrix protein by adeno-associated viral serotype 2 (AAV2.COMP-Ang1) delivery following the onset of vascular damage could rescue or repair damaged vascular beds and attenuate neuronal atrophy and dysfunction in the retinas of aged diabetic mice. Methods AAV2.COMP-Ang1 was bilaterally injected into the vitreous of 6-month-old male Ins2Akita mice. Age-matched controls consisted of uninjected C57BL/6J and Ins2Akita males, and of Ins2Akita males injected with PBS or AAV2.REPORTER (AcGFP or LacZ). Retinal thickness and visual acuity were measured in vivo at baseline and at the 10.5-month endpoint. Ex vivo vascular parameters were measured from retinal flat mounts, and Western blot was used to detect protein expression. Results All three Ins2Akita control groups showed significantly increased deep vascular density at 10.5 months compared to uninjected C57BL/6J retinas (as measured by vessel area, length, lacunarity, and number of junctions). In contrast, deep microvascular density of Ins2Akita retinas treated with AAV2.COMP-Ang1 was more similar to uninjected C57BL/6J retinas for all parameters. However, no significant improvement in retinal thinning or diabetic retinopathy-associated visual loss was found in treated diabetic retinas. Conclusions Deep retinal microvasculature of diabetic Ins2Akita eyes shows late stage changes consistent with disorganized vascular proliferation. We show that intravitreally injected AAV2.COMP-Ang1 blocks this increase in deep microvascularity, even when administered subsequent to development of the first detectable vascular defects. However, improving vascular normalization did not attenuate neuroretinal degeneration or loss of visual acuity. Therefore, additional interventions are required to address neurodegenerative changes that are already underway.
Collapse
Affiliation(s)
- Lara S Carroll
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Hironori Uehara
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Daniel Fang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Susie Choi
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Xiaohui Zhang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Malkit Singh
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Zoya Sandhu
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Philip M Cummins
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Bonnie J Archer
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Balamurali K Ambati
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
12
|
Drankowska J, Kos M, Kościuk A, Marzęda P, Boguszewska-Czubara A, Tylus M, Święch-Zubilewicz A. MMP targeting in the battle for vision: Recent developments and future prospects in the treatment of diabetic retinopathy. Life Sci 2019; 229:149-156. [PMID: 31100326 DOI: 10.1016/j.lfs.2019.05.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are enzymes capable of degrading nearly all types of extracellular matrix. They perform a wide range of roles in physiological processes, which is the reason for their strict regulation by numerous mechanisms including natural tissue inhibitors of metalloproteinases (TIMP). Research only started to shed light on more troublesome aspects of MMPs function, like cancer progression, Alzheimer's disease, atherosclerosis, ageing. Moreover, their profound role in diabetes is being carefully investigated including one of its most debilitating complications - diabetic retinopathy (DR), the leading cause of acquired blindness worldwide. Traditional treatment of this condition seems to be only mildly satisfactory, which elicited substantial interest in the field of new therapeutic methods including MMP targeting. So far, significant roles of MMP-2 and MMP-9 in the development of retinopathy have been established, with special attention given to the process of blood-retinal barrier impairment. Further exploration revealed MMP-10 and MMP-14 involvement as well as changes in MMP/TIMP ratio. In this review, we provide insight into MMPs role in diabetic retinopathy with a clarification of various mechanisms regulating MMP activity in the light of the recent studies. We conclude with an overview of novel DR therapies targeting MMPs and point to the need of further examination of their usefulness in clinical setting, with an eye towards future research.
Collapse
Affiliation(s)
- Justyna Drankowska
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, PL 20-093 Lublin, Poland.
| | - Michał Kos
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, PL 20-093 Lublin, Poland.
| | - Andrzej Kościuk
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, PL 20-093 Lublin, Poland
| | - Paweł Marzęda
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, PL 20-093 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, PL 20-093 Lublin, Poland
| | - Magdalena Tylus
- Department of Retinal and Vitreal Surgery, Medical University of Lublin, Chmielna 1, PL 20-079 Lublin, Poland
| | - Anna Święch-Zubilewicz
- Department of Retinal and Vitreal Surgery, Medical University of Lublin, Chmielna 1, PL 20-079 Lublin, Poland
| |
Collapse
|
13
|
Solanki A, Bhatt LK, Johnston TP, Prabhavalkar KS. Targeting Matrix Metalloproteinases for Diabetic Retinopathy: The Way Ahead? Curr Protein Pept Sci 2019; 20:324-333. [DOI: 10.2174/1389203719666180914093109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy (DR) is a severe sight-threatening complication of diabetes. It causes
progressive damage to the retina and is the most common cause of vision impairment and blindness
among diabetic patients. DR develops as a result of various changes in the ocular environment. Such
changes include accelerated mitochondrial dysfunction, apoptosis, reactive oxygen species production,
and formation of acellular capillaries. Matrix metalloproteinases (MMPs) are one of the major culprits in
causing DR. Under physiological conditions, MMPs cause remodeling of the extracellular matrix in the
retina, while under pathological conditions, they induce retinal cell apoptosis. This review focuses on
the roles of various MMPs, primarily MMP-2 and MMP-9 in DR and also their participation in oxidative
stress, mitochondrial dysfunction, and apoptosis, along with their involvement in various signaling
pathways. This review also underscores different strategies to inhibit MMPs, thus suggesting that MMPs
may represent a putative therapeutic target in the treatment of DR.
Collapse
Affiliation(s)
- Ankita Solanki
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K. Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Kedar S. Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
14
|
Al-Kharashi AS. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol 2018; 32:318-323. [PMID: 30581303 PMCID: PMC6300752 DOI: 10.1016/j.sjopt.2018.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a retinal disease which is one of the most severe complications occuring due to diabetes mellitus and is a major cause of blindness. Patients who have diabetes mellitus for number of years develop characteristic group of lesions in the retina which leads to Diabetic retinopathy. It is a multifactorial condition occuring due to complex cellular interactions between biochemical and metabolic abnormalities taking place in all retinal cells. Considerable research efforts in the past 20 years have suggested that the microvasculature of the retina responds to hyperglycemia through a number of biochemical changes, which includes polyol pathway, protein kinase C activation, upregulation of advanced glycation end products formation and renin angiotensin system activation. Various previous studies had suggest that interaction of these biochemical changes may cause a cascade of events, such as apoptosis, oxidative stress, inflammation and angiogenesis which can lead to the damage of a diabetic retina, causing DR. This highlights that oxidative stress, inflammation, angiogenesis-related factors triggers the occurrence of retinal complication in diabetes are highlighted.
Collapse
Affiliation(s)
- Abdullah S. Al-Kharashi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Liu Y, Xu J, Xu L, Wu T, Sun Y, Lee YW, Wang B, Chan HC, Jiang X, Zhang J, Li G. Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: accelerating tendon injury healing by intervening in its downstream signaling. FASEB J 2017; 31:3800-3815. [PMID: 28495756 DOI: 10.1096/fj.201601181r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/24/2017] [Indexed: 01/09/2023]
Abstract
Tendons are a mechanosensitive tissue, which enables them to transmit to bone forces that are derived from muscle. Patients with tendon injuries, such as tendinopathy or tendon rupture, were often observed with matrix degeneration, and the healing of tendon injuries remains a challenge as a result of the limited understanding of tendon biology. Our study demonstrates that the stretch-mediated activation channel, cystic fibrosis transmembrane conductance regulator (CFTR), was up-regulated in tendon-derived stem cells (TDSCs) during tenogenic differentiation under mechanical stretching. Tendon tissues in CFTR-dysfunctional DF508 mice exhibited irregular cell arrangement, uneven fibril diameter distribution, weak mechanical properties, and less matrix formation in a tendon defect model. Moreover, both tendon tissues and TDSCs isolated from DF508 mice showed significantly decreased levels of tendon markers, such as scleraxis, tenomodulin, Col1A1 (collagen type I α 1 chain), and decorin Furthermore, by RNA sequencing analysis, we demonstrated that Wnt/β-catenin signaling was abnormally activated in TDSCs from DF508 mice, thereby further activating the pERK1/2 signaling pathway. Of most importance, we found that intervention in pERK1/2 signaling could promote tenogenic differentiation and tendon regeneration both in vitro and in vivo Taken together, our study demonstrates that CFTR plays an important role in tenogenic differentiation and tendon regeneration by inhibiting the β-catinin/pERK1/2 signaling pathway. The therapeutic strategy of intervening in the CFTR/β-catenin/pERK1/2 regulatory axis may be helpful for accelerating tendon injury healing, which has implications for tendon injury management.-Liu, Y., Xu, J., Xu, L., Wu, T., Sun, Y., Lee, Y.-W., Wang, B., Chan, H.-C., Jiang, X., Zhang, J., Li, G. Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: accelerating tendon injury healing by intervening in its downstream signaling.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liangliang Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China.,Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyi Wu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Bin Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Hsiao-Chang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Xiaohua Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Jinfang Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China; .,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China; .,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, China.,The Chinese University of Hong Kong-China Astronaut Research and Training Center Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
Serum Levels of IL-1 β , IL-6, TGF- β , and MMP-9 in Patients Undergoing Carotid Artery Stenting and Regulation of MMP-9 in a New In Vitro Model of THP-1 Cells Activated by Stenting. Mediators Inflamm 2015; 2015:956082. [PMID: 26113783 PMCID: PMC4465715 DOI: 10.1155/2015/956082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Inflammation plays an important role in the pathophysiological process after carotid artery stenting (CAS). Monocyte is a significant source of inflammatory cytokines in vascular remodeling. Telmisartan could reduce inflammation. In our study, we first found that, after CAS, the serum IL-1β, IL-6, TGF-β, and MMP-9 levels were significantly increased, but only MMP-9 level was elevated no less than 3 months. Second, we established a new in vitro model, where THP-1 monocytes were treated with the supernatants of human umbilical vein endothelial cells (HUVECs) that were scratched by pipette tips, which mimics monocytes activated by mechanical injury of stenting. The treatment enhanced THP-1 cell adhesion, migration and invasion ability, and the phosphorylation of ERK1/2 and Elk-1 and MMP-9 expression were significantly increased. THP-1 cells pretreated with PD98095 (ERK1/2 inhibitor) attenuated the phosphorylation of ERK1/2 and Elk-1 and upregulation of MMP-9, while pretreatment with telmisartan merely decreased the phosphorylation of Elk-1 and MMP-9 expression. These results suggested that IL-1β, IL-6, TGF-β, and MMP-9 participate in the pathophysiological process after CAS. Our new in vitro model mimics monocytes activated by stenting. MMP-9 expression could be regulated through ERK1/2/Elk-1 pathway, and the protective effects of telmisartan after stenting are partly attributed to its MMP-9 inhibition effects via suppression of Elk-1.
Collapse
|
17
|
Abu El-Asrar AM, Mohammad G, Nawaz MI, Siddiquei MM. High-Mobility Group Box-1 Modulates the Expression of Inflammatory and Angiogenic Signaling Pathways in Diabetic Retina. Curr Eye Res 2014; 40:1141-52. [PMID: 25495026 DOI: 10.3109/02713683.2014.982829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE The expression of high-mobility group box-1 (HMGB1) is upregulated in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy and in the diabetic retina. HMGB1 mediates inflammation, breakdown of the blood-retinal barrier and apoptosis in the diabetic retina. Here, we investigated inflammatory and angiogenic signaling pathways activated by HMGB1 in diabetic retina. METHODS Human retinal microvascular endothelial cells (HRMEC) and retinas from 1-month diabetic rats and normal rats intravitreally injected with HMGB1 were studied using RT-PCR, Western blot analysis and co-immunoprecipitation. We also studied the effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced biochemical changes in the retina. RESULTS Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of the mRNA levels of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) receptor CXCR4 and protein levels of hypoxia-inducible factor-1α, early growth response-1, tyrosine kinase 2 and the CXCL12/CXCR4 chemokine axis. Constant glycyrrhizin intake from onset of diabetes did not affect the metabolic status of the diabetic rats, but it restored these increased mediators to control values. Stimulation of HRMEC with HMGB1 and intraviteral injection of HMGB1 significantly increased the expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2. Co-immunoprecipitation studies showed that diabetes increased the interaction between CXCL12 and CXCR4 and between HMGB1 and receptor for advanced glycation end products (RAGE), but not between HMGB1 and the CXCL12/CXCR4 chemokine axis. CONCLUSIONS Our findings suggest that HMGB1 activates inflammatory and angiogenic signaling pathways in diabetic retina mediated by RAGE.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Ghulam Mohammad
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Mohammad Imtiaz Nawaz
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Mohammad Mairaj Siddiquei
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| |
Collapse
|
18
|
Ortiz G, Salica JP, Chuluyan EH, Gallo JE. Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option? Biol Res 2014; 47:58. [PMID: 25723058 PMCID: PMC4335423 DOI: 10.1186/0717-6287-47-58] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is one of the most important causes of blindness. The underlying mechanisms of this disease include inflammatory changes and remodeling processes of the extracellular-matrix (ECM) leading to pericyte and vascular endothelial cell damage that affects the retinal circulation. In turn, this causes hypoxia leading to release of vascular endothelial growth factor (VEGF) to induce the angiogenesis process. Alpha-1 antitrypsin (AAT) is the most important circulating inhibitor of serine proteases (SERPIN). Its targets include elastase, plasmin, thrombin, trypsin, chymotrypsin, proteinase 3 (PR-3) and plasminogen activator (PAI). AAT modulates the effect of protease-activated receptors (PARs) during inflammatory responses. Plasma levels of AAT can increase 4-fold during acute inflammation then is so-called acute phase protein (APPs). Individuals with low serum levels of AAT could develop disease in lung, liver and pancreas. AAT is involved in extracellular matrix remodeling and inflammation, particularly migration and chemotaxis of neutrophils. It can also suppress nitric oxide (NO) by nitric oxide sintase (NOS) inhibition. AAT binds their targets in an irreversible way resulting in product degradation. The aim of this review is to focus on the points of contact between multiple factors involved in diabetic retinopathy and AAT resembling pleiotropic effects that might be beneficial.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Nanomedicine and Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires Pilar, Argentina. .,Ciudad Autónoma de Buenos Aires, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina.
| | - Juan P Salica
- Nanomedicine and Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires Pilar, Argentina.
| | - Eduardo H Chuluyan
- Departamento de Farmacología,Ciudad Autónoma de Buenos Aires, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Ciudad Autónoma de Buenos Aires, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina.
| | - Juan E Gallo
- Nanomedicine and Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires Pilar, Argentina. .,Ciudad Autónoma de Buenos Aires, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Li T, Hu J, Du S, Chen Y, Wang S, Wu Q. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes. Mol Vis 2014; 20:1109-21. [PMID: 25324681 PMCID: PMC4119234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/29/2014] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Retinal vascular dysfunction caused by vascular endothelial growth factor (VEGF) is the major pathological change that occurs in diabetic retinopathy (DR). It has recently been demonstrated that G protein-coupled receptor 91 (GPR91) plays a major role in both vasculature development and retinal angiogenesis. In this study, we examined the signaling pathways involved in GPR91-dependent VEGF release during the early stages of retinal vascular change in streptozotocin-induced diabetes. METHODS Diabetic rats were assigned randomly to receive intravitreal injections of shRNA lentiviral particles targeting GPR91 (LV.shGPR91) or control particles (LV.shScrambled). Accumulation of succinate was assessed by gas chromatography-mass spectrometry (GC-MS). At 14 weeks, the ultrastructure and function of the retinal vessels of diabetic retinas with or without shRNA treatment were assessed using hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and Evans blue dye permeability. The expression of GPR91, extracellular signal-regulated kinases 1 and 2 (ERK1/2) and cyclooxygenase-2 (COX-2) were measured using immunofluorescence and western blotting. COX-2 and VEGF mRNA were determined by quantitative RT-PCR. Prostaglandin E2 (PGE2) and VEGF secretion were detected using an enzyme-linked immunosorbent assay. RESULTS Succinate exhibited abundant accumulation in diabetic rat retinas. The retinal telangiectatic vessels, basement membrane thickness, and Evans blue dye permeability were attenuated by treatment with GPR91 shRNA. In diabetic rats, knockdown of GPR91 inhibited the activities of ERK1/2 and COX-2 as well as the expression of PGE2 and VEGF. Meanwhile, COX-2, PGE2, and VEGF expression was inhibited by ERK1/2 inhibitor U0126 and COX-2 inhibitor NS-398. CONCLUSIONS Our data suggest that hyperglycemia causes succinate accumulation and GPR91 activity in retinal ganglion cells, which mediate VEGF-induced retinal vascular change via the ERK1/2/COX-2/PGE2 pathway. This study highlights the signaling pathway as a potential target for intervention in DR.
Collapse
Affiliation(s)
- Tingting Li
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jianyan Hu
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Du
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yongdong Chen
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuai Wang
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
20
|
Poly (ADP-ribose) polymerase mediates diabetes-induced retinal neuropathy. Mediators Inflamm 2013; 2013:510451. [PMID: 24347828 PMCID: PMC3857786 DOI: 10.1155/2013/510451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 12/15/2022] Open
Abstract
Retinal neuropathy is an early event in the development of diabetic retinopathy. One of the potential enzymes that are activated by oxidative stress in the diabetic retina is poly (ADP-ribose) polymerase (PARP). We investigated the effect of the PARP inhibitor 1,5-isoquinolinediol on the expression of the neurodegeneration mediators and markers in the retinas of diabetic rats. After two weeks of streptozotocin-induced diabetes, rats were treated with 1,5-isoquinolinediol (3 mg/kg/day). After 4 weeks of diabetes, the retinas were harvested and the levels of reactive oxygen species (ROS) were determined fluorometrically and the expressions of PARP, phosporylated-ERK1/2, BDNF, synaptophysin, glutamine synthetase (GS), and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, PARP-1/2, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expressions of BDNF synaptophysin and GS were significantly decreased in the retinas of diabetic rats, compared to nondiabetic rats. Administration of 1,5-isoquinolinediol did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of PARP, ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF, synaptophysin, and GS. These findings suggest a beneficial effect of the PARP inhibitor in increasing neurotrophic support and ameliorating early retinal neuropathy induced by diabetes.
Collapse
|
21
|
TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm 2013; 2013:629529. [PMID: 24259948 PMCID: PMC3821908 DOI: 10.1155/2013/629529] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/09/2013] [Indexed: 02/08/2023] Open
Abstract
We assess the level of tumour necrosis factor alpha (TNF-alpha) in tear fluids and other serum parameters associated with diabetes in different degrees of diabetic retinopathy. We have performed a prospective, nonrandomized, observational study. Study population consisted of 16 healthy subjects (controls) and 32 type 2 diabetic patients: 16 affected by proliferative diabetic retinopathy (PDR) and 16 with nonproliferative retinopathy (NDPR, background/preproliferative). Body mass index, urinary albumin, blood glucose, HbA1c, and tear levels of TNF-alpha were measured in all subjects. The value of glycaemia, microalbuminurea, and Body mass index in diabetic retinopathy groups were higher than those in control group (P < 0.05). Glycemia in NPDR: 6.6 mmol/L (range: 5.8-6.3); in PDR: 6.7 mmol/L (range: 6.1-7.2); in control: 5.7 mmol/L (range: 4.9-6.1); microalbuminurea in NPDR: 10.6 mg/L (range: 5.6-20); in PDR: 25.2 mg/L (range: 17-40); in control: 5.3 mg/L (range: 2.6-10); Body mass index in NPDR: 26 Kg/m(2) (range: 20.3-40); in PDR: 28 Kg/m(2) (range 20.3-52); in control: 21 Kg/m(2) (range 19-26). The TNF-alpha concentrations in tears increase with the severity of pathology and were lower in control group than in diabetic subjects. In the end, the level of TNF-alpha is highly correlated with severity of diabetic retinopathy and with nephropathy. Tear fluid collection may be a useful noninvasive method for the detection of proliferative diabetic retinopathy.
Collapse
|
22
|
Uchida K, Nakahira K, Mimura K, Shimizu T, De Seta F, Wakimoto T, Kawai Y, Nomiyama M, Kuwano K, Guaschino S, Yanagihara I. Effects of Ureaplasma parvum lipoprotein multiple-banded antigen on pregnancy outcome in mice. J Reprod Immunol 2013; 100:118-27. [PMID: 24238827 DOI: 10.1016/j.jri.2013.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/31/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022]
Abstract
Ureaplasma spp. are members of the family Mycoplasmataceae and have been considered to be associated with chorioamnionitis and preterm delivery. However, it is unclear whether Ureaplasma spp. have virulence factors related to these manifestations. The purpose of the present study was to determine whether the immunogenic protein multiple-banded antigen (MBA) from Ureaplasma parvum is a virulence factor for preterm delivery. We partially purified MBA from a type strain and clinical isolates of U. parvum, and also synthesized a diacylated lipopeptide derived from U. parvum, UPM-1. Using luciferase assays, both MBA-rich fraction MRF and UPM-1 activated the NF-κB pathway via TLR2. UPM-1 upregulated IL-1β, IL-6, IL-12p35, TNF-α, MIP2, LIX, and iNOS in mouse peritoneal macrophage. MRF or UPM-1 was injected into uteri on day 15 of gestation on pregnant C3H/HeN mice. The intrauterine MRF injection group had a significantly higher incidence of intrauterine fetal death (IUFD; 38.5%) than the control group (14.0%). Interestingly, intrauterine injection of UPM-1 caused preterm deliveries at high concentration (80.0%). In contrast, a low concentration of UPM-1 induced a significantly higher rate of fetal deaths (55.2%) than the control group (14.0%). The placentas of the UPM-1 injection group showed neutrophil infiltration and increased iNOS protein expression. Our data indicate that MBA from the clinical isolate of U. parvum is a potential virulence factor for IUFD and preterm delivery in mice and that the N-terminal diacylated lipopeptide is essential for the initiation of inflammation.
Collapse
Affiliation(s)
- Kaoru Uchida
- Department of Developmental Medicine, Research Institute, Osaka Medical Center for Maternal and Child Health, 840-Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang X, Wang G, Kunte M, Shinde V, Gorbatyuk M. Modulation of angiogenesis by genetic manipulation of ATF4 in mouse model of oxygen-induced retinopathy [corrected]. Invest Ophthalmol Vis Sci 2013; 54:5995-6002. [PMID: 23942974 DOI: 10.1167/iovs.13-12117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The activation of the unfolded protein response (UPR) and an increase in activating transcription factor 4 (ATF4) has been previously reported in the diabetic retina. Despite this, a direct link between ATF4 and the degree of proliferative retinopathy has not been demonstrated to date. Therefore, the objective of this study was to determine whether ATF4 deficiency could reduce neovascularization in mice with oxygen-induced retinopathy (OIR). METHODS We induced OIR in C57BL/6, ATF4(+/-), and endoplasmic reticulum stress-activated indicator (ERAI) mice and used quantitative RT-PCR and Western blot analysis to evaluate relative gene and protein expression. Histology and microscopy were used to calculate the extent of neovascularization in flat-mounted retinas. RESULTS Experimental data revealed Xbp1 splicing in the retinal ganglia cells, outer plexiform layer, inner nuclear layer, and outer nuclear layer and in pericytes of postdevelopment day 17 ERAI OIR mice, confirming the activation of IRE1 UPR signaling. In naive ATF4-deficient mice, we also observed an elevation in UPR-associated and vascular-associated gene expression (Bip, Atf6, Hif1a, Pik3/Akt, Flt1/Vegfa, and Tgfb1), which may have contributed to the alleviation of hypoxia-driven neovascularization in experimental ATF4(+/-) retinas. The OIR ATF4(+/-) retinas demonstrated reprogramming of the UPR seen at both the mRNA (Atf6 and Bip) and protein (pATF6 and peIf2α) levels, as well as a reduction in vascularization-associated gene expression (Flt1, Vegf1, Hif1, and Tgb1). These changes corresponded to the decline in the rate of neovascularization. CONCLUSIONS Our study validates ATF4 as a prospective therapeutic target to inhibit neovascularization in proliferative retinopathy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, USA
| | | | | | | | | |
Collapse
|