1
|
Chong JR, Chai YL, Xing H, Herr DR, Wenk MR, Francis PT, Ballard C, Aarsland D, Silver DL, Chen CP, Cazenave‐Gassiot A, Lai MKP. Decreased DHA-containing phospholipids in the neocortex of dementia with Lewy bodies are associated with soluble Aβ 42 , phosphorylated α-synuclein, and synaptopathology. Brain Pathol 2023; 33:e13190. [PMID: 37463072 PMCID: PMC10580008 DOI: 10.1111/bpa.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an essential omega-3 polyunsaturated fatty acid implicated in cognitive functions by promoting synaptic protein expression. While alterations of specific DHA-containing phospholipids have been described in the neocortex of patients with Alzheimer's disease (AD), the status of these lipids in dementia with Lewy bodies (DLB), known to manifest aggregated α-synuclein-containing Lewy bodies together with variable amyloid pathology, is unclear. In this study, post-mortem samples from the parietal cortex of 25 DLB patients and 17 age-matched controls were processed for phospholipidomics analyses using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform. After controlling for false discovery rate, six out of the 46 identified putative DHA-phospholipid species were significantly decreased in DLB, with only one showing increase. Altered putative DHA-phospholipid species were subsequently validated with further LC-MS/MS measurements. Of the DHA-containing phospholipid (DCP) species showing decreases, five negatively correlated with soluble beta-amyloid (Aβ42) levels, whilst three also correlated with phosphorylated α-synuclein (all p < 0.05). Furthermore, five of these phospholipid species correlated with deficits of presynaptic Rab3A, postsynaptic neurogranin, or both (all p < 0.05). Finally, we found altered immunoreactivities of brain lysolipid DHA transporter, MFSD2A, and the fatty acid binding protein FABP5 in DLB parietal cortex. In summary, we report alterations of specific DCP species in DLB, as well as their associations with markers of neuropathological burden and synaptopathology. These results support the potential role of DHA perturbations in DLB as well as therapeutic targets.
Collapse
Affiliation(s)
- Joyce R. Chong
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Yuek Ling Chai
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Huayang Xing
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Deron R. Herr
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Markus R. Wenk
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeKent RidgeSingapore
| | | | - Clive Ballard
- College of Medicine and HealthUniversity of ExeterExeterUK
| | - Dag Aarsland
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - David L. Silver
- Signature Research Program in Cardiovascular and Metabolic DisordersDuke‐National University of Singapore (NUS) Medical SchoolOutramSingapore
| | - Christopher P. Chen
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Amaury Cazenave‐Gassiot
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeKent RidgeSingapore
| | - Mitchell K. P. Lai
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
- College of Medicine and HealthUniversity of ExeterExeterUK
| |
Collapse
|
2
|
Zhang Y, Liu Z, Xiao G, Shi J, Liu B, Xiao N, Sun Z. Simultaneous DHA and organic selenium production by Schizochytrium sp.: a theoretical basis. Sci Rep 2023; 13:15607. [PMID: 37731016 PMCID: PMC10511486 DOI: 10.1038/s41598-023-42900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Docosahexaenoic acid (DHA) and selenium (Se) are nutrients that confer several health benefits to both humans and animals. Widespread use of DHA in milk powder and health products requires large-scale mass production via Schizochytrium sp., while Se intended for human consumption is produced as organic Se via yeast. However, producing these nutrients on an industrial scale is constrained by various factors. We found that supplementing Schizochytrium sp. with Na2SeO3 (0.5 mg/L) improves its biomass and DHA production and also provides organic Se. De novo assembled transcriptome and biochemical indicators showed that Na2SeO3 promotes forming acetyl coenzyme A and L-cysteine via the glycerol kinase and cysteine synthase pathways, promoting DHA synthesis through the polyketide synthase pathway. However, high doses of Na2SeO3 (5 mg/L) limited the biomass of Schizochytrium sp. and DHA content. This study provided a theoretical basis for the simultaneous production of organic Se and DHA via Schizochytrium sp.
Collapse
Affiliation(s)
- Yunqiang Zhang
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Zikui Liu
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Gang Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Jiawei Shi
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Baili Liu
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Ning Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Zhiliang Sun
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China.
| |
Collapse
|
3
|
Gemfibrozil-Induced Intracellular Triglyceride Increase in SH-SY5Y, HEK and Calu-3 Cells. Int J Mol Sci 2023; 24:ijms24032972. [PMID: 36769295 PMCID: PMC9917468 DOI: 10.3390/ijms24032972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Gemfibrozil is a drug that has been used for over 40 years to lower triglycerides in blood. As a ligand for peroxisome proliferative-activated receptor-alpha (PPARα), which is expressed in many tissues, it induces the transcription of numerous genes for carbohydrate and lipid-metabolism. However, nothing is known about how intracellular lipid-homeostasis and, in particular, triglycerides are affected. As triglycerides are stored in lipid-droplets, which are known to be associated with many diseases, such as Alzheimer's disease, cancer, fatty liver disease and type-2 diabetes, treatment with gemfibrozil could adversely affect these diseases. To address the question whether gemfibrozil also affects intracellular lipid-levels, SH-SY5Y, HEK and Calu-3 cells, representing three different metabolically active organs (brain, lung and kidney), were incubated with gemfibrozil and subsequently analyzed semi-quantitatively by mass-spectrometry. Importantly, all cells showed a strong increase in intracellular triglycerides (SH-SY5Y: 170.3%; HEK: 272.1%; Calu-3: 448.1%), suggesting that the decreased triglyceride-levels might be due to an enhanced cellular uptake. Besides the common intracellular triglyceride increase, a cell-line specific alteration in acylcarnitines are found, suggesting that especially in neuronal cell lines gemfibrozil increases the transport of fatty acids to mitochondria and therefore increases the turnover of fatty acids for the benefit of additional energy supply, which could be important in diseases, such as Alzheimer's disease.
Collapse
|
4
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
5
|
Janitschke D, Lauer AA, Bachmann CM, Winkler J, Griebsch LV, Pilz SM, Theiss EL, Grimm HS, Hartmann T, Grimm MOW. Methylxanthines Induce a Change in the AD/Neurodegeneration-Linked Lipid Profile in Neuroblastoma Cells. Int J Mol Sci 2022; 23:2295. [PMID: 35216410 PMCID: PMC8875332 DOI: 10.3390/ijms23042295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an increased plaque burden and tangle accumulation in the brain accompanied by extensive lipid alterations. Methylxanthines (MTXs) are alkaloids frequently consumed by dietary intake known to interfere with the molecular mechanisms leading to AD. Besides the fact that MTX consumption is associated with changes in triglycerides and cholesterol in serum and liver, little is known about the effect of MTXs on other lipid classes, which raises the question of whether MTX can alter lipids in a way that may be relevant in AD. Here we have analyzed naturally occurring MTXs caffeine, theobromine, theophylline, and the synthetic MTXs pentoxifylline and propentofylline also used as drugs in different neuroblastoma cell lines. Our results show that lipid alterations are not limited to triglycerides and cholesterol in the liver and serum, but also include changes in sphingomyelins, ceramides, phosphatidylcholine, and plasmalogens in neuroblastoma cells. These changes comprise alterations known to be beneficial, but also adverse effects regarding AD were observed. Our results give an additional perspective of the complex link between MTX and AD, and suggest combining MTX with a lipid-altering diet compensating the adverse effects of MTX rather than using MTX alone to prevent or treat AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Cornel Manuel Bachmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
6
|
Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, Schulten N, Schwarze L, Slawik T, Sperlich S, Vohla A, Grimm MOW. Mechanistic Link between Vitamin B12 and Alzheimer's Disease. Biomolecules 2022; 12:129. [PMID: 35053277 PMCID: PMC8774227 DOI: 10.3390/biom12010129] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Birgit Apel
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Nataliya Golobrodska
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Lara Kruse
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Elina Ratanski
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Noemi Schulten
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Laura Schwarze
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Thomas Slawik
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Saskia Sperlich
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Antonia Vohla
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
7
|
Fan X, Liu B, Zhou J, Gu X, Zhou Y, Yang Y, Guo F, Wei X, Wang H, Si N, Yang J, Bian B, Zhao H. High-Fat Diet Alleviates Neuroinflammation and Metabolic Disorders of APP/PS1 Mice and the Intervention With Chinese Medicine. Front Aging Neurosci 2021; 13:658376. [PMID: 34168550 PMCID: PMC8217439 DOI: 10.3389/fnagi.2021.658376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease caused by the complex interaction of multiple mechanisms. Recent studies examining the effect of high-fat diet (HFD) on the AD phenotype have demonstrated a significant influence on both inflammation and cognition. However, different studies on the effect of high-fat diet on AD pathology have reported conflicting conclusions. To explore the involvement of HFD in AD, we investigated phenotypic and metabolic changes in an AD mouse model in response to HFD. The results indicated there was no significant effect on Aβ levels or contextual memory due to HFD treatment. Of note, HFD did moderate neuroinflammation, despite spurring inflammation and increasing cholesterol levels in the periphery. In addition, diet affected gut microbiota symbiosis, altering the production of bacterial metabolites. HFD created a favorable microenvironment for bile acid alteration and arachidonic acid metabolism in APP/PS1 mice, which may be related to the observed improvement in LXR/PPAR expression. Our previous research demonstrated that Huanglian Jiedu decoction (HLJDD) significantly ameliorated impaired learning and memory. Furthermore, HLJDD may globally suppress inflammation and lipid accumulation to relieve cognitive impairment after HFD intervention. It was difficult to define the effect of HFD on AD progression because the results were influenced by confounding factors and biases. Although there was still obvious damage in AD mice treated with HFD, there was no deterioration and there was even a slight remission of neuroinflammation. Moreover, HLJDD represents a potential AD drug based on its anti-inflammatory and lipid-lowering effects.
Collapse
Affiliation(s)
- Xiaorui Fan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Junyi Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
9
|
Feuillie C, Lambert E, Ewald M, Azouz M, Henry S, Marsaudon S, Cullin C, Lecomte S, Molinari M. High Speed AFM and NanoInfrared Spectroscopy Investigation of Aβ 1-42 Peptide Variants and Their Interaction With POPC/SM/Chol/GM1 Model Membranes. Front Mol Biosci 2020; 7:571696. [PMID: 33033718 PMCID: PMC7510551 DOI: 10.3389/fmolb.2020.571696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aβ1 - 42 peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aβ1 - 42 peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aβ1 - 42 and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides. Despite the increasing amount of information on AD associated amyloids and their toxicity, the molecular mechanisms involved still remain unclear and require in-depth investigation at the local scale to clearly decipher the role of the sequence of the amyloid peptides, of their secondary structures, of their oligomeric states, and of their interactions with lipid membranes. In this original study, through the use of Atomic Force Microscopy (AFM) related-techniques, high-speed AFM and nanoInfrared AFM, we tried to unravel at the nanoscale the link between aggregation state, structure and interaction with membranes in the amyloid/membrane interaction. Using three mutants of Aβ peptides, L34T, oG37C, and WT Aβ1 - 42 peptides, with differences in morphology, structure and assembly process, as well as model lipidic membranes whose composition and structure allow interactions with the peptides, our AFM study coupling high spatial and temporal resolution and nanoscale structure information clearly evidences a local correlation between the secondary structure of the peptides, their fibrillization kinetics and their interactions with model membranes. Membrane disruption is associated to small transient oligomeric entities in the early stages of aggregation that strongly interact with the membrane, and present an antiparallel β-sheet secondary structure. The strong effect on membrane integrity that exists when these oligomeric Aβ1 - 42 peptides interact with membranes of a particular composition could be a lead for therapeutic studies.
Collapse
Affiliation(s)
- Cecile Feuillie
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Eleonore Lambert
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Maxime Ewald
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Mehdi Azouz
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France.,Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Sarah Henry
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Sophie Marsaudon
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Michael Molinari
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| |
Collapse
|
10
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
11
|
Rosa G, Giannotti C, Martella L, Massa F, Serafini G, Pardini M, Nobili FM, Monacelli F. Brain Aging, Cardiovascular Diseases, Mixed Dementia, and Frailty in the Oldest Old: From Brain Phenotype to Clinical Expression. J Alzheimers Dis 2020; 75:1083-1103. [DOI: 10.3233/jad-191075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gianmarco Rosa
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Cardiovascular Diseases, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Giannotti
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Martella
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Flavio Mariano Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | |
Collapse
|
12
|
Grimm MOW, Blümel T, Lauer AA, Janitschke D, Stahlmann C, Mett J, Haupenthal VJ, Miederer AM, Niemeyer BA, Grimm HS, Hartmann T. The impact of capsaicinoids on APP processing in Alzheimer's disease in SH-SY5Y cells. Sci Rep 2020; 10:9164. [PMID: 32514053 PMCID: PMC7280252 DOI: 10.1038/s41598-020-66009-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-β (Aβ), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aβ-production and reduced Aβ-degradation, leading to increased Aβ-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased β-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aβ-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aβ-degrading-enzymes. Regarding Aβ-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aβ-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany.
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany.
| | - Tamara Blümel
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Anna A Lauer
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | | | | | - Janine Mett
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Biosciences Zoology/Physiology-Neurobiology, Faculty NT - Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | | | | | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, Homburg, Saar, Germany
| | - Heike S Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg, Saar, Germany
| |
Collapse
|
13
|
|
14
|
Dierckx T, Bogie JFJ, Hendriks JJA. The Impact of Phytosterols on the Healthy and Diseased Brain. Curr Med Chem 2020; 26:6750-6765. [PMID: 29984647 DOI: 10.2174/0929867325666180706113844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) is the most cholesterol-rich organ in mammals. Cholesterol homeostasis is essential for proper brain functioning and dysregulation of cholesterol metabolism can lead to neurological problems. Multiple sclerosis (MS) and Alzheimer's disease (AD) are examples of neurological diseases that are characterized by a disturbed cholesterol metabolism. Phytosterols (PS) are plant-derived components that structurally and functionally resemble cholesterol. PS are known for their cholesterol-lowering properties. Due to their ability to reach the brain, researchers have started to investigate the physiological role of PS in the CNS. In this review, the metabolism and function of PS in the diseased and healthy CNS are discussed.
Collapse
Affiliation(s)
- Tess Dierckx
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| |
Collapse
|
15
|
Characterization of the unique In Vitro effects of unsaturated fatty acids on the formation of amyloid β fibrils. PLoS One 2019; 14:e0219465. [PMID: 31291354 PMCID: PMC6619765 DOI: 10.1371/journal.pone.0219465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/24/2019] [Indexed: 12/01/2022] Open
Abstract
Accumulation of amyloid ß (Aß) peptides, the major component of amyloid fibrils in senile plaques, is one of the main causes of Alzheimer’s disease. Docosahexaenoic acid (DHA) is a fatty acid abundant in the brain, and is reported to have protective effects against Alzheimer’s disease, although the mechanistic effects of DHA against Alzheimer’s pathophysiology remain unclear. Because dietary supplementation of DHA in Aß precursor protein transgenic mice ameliorates Aß pathology and behavioral deficits, we hypothesize that DHA may affect the fibrillization and deposition of Aß. Here we studied the effect of different types of fatty acids on Aß fibril formation by in vitro Aß fibrillization assay. Formation of amyloid fibrils consists of two steps, i.e., the initial nucleation phase and the following elongation phase. We found that unsaturated fatty acids, especially DHA, accelerated the formation of Aß fibrils with a unique short and curved morphology in its nucleation phase, which did not elongate further into the long and straight, mature Aß fibrils. Addition of DHA afterwards did not modify the morphology of the mature Aß(1–40) fibrils. The short and curved Aß fibrils formed in the presence of DHA did not facilitate the elongation phase of Aß fibril formation, suggesting that DHA promotes the formation of “off-pathway” conformers of Aß. Our study unravels a possible mechanism of how DHA acts protectively against the pathophysiology of Alzheimer’s disease.
Collapse
|
16
|
Profiling of Alzheimer’s disease related genes in mild to moderate vitamin D hypovitaminosis. J Nutr Biochem 2019; 67:123-137. [DOI: 10.1016/j.jnutbio.2019.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
|
17
|
Ewald M, Henry S, Lambert E, Feuillie C, Bobo C, Cullin C, Lecomte S, Molinari M. High speed atomic force microscopy to investigate the interactions between toxic Aβ 1-42 peptides and model membranes in real time: impact of the membrane composition. NANOSCALE 2019; 11:7229-7238. [PMID: 30924478 DOI: 10.1039/c8nr08714h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to an aging population, neurodegenerative diseases have become a major health issue, the most common being Alzheimer's disease. The mechanisms leading to neuronal loss still remain unclear but recent studies suggest that soluble Aβ oligomers have deleterious effects on neuronal membranes. Here, high-speed atomic force microscopy was used to assess the effect of oligomeric species of a variant of Aβ1-42 amyloid peptide on model membranes with various lipid compositions. Results showed that the peptide does not interact with membranes composed of phosphatidylcholine and sphingomyelin. Ganglioside GM1, but not cholesterol, is required for the peptide to interact with the membrane. Interestingly, when they are both present, a fast disruption of the membrane was observed. It suggests that the presence of ganglioside GM1 and cholesterol in membranes promotes the interaction of the oligomeric Aβ1-42 peptide with the membrane. This interaction leads to the membrane's destruction in a few seconds. This study highlights the power of high-speed atomic force microscopy to explore lipid-protein interactions with high spatio-temporal resolution.
Collapse
Affiliation(s)
- M Ewald
- LRN EA 4682, Université de Reims Champagne-Ardenne, F-51685 Reims, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND The growing body of evidence indicating the heterogeneity of Alzheimer's disease (AD), coupled with disappointing clinical studies directed at a fit-for-all therapy, suggest that the development of a single magic cure suitable for all cases may not be possible. This calls for a shift in paradigm where targeted treatment is developed for specific AD subpopulations that share distinct genetic or pathological properties. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor of AD, is expressed in more than half of AD patients and is thus an important possible AD therapeutic target. REVIEW This review focuses initially on the pathological effects of apoE4 in AD, as well as on the corresponding cellular and animal models and the suggested cellular and molecular mechanisms which mediate them. The second part of the review focuses on recent apoE4-targeted (from the APOE gene to the apoE protein and its interactors) therapeutic approaches that have been developed in animal models and are ready to be translated to human. Further, the issue of whether the pathological effects of apoE4 are due to loss of protective function or due to gain of toxic function is discussed herein. It is possible that both mechanisms coexist, with certain constituents of the apoE4 molecule and/or its downstream signaling mediating a toxic effect, while others are associated with a loss of protective function. CONCLUSION ApoE4 is a promising AD therapeutic target that remains understudied. Recent studies are now paving the way for effective apoE4-directed AD treatment approaches.
Collapse
|
19
|
Sepe FN, Chiasserini D, Parnetti L. Role of FABP3 as biomarker in Alzheimer's disease and synucleinopathies. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2018-0003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipids are fundamental components of brain cells as they are involved in several essential processes like remodeling of plasma membrane, synaptic function and receptor–ligand interactions. Systemic and brain alterations in lipid metabolism have been linked to the pathogenesis of neurodegenerative disorders like dementia and parkinsonisms. Intracellular transport of lipids is regulated by fatty acid-binding proteins. Recently, a member of this family, the fatty acid-binding protein 3 has been proposed as a potential biomarker across a range of neurodegenerative diseases, including Alzheimer's disease and dementia with Lewy bodies. In this special report, we describe recent progresses in characterizing the role of fatty acid-binding protein 3 in neurodegeneration and its putative role as biomarker measurable in biological fluids.
Collapse
Affiliation(s)
- Federica Nicoletta Sepe
- Center for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Lucilla Parnetti
- Center for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Clausznitzer D, Pichardo-Almarza C, Relo AL, van Bergeijk J, van der Kam E, Laplanche L, Benson N, Nijsen M. Quantitative Systems Pharmacology Model for Alzheimer Disease Indicates Targeting Sphingolipid Dysregulation as Potential Treatment Option. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:759-770. [PMID: 30207429 PMCID: PMC6263662 DOI: 10.1002/psp4.12351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder with high unmet medical need. Drug development is hampered by limited understanding of the disease and its driving factors. Quantitative Systems Pharmacology (QSP) modeling provides a comprehensive quantitative framework to evaluate the relevance of biological mechanisms in the context of disease and to predict the efficacy of novel treatments. Here, we report a QSP model for AD with a particular focus on investigating the relevance of dysregulation of cholesterol and sphingolipids. We show that our model captures the modulation of several biomarkers in subjects with AD, as well as the response to pharmacological interventions. We evaluate the impact of targeting the sphingosine-1-phosphate 5 receptor (S1PR5) as a potential novel treatment option for AD, and model predictions increase our confidence in this novel disease pathway. Future applications for the QSP model are in validation of further targets and identification of potential treatment response biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neil Benson
- Certara QSP, Innovation centre, Unit 43, Canterbury, UK
| | | |
Collapse
|
21
|
Cheng J, North BJ, Zhang T, Dai X, Tao K, Guo J, Wei W. The emerging roles of protein homeostasis-governing pathways in Alzheimer's disease. Aging Cell 2018; 17:e12801. [PMID: 29992725 PMCID: PMC6156496 DOI: 10.1111/acel.12801] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Pathways governing protein homeostasis are involved in maintaining the structural, quantitative, and functional stability of intracellular proteins and involve the ubiquitin-proteasome system, autophagy, endoplasmic reticulum, and mTOR pathway. Due to the broad physiological implications of protein homeostasis pathways, dysregulation of proteostasis is often involved in the development of multiple pathological conditions, including Alzheimer's disease (AD). Similar to other neurodegenerative diseases that feature pathogenic accumulation of misfolded proteins, Alzheimer's disease is characterized by two pathological hallmarks, amyloid-β (Aβ) plaques and tau aggregates. Knockout or transgenic overexpression of various proteostatic components in mice results in AD-like phenotypes. While both Aβ plaques and tau aggregates could in turn enhance the dysfunction of these proteostatic pathways, eventually leading to apoptotic or necrotic neuronal death and pathogenesis of Alzheimer's disease. Therefore, targeting the components of proteostasis pathways may be a promising therapeutic strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Brian J. North
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Tao Zhang
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Xiangpeng Dai
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Kaixiong Tao
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianping Guo
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Wenyi Wei
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
22
|
Maeba R, Araki A, Fujiwara Y. Serum Ethanolamine Plasmalogen and Urine Myo-Inositol as Cognitive Decline Markers. Adv Clin Chem 2018; 87:69-111. [PMID: 30342713 DOI: 10.1016/bs.acc.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that metabolic disorders, particularly type 2 diabetes mellitus (T2DM), and dementia, including Alzheimer's disease (AD), were linked at the clinical and molecular levels. Brain insulin deficiency and resistance may be key events in AD pathology mechanistically linking AD to T2DM. Ethanolamine plasmalogens (PlsEtns) are abundant in the brain and play essential roles in neuronal function and myelin formation. As such, PlsEtn deficiency may be pathologically relevant in some neurodegenerative disorders such as AD. Decreased brain PlsEtn associated with dementia may reflect serum PlsEtn deficiency. We hypothesized that myo-inositol plays a role in myelin formation through its facilitation of PlsEtn biosynthesis. Excessive urinary myo-inositol (UMI) loss would likely result in PlsEtn deficiency potentially leading to demyelinating diseases such as dementia. Accordingly, measurement of both serum PlsEtn and baseline UMI excretion could improve the detection of cognitive impairment (CI) in a more specific and reliable manner. To verify our hypothesis, we conducted a clinical observational study of memory clinic outpatients (MCO) and cognitively normal elderly (NE) for nearly 4.5years. We demonstrated that serum PlsEtn concentration associated with UMI excretion was useful for predicting advancing dementia in patients with mild CI. Because hyperglycemia and associated insulin resistance might be a leading cause of increased baseline UMI excretion, serum PlsEtn quantitation would be useful in detecting CI among the elderly with hyperglycemia. Our findings suggest that myo-inositol is a novel candidate molecule linking T2DM to AD.
Collapse
Affiliation(s)
- Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
23
|
Zhou H, Liu S, Shao Q, Ma D, Yang Z, Zhou R. Mechanism by which DHA inhibits the aggregation of KLVFFA peptides: A molecular dynamics study. J Chem Phys 2018; 148:115102. [PMID: 29566504 DOI: 10.1063/1.5012032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA) is one of the omega-3 polyunsaturated fatty acids, which has shown promising applications in lowering Aβ peptide neurotoxicity in vitro by preventing aggregation of Aβ peptides and relieving accumulation of Aβ fibrils. Unfortunately, the underlying molecular mechanisms of how DHA interferes with the aggregation of Aβ peptides remain largely enigmatic. Herein, aggregation behaviors of amyloid-β(Aβ)16-21 peptides (KLVFFA) with or without the presence of a DHA molecule were comparatively studied using extensive all-atom molecular dynamics simulations. We found that DHA could effectively suppress the aggregation of KLVFFA peptides by redirecting peptides to unstructured oligomers. The highly hydrophobic and flexible nature of DHA made it randomly but tightly entangled with Leu-17, Phe-19, and Phe-20 residues to form unstructured but stable complexes. These lower-ordered unstructured oligomers could eventually pass through energy barriers to form ordered β-sheet structures through large conformational fluctuations. This study depicts a microscopic picture for understanding the role and mechanism of DHA in inhibition of aggregation of Aβ peptides, which is generally believed as one of the important pathogenic mechanisms of Alzheimer's disease.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Qiwen Shao
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Dongfang Ma
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, China
| |
Collapse
|
24
|
Liu H, Luo K, Luo D. Guanosine monophosphate reductase 1 is a potential therapeutic target for Alzheimer's disease. Sci Rep 2018; 8:2759. [PMID: 29426890 PMCID: PMC5807363 DOI: 10.1038/s41598-018-21256-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder for which identification of differentially expressed genes is one way to find new therapeutic targets. Here, we conducted analysis to identify age-independent, AD-specific genes. We found that the MET, WIF1, and NPTX2 genes are downregulated in AD. WIF1 and MET are implicated in Wnt and MET signaling and regulate GSK3β activity and are thus linked with AD. Importantly, we found that the GMPR gene exhibited a gradual increase in AD progression. A logistic model based on GMPR has good ability to classify AD cases. GMPR's product GMPR1 is in the AMPK and adenosine receptor pathways and is thus associated with Tau phosphorylation in AD. This allows GMPR1 to be a therapeutic target. Therefore, we screened five possible inhibitors to GMPR1 by docking GMPR1 with 1,174 approved drugs. Among them, lumacaftor is ideal. We then tested the effects of lumacaftor on AD model mice. After 20 days of oral administration, we observed that β-Amyloid accumulation was slowed down, and phosphorylation of Tau was almost eliminated in the treated mice. We highlight the elevated expression level of GMPR in AD and propose a therapeutic strategy of inhibiting GMPR1 with lumacaftor.
Collapse
Affiliation(s)
- Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Kun Luo
- Department of Neurosurgery, Xinjiang Evidence-Based Medicine Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Donghui Luo
- Department of Neurology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| |
Collapse
|
25
|
den Hoedt S, Janssen CI, Astarita G, Piomelli D, Leijten FP, Crivelli SM, Verhoeven AJ, de Vries HE, Walter J, Martinez-Martinez P, Sijbrands EJ, Kiliaan AJ, Mulder MT. Pleiotropic Effect of Human ApoE4 on Cerebral Ceramide and Saturated Fatty Acid Levels. J Alzheimers Dis 2017; 60:769-781. [DOI: 10.3233/jad-160739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carola I.F. Janssen
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC, USA
| | - Daniele Piomelli
- Department of Pharmacology, University of California Irvine, CA, USA
| | - Frank P.J. Leijten
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simone M. Crivelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Adrie J.M. Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Eric J.G. Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amanda J. Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Hishikawa D, Valentine WJ, Iizuka-Hishikawa Y, Shindou H, Shimizu T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett 2017; 591:2730-2744. [PMID: 28833063 PMCID: PMC5639365 DOI: 10.1002/1873-3468.12825] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Omega‐3 (ω‐3) fatty acids (FAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to have important roles in human health and disease. Besides being utilized as fuel, ω‐3 FAs have specific functions based on their structural characteristics. These functions include serving as ligands for several receptors, precursors of lipid mediators, and components of membrane glycerophospholipids (GPLs). Since ω‐3 FAs (especially DHA) are highly flexible, the levels of DHA in GPLs may affect membrane biophysical properties such as fluidity, flexibility, and thickness. Here, we summarize some of the cellular mechanisms for incorporating DHA into membrane GPLs and propose biological effects and functions of DHA‐containing membranes of several cell and tissue types.
Collapse
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshiko Iizuka-Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Lipid Science, The University of Tokyo, Bunkyo-ku, Japan.,AMED, Chiyoda-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Lipidomics Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
27
|
Ganglioside and related-sphingolipid profiles are altered in a cellular model of Alzheimer's disease. Biochimie 2017; 137:158-164. [DOI: 10.1016/j.biochi.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/27/2017] [Indexed: 01/22/2023]
|
28
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
29
|
Vitamin D 3 protects against Aβ peptide cytotoxicity in differentiated human neuroblastoma SH- SY5Y cells: A role for S1P1/p38MAPK/ATF4 axis. Neuropharmacology 2017; 116:328-342. [PMID: 28077289 DOI: 10.1016/j.neuropharm.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
Abstract
Besides its classical function of bone metabolism regulation, 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3), acts on a variety of tissues including the nervous system, where the hormone plays an important role as neuroprotective, antiproliferating and differentiating agent. Sphingolipids are bioactive lipids that play critical and complex roles in regulating cell fate. In the present paper we have investigated whether sphingolipids are involved in the protective action of 1,25(OH)2D3. We have found that 1,25(OH)2D3 prevents amyloid-β peptide (Aβ(1-42)) cytotoxicity both in differentiated SH-SY5Y human neuroblastoma cells and in vivo. In differentiated SH-SY5Y cells, Aβ(1-42) strongly reduces the sphingosine-1-phosphate (S1P)/ceramide (Cer) ratio while 1,25(OH)2D3 partially reverts this effect. 1,25(OH)2D3 reverts also the Aβ(1-42)-induced reduction of sphingosine kinase activity. We have also studied the crosstalk between 1,25(OH)2D3 and S1P signaling pathways downstream to the activation of S1P receptor subtype S1P1. Notably, we found that 1,25(OH)2D3 prevents the reduction of S1P1 expression promoted by Aβ(1-42) and thereby it modulates the downstream signaling leading to ER stress damage (p38MAPK/ATF4). Similar effects were observed by using ZK191784. In addition, chronic treatment with 1,25(OH)2D3 protects from aggregated Aβ(1-42)-induced damage in the CA1 region of the rat hippocampus and promotes cell proliferation in the hippocampal dentate gyrus of adult mice. In conclusion, these results represent the first evidence of the role of 1,25(OH)2D3 and its structural analogue ZK191784 in counteracting the Aβ(1-42) peptide-induced toxicity through the modulation of S1P/S1P1/p38MAPK/ATF4 pathway in differentiated SH-SY5Y cells.
Collapse
|
30
|
Anstey KJ, Ashby-Mitchell K, Peters R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J Alzheimers Dis 2017; 56:215-228. [PMID: 27911314 PMCID: PMC5240556 DOI: 10.3233/jad-160826] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cohort studies have reported that midlife high total serum cholesterol (TC) is associated with increased risk of Alzheimer's disease (AD) in late-life but findings have been based on few studies and previous reviews have been limited by a lack of compatible data. OBJECTIVE We synthesized all high quality data from cohort studies reporting on the association between total serum cholesterol measured and late-life cognitive outcomes including Alzheimer's disease (AD), vascular dementia (VaD), any dementia, mild cognitive impairment (MCI), and cognitive decline. METHODS The literature was searched up to October 2016 using a registered protocol. Thirty-four articles meeting study criteria were identified. Seventeen studies published from 1996 to 2014, including 23,338 participants were included in meta-analyses. RESULTS Relative risk of developing AD for adults with high TC in midlife was 2.14 (95% CI 1.33-3.44) compared with normal cholesterol. Individual studies that could not be pooled also reported high TC in midlife increased the risk of MCI and cognitive decline in late-life. High TC in late-life was not associated with MCI, AD, VaD, any dementia, or cognitive decline. Late-life measured HDL cholesterol and triglycerides were not associated with increased risk of VaD, and HDL was not associated with risk of MCI, AD, or any dementia. There were insufficient data to examine other cholesterol sub-fractions, sex differences, or APOE interactions. CONCLUSIONS Significant gaps in the literature regarding TC and late-life dementia remain. Evidence suggests that high midlife TC increases risk of late-life AD, and may correlate with the onset of AD pathology.
Collapse
Affiliation(s)
- Kaarin J. Anstey
- Dementia Collaborative Research Centre – Early Diagnosis and Prevention, Research School of Population Health, The Australian National University, Australia
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Australia
| | - Kimberly Ashby-Mitchell
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Australia
| | - Ruth Peters
- Dementia Collaborative Research Centre – Early Diagnosis and Prevention, Research School of Population Health, The Australian National University, Australia
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Australia
| |
Collapse
|
31
|
Vasantharekha R, Priyanka HP, Swarnalingam T, Srinivasan AV, ThyagaRajan S. Interrelationship between Mini-Mental State Examination scores and biochemical parameters in patients with mild cognitive impairment and Alzheimer's disease. Geriatr Gerontol Int 2016; 17:1737-1745. [PMID: 27921357 DOI: 10.1111/ggi.12957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/30/2016] [Accepted: 09/20/2016] [Indexed: 11/30/2022]
Abstract
AIM The aim of the present study was to provide first-hand information about the prevalence of mild cognitive impairment (MCI) and Alzheimer's disease (AD) in Tamil Nadu, a southern state in India, and examine if there exists a relationship between cognitive functions and biochemical parameters in these patients. METHODS Surveys were collected from adults, older men and women (n = 3126) from different regions of Tamil Nadu, which were followed up after 12 months for 1337 participants. Mini-Mental State Examination (MMSE) scores, lipid profile, and liver function tests were carried out in the elderly, MCI and AD patients. Based on the MMSE scores, the elderly population was classified into old control (28.97 ± 1.49; n = 1868), MCI (19.58 ± 1.17; n = 734) and AD (7.18 ± 1.38; n = 304) groups. Peripheral blood samples were collected after overnight fast from both male and female volunteers (n = 40 per group) who were categorized as young adult control, old control, MCI and AD. RESULTS AD patients showed lower MMSE scores compared with the young adults, old and MCI groups, and MMSE further decreased at follow-up examination a year later. In the serum of AD patients, high-density lipoprotein, alkaline phosphatase activity and bilirubin levels were lower, whereas low-density lipoprotein, total cholesterol and triglycerides levels were higher. MMSE was positively correlated with high-density lipoprotein, and negatively correlated with other lipid parameters in AD. CONCLUSIONS Hypercholesterolemia is a risk factor for AD that might result in neurotoxicity and cognitive impairment. Dysfunction of lipoprotein and heme metabolism might also provide additional targets for AD diagnosis. Geriatr Gerontol Int 2017; 17: 1737-1745.
Collapse
Affiliation(s)
- Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, SRM University, Kattankulathur, Tamil Nadu, India
| | - Hannah P Priyanka
- Integrative Medicine Laboratory, Department of Biotechnology, SRM University, Kattankulathur, Tamil Nadu, India
| | - Thangavel Swarnalingam
- Department of Anesthesiology, Tagore Medical College Hospital and Research Center, Tamil Nadu, India
| | | | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM University, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
32
|
Villamil-Ortiz JG, Barrera-Ocampo A, Piedrahita D, Velásquez-Rodríguez CM, Arias-Londoño JD, Cardona-Gómez GP. BACE1 RNAi Restores the Composition of Phosphatidylethanolamine-Derivates Related to Memory Improvement in Aged 3xTg-AD Mice. Front Cell Neurosci 2016; 10:260. [PMID: 27891075 PMCID: PMC5105502 DOI: 10.3389/fncel.2016.00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023] Open
Abstract
β-amyloid (Aβ) is produced by the β-secretase 1 (BACE1)-mediated enzymatic cleavage of the amyloid precursor protein through the amyloidogenic pathway, making BACE1 a therapeutic target against Alzheimer’s disease (AD). Alterations in lipid metabolism are a risk factor for AD by an unknown mechanism. The objective of this study was to determine the effect of RNA interference against BACE1 (shBACEmiR) on the phospholipid profile in hippocampal CA1 area in aged 3xTg-AD mice after 6 and 12 months of treatment compared to aged PS1KI mice. The shBACEmiR treatment induced cognitive function recovery and restored mainly the fatty acid composition of lysophosphatidylethanolamine and etherphosphatidylethanolamine, reduced the cPLA2’s phosphorylation, down-regulated the levels of arachidonic acid and COX2 in the hippocampi of 3xTg-AD mice. Together, our findings suggest, for the first time, that BACE1 silencing restores phospholipids composition which could favor the recovery of cellular homeostasis and cognitive function in the hippocampus of triple transgenic AD mice.
Collapse
Affiliation(s)
- Javier G Villamil-Ortiz
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Sede de Investigación Universitaria, University of Antioquia Medellín, Colombia
| | - Alvaro Barrera-Ocampo
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Sede de Investigación Universitaria, University of Antioquia Medellín, Colombia
| | - Diego Piedrahita
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Sede de Investigación Universitaria, University of Antioquia Medellín, Colombia
| | | | | | - Gloria P Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Sede de Investigación Universitaria, University of Antioquia Medellín, Colombia
| |
Collapse
|
33
|
The Impact of Vitamin E and Other Fat-Soluble Vitamins on Alzheimer´s Disease. Int J Mol Sci 2016; 17:ijms17111785. [PMID: 27792188 PMCID: PMC5133786 DOI: 10.3390/ijms17111785] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population, currently affecting 46 million people worldwide. Histopathologically, the disease is characterized by the occurrence of extracellular amyloid plaques composed of aggregated amyloid-β (Aβ) peptides and intracellular neurofibrillary tangles containing the microtubule-associated protein tau. Aβ peptides are derived from the sequential processing of the amyloid precursor protein (APP) by enzymes called secretases, which are strongly influenced by the lipid environment. Several vitamins have been reported to be reduced in the plasma/serum of AD-affected individuals indicating they have an impact on AD pathogenesis. In this review we focus on vitamin E and the other lipophilic vitamins A, D, and K, and summarize the current knowledge about their status in AD patients, their impact on cognitive functions and AD risk, as well as their influence on the molecular mechanisms of AD. The vitamins might affect the generation and clearance of Aβ both by direct effects and indirectly by altering the cellular lipid homeostasis. Additionally, vitamins A, D, E, and K are reported to influence further mechanisms discussed to be involved in AD pathogenesis, e.g., Aβ-aggregation, Aβ-induced neurotoxicity, oxidative stress, and inflammatory processes, as summarized in this article.
Collapse
|
34
|
Nuclear Lipids in the Nervous System: What they do in Health and Disease. Neurochem Res 2016; 42:321-336. [PMID: 27766461 DOI: 10.1007/s11064-016-2085-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
Collapse
|
35
|
Grimm MOW, Mett J, Stahlmann CP, Haupenthal VJ, Blümel T, Stötzel H, Grimm HS, Hartmann T. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme. Biochem Cell Biol 2016; 94:534-542. [PMID: 27813426 DOI: 10.1139/bcb-2015-0149] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.
Collapse
Affiliation(s)
- Marcus O W Grimm
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.,b Neurodegeneration and Neurobiology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.,c Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| | - Janine Mett
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| | - Christoph P Stahlmann
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| | - Viola J Haupenthal
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| | - Tamara Blümel
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| | - Hannah Stötzel
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| | - Heike S Grimm
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| | - Tobias Hartmann
- a Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.,b Neurodegeneration and Neurobiology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.,c Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany
| |
Collapse
|
36
|
Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically? Prog Lipid Res 2016; 62:41-54. [DOI: 10.1016/j.plipres.2015.12.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
|
37
|
Bascoul-Colombo C, Guschina IA, Maskrey BH, Good M, O'Donnell VB, Harwood JL. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:524-37. [PMID: 26968097 PMCID: PMC4847476 DOI: 10.1016/j.bbalip.2016.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes.
Collapse
Affiliation(s)
- Cécile Bascoul-Colombo
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | - Mark Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | | | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
38
|
Lei E, Vacy K, Boon WC. Fatty acids and their therapeutic potential in neurological disorders. Neurochem Int 2016; 95:75-84. [PMID: 26939763 DOI: 10.1016/j.neuint.2016.02.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
There is little doubt that we are what we eat. Fatty acid supplementation and diets rich in fatty acids are being promoted as ways to a healthier brain. Short chain fatty acids are a product of intestinal microbiota metabolism of dietary fibre; and their derivatives are used as an anti-convulstant. They demonstrated therapeutic potential in neurodegenerative conditions as HDAC inhibitors; and while the mechanism is not well understood, have been shown to lower amyloid β in Alzheimer's Disease in preclinical studies. Medium chain fatty acids consumed as a mixture in dietary oils can induce ketogenesis without the need for a ketogentic diet. Hence, this has the potential to provide an alternative energy source to prevent neuronal cell death due to lack of glucose. Long chain fatty acids are commonly found in the diet as omega fatty acids. They act as an anti-oxidant protecting neuronal cell membranes from oxidative damage and as an anti-inflammatory mediator in the brain. We review which agents, from each fatty acid class, have the most therapeutic potential for neurological disorders (primarily Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorder as well as possible applications to traumatic brain injury), by discussing what is known about their biological mechanisms from preclinical studies.
Collapse
Affiliation(s)
- Enie Lei
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Dept of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
39
|
|
40
|
Abstract
Glycosphingolipids (GSLs) are a family of bioactive lipids that in addition to their role in the regulation of structural properties of membrane bilayers have emerged as crucial players in many biological processes and signal transduction pathways. Rather than being uniformly distributed within membrane bilayers, GSLs are localized in selective domains called lipid rafts where many signaling platforms operate. One of the most important functions of GSLs, particularly ceramide, is their ability to regulate cell death pathways and hence cell fate. This complex role is accomplished by the ability of GSLs to act in distinct subcellular strategic centers, such as mitochondria, endoplasmic reticulum (ER) or lysosomes to mediate apoptosis, ER stress, autophagy, lysosomal membrane permeabilization and necroptosis. Hence better understanding the role of GSLs in cell death may be of relevance for a number of pathological processes and diseases, including neurodegeneration, metabolic liver diseases and cancer.
Collapse
|
41
|
Bahety P, Van Nguyen TH, Hong Y, Zhang L, Chan ECY, Ee PLR. Understanding the cholesterol metabolism-perturbing effects of docosahexaenoic acid by gas chromatography-mass spectrometry targeted metabonomic profiling. Eur J Nutr 2015; 56:29-43. [PMID: 26428672 DOI: 10.1007/s00394-015-1053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Over the past few decades, docosahexaenoic acid (DHA) has gained special attention for management of cholesterol-associated metabolic disorders and neurodegenerative diseases such as Alzheimer's disease (AD) owing to its neuroprotective, anti-inflammatory and hypolipidemic properties. Several epidemiological studies have reported the effect of DHA in reducing the risk of developing AD by lowering cholesterol. Hypercholesterolemia is a pro-amyloidogenic factor influencing the enzymatic processing of amyloid-β precursor protein (AβPP) to toxic β-amyloid. However, the mechanism by which DHA modulates the cholesterol pathway has not been established. Thus, the objective of this study was to investigate the mechanism of regulation of cholesterol metabolism by DHA in an AβPP695 overexpressing AD cell model. METHODS A gas chromatography/mass spectrometry method was developed and validated for the targeted profiling of 11 cholesterol metabolites in DHA-treated Chinese hamster ovary wild-type (CHO-wt) and AβPP695 overexpressing (CHO-AβPP695) cells. The differential metabolite profiles between DHA- and vehicle-treated groups were further analyzed using fold change values of the ratio of concentration of metabolites in CHO-AβPP695 to CHO-wt cells. Effect of DHA on key rate-limiting enzymatic activities within the cholesterol pathway was established using biochemical assays. RESULTS Our results showed that DHA reduced the levels of key cholesterol anabolites and catabolites in CHO-AβPP695 cells as compared to CHO-wt cells. Further enzymatic studies revealed that the cholesterol-lowering effect of DHA was mediated by regulating HMG-CoA reductase and squalene epoxidase enzyme activities. CONCLUSION We demonstrate for the first time the dual effects of DHA in inhibiting HMG-CoA reductase and squalene epoxidase and modulating the sterol biosynthesis axis of the cholesterol pathway in AβPP695 overexpressing AD. Our novel findings underscore the potential of DHA as a multi-target hypocholesterolemic agent for the prophylaxis of AD and other cholesterol-associated diseases.
Collapse
Affiliation(s)
- Priti Bahety
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Republic of Singapore
| | - Thi Hai Van Nguyen
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Republic of Singapore
| | - Yanjun Hong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Republic of Singapore
| | - Luqi Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Republic of Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Republic of Singapore.
| | - Pui Lai Rachel Ee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
42
|
Wronowska W, Charzyńska A, Nienałtowski K, Gambin A. Computational modeling of sphingolipid metabolism. BMC SYSTEMS BIOLOGY 2015; 9:47. [PMID: 26275400 PMCID: PMC4537549 DOI: 10.1186/s12918-015-0176-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/05/2015] [Indexed: 12/13/2022]
Abstract
Background As suggested by the origin of the word, sphingolipids are mysterious molecules with various roles in antagonistic cellular processes such as autophagy, apoptosis, proliferation and differentiation. Moreover, sphingolipids have recently been recognized as important messengers in cellular signaling pathways. Notably, sphingolipid metabolism disorders have been observed in various pathological conditions such as cancer and neurodegeneration. Results The existing formal models of sphingolipid metabolism focus mainly on de novo ceramide synthesis or are limited to biochemical transformations of particular subspecies. Here, we propose the first comprehensive computational model of sphingolipid metabolism in human tissue. Contrary to the previous approaches, we use a model that reflects cell compartmentalization thereby highlighting the differences among individual organelles. Conclusions The model that we present here was validated using recently proposed methods of model analysis, allowing to detect the most sensitive and experimentally non-identifiable parameters and determine the main sources of model variance. Moreover, we demonstrate the usefulness of our model in the study of molecular processes underlying Alzheimer’s disease, which are associated with sphingolipid metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0176-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weronika Wronowska
- Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland.
| | - Agata Charzyńska
- Faculty of Biology University of Warsaw, Warsaw, Poland. .,Bioinformatics Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | - Karol Nienałtowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
43
|
Patients undergoing elective coronary artery bypass grafting exhibit poor pre-operative intakes of fruit, vegetables, dietary fibre, fish and vitamin D. Br J Nutr 2015; 113:1466-76. [PMID: 25827177 DOI: 10.1017/s0007114515000434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CHD may ensue from chronic systemic low-grade inflammation. Diet is a modifiable risk factor for both, and its optimisation may reduce post-operative mortality, atrial fibrillation and cognitive decline. In the present study, we investigated the usual dietary intakes of patients undergoing elective coronary artery bypass grafting (CABG), emphasising on food groups and nutrients with putative roles in the inflammatory/anti-inflammatory balance. From November 2012 to April 2013, we approached ninety-three consecutive patients (80% men) undergoing elective CABG. Of these, fifty-five were finally included (84% men, median age 69 years; range 46-84 years). The median BMI was 27 (range 18-36) kg/m(2). The dietary intake items were fruits (median 181 g/d; range 0-433 g/d), vegetables (median 115 g/d; range 0-303 g/d), dietary fibre (median 22 g/d; range 9-45 g/d), EPA+DHA (median 0.14 g/d; range 0.01-1.06 g/d), vitamin D (median 4.9 μg/d; range 1.9-11.2 μg/d), saturated fat (median 13.1% of energy (E%); range 9-23 E%) and linoleic acid (LA; median 6.3 E%; range 1.9-11.3 E%). The percentages of patients with dietary intakes below recommendations were 62% (fruits; recommendation 200 g/d), 87 % (vegetables; recommendation 150-200 g/d), 73% (dietary fibre; recommendation 30-45 g/d), 91% (EPA+DHA; recommendation 0.45 g/d), 98% (vitamin D; recommendation 10-20 μg/d) and 13% (LA; recommendation 5-10 E%). The percentages of patients with dietary intakes above recommendations were 95% (saturated fat; recommendation < 10 E%) and 7% (LA). The dietary intakes of patients proved comparable with the average nutritional intake of the age- and sex-matched healthy Dutch population. These unbalanced pre-operative diets may put them at risk of unfavourable surgical outcomes, since they promote a pro-inflammatory state. We conclude that there is an urgent need for intervention trials aiming at rapid improvement of their diets to reduce peri-operative risks.
Collapse
|
44
|
Vanmierlo T, Bogie JF, Mailleux J, Vanmol J, Lütjohann D, Mulder M, Hendriks JJ. Plant sterols: Friend or foe in CNS disorders? Prog Lipid Res 2015; 58:26-39. [DOI: 10.1016/j.plipres.2015.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
|
45
|
Hennebelle M, Harbeby E, Tremblay S, Chouinard-Watkins R, Pifferi F, Plourde M, Guesnet P, Cunnane SC. Challenges to determining whether DHA can protect against age-related cognitive decline. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.14.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Hyperphosphorylation of tau by GSK-3β in Alzheimer’s disease: The interaction of Aβ and sphingolipid mediators as a therapeutic target. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0144-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the extracellular deposits of β amyloid peptides (Aβ) in senile plaques, and intracellular aggregates of hyperphosphorylated tau in neurofibrillary tangles (NFT). Although accumulation of Aβ has been long considered a leading hypothesis in the disease pathology, it is increasingly evident that the role hyperphosphorylation of tau in destabilization of microtubule assembly and disturbance of axonal transport is equally detrimental in the neurodegenerative process. The main kinase involved in phosphorylation of tau is glycogen-synthase kinase 3-beta (GSK-3β). Intracellular accumulation of Aβ also likely induces increase in hyperphosphorylated tau by a mechanism dependent on GSK-3β. In addition, Aβ affects production of ceramides, the major sphingolipids in mammalian cells, by acting on sphingomyelinases, enzymes responsible for the catabolic formation of ceramides from the sphingomyelin. Generated ceramides in turn increase production of Aβ by acting on β-secretase, a key enzyme in the proteolytic processing of the amyloid precursor protein (APP), altogether leading to a ceramide-Aβ-hyperphosphorylated tau cascade that ends in neuronal death. Modulators and inhibitors acting on members of this devastating cascade are considered as potential targets for AD therapy. There is still no adequate treatment for AD patients. Novel therapeutic strategies increasingly consider the combination of multiple targets and interactions among the key members of implicated molecular pathways. This review summarizes recent findings and therapeutic perspectives in the pathology and treatment of AD, with the emphasis on the interplay between hyperphosphorylated tau, amyloid β, and sphingolipid mediators.
Collapse
|