1
|
Ma X, He Y, Liu C, Zhu T, Li D, Li W, Sun G, Kang X. Long Noncoding RNA 6302 Regulates Chicken Preadipocyte Differentiation by Targeting SLC22A16. Genes (Basel) 2024; 15:758. [PMID: 38927694 PMCID: PMC11203196 DOI: 10.3390/genes15060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive deposition of abdominal adipocytes in chickens is detrimental to poultry production. However, the regulatory factors that affect abdominal adipogenesis in chickens are still poorly understood. SLC22A16 is differentially expressed in abdominal preadipocytes and 10-day differentiated adipocytes in chickens, but its role in regulating chicken adipogenesis has not been reported. In this study, the function of SLC22A16 in chicken abdominal preadipocytes was investigated. SLC22A16 is significantly upregulated during abdominal adipocyte differentiation. The overexpression of SLC2A16 upregulated the expression of adipogenic marker genes and proliferation-related genes, and promoted the proliferation of adipocytes and the accumulation of triglycerides. The knockdown of SLC22A16 downregulated the expression of adipogenic marker genes and proliferation-related genes, inhibited the proliferation of adipocytes, and impaired the accumulation of triglycerides in adipocytes. In addition, LNC6302 was differentially expressed in abdominal preadipocytes and mature adipocytes, and was significantly positively correlated with the expression of SLC22A16. Interference with LNC6302 inhibits the expression of adipogenic marker genes and proliferation-related genes. The data supported the notion that LNC6302 promotes the differentiation of chicken abdominal adipocytes by cis-regulating the expression of SLC22A16. This study identified the role of SLC22A16 in the differentiation and proliferation of chicken adipocytes, providing a potential target for improving abdominal adipogenesis in chickens.
Collapse
Affiliation(s)
- Xiangfei Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Guirong Sun
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| |
Collapse
|
2
|
Hsu CY, Liao CC, Lin ZC, Alalaiwe A, Hwang E, Lin TW, Fang JY. Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect. J Nanobiotechnology 2024; 22:50. [PMID: 38317220 PMCID: PMC10845550 DOI: 10.1186/s12951-024-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.
Collapse
Affiliation(s)
- Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tzu-Wei Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
3
|
Yu H, Zou ZX, Wei W, Li Y. Conjugated Linoleic Acid Reduces Lipid Accumulation via Down-regulation Expression of Lipogenic Genes and Up-regulation of Apoptotic Genes in Grass Carp (Ctenopharyngodon idella) Adipocyte In Vitro. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:169-180. [PMID: 38224425 DOI: 10.1007/s10126-024-10286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The relationship between conjugated linoleic acid (CLA) and lipogenesis has been extensively studied in mammals and some cell lines, but it is relatively rare in fish, and the potential mechanism of action of CLA reducing fat mass remains unclear. The established primary culture model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes was used in the present study, and the objective was to explore the effects of CLA on intracellular lipid and TG content, fatty acid composition, and mRNA levels of adipogenesis transcription factors, lipase, and apoptosis genes in grass carp adipocytes in vitro. The results showed that CLA reduced the size of adipocyte and lipid droplet and decreased the content of intracellular lipid and TG, which was accompanied by a significant down-regulation of mRNA abundance in transcriptional regulators including peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, sterol regulatory element-binding protein (SREBP) 1c, lipase genes including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL). Meanwhile, it decreased the content of saturated fatty acids (SFAs) and n - 6 polyunsaturated fatty acid (n-6 PUFA) and increased the content of monounsaturated fatty acid (MUFA) and n - 3 polyunsaturated fatty acid (n-3 PUFA) in primary grass carp adipocyte. In addition, CLA induced adipocyte apoptosis through downregulated anti-apoptotic gene B-cell CLL/lymphoma 2 (Bcl-2) mRNA level and up-regulated pro-apoptotic genes tumor necrosis factor-α (TNF-α), Bcl-2-associated X protein (Bax), Caspase-3, and Caspase-9 mRNA level in a dose-dependent manner. These findings suggest that CLA can act on grass carp adipocytes through various pathways, including decreasing adipocyte size, altering fatty acid composition, inhibiting adipocyte differentiation, promoting adipocyte apoptosis, and ultimately decreasing lipid accumulation.
Collapse
Affiliation(s)
- Hua Yu
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China
| | - Zhao-Xia Zou
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China
| | - Wei Wei
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China
| | - Ying Li
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China.
| |
Collapse
|
4
|
Zhou Y, Zhang L, Guo F, Liu X, Li X, Han Z, Li X, Shi X, Wen L, Wang J. Metabolomic and Transcriptomic Analysis of Effects of Three MUFA-Rich Oils on Hepatic Glucose and Lipid Metabolism in Mice. Mol Nutr Food Res 2023; 67:e2300398. [PMID: 37867207 DOI: 10.1002/mnfr.202300398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Indexed: 10/24/2023]
Abstract
SCOPE Olive oil, rapeseed oil, and lard are dietary fats rich in monounsaturated fatty acids, but the effects of dietary oils enriched in monounsaturated fatty acids on hepatic lipid deposition have seldom been compared. METHODS AND RESULTS Ninety 8-week-old C57BL/6J male mice are randomly divided into six groups and fed diets containing lard, rapeseed oil, or olive oil with a 10% or 45% fat energy supply for 16 weeks. Under high-fat conditions, serum total cholesterol levels in the lard and olive oil groups are significantly higher than those in the rapeseed oil group. Hepatic lipid content in the olive oil group is higher than that in the other two groups. Compared with rapeseed oil, lard increases the liver levels of arachidonic, palmitic, and myristic acids and decreases the levels of eicosapentaenoic linolenic acid and linoleic acid. Olive oil increases the liver levels of docosatrienoic, arachidonic, oleic, and myristic acids; maltose; and fructose and decreases the levels of eicosapentaenoic, linolenic, and linoleic acids. CONCLUSION Olive oil probably causes hepatic lipid deposition in mice, which may enhance hepatic lipid synthesis by activating the starch and sucrose metabolic pathways. By contrast, rapeseed oil shows a significant anti-lipid deposition effect on the liver.
Collapse
Affiliation(s)
- Yingfang Zhou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fangrui Guo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Li
- Changsha Lvye Biotechnology Co., Ltd., Changsha, 410100, China
| | - Zongding Han
- Orient Science & Technology College of Hunan Agricultural University, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xingyong Shi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
5
|
Ding C, Wu H, Cao X, Ma X, Gao X, Gao Z, Liu S, Fan W, Liu B, Song S. Lactobacillus johnsonii 3-1 and Lactobacillus crispatus 7-4 promote the growth performance and ileum development and participate in lipid metabolism of broilers. Food Funct 2021; 12:12535-12549. [PMID: 34812468 DOI: 10.1039/d1fo03209g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-term use of antibiotic growth promoter (AGP) in animal production is the main cause of antimicrobial resistance of pathogenic bacteria. Therefore, seeking alternatives to AGP is crucial for animal husbandry. Among all AGP alternatives, probiotics are promising candidates. In this study, two strains of lactic acid bacteria, L. johnsonii 3-1 and L. crispatus 7-4, were isolated from the feces of wild Gallus gallus, which exhibited obvious anti-pathogenic activity and improved the growth performance of broilers. Furthermore, we found that these two strains participated in the lipid metabolism of broilers by reducing the content of TC and TG in ileal epithelial cells and up-regulating the liver AMPKα/PPARα/CPT-1 pathway, which affects abdominal fat deposition. In summary, L. johnsonii 3-1 and L. crispatus 7-4 have the potential to be used as AGP substitutes and participate in the lipid metabolism of broilers to reduce abdominal fat deposition. Importantly, our study reveals for the first time that L. crispatus participates in liver lipid metabolism to reduce abdominal fat deposition in broilers.
Collapse
Affiliation(s)
- Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huixian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Management office of Dafeng Milu National Nature Reserve, Yancheng, 224136, China
| | - Xiuyun Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xujie Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bin Liu
- Management office of Dafeng Milu National Nature Reserve, Yancheng, 224136, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Ma Z, Luo N, Liu L, Cui H, Li J, Xiang H, Kang H, Li H, Zhao G. Identification of the molecular regulation of differences in lipid deposition in dedifferentiated preadipocytes from different chicken tissues. BMC Genomics 2021; 22:232. [PMID: 33812382 PMCID: PMC8019497 DOI: 10.1186/s12864-021-07459-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A body distribution with high intramuscular fat and low abdominal fat is the ideal goal for broiler breeding. Preadipocytes with different origins have differences in terms of metabolism and gene expression. The transcriptome analysis performed in this study of intramuscular preadipocytes (DIMFPs) and adipose tissue-derived preadipocytes (DAFPs) aimed to explore the characteristics of lipid deposition in different chicken preadipocytes by dedifferentiation in vitro. RESULTS Compared with DAFPs, the total lipid content in DIMFPs was reduced (P < 0.05). Moreover, 72 DEGs related to lipid metabolism were screened, which were involved in adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating its main contribution to the regulation of the difference in lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were downregulated, but the ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, and SLC27A6 genes were upregulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK, TGF-beta and calcium) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs was proposed based on the above information. CONCLUSIONS Our data suggested a difference in lipid deposition between DIMFPs and DAFPs of chickens in vitro and proposed a molecular regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and the optimization of body fat distribution in broilers.
Collapse
Affiliation(s)
- Zheng Ma
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Na Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Lu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Jing Li
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Hai Xiang
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Huimin Kang
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China.
| | - Guiping Zhao
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China. .,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
7
|
Wang WJ, Guo YQ, Xie KJ, Li YD, Li ZW, Wang N, Xiao F, Guo HS, Li H, Wang SZ. A functional variant in the promoter region of IGF1 gene is associated with chicken abdominal fat deposition. Domest Anim Endocrinol 2021; 75:106584. [PMID: 33276215 DOI: 10.1016/j.domaniend.2020.106584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factor 1 (IGF1) plays an important role in the regulation of cell growth, proliferation, differentiation, and apoptosis. Previously several studies revealed that genotypes of chicken IGF1 c.-366A > C were significantly associated with abdominal fat weight and body weight in chickens. But the underlying mechanism is still unknown. To investigate the mechanism underlying the association, herein, we performed IGF1 gene mRNA expression profiling, a dual-luciferase reporter assay and electrophoretic mobility shift assay (EMSA). Quantitative real-time PCR results showed that IGF1 gene was widely expressed in 14 tissues. The mRNA expression levels of IGF1 gene in both abdominal fat and jejunum were significantly higher in fat broilers than in lean broilers. However, the opposite results were observed in the pancreas. The reporter gene assay showed that the promoter luciferase activity of allele A was significantly higher than that of allele C (P < 0.05). In addition, the luciferase activity of allele A promoted by the transcription factor AP1 and OCT1 was higher than that of allele C (P < 0.05). Electrophoretic mobility shift assay result showed that allele A binding to the transcription factor AP1 and OCT1 was stronger than that of allele C. All in all, our data indicated that the IGF1 gene c.-366A > C is a functional SNP responsible for chicken adipose deposition.
Collapse
Affiliation(s)
- W J Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Q Guo
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - K J Xie
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Z W Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H S Guo
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Supplementing conjugated linoleic acid (CLA) in breeder hens diet increased CLA incorporation in liver and alters hepatic lipid metabolism in chick offspring. Br J Nutr 2021; 127:1443-1454. [PMID: 33658091 DOI: 10.1017/s0007114521000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This experiment was designed to investigate the effect of supplementing conjugated linoleic acid (CLA) in breeder hens diet on development and hepatic lipid metabolism of chick offspring. Hy-Line Brown breeder hens were allocated into two groups, supplemented with 0 (CT) or 0.5% CLA for 8 weeks. Offspring chicks were grouped according to the mother generation and fed for 7 days. CLA treatment had no significant influence on development, egg quality, and fertility of breeder hens, but darkened the egg yolks in shade and increased yolk sac mass compared to CT group. Addition of CLA resulted in increased body mass and liver mass, and decreased deposition of subcutaneous adipose tissue in chick offspring. The serum triglyceride (TG) and cholesterol (TC) levels of chick offspring were decreased in CLA group. CLA treatment increased the incorporation of both CLA isomers (c9t11 and t10c12) in liver of chick offspring, accompanied by the decreased hepatic TG levels, related to the significant reduction of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) enzyme activities and the increased of carnitine palmitoyltransferase-1 (CPT1) enzyme activity. Meanwhile, CLA treatment reduced the mRNA expression of genes related to fatty acid biosynthesis (FAS, ACC, and sterol regulatory element-binding protein-1c), and induced the expression of genes related to β-oxidative (CPT1, AMP-activated protein kinase, and peroxisome proliferator-activated receptor α) in chick offspring liver. In summary, the addition of CLA in breeder hens diet significantly increased incorporation of CLA in liver of chick offspring, which further regulate hepatic lipid metabolism.
Collapse
|
9
|
Increasing Fat Deposition Via Upregulates the Transcription of Peroxisome Proliferator-Activated Receptor Gamma in Native Crossbred Chickens. Animals (Basel) 2021; 11:ani11010090. [PMID: 33466503 PMCID: PMC7824829 DOI: 10.3390/ani11010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Crossbreeding using exotic breeds is usually employed to improve the growth characteristics of indigenous chickens. This mating not only provides growth but adversely affects excess fat deposition as well. This deposition was regulated by a complicated cellular mechanism including peroxisome proliferator-activated receptors (PPARs) function. Thus, we hypothesized that native chickens breed percentage might be related to PPARs gene expression. This study aimed to study the role of PPARs on fat deposition in chickens which was the different native genetic background. Our results indicated that increasing commercial breed percentage in the chicken leads to increased fat deposition via the increasing of PPARG gene expression. Therefore, the PPARG gene notable as a major gene of cellular fat deposition and might be applied in further study. Abstract This study aimed to study the role of PPARs on fat deposition in native crossbred chicken. We studied the growth, abdominal, subcutaneous, and intramuscular fat, and mRNA expression of PPARA and PPARG in adipose and muscle tissues of four chicken breeds (CH breed (100% Thai native chicken), KM1 (50% CH background), KM2 (25% CH background), and broiler (BR)). The result shows that the BR chickens had higher abdominal fat than other breeds (p < 0.05) and the KM2 had an abdominal fat percentage higher than KM1 and CH respectively (p < 0.05). The intramuscular fat of BR was greater than KM1 and CH (p < 0.05). In adipose tissue, PPARA expression was different among the chicken breeds. However, there were breed differences in PPARG expression. Study of abdominal fat PPARG expression showed the BR breed, KM1, and KM2 breed significantly greater (p < 0.05) than CH. In 8 to 12 weeks of age, the PPARG expression of the CH breed is less than (p < 0.05) KM2. Crossbreeding improved the growth of the Thai native breed, there was also a corresponding increase in carcass fatness. However, there appears to be a relationship between PPARG expression and fat deposition traits. therefore, PPARG activity hypothesized to plays a key role in lipid accumulation by up-regulation.
Collapse
|
10
|
Mohammadpour F, Darmani-kuhi H, Mohit A, Sohani MM. Effects of dietary fat source and green tea ( Camellia sinensis) extract on genes associated with lipid metabolism and inflammatory responses in female broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1898292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fatemeh Mohammadpour
- Department of Animal Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| | - Hassan Darmani-kuhi
- Department of Animal Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| | - Ardeshir Mohit
- Department of Animal Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| | - Mohammad M. Sohani
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| |
Collapse
|
11
|
Mohammadpour F, Darmani-Kuhi H, Mohit A, Sohani MM. Obesity, insulin resistance, adiponectin, and PPAR-γ gene expression in broiler chicks fed diets supplemented with fat and green tea (Camellia sinensis) extract. Domest Anim Endocrinol 2020; 72:106440. [PMID: 32247991 DOI: 10.1016/j.domaniend.2020.106440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
Adipose tissue is an active endocrine organ secreting several adipokines, especially adiponectin, that play an important role in regulating insulin function in the body of mammals. Therefore, this study was aimed to investigate the association between abdominal fat deposit, insulin resistance, peroxisome proliferator-activated receptor gamma (PPAR-γ), and adiponectin gene (AG) expression in broiler chicks fed diets high in unsaturated fat supplemented with green tea extract (GTE). A total of 300 one-day-old female Ross 308 broiler chicks were allocated to 6 dietary treatments in a completely randomized design with a factorial arrangement of two levels of GTE (0 and 500 mg/kg diet) × three levels of fat inclusion [without fat (control group), soybean oil (SO), and tallow (Ta)]. Each treatment was replicated five times. At the end of the experiment (day 49), two chicks from each replicate weighing an average of pen weight were bled and then slaughtered for further analysis. Abdominal fat percentage, fasting concentration of blood glucose, triglyceride and insulin, glycogen reserves of breast and liver tissues, and PPAR-γ and AG expression were determined. The insulin resistance index of the Quantitative Insulin Sensitivity Check Index (QUICKI) was calculated using the fasting plasma glucose and insulin concentrations. The highest abdominal fat percentage and the lowest carcass yield were obtained in chicks fed SO-supplemented diet (P < 0.05). Chicks fed diet supplemented with SO showed the highest PPAR-γ gene expression (P < 0.05). SO-rich diets suppressed AG expression in chickens' abdominal fat tissue, and the birds fed with SO-supplemented diet showed a significant decrease in AG expression compared with the control (P < 0.05). Chicks fed diet supplemented with SO showed lower QUICKI and breast glycogen reserve compared with the control group (P < 0.05). A significant increase in blood glucose and triglyceride concentrations was observed in birds fed SO-supplemented diets (P < 0.05). AG and PPAR-γ expression increased and decreased by GTE, respectively. QUICKI tended (P = 0.09) to be greater in GTE-supplemented chicks; however, the effect of GTE supplementation on carcass yield, abdominal fat percentage, and blood insulin and glucose concentration was not significant. The findings of this study showed that SO-rich diets via increased PPAR-γ gene expression and decreased AG expression in abdominal fat may lead to insulin resistance in female broiler chicks.
Collapse
Affiliation(s)
- F Mohammadpour
- Faculty of Agriculture Science, Department of Animal Science, University of Guilan, Rasht, Iran
| | - H Darmani-Kuhi
- Faculty of Agriculture Science, Department of Animal Science, University of Guilan, Rasht, Iran
| | - A Mohit
- Faculty of Agriculture Science, Department of Animal Science, University of Guilan, Rasht, Iran.
| | - M M Sohani
- Faculty of Agriculture, Department of Biotechnology, University of Guilan, Rasht, Iran
| |
Collapse
|
12
|
Zhang H, Shen LY, Xu ZC, Kramer LM, Yu JQ, Zhang XY, Na W, Yang LL, Cao ZP, Luan P, Reecy JM, Li H. Haplotype-based genome-wide association studies for carcass and growth traits in chicken. Poult Sci 2020; 99:2349-2361. [PMID: 32359570 PMCID: PMC7597553 DOI: 10.1016/j.psj.2020.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
There have been several genome-wide association study (GWAS) reported for carcass, growth, and meat traits in chickens. Most of these studies have been based on single SNPs GWAS. In contrast, haplotype-based GWAS reports have been limited. In the present study, 2 Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) and genotyped with the chicken 60K SNP chip were used to perform a haplotype-based GWAS. The lean and fat chicken lines were selected for abdominal fat content for 11 yr. Abdominal fat weight was significantly different between the 2 lines; however, there was no difference for body weight between the lean and fat lines. A total of 132 haplotype windows were significantly associated with abdominal fat weight. These significantly associated haplotype windows were primarily located on chromosomes 2, 4, 8, 10, and 26. Seven candidate genes, including SHH, LMBR1, FGF7, IL16, PLIN1, IGF1R, and SLC16A1, were located within these associated regions. These genes may play important roles in the control of abdominal fat content. Two regions on chromosomes 3 and 10 were significantly associated with testis weight. These 2 regions were previously detected by the single SNP GWAS using this same resource population. TCF21 on chromosome 3 was identified as a potentially important candidate gene for testis growth and development based on gene expression analysis and the reported function of this gene. TCF12, which was previously detected in our SNP by SNP interaction analysis, was located in a region on chromosome 10 that was significantly associated with testis weight. Six candidate genes, including TNFRSF1B, PLOD1, NPPC, MTHFR, EPHB2, and SLC35A3, on chromosome 21 may play important roles in bone development based on the known function of these genes. In addition, several regions were significantly associated with other carcass and growth traits, but no candidate genes were identified. The results of the present study may be helpful in understanding the genetic mechanisms of carcass and growth traits in chickens.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin-Yong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zi-Chun Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Luke M Kramer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jia-Qiang Yu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin-Yang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Li Yang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Ping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Fu C, Zhang Y, Shi T, Wei X, Liu X. Soybean oil alleviates maternal conjugated linoleic acid dietary-induced hatchability decrease and embryo hepatic lipolysis in broiler breeders. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Abdelatty AM, Badr OAM, Mohamed SA, Khattab MS, Dessouki SHM, Farid OAA, Elolimy AA, Sakr OG, Elhady MA, Mehesen G, Bionaz M. Long term conjugated linoleic acid supplementation modestly improved growth performance but induced testicular tissue apoptosis and reduced sperm quality in male rabbit. PLoS One 2020; 15:e0226070. [PMID: 31923252 PMCID: PMC6953797 DOI: 10.1371/journal.pone.0226070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Conjugated linoleic acid (CLA) is known for its multiple benefits including improvement of growth, increasing lean mass, and anti-carcinogenic effects. However, when used in long-term supplementations CLA does not improve semen parameters in boar and bull and reduces fertility in Japanese quails. The content of unsaturated fatty acids in dietary lipids plays a significant role in spermatogenesis owning the high proportion of unsaturated fatty acids in plasma membrane of sperms. Whether CLA plays a role in testicular tissue and epididymal fat is still unknown. Therefore, in this study we hypothesize that long-term supplementation of equal proportion of CLA isomer mix (c9,t11-CLA and t10,c12- CLA) in rabbit bucks might alter male reproductive potentials. Twelve V-Line weaned male rabbits were used in 26 weeks trial, rabbits were individually raised and randomly allocated into three dietary groups. Control group (CON) received a basal diet, a group received 0.5% CLA (CLA 0.5%), and a group received 1% CLA (CLA 1%). Rabbits were euthanized at the end of the trial and several parameters were evaluated related to growth, semen quality, and testicular and epididymal tissue histopathology and transcriptome. The long-term supplementation of CLA increased feed intake by 5% and body weight by 2-3%. CLA 1% decreased sperm progressive motility. In testicular tissue L-carnitine and α-tocopherol were decreased by CLA supplementation. In epididymal fat, CLA tended to decrease concentration of polyunsaturated fatty acids, the expression of SCD5 gene was upregulated by CLA 1% and CASP3 gene was upregulated by CLA 0.5%. Transcription of PPARG was downregulated by CLA. Feeding 1% CLA also decreased testicular epithelial thickness. Long-term supplementation of CLA modestly enhanced male rabbit growth, but negatively impacted male reproduction, especially at high dose of CLA.
Collapse
Affiliation(s)
- A. M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - O. A. M. Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - S. A. Mohamed
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - M. S. Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - SH. M. Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - O. A. A. Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - A. A. Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States of America
- Department of Animal Production, National Research Centre, Giza, Egypt
| | - O. G. Sakr
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - M. A. Elhady
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - G. Mehesen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
15
|
Peroxisome proliferator-activated receptor gamma (PPARγ), a key regulatory gene of lipid metabolism in chicken. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Physiological and pathophysiological aspects of peroxisome proliferator-activated receptor regulation by fatty acids in poultry species. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Zhang H, Shen L, Li Y, Xu Z, Zhang X, Yu J, Cao Z, Luan P. Genome-wide association study for plasma very low-density lipoprotein concentration in chicken. J Anim Breed Genet 2019; 136:351-361. [PMID: 31037768 DOI: 10.1111/jbg.12397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023]
Abstract
The plasma very low-density lipoprotein (VLDL) concentration is an effective blood biochemical indicator that could be used to select lean chicken lines. In the current study, we used Genome-wide association study (GWAS) method to detect SNPs with significant effects on plasma VLDL concentration. As a result, 38 SNPs significantly associated with plasma VLDL concentration were identified using at least one of the three mixed linear model (MLM) packages, including GRAMMAR, EMMAX and GEMMA. Nearly, all these SNPs with significant effects on plasma VLDL concentration (except Gga_rs16160897) have significantly different allele frequencies between lean and fat lines. The 1-Mb regions surrounding these 38 SNPs were extracted, and twelve important regions were obtained after combining the overlaps. A total of 122 genes in these twelve important regions were detected. Among these genes, LRRK2, ABCD2, TLR4, E2F1, SUGP1, NCAN, KLF2 and RAB8A were identified as important genes for plasma VLDL concentration based on their basic functions. The results of this study may supply useful information to select lean chicken lines.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Linyong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zichun Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaqiang Yu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Wang Y, Wang H, Na W, Qin F, Zhang Z, Dong J, Li H, Zhang H. The retinoblastoma 1 gene ( RB1) modulates the proliferation of chicken preadipocytes. Br Poult Sci 2019; 60:323-329. [PMID: 30784300 DOI: 10.1080/00071668.2019.1584792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The objective of this study was to reveal the role of chicken RB1 (Gallus gallus RB1, gRB1) in the proliferation of preadipocytes. 2. To measure gene expression of gRB1 in the proliferation of chicken preadipocyte, quantitative real-time PCR was used. The expression levels of gRB1 transiently increased during this process. 3. To detect the effect of gRB1 on the proliferation of chicken preadipocyte, MTT assay and cell-cycle analysis were performed. MTT assay showed that overexpression of gRB1 significantly suppressed (P < 0.05) the proliferation of chicken preadipocytes, and knockdown of gRB1 promoted the proliferation of chicken preadipocytes. Cell-cycle analysis showed that the proportion of preadipocytes in the G1 and G2 phases significantly increased (P < 0.05), and the proportion of preadipocytes in the S phase significantly decreased (P < .05) after up-regulation of the expression of gRB1. The proportion of preadipocytes in the S phase significantly increased (P < 0.05) after down-regulation of gRB1. 4. Quantitative real-time PCR was used to detect the effect of gRB1 on the expression of genes related to proliferation of chicken preadipocytes. Gene expression analysis showed that gRB1 knockdown promoted markers indicating proliferation of Ki-67 (MKi67) expression at 96 h (P < 0.05), and overexpression of gRB1 reduced MKi67 expression at 72 h (P < 0.05). 5. This study demonstrated that gRB1 inhibited preadipocyte proliferation at least in part by inhibiting the G1 to S phase transition.
Collapse
Affiliation(s)
- Y Wang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - H Wang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - W Na
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - F Qin
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - Z Zhang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - J Dong
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - H Li
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - H Zhang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| |
Collapse
|
19
|
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11:nu11020370. [PMID: 30754681 PMCID: PMC6413010 DOI: 10.3390/nu11020370] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.
Collapse
|
20
|
Liu L, Cui HX, Zheng MQ, Zhao GP, Wen J. Comparative analysis of differentially expressed genes related to triglyceride metabolism between intramuscular fat and abdominal fat in broilers. Br Poult Sci 2018; 59:514-520. [DOI: 10.1080/00071668.2018.1483573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- L. Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Beijing, China
| | - H. X. Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Beijing, China
| | - M. Q. Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Beijing, China
| | - G. P. Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Beijing, China
| | - J. Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Beijing, China
| |
Collapse
|
21
|
Wang G, Kim WK, Cline MA, Gilbert ER. Factors affecting adipose tissue development in chickens: A review. Poult Sci 2018; 96:3687-3699. [PMID: 28938790 DOI: 10.3382/ps/pex184] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
The intense genetic selection for rapid growth in broilers has resulted in an increase in voluntary feed intake and growth rate, accompanied by increased fat deposition in adipose tissue depots throughout the body. Adipose tissue expansion is a result of the formation of adipocytes (several processes collectively referred to as adipogenesis) and cellular accumulation of triacylglycerols inside lipid droplets. In mammals, different anatomical depots are metabolically distinct. The molecular and cellular mechanisms underlying adipose tissue development have been characterized in mammalian models, whereas information in avian species is scarce. The purpose of this review is to describe factors regulating adipogenesis in chickens, with an emphasis on dietary factors and the broiler. Results from many studies have demonstrated effects of dietary nutrient composition on adipose tissue development and lipid metabolism. Transcription factors, such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding proteins α and β, and sterol regulatory element binding proteins orchestrate a series of cellular events that lead to an increase in activity of fatty acid transport proteins and enzymes that are responsible for triacylglycerol synthesis. Understanding the mechanisms underlying adipose tissue development may provide a practical strategy to affect body composition of the commercial broiler while providing insights on diets that maximize conversion into muscle rather than fat and affect depot-dependent deposition of lipids. Because of the propensity to overeat and become obese, the broiler chicken also represents an attractive biomedical model for eating disorders and obesity in humans.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
22
|
Wang Q, Qi R, Liu H, Wang J, Huang W, Yang F, Huang J. Effects of Conjugated Linoleic Acid Supplementation on the Expression Profile of miRNAs in Porcine Adipose Tissue. Genes (Basel) 2017; 8:genes8100271. [PMID: 29027986 PMCID: PMC5664121 DOI: 10.3390/genes8100271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Conjugated linoleic acids (CLAs) play a major role in adipocyte differentiation and lipid metabolism in animals. MicroRNAs (miRNAs) appear to be involved in many biological processes in adipose tissue. However, the specific influence on miRNAs by CLA supplementation in porcine adipose tissue remains unclear. Thus, we continuously added 1.5% CLA to the pig diet from the embryo stage to the finishing period and conducted a high-throughput sequencing approach to analyse the changes in adipose tissue miRNAs. We identified 283 known porcine miRNAs, and 14 miRNAs were differentially expressed in response to CLA treatment. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the targets of the 14 differentially expressed miRNAs were involved in the Wnt signalling pathway. The CLA treatment downregulated the gene expression of PPARγ, C/EBPα, FAS, and FATP1 in both subcutaneous and abdominal fat tissues; the analysis showed that ssc-miR-21 expression was significantly correlated with PPARγ expression (p < 0.05), and speculated that ssc-miR-21 might influence adipogenesis through PPARγ. In conclusion, our study analysed the miRNA profiles in porcine adipose tissues by CLA treatment, and demonstrated that miRNAs are important regulators of fat lipogenesis. This study provides valuable information for the molecular regulatory mechanism of CLA on adipose tissue.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| | - Hong Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Wenming Huang
- The Department of Animal Husbandry, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China.
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| |
Collapse
|
23
|
Kumari Ramiah S, Meng GY, Keong YS, Ebrahimi M, Tan SW. The effects of conjugated linoleic acid isomers on the morphological changes in adipose tissue and adipogenic genes expressions on primary adipose tissue. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2016.1277961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Suriya Kumari Ramiah
- Makmal Produksi Haiwan, Universiti Putra Malaysia, Persiaran UPM Serdang, Selangor, Malaysia
| | - Goh Yong Meng
- Makmal Produksi Haiwan, Universiti Putra Malaysia, Persiaran UPM Serdang, Selangor, Malaysia
- Makmal Preklinikal Sains, Universiti Putra Malaysia, Persiaran UPM Serdang, Selangor, Malaysia
| | - Yeap Swee Keong
- Institute of Bioscience, Universiti Putra Malaysia, Persiaran UPM-Serdang, Serdang Selangor, Malaysia
| | - Mahdi Ebrahimi
- Makmal Preklinikal Sains, Universiti Putra Malaysia, Persiaran UPM Serdang, Selangor, Malaysia
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, Persiaran UPM-Serdang, Serdang Selangor, Malaysia
| |
Collapse
|
24
|
Kumari S, Yong Meng G, Ebrahimi M. Conjugated linoleic acid as functional food in poultry products: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1168835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Suriya Kumari
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Persiaran UPM-Serdang, Serdang Selangor, Malaysia
| | - Goh Yong Meng
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Persiaran UPM-Serdang, Serdang Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Persiaran UPM-Serdang, Serdang Selangor, Malaysia
| | - Mahdi Ebrahimi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Persiaran UPM-Serdang, Serdang Selangor, Malaysia
| |
Collapse
|
25
|
Dong JQ, Zhang H, Jiang XF, Wang SZ, Du ZQ, Wang ZP, Leng L, Cao ZP, Li YM, Luan P, Li H. Comparison of serum biochemical parameters between two broiler chicken lines divergently selected for abdominal fat content. J Anim Sci 2016; 93:3278-86. [PMID: 26439996 DOI: 10.2527/jas.2015-8871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In humans, obesity is associated with increased or decreased levels of serum biochemical indicators. However, the relationship is not as well understood in chickens. Due to long-term intense selection for fast growth rate, modern broilers have the problem of excessive fat deposition, exhibiting biochemical or metabolic changes. In the current study, the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) were used to identify differences in serum biochemical parameters between the 2 lines. A total of 18 serum biochemical indicators were investigated in the 16th, 17th, and 18th generation populations of NEAUHLF, and the genetic parameters of these serum biochemical indicators were estimated. After analyzing the data from these 3 generations together, the results showed that the levels of 16 of the tested serum biochemical parameters were significantly different between the lean and fat birds. In the fat birds, serum concentrations of high-density lipoprotein cholesterol (HDL-C), HDL-C:low-density lipoprotein cholesterol (LDL-C), total bile acid, total protein, albumin, globulin, aspartate transaminase (AST):alanine transaminase (ALT), γ-glutamyl transpeptidase (GGT), uric acid, and creatinine were very significantly higher (P < 0.01), whereas LDL-C, albumin:globulin, glucose, AST, ALT, and free fatty acids concentrations in serum were very significantly lower than those in the lean birds (P < 0.01). Of these 16 serum biochemical parameters, 5 (LDL-C, HDL-C:LDL-C, total bile acid, albumin, and albumin:globulin) had high heritabilities (0.58 ≤ h2 ≤ 0.89), 6 (HDL-C, total protein, globulin, AST:ALT, GGT, and creatinine) had moderate heritabilities (0.29 ≤ h2 ≤ 0.48), and the remaining 5 had low heritabilities (h2 < 0.20). Serum HDL-C, HDL-C:LDL-C, and glucose had higher positive genetic correlation coefficients (rg) with abdominal fat traits (0.30 ≤ rg ≤ 0.80), whereas serum globulin, AST, and uric acid showed higher negative genetic correlations with abdominal fat traits (–0.62 ≤ rg ≤ –0.30). The remaining 10 serum biochemical parameters had lower genetic correlations with abdominal fat traits (–0.30 < rg < 0.30). In conclusion, we identified serum HDL-C and HDL-C:LDL-C levels as potential biomarkers for selection of lean birds. These findings will also be useful in future studies for investigating obesity and lipid metabolism in humans as well as in other animal species.
Collapse
|
26
|
Leng L, Zhang H, Dong J, Wang Z, Zhang X, Wang S, Cao Z, Li Y, Li H. Selection against abdominal fat percentage may increase intramuscular fat content in broilers. J Anim Breed Genet 2016; 133:422-8. [DOI: 10.1111/jbg.12204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/30/2016] [Indexed: 01/06/2023]
Affiliation(s)
- L. Leng
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - H. Zhang
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - J.Q. Dong
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - Z.P. Wang
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - X.Y. Zhang
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - S.Z. Wang
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - Z.P. Cao
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - Y.M. Li
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| | - H. Li
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin China
| |
Collapse
|
27
|
Ramiah SK, Meng GY, Ebrahimi M. Upregulation of Peroxisome Proliferator-Activated Receptors and Liver Fatty Acid Binding Protein in Hepatic Cells of Broiler Chicken Supplemented with Conjugated Linoleic Acids. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Suriya Kumari Ramiah
- Department of Animal Production, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Goh Y. Meng
- Department of Animal Production, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|