1
|
Gene expression of axenically-isolated clinical Entamoeba histolytica strains and its impact on disease severity of amebiasis. PLoS Pathog 2022; 18:e1010880. [PMID: 36178974 PMCID: PMC9555656 DOI: 10.1371/journal.ppat.1010880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
The severity of Entamoeba histolytica infection is determined by host immunology, pathogen virulence, and the intestinal environment. Conventional research for assessing pathogen virulence has been mainly performed using laboratory strains, such as a virulent HM-1: IMSS (HM-1) and an avirulent Rahman, under various artificial environmental conditions because of the difficulties of axenic isolation of the clinical strains. However, it is still unclear whether scientific knowledge based on laboratory strains are universally applicable to the true pathogenesis. Hereby, we performed transcriptomic analysis of clinical strains from patients with different degrees of disease severity, as well as HM-1 under different conditions. Even after several months of axenization, Clinical strains show the distinct profile in gene expression during in vitro passage, moreover, difference between any 2 of these strains was much greater than the changes on the liver challenge. Interestingly, 26 DEGs, which were closely related to the biological functions, were oppositely up- or down regulated between virulent Ax 19 (liver abscess) and avirulent Ax 11 (asymptomatic carrier). Additionally, RNAseq using laboratory strain (HM1) showed more than half of genes were differently expressed between continuously in vitro passaged HM1 (in vitro HM1) and periodically liver passaged HM1 (virulent HM1), which was much greater than the changes on the liver passage of virulent HM1. Also, transcriptomic analysis of a laboratory strain revealed that continuous environmental stress enhances its virulence via a shift in its gene expression profile. Changes in gene expression patterns on liver abscess formation were not consistent between clinical and laboratory strains. Various genotypes of Entamoeba histolytica are prevalent in the field. Some papers suggest the association between genotypes and disease severity. However, most studies for assessing pathogen virulence were performed using laboratory strains, such as virulent HM1: IMSS (HM1) and avirulent Rahman, because axenic isolation from clinical specimen is technically complex and time consuming. This transcriptomic analysis using clinical strains from the patients with different clinical severity, as well as the laboratory strain HM1 under different conditions showed unique gene expression patterns. Following things were confirmed; 1. Virulent clinical strain maintains its virulence with unique gene expression pattern after axenic isolation, 2. Continuous environmental stress enhances its virulence via the accumulation of altered gene expressions, and 3. Changes in gene expression on the liver abscess formation are not always the same amongst strains. For an accurate understanding the pathogenesis, comprehensive analyses of various clinical strains under different environmental conditions should be promoted.
Collapse
|
2
|
Li X, Feng M, Zhao Y, Zhang Y, Zhou R, Zhou H, Pang Z, Tachibana H, Cheng X. A Novel TLR4-Binding Domain of Peroxiredoxin From Entamoeba histolytica Triggers NLRP3 Inflammasome Activation in Macrophages. Front Immunol 2021; 12:758451. [PMID: 34659265 PMCID: PMC8515043 DOI: 10.3389/fimmu.2021.758451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages promote early host responses to infection by releasing pro-inflammatory cytokines, and they are crucial to combat amoebiasis, a disease affecting millions of people worldwide. Macrophages elicit pro-inflammatory responses following direct cell/cell interaction of Entamoeba histolytica, inducing NLRP3 inflammasome activation with high-output IL-1β/IL-18 secretion. Here, we found that trophozoites could upregulate peroxiredoxins (Prx) expression and abundantly secrete Prxs when encountering host cells. The C-terminal of Prx was identified as the key functional domain in promoting NLRP3 inflammasome activation, and a recombinant C-terminal domain could act directly on macrophage. The Prxs derived from E. histolytica triggered toll-like receptor 4-dependent activation of NLRP3 inflammasome in a cell/cell contact-independent manner. Through genetic, immunoblotting or pharmacological inhibition methods, NLRP3 inflammasome activation was induced through caspase-1-dependent canonical pathway. Our data suggest that E. histolytica Prxs had stable and durable cell/cell contact-independent effects on macrophages following abundantly secretion during invasion, and the C-terminal of Prx was responsible for activating NLRP3 inflammasome in macrophages. This new alternative pathway may represent a potential novel therapeutic approach for amoebiasis, a global threat to millions.
Collapse
Affiliation(s)
- Xia Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Pang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
3
|
Brune MW, França EL, Moraes LCA, Ribeiro VP, Gomes MA, Honorio-França AC. Effects of Cytokines IFN-γ and TGF-β on the Functional Activity of Blood Mononuclear Cells against Giardia lamblia. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:209-218. [PMID: 34557235 PMCID: PMC8418650 DOI: 10.18502/ijpa.v16i2.6269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Background: This study aimed to analyze cultures of mononuclear (MN) cells with Giardia lamblia to determine the levels of the cytokines IFN-γ and TGF-β and the functional activity of MN cells after incubation with cytokines. Methods: This study was conducted in 2018 in Barra do Garças, Mato Grosso State, Brazil. Blood samples were collected from 60 healthy volunteer donors to obtain leukocytes. The levels of IFN-γ and TGF-β were quantified in trophozoite cell culture supernatants. Superoxide release, phagocytosis, microbicidal activity, apoptosis and intracellular calcium release were analyzed. Results: The cytokines evaluated were detected in the culture supernatant of MN cells and G. lamblia. Regardless of the type of cytokine, MN cells increased superoxide release in the presence of G. lamblia. Phagocytosis, microbicidal activity and apoptosis were higher when MN phagocytes were treated with cytokines. The highest microbicidal activity and apoptosis rates were observed in MN cells cultured with TGF-β. IFN-γ increased the release of intracellular calcium by MN phagocytes. Conclusion: Cytokines play a beneficial role in the host by activating MN cells against G. lamblia. In addition, phagocytosis causes G. lamblia death and that the modulation of the functional activity of blood MN phagocytes by cytokines is an alternative mechanism for eliminating G. lamblia.
Collapse
Affiliation(s)
- Maximilian Wilhelm Brune
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.,Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | | | - Victor Pena Ribeiro
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
4
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Autophagy Activated by Peroxiredoxin of Entamoeba histolytica. Cells 2020; 9:cells9112462. [PMID: 33198056 PMCID: PMC7696310 DOI: 10.3390/cells9112462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy, an evolutionarily conserved mechanism to remove redundant or dangerous cellular components, plays an important role in innate immunity and defense against pathogens, which, in turn, can regulate autophagy to establish infection within a host. However, for Entamoeba histolytica, an intestinal protozoan parasite causing human amoebic colitis, the interaction with the host cell autophagy mechanism has not been investigated. In this study, we found that E. histolytica peroxiredoxin (Prx), an antioxidant enzyme critical for parasite survival during the invasion of host tissues, could activate autophagy in macrophages. The formation of autophagosomes in macrophages treated with recombinant Prx of E. histolytica for 24 h was revealed by immunofluorescence and immunoblotting in RAW264.7 cells and in mice. Prx was cytotoxic for RAW264.7 macrophages after 48-h treatment, which was partly attributed to autophagy-dependent cell death. RNA interference experiments revealed that Prx induced autophagy mostly through the toll-like receptor 4 (TLR4)-TIR domain-containing adaptor-inducing interferon (TRIF) pathway. The C-terminal part of Prx comprising 100 amino acids was the key functional domain to activate autophagy. These results indicated that Prx of E. histolytica could induce autophagy and cytotoxic effects in macrophages, revealing a new pathogenic mechanism activated by E. histolytica in host cells.
Collapse
|
6
|
Shaulov Y, Shimokawa C, Trebicz-Geffen M, Nagaraja S, Methling K, Lalk M, Weiss-Cerem L, Lamm AT, Hisaeda H, Ankri S. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog 2018; 14:e1007295. [PMID: 30308066 PMCID: PMC6181410 DOI: 10.1371/journal.ppat.1007295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Chikako Shimokawa
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Lea Weiss-Cerem
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ayelet T. Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
- * E-mail:
| |
Collapse
|
7
|
Giardia lamblia : Identification of peroxisomal-like proteins. Exp Parasitol 2018; 191:36-43. [DOI: 10.1016/j.exppara.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/04/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
|
8
|
Martínez-Castillo M, Pacheco-Yepez J, Flores-Huerta N, Guzmán-Téllez P, Jarillo-Luna RA, Cárdenas-Jaramillo LM, Campos-Rodríguez R, Shibayama M. Flavonoids as a Natural Treatment Against Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:209. [PMID: 29988403 PMCID: PMC6024094 DOI: 10.3389/fcimb.2018.00209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Over the past 20 years, gastrointestinal infections in developing countries have been a serious health problem and are the second leading cause of morbidity among all age groups. Among pathogenic protozoans that cause diarrheal disease, the parasite Entamoeba histolytica produces amebic colitis as well as the most frequent extra-intestinal lesion, an amebic liver abscess (ALA). Usually, intestinal amebiasis and ALA are treated with synthetic chemical compounds (iodoquinol, paromomycin, diloxanide furoate, and nitroimidazoles). Metronidazole is the most common treatment for amebiasis. Although the efficacy of nitroimidazoles in killing amebas is known, the potential resistance of E. histolytica to this treatment is a concern. In addition, controversial studies have reported that metronidazole could induce mutagenic effects and cerebral toxicity. Therefore, natural and safe alternative drugs against this parasite are needed. Flavonoids are natural polyphenolic compounds. Flavonoids depend on malonyl-CoA and phenylalanine to be synthesized. Several flavonoids have anti-oxidant and anti-microbial properties. Since the 1990s, several works have focused on the identification and purification of different flavonoids with amebicidal effects, such as, -(-)epicatechin, kaempferol, and quercetin. In this review, we investigated the effects of flavonoids that have potential amebicidal activity and that can be used as complementary and/or specific therapeutic strategies against E. histolytica trophozoites. Interestingly, it was found that these natural compounds can induce morphological changes in the amebas, such as chromatin condensation and cytoskeletal protein re-organization, as well as the upregulation and downregulation of fructose-1,6-bisphosphate aldolase, glyceraldehyde-phosphate dehydrogenase, and pyruvate:ferredoxin oxidoreductase (enzymes of the glycolytic pathway). Although the specific molecular targets, bioavailability, route of administration, and doses of some of these natural compounds need to be determined, flavonoids represent a very promising and innocuous strategy that should be considered for use against E. histolytica in the era of microbial drug resistance.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Judith Pacheco-Yepez
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Nadia Flores-Huerta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Paula Guzmán-Téllez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rosa A. Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Luz M. Cárdenas-Jaramillo
- Coordinación de Morfología, Departamento de Formación Básica Disciplinaria, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
9
|
Ximénez C, González E, Nieves M, Magaña U, Morán P, Gudiño-Zayas M, Partida O, Hernández E, Rojas-Velázquez L, García de León MC, Maldonado H. Differential expression of pathogenic genes of Entamoeba histolytica vs E. dispar in a model of infection using human liver tissue explants. PLoS One 2017; 12:e0181962. [PMID: 28771523 PMCID: PMC5542602 DOI: 10.1371/journal.pone.0181962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
We sought to establish an ex vivo model for examining the interaction of E. histolytica with human tissue, using precision-cut liver slices (PCLS) from donated organs. E. histolytica- or E. dispar-infected PCLS were analyzed at different post-infection times (0, 1, 3, 24 and 48 h) to evaluate the relation between tissue damage and the expression of genes associated with three factors: a) parasite survival (peroxiredoxin, superoxide dismutase and 70 kDa heat shock protein), b) parasite virulence (EhGal/GalNAc lectin, amoebapore, cysteine proteases and calreticulin), and c) the host inflammatory response (various cytokines). Unlike E. dispar (non-pathogenic), E. histolytica produced some damage to the structure of hepatic parenchyma. Overall, greater expression of virulence genes existed in E. histolytica-infected versus E. dispar-infected tissue. Accordingly, there was an increased expression of EhGal/GalNAc lectin, Ehap-a and Ehcp-5, Ehcp-2, ehcp-1 genes with E. histolytica, and a decreased or lack of expression of Ehcp-2, and Ehap-a genes with E. dispar. E. histolytica-infected tissue also exhibited an elevated expression of genes linked to survival, principally peroxiredoxin, superoxide dismutase and Ehhsp-70. Moreover, E. histolytica-infected tissue showed an overexpression of some genes encoding for pro-inflammatory interleukins (ILs), such as il-8, ifn-γ and tnf-α. Contrarily, E. dispar-infected tissue displayed higher levels of il-10, the gene for the corresponding anti-inflammatory cytokine. Additionally, other genes were investigated that are important in the host-parasite relationship, including those encoding for the 20 kDa heat shock protein (HSP-20), the AIG-1 protein, and immune dominant variable surface antigen, as well as for proteins apparently involved in mechanisms for the protection of the trophozoites in different environments (e.g., thioredoxin-reductase, oxido-reductase, and 9 hypothetical proteins). Some of the hypothetical proteins evidenced interesting overexpression rates, however we should wait to their characterization. This finding suggest that the present model could be advantageous for exploring the complex interaction between trophozoites and hepatocytes during the development of ALA, particularly in the initial stages of infection.
Collapse
Affiliation(s)
- Cecilia Ximénez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
- * E-mail:
| | - Enrique González
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Miriam Nieves
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Ulises Magaña
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Patricia Morán
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Marco Gudiño-Zayas
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Oswaldo Partida
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Eric Hernández
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Liliana Rojas-Velázquez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | | | - Héctor Maldonado
- Sub direction of Pathology, National Institute of Cancerology, México City, México
| |
Collapse
|
10
|
Campos-Rodríguez R, Gutiérrez-Meza M, Jarillo-Luna RA, Drago-Serrano ME, Abarca-Rojano E, Ventura-Juárez J, Cárdenas-Jaramillo LM, Pacheco-Yepez J. A review of the proposed role of neutrophils in rodent amebic liver abscess models. ACTA ACUST UNITED AC 2016; 23:6. [PMID: 26880421 PMCID: PMC4754534 DOI: 10.1051/parasite/2016006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/31/2016] [Indexed: 01/20/2023]
Abstract
Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA). Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl) and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO) enzymes, and the formation of neutrophil extracellular traps (NETs). On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Manuel Gutiérrez-Meza
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México - Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Rosa Adriana Jarillo-Luna
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México - Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - María Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Unidad Xochimilco, Universidad Autónoma Metropolitana, Distrito Federal, México
| | - Edgar Abarca-Rojano
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Judith Pacheco-Yepez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| |
Collapse
|
11
|
Moraes LCA, França EL, Pessoa RS, Fagundes DLG, Hernandes MG, Ribeiro VP, Gomes MA, Honorio-França AC. The effect of IFN-γ and TGF-β in the functional activity of mononuclear cells in the presence of Entamoeba histolytica. Parasit Vectors 2015; 8:413. [PMID: 26249205 PMCID: PMC4528781 DOI: 10.1186/s13071-015-1028-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/01/2015] [Indexed: 11/15/2022] Open
Abstract
Background Entamoeba histolytica (E. histolytica) causes amoebiasis, which is a disease with significant morbidity and mortality. Phagocytic cells and cytokines appear to be important in amoebiasis, but very little is known about the influence of these cells and cytokines in protozoan infections. The aim of this study was to analyse the supernatant of cultures of mononuclear (MN) cells with E. histolytica to determine: 1) the levels of the cytokines IFN-γ and TGF-β, and 2) the amoebicidal activity of MN cells after incubation with cytokines. Methods Blood samples were collected from 30 volunteer donors. The cytokine concentrations in MN cells culture supernatants, superoxide release, leukophagocytosis, amoebicide activity, intracellular calcium release and apoptosis were analysed. Results The IFN-γ concentrations were 6.22 ± 0.36 and TGF-β concentrations were 17.01 ± 2.21 in cells–trophozoite culture supernatants. MN cells, independently of cytokines, in the presence of amoeba increase the superoxide release. In the absence of cytokines, the ingestion of MN cells by amoebae was higher. In the presence of IFN- γ or TGF- β, a lower ingestion of MN cells was observed by amoebae. MN cells treated with cytokines exhibited higher amoebicide and apoptosis indexes. The incubation of cytokines increased the intracellular calcium release by MN cells. Conclusions These results suggest that cytokines play a beneficial role for the host by activating MN cells against E. histolytica. The increased death of amoebae during the leukophagocytosis suggests that both cytokines (IFN-γ and TGF-β) can modulate the functional activity of MN cells and that these cytokines probably are important in the control of amoebic infections.
Collapse
Affiliation(s)
- Lucélia Campelo Albuquerque Moraes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Institute of Biological and Health Science, Federal University of Mato Grosso, Rodovia BR070, Km 5 s/no, Barra do Garças, MT, Brazil.
| | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Rodovia BR070, Km 5 s/no, Barra do Garças, MT, Brazil.
| | - Rafael Souza Pessoa
- Institute of Biological and Health Science, Federal University of Mato Grosso, Rodovia BR070, Km 5 s/no, Barra do Garças, MT, Brazil.
| | - Danny Laura Gomes Fagundes
- Institute of Biological and Health Science, Federal University of Mato Grosso, Rodovia BR070, Km 5 s/no, Barra do Garças, MT, Brazil.
| | - Mara Gil Hernandes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Institute of Biological and Health Science, Federal University of Mato Grosso, Rodovia BR070, Km 5 s/no, Barra do Garças, MT, Brazil.
| | - Victor Pena Ribeiro
- Institute of Biological and Health Science, Federal University of Mato Grosso, Rodovia BR070, Km 5 s/no, Barra do Garças, MT, Brazil.
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Adenilda Cristina Honorio-França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Rodovia BR070, Km 5 s/no, Barra do Garças, MT, Brazil.
| |
Collapse
|
12
|
Cheng WH, Huang KY, Huang PJ, Hsu JH, Fang YK, Chiu CH, Tang P. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit Vectors 2015. [PMID: 26205151 PMCID: PMC4513698 DOI: 10.1186/s13071-015-1000-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. Methods T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. Results We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. Conclusion The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1000-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Kuo-Yang Huang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jo-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Yi-Kai Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|