1
|
Mohamed RA, Abdallah DM, El-Abhar HS. Chaperone-mediated autophagy, heat shock protein 70, and serotonin: novel targets of beta-hydroxybutyrate in HFFD/LPS-induced sporadic Alzheimer's disease model. Inflammopharmacology 2025:10.1007/s10787-025-01754-6. [PMID: 40319428 DOI: 10.1007/s10787-025-01754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 05/07/2025]
Abstract
Sporadic Alzheimer's disease (AD), which accounts for the majority of cases, is sturdily influenced by lifestyle factors such as dietary habits, obesity, and diabetes, leading to its classification as Type 3 diabetes. To model this pathological link, our AD-like model was developed by feeding Wistar male rats a high-fat diet with fructose in drinking water (HFFD) for 8 weeks, followed by a single dose of lipopolysaccharide (LPS). This group was compared with a normal control group fed a standard diet and a β-hydroxybutyrate (BHB)-treated group (125 mg/kg, p.o.), administered starting 3 h after LPS and continuing for 1 week. The results demonstrate that BHB treatment illuminated cognitive gains, as indicated by the Y-maze, Morris water maze, and novel object recognition tests. In addition, it preserved hippocampal cytoarchitecture, reduced neurodegeneration, and attenuated amyloid plaques and phosphorylated Tau deposition. Cellularly, BHB restored critical molecular mechanisms, including increased lysosomal-associated membrane protein 2A (LAMP2A) hippocampal content as the main marker of chaperone-mediated autophagy (CMA), along with the chaperon protein Hsp70. Moreover, BHB alleviated neuroinflammation by inhibiting the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome activation alongside the downstream targets cleaved caspase-1 and IL-1β/IL-18 cytokines. BHB also reduced pyroptotic markers, caspase-11 and gasdermin-N, and microglia-induced inflammation as it shifted microglial polarization toward the neuroprotective M2 phenotype. Finally, BHB normalized hippocampal neurotransmitter levels of the inhibited acetylcholine and serotonin. These findings support BHB as a promising, multifaceted treatment for AD, highlighting the roles of CMA, Hsp70, and 5-HT in slowing disease progression and improving cognitive function.
Collapse
Affiliation(s)
- Reem A Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Cairo, 12566, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Naeimi H, Taheri M, Ghafouri H, Mohammadi A. Investigation of Thiazolidine-2,4-Dione Derivatives as Acetylcholinesterase Inhibitors: Synthesis, In Vitro Biological Activities and In Silico Studies. ChemistryOpen 2025; 14:e202400294. [PMID: 39797425 DOI: 10.1002/open.202400294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE. Additionally, all the TZD derivatives (CHT1-5) showed an acceptable affinity for AChE inhibition, and the results showed convincing binding modes in the active site of AChE. Among them, 5-(4-methoxybenzylidene) thiazolidine-2,4-dione (CHT1) was identified as the most potent AChE inhibitor (IC50 of 165.93 nM) with the highest antioxidant activity. Following the exposure of PC12 cells to Aβ1-42 (100 μM), a marked reduction in cell survival was observed. Pretreatment of PC12 cells with TZD derivatives had a neuroprotective effect and significantly enhanced cell survival in response to Aβ-induced toxicity. Western blotting analysis revealed that CHT1 (5 and 8 μM) downregulated p-Tau and HSP70 expression levels. The results indicate that CHT1 is a promising and effective AchE-I that could be utilized as a powerful candidate against AD.
Collapse
Affiliation(s)
- Hanane Naeimi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran
| |
Collapse
|
3
|
Kandil B, Bayraktaroglu AG. Distribution of Heat Shock Proteins 27, 60, 70, 90 in Testis and Epididymis of the Domestic Cats (Felis catus) and Dogs (Canis lupus familiaris). Anat Histol Embryol 2025; 54:e70021. [PMID: 39891465 DOI: 10.1111/ahe.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/15/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
This study aimed to examine the immunoexpression of HSP27, HSP60, HSP70, and HSP90 in the testis and epididymis of domestic cats (Felis catus) and dogs (Canis lupus familiaris). Testis and epididymis tissues from 6 adult cats and 6 adult dogs were used in this study. Immunohistochemical staining was done to determine the expression of HSPs. In cats and dogs, while HSP60 was detected only in Leydig cells, HSP90 was determined only in spermatogonia. HSP27 was observed only in smooth muscle cells of blood vessels. HSP70 was not detected in spermatocytes, spermatids, Leydig cells, or Sertoli cells, whereas HSP70 was determined in peritubular myoid cells. In addition, unlike cats, HSP70 was observed in spermatogonia of dog testes. HSP27 was determined in basal cells of the epididymal epithelium and smooth muscle cells of the ductal wall in all sections of the epididymis. However, no HSP60 was observed in the epididymis. While HSP70 was not detected in the epididymis of the cats, HSP70 was observed in basal cells of all sections of the epididymis of the dogs. While the epididymal epithelial cells showed HSP90 immunoreactivity in all parts of the epididymis, the smooth muscle cells of the ductal wall exhibited HSP90 immunoreactivity only in the cauda epididymidis. The findings of this study indicate that HSP27, HSP60, HSP70, and HSP90 exhibit different immunoexpression patterns in the testis and epididymis of cats and dogs and that these proteins play important roles in maintaining the reproductive functions of cats and dogs.
Collapse
Affiliation(s)
- Banu Kandil
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Alev Gürol Bayraktaroglu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Kandil B, Bayraktaroglu AG. Induction of Heat Shock Proteins 27, 60, 70, and 90 in the Cerebellum of Rats After Hyperthermia During Postnatal Development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:944-952. [PMID: 39189886 DOI: 10.1093/mam/ozae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
Heat shock proteins (HSPs) are induced in response to stressful stimuli and play an important role in cell repair and protection. This study, using immunohistochemistry, aimed to determine whether HSPs are induced in the cerebellum of rats subjected to hyperthermia during postnatal development (PND). The results showed that unlike HSP27 and HSP70, HSP60 and HSP90 were constitutively expressed in the cerebellum of rats. However, hyperthermia induced HSP27 in the white matter (WM) and HSP70 in the Bergmann glial cells, the internal granule layer (IGL), and the WM. In the WM, HSP27 induction was only observed on days PND20, PND25, and PND30, and HSP27 expression was higher on day PND30 compared with days PND20 and PND25 (p < 0.001). In the Bergmann glial cells, HSP70 induction was only observed on days PND5, PND10, and PND20, and HSP70 expression was greater on days PND5 and PND10 compared with day PND20 (p < 0.001). In the IGL and the WM, HSP70 expression was higher on days PND20, PND25, and PND30 compared with days PND5 and PND10 (p < 0.001). These findings indicate that unlike HSP60 and HSP90, HSP27 and HSP70 have different expression patterns in the cerebellum of rats after hyperthermia during PND.
Collapse
Affiliation(s)
- Banu Kandil
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Siirt University, Siirt 56100, Turkey
| | - Alev Gürol Bayraktaroglu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| |
Collapse
|
5
|
Kodera S, Kimura T, Nishioka T, Kaneko YK, Yamaguchi M, Kaibuchi K, Ishikawa T. GDP-bound Rab27a regulates clathrin disassembly through HSPA8 after insulin secretion. Arch Biochem Biophys 2023; 749:109789. [PMID: 37852426 DOI: 10.1016/j.abb.2023.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Clathrin-dependent endocytosis is a key process for secretory cells, in which molecules on the plasma membrane are both degraded and recycled in a stimulus-dependent manner. There are many reports showing that disruption of endocytosis is involved in the onset of various diseases. Recently, it has been reported that such disruption in pancreatic β-cells causes impaired insulin secretion and might be associated with the pathology of diabetes mellitus. Compared with exocytosis, there are few reports on the molecular mechanism of endocytosis in pancreatic β-cells. We previously reported that GDP-bound Rab27a regulates endocytosis through its GDP-dependent effectors after insulin secretion. In this study, we identified heat shock protein family A member 8 (HSPA8) as a novel interacting protein for GDP-bound Rab27a. HSPA8 directly bound GDP-bound Rab27a via the β2 region of its substrate binding domain (SBD). The β2 fragment was capable of inhibiting the interaction between HSPA8 and GDP-bound Rab27a, and suppressed glucose-induced clathrin-dependent endocytosis in pancreatic β-cells. The region also affected clathrin dynamics on purified clathrin-coated vesicles (CCVs). These results suggest that the interaction between GDP-bound Rab27a and HSPA8 regulates clathrin disassembly from CCVs and subsequent vesicle transport. The regulatory stages in endocytosis by HSPA8 differ from those for other GDP-bound Rab27a effectors. This study shows that GDP-bound Rab27a dominantly regulates each stage in glucose-induced endocytosis through its specific effectors in pancreatic β-cells.
Collapse
Affiliation(s)
- Soshiro Kodera
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| | - Tomoki Nishioka
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi, 470-1192, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi, 470-1192, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| |
Collapse
|
6
|
Kang Z, Lin Y, Su C, Li S, Xie W, Wu X. Hsp70 ameliorates sleep deprivation-induced anxiety-like behavior and cognitive impairment in mice. Brain Res Bull 2023; 204:110791. [PMID: 37858682 DOI: 10.1016/j.brainresbull.2023.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Many neurobehavioral processes, including psychomotor, cognitive, and affection are negatively impacted by sleep deprivation (SD), which may be harmful to a person's physical and mental health. Heat shock proteins (Hsps) have been demonstrated to play a protective role in a number of neurodegenerative diseases and are essential for maintaining intracellular protein homeostasis, but their roles in SD remain elusive. METHODS A mouse SD model was constructed using a modified multi-platform water environment method. The cognitive function was tested by novel object recognition test and Y-maze test, and anxiety-like behaviors were assessed by open field test (OFT). Protein expression was determined by Western blotting assay and ELISA assay. RESULTS We found that SD could profoundly enhance anxiety levels and impair cognitive function in mice. SD also reduced the expression levels of p-cAMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) and increased microglial activation and neuroinflammatory response in the hippocampus of mice. The intranasal injection of human recombinant Hsp70 protein could alleviate SD-induced anxiety and cognitive impairment, as well as restore pCREB and BDNF levels and reduce microglia-induced neuroinflammation in the hippocampus of SD mice. CONCLUSIONS Hsp70 treatment might serve as a potential treatment for mitigating SD-related unfavorable symptoms.
Collapse
Affiliation(s)
- Zhenming Kang
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China.
| | - Yiqin Lin
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Changsheng Su
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Shunyuan Li
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Wenqin Xie
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China.
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian, China.
| |
Collapse
|
7
|
Uras I, Karayel-Basar M, Sahin B, Baykal AT. Detection of early proteomic alterations in 5xFAD Alzheimer's disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 2023; 19:4572-4589. [PMID: 36934297 DOI: 10.1002/alz.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 03/20/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder, characterized by memory deficit and dementia. AD is considered a multifactorial disorder where multiple processes like amyloid-beta and tau accumulation, axonal degeneration, synaptic plasticity, and autophagic processes plays an important role. In this study, the spatial proteomic differences in the neonatal 5xFAD brain tissue were investigated using MALDI-MSI coupled to LC-MS/MS, and the statistically significantly altered proteins were associated with AD. Thirty-five differentially expressed proteins (DEPs) between the brain tissues of neonatal 5xFAD and their littermate mice were detected via MALDI-MSI technique. Among the 35 proteins identified, 26 of them were directly associated with AD. Our results indicated a remarkable resemblance in the protein expression profiles of neonatal 5xFAD brain when compared to AD patient specimens or AD mouse models. These findings showed that the molecular alterations in the AD brain existed even at birth and that some proteins are neurodegenerative presages in neonatal AD brain. HIGHLIGHTS: Spatial proteomic alterations in the 5xFAD mouse brain compared to the littermate. 26 out of 35 differentially expressed proteins associated with Alzheimer's disease (AD). Molecular alterations and neurodegenerative presages in neonatal AD brain. Alterations in the synaptic function an early and common neurobiological thread.
Collapse
Affiliation(s)
- Irep Uras
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
8
|
Hill SE, Beaulieu-Abdelahad D, Lemus A, Webster JM, Ospina SR, Darling AL, Martin MD, Patel S, Bridenstine L, Swonger R, Paul S, Blackburn R, Calcul L, Dickey CA, Leahy JW, Blair LJ. Benzothiazole Substitution Analogs of Rhodacyanine Hsp70 Inhibitors Modulate Tau Accumulation. ACS Chem Biol 2023; 18:1124-1135. [PMID: 37144894 PMCID: PMC10443619 DOI: 10.1021/acschembio.2c00919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The accumulation and aggregation of the microtubule-associated protein tau (tau) into intracellular neuronal tangles are a hallmark of a range of progressive neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia, Pick's disease, and progressive supranuclear palsy. The aberrant phosphorylation of tau is associated with tau aggregates in AD. Members of the heat shock protein 70 kDa (Hsp70) family of chaperones bind directly to tau and modulate tau clearance and aggregation. Small molecules that inhibit the Hsp70 family of chaperones have been shown to reduce the accumulation of tau, including phosphorylated tau. Here, eight analogs of the rhodacyanine inhibitor, JG-98, were synthesized and evaluated. Like JG-98, many of the compounds inhibited ATPase activity of the cytosolic heat shock cognate 70 protein (Hsc70) and reduced total, aggregated, and phosphorylated tau accumulation in cultured cells. Three compounds, representing divergent clogP values, were evaluated for in vivo blood-brain barrier penetration and tau reduction in an ex vivo brain slice model. AL69, the compound with the lowest clogP and the lowest membrane retention in a parallel artificial membrane permeability assay (PAMPA), reduced phosphorylated tau accumulation. Our results suggest that benzothiazole substitutions of JG-98 that increase hydrophilicity may increase the efficacy of these Hsp70 inhibitors to reduce phosphorylated tau.
Collapse
Affiliation(s)
- Shannon E. Hill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - David Beaulieu-Abdelahad
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - Andrea Lemus
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, USA
| | - Jack M. Webster
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - Santiago Rodriguez Ospina
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - April L. Darling
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - Mackenzie D. Martin
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - Shreya Patel
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, USA
| | - Liznair Bridenstine
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, USA
| | - Ronald Swonger
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, USA
| | - Steven Paul
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - Roy Blackburn
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, USA
| | - Chad A. Dickey
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - James W. Leahy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, USA
- Center for Drug Discovery and Innovation, University of South Florida, 3720 Spectrum Boulevard, Suite 303, Tampa, Florida 33612, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Saleem U, Chauhdary Z, Islam S, Zafar A, Khayat RO, Althobaiti NA, Shah GM, Alqarni M, Shah MA. Sarcococca saligna ameliorated D-galactose induced neurodegeneration through repression of neurodegenerative and oxidative stress biomarkers. Metab Brain Dis 2023; 38:717-734. [PMID: 35881299 DOI: 10.1007/s11011-022-01046-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023]
Abstract
Sarcococca saligna is a valuable source of bioactive secondary metabolites exhibiting antioxidant, anti-inflammatory and acetylcholinesterase inhibitory activities. The study was intended to explore the therapeutic pursuits of S. saligna in amelioration of cognitive and motor dysfunctions induced by D-galactose and linked mechanistic pathways. Alzheimer's disease model was prepared by administration of D-galactose subcutaneous injection100 mg/kg and it was treated with rivastigmine (100 mg/kg, orally) and plant extract for 42 days. Cognitive and motor functions were evaluated by behavioral tasks and oxidative stress biomarkers. Level of acetylcholinesterase, reduced level of glutathione, protein and nitrite level, and brain neurotransmitters were analyzed in brain homogenate. The level of apoptosis regulator Bcl-2, Caspases 3 and heat shock protein HSP-70 in brain homogenates were analyzed by ELISA and colorimetric method, respectively. AChE, IL-1β, TNF-α, IL-1α and β secretase expressions were analyzed by RT-PCR. S. saligna dose dependently suppressed the neurodegenerative effects of D-galactose induced behavioral and biochemical impairments through modulation of antioxidant enzymes and acetylcholinesterase inhibition. S. saligna markedly (P < 0.05) ameliorated the level of brain neurotransmitters, Bcl-2, HSP-70 and Caspases-3 level. S. saligna at 500-1000 mg/kg considerably recovered the mRNA expression of neurodegenerative and neuro-inflammatory biomarkers, also evident from histopathological analysis. These findings suggest that S. saligna could be applicable in cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sumera Islam
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Aimen Zafar
- University Institute of Food Science & Technology, University of Lahore, Lahore, Pakistan
| | - Rana O Khayat
- Department of Biology, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ghulam Mujtaba Shah
- Department of Botany, Hazara University, Mansehra, Pakistan
- Department of Pharmacy, Hazara University, Mansehra, Pakistan
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | | |
Collapse
|
10
|
Multicomponent reactions as a privileged tool for multitarget-directed ligand strategies in Alzheimer's disease therapy. Future Med Chem 2022; 14:1583-1606. [PMID: 36263996 DOI: 10.4155/fmc-2022-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Among neurodegenerative pathologies affecting the older population, Alzheimer's disease is the most common type of dementia and leads to neurocognitive and behavioral disorders. It is a complex and progressive age-related multifactorial disease characterized by a series of highly interconnected pathophysiological processes. Within the last decade, the multitarget-directed ligand strategy has emerged as a viable approach to developing complex molecules that exhibit several pharmacophores which can target the different enzymes and receptors involved in the pathogenesis of the disease. Herein, we focus on using multicomponent reactions such as Hantzsch, Biginelli and Ugi to develop these biologically active multitopic ligands.
Collapse
|
11
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|
12
|
Lopez-Toledo G, Silva-Lucero MDC, Herrera-Díaz J, García DE, Arias-Montaño JA, Cardenas-Aguayo MDC. Patient-Derived Fibroblasts With Presenilin-1 Mutations, That Model Aspects of Alzheimer’s Disease Pathology, Constitute a Potential Object for Early Diagnosis. Front Aging Neurosci 2022; 14:921573. [PMID: 35847683 PMCID: PMC9283986 DOI: 10.3389/fnagi.2022.921573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disorder that can occur in middle or old age, is characterized by memory loss, a continuous decline in thinking, behavioral and social skills that affect the ability of an individual to function independently. It is divided into sporadic and familial subtypes. Early-onset familial AD (FAD) is linked to mutations in genes coding for the amyloid-β protein precursor (AβPP), presenilin 1 (PS1), and presenilin 2 (PS2), which lead to alterations in AβPP processing, generation of the Amyloid-β peptide and hyperphosphorylation of tau protein. Identification of early biomarkers for AD diagnosis represents a challenge, and it has been suggested that molecular changes in neurodegenerative pathways identified in the brain of AD patients can be detected in peripheral non-neural cells derived from familial or sporadic AD patients. In the present study, we determined the protein expression, the proteomic and in silico characterization of skin fibroblasts from FAD patients with PS1 mutations (M146L or A246E) or from healthy individuals. Our results shown that fibroblasts from AD patients had increased expression of the autophagy markers LC3II, LAMP2 and Cathepsin D, a significant increase in total GSK3, phosphorylated ERK1/2 (Thr202/Tyr204) and phosphorylated tau (Thr231, Ser396, and Ser404), but no difference in the phosphorylation of Akt (Ser473) or the α (Ser21) and β (Ser9) GSK3 isoforms, highlighting the relevant role of abnormal protein post-translational modifications in age-related neurodegenerative diseases, such as AD. Both 2-DE gels and mass spectrometry showed significant differences in the expression of the signaling pathways associated with protein folding and the autophagic pathway mediated by chaperones with the expression of HSPA5, HSPE1, HSPD1, HSP90AA1, and HSPE1 and reticular stress in the FAD samples. Furthermore, expression of the heat shock proteins HSP90 and HSP70 was significantly higher in the cells from AD patients as confirmed by Western blot. Taken together our results indicate that fibroblasts from patients with FAD-PS1 present alterations in signaling pathways related to cellular stress, autophagy, lysosomes, and tau phosphorylation. Fibroblasts can therefore be useful in modeling pathways related to neurodegeneration, as well as for the identification of early AD biomarkers.
Collapse
Affiliation(s)
- Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jorge Herrera-Díaz
- Unidad de Servicios de Apoyo a la Investigación y a la Industria, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David-Erasmo García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Maria-del-Carmen Cardenas-Aguayo,
| |
Collapse
|
13
|
Chen S, Qiu G. Overexpression of Zostera japonica heat shock protein gene ZjHsp70 enhances the thermotolerance of transgenic Arabidopsis. Mol Biol Rep 2022; 49:6189-6197. [PMID: 35412177 DOI: 10.1007/s11033-022-07411-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Heat shock protein 70s (Hsp70s) are major members of the heat shock protein family and play a variety of roles to protect plants against stress. Plant Hsp70s are a conserved and widely expressed family of heat shock proteins. They have two main functional regions: N-terminal nucleic acid binding region and C-terminal substrate binding region. METHODS AND RESULTS In this study, we cloned the Hsp70 gene of Zostera japonica (ZjHsp70) based on the sequence obtained by transcriptome sequencing. The transcriptional levels of ZjHsp70 increased significantly at 1 h after heat treatment. ZjHsp70 was located in the cytoplasm and nucleus. The overexpression of ZjHsp70 in Arabidopsis resulted in increased heat tolerance, lower contents of malondialdehyde and higher antioxidant enzyme activity than in the wild type. ZjHsp70 may achieve this goal by maintaining highly active antioxidant enzymes. CONCLUSIONS We show that ZjHsp70 can improve plant heat tolerance by maintaining high antioxidant enzyme activity under high temperature stress. This study provided a basis to study the role of ZjHsp70 in thermotolerance in more detail.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536007, Guangxi, China.
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536007, Guangxi, China.
| |
Collapse
|
14
|
Rahman MA, Rahman MDH, Mamun-Or-Rashid ANM, Hwang H, Chung S, Kim B, Rhim H. Autophagy Modulation in Aggresome Formation: Emerging Implications and Treatments of Alzheimer's Disease. Biomedicines 2022; 10:1027. [PMID: 35625764 PMCID: PMC9138936 DOI: 10.3390/biomedicines10051027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases in the world, which is characterized by memory dysfunction and the formation of tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The formation of senile plaques involving tau hyperphosphorylation, fibrillar Aβ, and neurofibrillary tangles (NFTs) is used as a pathological marker of AD and eventually produces aggregation or misfolded protein. Importantly, it has been found that the failure to degrade these aggregate-prone proteins leads to pathological consequences, such as synaptic impairment, cytotoxicity, neuronal atrophy, and memory deficits associated with AD. Recently, increasing evidence has suggested that the autophagy pathway plays a role as a central cellular protection system to prevent the toxicity induced by aggregation or misfolded proteins. Moreover, it has also been revealed that AD-related protein aggresomes could be selectively degraded by autophagosome and lysosomal fusion through the autophagy pathway, which is known as aggrephagy. Therefore, the regulation of autophagy serve as a useful approach to modulate the formation of aggresomes associated with AD. This review focuses on the recent improvements in the application of natural compounds and small molecules as a potential therapeutic approach for AD prevention and treatment via aggrephagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - M D Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - A N M Mamun-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 602-8566, Japan
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Sooyoung Chung
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| |
Collapse
|
15
|
Taheri M, Aslani S, Ghafouri H, Mohammadi A, Akbary Moghaddam V, Moradi N, Naeimi H. Synthesis, in vitro biological evaluation and molecular modelling of new 2-chloro-3-hydrazinopyrazine derivatives as potent acetylcholinesterase inhibitors on PC12 cells. BMC Chem 2022; 16:7. [PMID: 35193649 PMCID: PMC8864858 DOI: 10.1186/s13065-022-00799-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background The loss of cholinergic neurotransmission in Alzheimer's disease (AD) patients' brain is accompanied by a reduced concentration of Acetylcholine (ACh) within synaptic clefts. Thus, the use of acetylcholinesterase inhibitors (AChEIs) to block the cholinergic degradation of ACh is a promising approach for AD treatment. In the present study, a series of 2-chloro-3-hydrazinopyrazine derivatives (CHP1-5) were designed, synthesized, and biologically evaluated as potential multifunctional anti-AD agents. Methods In addition, the chemical structures and purity of the synthesized compounds were elucidated through using IR, 1H and 13C NMR, and elemental analyses. Further, the intended compounds were assessed in vitro for their AChE inhibitory and neuroprotective effects. Furthermore, DPPH, FRAP and ABTS assays were utilized to determine their antioxidant activity. The statistical analysis was performed using one-way ANOVA. Results Based on the results, CHP4 and CHP5 exhibited strong AChE inhibitory effects with the IC50 values of 3.76 and 4.2 µM compared to the donepezil (0.53 µM), respectively. The study examined the effect and molecular mechanism of CHP4 on the Ab1–42-induced cytotoxicity in differentiated PC12 cells. At concentrations of 0–100 μM, CHP4 was non-toxic in PC12. Additionally, Ab1–42 significantly stimulated tau hyperphosphorylation and induced differentiated PC12 cell death. Further, CHP4 resulted in diminishing the Ab1–42-induced toxicity in PC12 cell significantly. CHP4 at 30 μM concentration significantly increased the Ab1–42-induced HSP70 expression and decreased tau hyperphosphorylation. Conclusions According to the results of our studies CHP4 can be considered as safe and efficient AChEI and employed as a potential multifunctional anti-AD agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00799-w.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samira Aslani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran. .,Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Nastarn Moradi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hananeh Naeimi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
16
|
Van den Broek B, Wuyts C, Irobi J. Extracellular vesicle-associated small heat shock proteins as therapeutic agents in neurodegenerative diseases and beyond. Adv Drug Deliv Rev 2021; 179:114009. [PMID: 34673130 DOI: 10.1016/j.addr.2021.114009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence points towards using extracellular vesicles (EVs) as a therapeutic strategy in neurodegenerative diseases such as multiple sclerosis, Parkinson's, and Alzheimer's disease. EVs are nanosized carriers that play an essential role in intercellular communication and cellular homeostasis by transporting an active molecular cargo, including a large variety of proteins. Recent publications demonstrate that small heat shock proteins (HSPBs) exhibit a beneficial role in neurodegenerative diseases. Moreover, it is defined that HSPBs target the autophagy and the apoptosis pathway, playing a prominent role in chaperone activity and cell survival. This review elaborates on the therapeutic potential of EVs and HSPBs, in particular HSPB1 and HSPB8, in neurodegenerative diseases. We conclude that EVs and HSPBs positively influence neuroinflammation, central nervous system (CNS) repair, and protein aggregation in CNS disorders. Moreover, we propose the use of HSPB-loaded EVs as advanced nanocarriers for the future development of neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Joy Irobi
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
17
|
DnaJC7 binds natively folded structural elements in tau to inhibit amyloid formation. Nat Commun 2021; 12:5338. [PMID: 34504072 PMCID: PMC8429438 DOI: 10.1038/s41467-021-25635-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular chaperones, including Hsp70/J-domain protein (JDP) families, play central roles in binding substrates to prevent their aggregation. How JDPs select different conformations of substrates remains poorly understood. Here, we report an interaction between the JDP DnaJC7 and tau that efficiently suppresses tau aggregation in vitro and in cells. DnaJC7 binds preferentially to natively folded wild-type tau, but disease-associated mutants in tau reduce chaperone binding affinity. We identify that DnaJC7 uses a single TPR domain to recognize a β-turn structural element in tau that contains the 275VQIINK280 amyloid motif. Wild-type tau, but not mutant, β-turn structural elements can block full-length tau binding to DnaJC7. These data suggest DnaJC7 preferentially binds and stabilizes natively folded conformations of tau to prevent tau conversion into amyloids. Our work identifies a novel mechanism of tau aggregation regulation that can be exploited as both a diagnostic and a therapeutic intervention.
Collapse
|
18
|
Guo W, Zhan X, Jiang F, Xi Y. Analysis of allergen components and identification of bioactivity of HSP70 in pollen of Populus deltoides. Proteome Sci 2021; 19:10. [PMID: 34479544 PMCID: PMC8417992 DOI: 10.1186/s12953-021-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background Allergies caused by pollen from Populus deltoides are common, but the allergic components are still unclear. Methods The total proteins in pollen of P. deltoides were analyzed by proteomics, and the potential allergens were identified via the WHO/IUIS database and the allergenOnline database retrieval. One target protein was screened by bioinformatics and expressed in Escherichia coli. The biological activity of the expressed product was verified by animal experiments. Results The total of 3929 proteins in pollen of P. deltoides were identified, and 46 potential allergens belonging to 10 protein families were recognized by database retrieval. B9N9W6 protein of Hsp70 family was screened by bioinformatics analysis and expressed successfully. ELISA showed that B9N9W6 can stimulate the immune system to produce specific IgE and promote the generation of IL-4. Flow cytometry showed that B9N9W6 can significantly stimulate the proliferation of CD4+ T cells and promote the polarization of Th2 cells. The pathological sections of mice lung tissues indicated that alveolar destruction was more severe in the B9N9W6 group than that of extract group, and there were more inflammatory cells infiltration, mucus exudation and bleeding. Conclusion B9N9W6 is an important antigenic substance in the pollen of P. deltoides. Due to the conserved structure of Hsp70 family, more attention should be paid to the possibility of sensitization when Hsp70 from any pathogenic species is administered. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00178-8.
Collapse
Affiliation(s)
- Wei Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.,Department of Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Xiaodong Zhan
- Department of Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Feng Jiang
- Department of Parasitology, School of Basic Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
19
|
Peng Z, Bedi S, Mann V, Sundaresan A, Homma K, Gaskey G, Kowada M, Umar S, Kulkarni AD, Eltzschig HK, Doursout MF. Neuroprotective Effects of Asparagus officinalis Stem Extract in Transgenic Mice Overexpressing Amyloid Precursor Protein. J Immunol Res 2021; 2021:8121407. [PMID: 34046506 PMCID: PMC8128539 DOI: 10.1155/2021/8121407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/25/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
To mimic Alzheimer's disease, transgenic mice overexpressing the amyloid precursor protein (APP) were used in this study. We hypothesize that the neuroprotective effects of ETAS®50, a standardized extract of Asparagus officinalis stem produced by Amino Up Co., Ltd. (Sapporo, Japan), are linked to the inhibition of the apoptosis cascade through an enhancement of the stress-response proteins: heat shock proteins (HSPs). APP-overexpressing mice (double-transgenic APP and PS1 mouse strains with a 129s6 background), ages 6-8 weeks old, and weighing 20-24 grams were successfully bred in our laboratory. The animals were divided into 5 groups. APP-overexpressing mice and wild-type (WT) mice were pretreated with ETAS®50 powder (50% elemental ETAS and 50% destrin) at 200 mg/kg and 1000 mg/kg body weight. Saline, the vehicle for ETAS®50, was administered in APP-overexpressing mice and WT mice. ETAS®50 and saline were administered by gavage daily for 1 month. Cognitive assessments, using the Morris Water Maze, demonstrated that memory was recovered following ETAS®50 treatment as compared to nontreated APP mice. At euthanization, the brain was removed and HSPs, amyloid β, tau proteins, and caspase-3 were evaluated through immunofluorescence staining with the appropriate antibodies. Our data indicate that APP mice have cognitive impairment along with elevated amyloid β, tau proteins, and caspase-3. ETAS®50 restored cognitive function in these transgenic mice, increased both HSP70 and HSP27, and attenuated pathogenic level of amyloid β, tau proteins, and caspsase-3 leading to neuroprotection. Our results were confirmed with a significant increase in HSP70 gene expression in the hippocampus.
Collapse
Affiliation(s)
- Zhanglong Peng
- Department of Anesthesiology, McGovern Medical Houston, TX, USA
| | - Supinder Bedi
- Pediatric Surgery, McGovern Medical Houston, TX, USA
| | - Vivek Mann
- Department of Biology, Texas Southern University, Houston, TX, USA
| | | | | | - Gregory Gaskey
- Department of Anesthesiology, McGovern Medical Houston, TX, USA
| | | | - Shahid Umar
- Department of Surgery, University of Kansas, Kansas City, KS, USA
| | | | | | | |
Collapse
|
20
|
Abu Almaaty AH, Mosaad RM, Hassan MK, Ali EHA, Mahmoud GA, Ahmed H, Anber N, Alkahtani S, Abdel-Daim MM, Aleya L, Hammad S. Urtica dioica extracts abolish scopolamine-induced neuropathies in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18134-18145. [PMID: 33405105 DOI: 10.1007/s11356-020-12025-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is characterized by alterations in monoamines, oxidative stress, and metabolic dysfunctions. We aim to assess the therapeutic impacts of roots or leaf extract from Urtica dioica (UD; stinging nettle) against scopolamine (SCOP)-induced memory dysfunction, amnesia, and oxidative stress in rats. Spatial memory was assessed by Y maze test. Tissue analyses of norepinephrine (NE), dopamine (DA), serotonin (5-HT), malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH, GSSG), AMP, ADP, and ATP were assessed by HPLC. mRNA levels of Tau and Hsp70 were estimated by PCR. UD extracts particularly nettle root (NR) significantly normalized the SCOP-induced memory deficits even more potent than sermion (SR) and donepezil (DON). Similarly, NR had potent therapeutic impacts on the levels of cortical and hippocampal monoamines e.g. DA, NE, and 5-HT. SCOP induced a dramatic oxidative stress as measured by MDA, NO, and GSSG levels; however, UD extracts showed significant anti-oxidative stress impacts. Additionally, UD extracts restored ATP levels and reduced the levels of AMP and ADP compared to SCOP-treated rats. Furthermore, cortical Tau and hippocampal Hsp70 were modulated by UD extracts particularly NR compared to the SCOP group. In conclusion, UD extracts particularly roots have potential therapeutic impacts against SCOP-induced neuroinflammatory and/or Alzheimer-like phenotype in rats.
Collapse
Affiliation(s)
- Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Rehab M Mosaad
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Mohamed K Hassan
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ghada A Mahmoud
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Nahla Anber
- Emergency Hospital, Mansoura University, Mansoura, Egypt
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
21
|
Demyanenko S, Nikul V, Rodkin S, Davletshin A, Evgen'ev MB, Garbuz DG. Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke. Cell Stress Chaperones 2021; 26:103-114. [PMID: 32870479 PMCID: PMC7736593 DOI: 10.1007/s12192-020-01159-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ischaemic stroke is an acute interruption of the blood supply to the brain, which leads to rapid irreversible damage to nerve tissue. Ischaemic stroke is accompanied by the development of neuroinflammation and neurodegeneration observed around the affected brain area. Heat shock protein 70 (Hsp70) facilitates cell survival under a variety of different stress conditions. Hsp70 may be secreted from cells and exhibits cytoprotective activity. This activity most likely occurs by decreasing the levels of several proinflammatory cytokines through interaction with a few receptors specific to the innate immune system. Herein, we demonstrated that intranasal administration of recombinant human Hsp70 shows a significant twofold decrease in the volume of local ischaemia induced by photothrombosis in the mouse prefrontal brain cortex. Our results revealed that intranasal injections of recombinant Hsp70 decreased the apoptosis level in the ischaemic penumbra, stimulated axonogenesis and increased the number of neurons producing synaptophysin. Similarly, in the isolated crayfish stretch receptor, consisting of a single sensory neuron surrounded by the glial envelope, exogenous Hsp70 significantly decreased photoinduced apoptosis and necrosis of glial cells. The obtained data enable one to consider human recombinant Hsp70 as a promising compound that could be translated from the bench into clinical therapies.
Collapse
Affiliation(s)
- S Demyanenko
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - V Nikul
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - S Rodkin
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - A Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
22
|
Ren J, Wei D, An H, Zhang J, Zhang Z. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112869. [PMID: 32315734 DOI: 10.1016/j.jep.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine (CHM) draws more attention to explore effective therapeutic strategy for Alzheimer's disease (AD). CHM usually uses combinations of herbs or herbal ingredients to treat diseases, with the components targeting different disease processes. CHM might improve cognition in AD and MCI patients by optimizing network activity, promoting neural plasticity and repairing damaged neurons. Shenqi Yizhi granules (SQYG), a CHM prescription, are mainly consists of Panax ginseng C.A.Mey, Astragalus membranaceus (Fisch.) Bunge, and Scutellaria baicalensis Georgi and have been used to ameliorate cognitive impairment in mild-to-moderate dementia patients. AIM OF THE STUDY To investigate the neuroprotection effect and pharmacological mechanism of SQYG in the hippocampus of 5XFAD transgenic mice. MATERIALS AND METHODS The immunofluorescence detection, 2DE-gels, mass spectrum identification, biological information analysis and Western blot were performed after SQYG treatment. RESULTS SQYG treatment significantly decreased the fluorescence intensities of anti-GFAP and anti-Iba1 in the hippocampus of 5XFAD mice. The expression levels of 31 proteins in the hippocampus were significantly influenced by SQYG, approximately 65% of these proteins are related to energy metabolism, stress response and cytoskeleton, whereas others are related to synaptic transmission, signal transduction, antioxidation, amino acid metabolism, and DNA repair. The expression of these proteins were increased. The changes in the expression levels of malate dehydrogenase (cytoplasmic) and pyruvate kinase M were confirmed by Western blot. CONCLUSIONS The pharmacological mechanism of SQYG on the hippocampus may be related to modulation of multiple pathological processes, including energy metabolism, stress response, cytoskeleton, synaptic transmission, signal transduction, and amino acid metabolism in 5XFAD mice.
Collapse
Affiliation(s)
- Jianting Ren
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Junying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Gonzalo-Gobernado R, Perucho J, Vallejo-Muñoz M, Casarejos MJ, Reimers D, Jiménez-Escrig A, Gómez A, Ulzurrun de Asanza GM, Bazán E. Liver Growth Factor "LGF" as a Therapeutic Agent for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239201. [PMID: 33276671 PMCID: PMC7730107 DOI: 10.3390/ijms21239201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder and the most common cause of dementia in aging populations. Although the pathological hallmarks of AD are well defined, currently no effective therapy exists. Liver growth factor (LGF) is a hepatic albumin-bilirubin complex with activity as a tissue regenerating factor in several neurodegenerative disorders such as Parkinson's disease and Friedreich's ataxia. Our aim here was to analyze the potential therapeutic effect of LGF on the APPswe mouse model of AD. Twenty-month-old mice received intraperitoneal (i.p.) injections of 1.6 µg LGF or saline, twice a week during three weeks. Mice were sacrificed one week later, and the hippocampus and dorsal cortex were prepared for immunohistochemical and biochemical studies. LGF treatment reduced amyloid-β (Aβ) content, phospho-Tau/Tau ratio and the number of Aβ plaques with diameter larger than 25 µm. LGF administration also modulated protein ubiquitination and HSP70 protein levels, reduced glial reactivity and inflammation, and the expression of the pro-apoptotic protein Bax. Because the administration of this factor also restored cognitive damage in APPswe mice, we propose LGF as a novel therapeutic tool that may be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
- National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain
| | - Juan Perucho
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Manuela Vallejo-Muñoz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Maria José Casarejos
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Adriano Jiménez-Escrig
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
- Servicio de Neurología, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ana Gómez
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Gonzalo M. Ulzurrun de Asanza
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
- Correspondence: ; Tel.: +34-913-368-168
| |
Collapse
|
24
|
Artesunate, as a HSP70 ATPase activity inhibitor, induces apoptosis in breast cancer cells. Int J Biol Macromol 2020; 164:3369-3375. [DOI: 10.1016/j.ijbiomac.2020.08.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
|
25
|
Azimi S, Firuzi O, Iraji A, Zonouzi A, Khoshneviszadeh M, Mahdavi M, Edraki N. Synthesis and In Vitro Biological Activity Evaluation of Novel Imidazo [2,1-B][1,3,4] Thiadiazole as Anti-Alzheimer Agents. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666181108115510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Considering that AD is multifactorial in nature, novel series of imidazo
[2,1-b][1,3,4] thiadiazole derivatives were designed to address the basic factors responsible for the
disease.
<p>
Methods: These compounds were investigated as inhibitors of beta-site APP cleaving enzyme 1,
acetylcholinesterase and butyryl cholinesterase.
<p>
Results: The BACE1 inhibitory results indicated that nitro phenyl substituted derivatives of imidazo
[2,1-b][1,3,4] thiadiazole scaffold (R2 = m-NO2) demonstrated superior BACE1 inhibitory activity
compared to other substituted moieties. In the BuChE assay, compounds 4h and 4l carrying meta
NO2 at R2 of phenyl ring turned out to be potent inhibitors.
<p>
Conclusion: In conclusion, these novel synthesized derivatives seem to be promising anti-Alzheimer
agents.
Collapse
Affiliation(s)
- Sara Azimi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Zonouzi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Salimi L, Salarinasab S, Rahbarghazi R, Nourazarian A, Nikanfar M, Avci ÇB, Bagca BG, Ozates Ay NP, Hasanpour M. High Glucose Content Abrogated the Normal Activity of Heat Shock Protein Signaling Pathway in Human Neuroblastoma Cells. Arch Med Res 2020; 51:180-184. [PMID: 32111494 DOI: 10.1016/j.arcmed.2020.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Detrimental effects of high glucose content (HGC) were proved in different tissues such as the central nervous system. It seems that diabetic conditions could also alter the functional behavior of stem cells residing in the context of the nervous system. METHODS The possible effects of 40 and 70 mmol glucose were examined on HSP70 signaling pathways with a specific focus on protein translation, folding values of human neuroblastoma cell line SHSY-5Y after 72 h. Human neuroblastoma cells were exposed to 5, 40 and 70 mmol glucose doses. The transcription level of genes related to HSP70 signaling was also evaluated by PCR array. RESULTS The data from PCR array showed high glucose especially 70 mmol could potentially modulate the normal function of protein folding, endoplasmic reticulum derived protein folding and synthesis in neuroblastoma cells (p <0.05). CONCLUSIONS Data showed that high glucose condition makes neuroblastoma cells prone to biochemical insufficiency by affecting the function of HSP70 signaling pathway and protein synthesis.
Collapse
Affiliation(s)
- Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Salarinasab
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çıgır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Milad Hasanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Kecel-Gunduz S, Budama-Kilinc Y, Cakir-Koc R, Zorlu T, Bicak B, Kokcu Y, E Ozel A, Akyuz S. In Silico design of AVP (4-5) peptide and synthesis, characterization and in vitro activity of chitosan nanoparticles. ACTA ACUST UNITED AC 2020; 28:139-157. [PMID: 31942695 DOI: 10.1007/s40199-019-00325-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Arginine-vasopressin (AVP) is a neuropeptide and provides learning and memory modulation. The AVP (4-5) dipeptide corresponds to the N-terminal fragment of the major vasopressin metabolite AVP (4-9), has a neuroprotective effect and used in the treatment of Alzheimer's and Parkinson's disease. METHODS The main objective of the present study is to evaluate the molecular mechanism of AVP (4-5) dipeptide and to develop and synthesize chitosan nanoparticle formulation using modified version of ionic gelation method, to increase drug effectiveness. For peptide loaded chitosan nanoparticles, the synthesized experiment medium was simulated for the first time by molecular dynamics method and used to determine the stability of the peptide, and the binding mechanism to protein (HSP70) was also investigated by molecular docking calculations. A potential pharmacologically features of the peptide was also characterized by ADME (Absorption, Distribution, Metabolism and Excretion) analysis. The characterization, in vitro release study, encapsulation efficiency and loading capacity of the peptide loaded chitosan nanoparticles (CS NPs) were performed by Dynamic Light Scattering (DLS), UV-vis absorption (UV), Scanning Electron Microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy techniques. Additionally, in vitro cytotoxicity of the peptide on human neuroblastoma cells (SH-SY5Y) was examined with XTT assay and the statistical analysis was evaluated. RESULTS The results showed that; hydrodynamic size, zeta potential and polydispersity index (PdI) of the peptide-loaded CS NPs were 167.6 nm, +13.2 mV, and 0.211, respectively. In vitro release study of the peptide-loaded CS NPs showed that 17.23% of the AVP (4-5)-NH2 peptide was released in the first day, while 61.13% of AVP (4-5)-NH2 peptide was released in the end of the 10th day. The encapsulation efficiency and loading capacity were 99% and 10%, respectively. According to the obtained results from XTT assay, toxicity on SHSY-5Y cells in the concentration from 0.01 μg/μL to 30 μg/μL were evaluated and no toxicity was observed. Also, neuroprotective effect was showed against H2O2 treatment. CONCLUSION The experimental medium of peptide-loaded chitosan nanoparticles was created for the first time with in silico system and the stability of the peptide in this medium was carried out by molecular dynamics studies. The binding sites of the peptide with the HSP70 protein were determined by molecular docking analysis. The size and morphology of the prepared NPs capable of crossing the blood-brain barrier (BBB) were monitored using DLS and SEM analyses, and the encapsulation efficiency and loading capacity were successfully performed with UV Analysis. In vitro release studies and in vitro cytotoxicity analysis on SHSY-5Y cell lines of the peptide were conducted for the first time. Grapical abstract.
Collapse
Affiliation(s)
- Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Rabia Cakir-Koc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Tolga Zorlu
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey.,Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Bilge Bicak
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.,Institute of Graduate Studies in Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Yagmur Kokcu
- Institute of Graduate Studies in Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Aysen E Ozel
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy, 34156, Istanbul, Turkey
| |
Collapse
|
28
|
Subramanian C, Yao J, Frank MW, Rock CO, Jackowski S. A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme a reduction. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165663. [PMID: 31918006 DOI: 10.1016/j.bbadis.2020.165663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022]
Abstract
Pantothenate kinase (PanK) is the first enzyme in the coenzyme A (CoA) biosynthetic pathway. The differential expression of the four-active mammalian PanK isoforms regulates CoA levels in different tissues and PANK2 mutations lead to Pantothenate Kinase Associated Neurodegeneration (PKAN). The molecular mechanisms that potentially underlie PKAN pathophysiology are investigated in a mouse model of CoA deficiency in the central nervous system (CNS). Both PanK1 and PanK2 contribute to brain CoA levels in mice and so a mouse model with a systemic deletion of Pank1 together with neuronal deletion of Pank2 was generated. Neuronal Pank2 expression in double knockout mice decreased starting at P9-11 triggering a significant brain CoA deficiency. The depressed brain CoA in the mice correlates with abnormal forelimb flexing and weakness that, in turn, contributes to reduced locomotion and abnormal gait. Biochemical analysis reveals a reduction in short-chain acyl-CoAs, including acetyl-CoA and succinyl-CoA. Comparative gene expression analysis reveals that the CoA deficiency in brain is associated with a large elevation of Hif3a transcript expression and significant reduction of gene transcripts in heme and hemoglobin synthesis. Reduction of brain heme levels is associated with the CoA deficiency. The data suggest a response to oxygen/glucose deprivation and indicate a disruption of oxidative metabolism arising from a CoA deficiency in the CNS.
Collapse
Affiliation(s)
| | - Jiangwei Yao
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Matthew W Frank
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Charles O Rock
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | |
Collapse
|
29
|
Aslam MS, Gull I, Mahmood MS, Iqbal MM, Abbas Z, Tipu I, Ahmed A, Athar MA. High yield expression, characterization, and biological activity of IFNα2-Tα1 fusion protein. Prep Biochem Biotechnol 2019; 50:281-291. [PMID: 31718419 DOI: 10.1080/10826068.2019.1689509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of interferon α-2 in combination with thymosin α-1 shows higher anti-cancer effect in comparison when both are used individually because of their synergistic effects. In this study we produced an important human interferon α-2-thymosin α-1 (IFNα2-Tα1) fusion protein with probable pharmaceutical properties coupled to its high-level expression, characterization, and study of its biological activity. The IFNα2-Tα1 fusion gene was constructed by over-lap extension PCR and expressed in Escherichia coli expression system. The expression of IFNα2-Tα1 fusion protein was optimized to higher level and its maximum expression was obtained in modified terrific broth medium when lactose was used as inducer. The fusion protein was refolded into its native biologically active form with maximum yield of 83.14% followed by purification with ∼98% purity and 69% final yield. A band of purified IFNα2-Tα1 fusion protein equal to ∼23 kDa was observed on 12 % SDS-PAGE gel. The integrity of IFNα2-Tα1 fusion protein was confirmed by western blot analysis and secondary structure was assessed by CD spectroscopy. When IFNα2-Tα1 fusion protein was subjected to its biological activity analysis it was observed that it exhibits both IFNα2 & Tα1 activities as well as significantly higher anticancer activity as compared to IFNα-2 alone.
Collapse
Affiliation(s)
| | - Iram Gull
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | | | | | - Zaigham Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Imran Tipu
- Department of Life Sciences, School of Sciences, University of Management and Technology, Lahore, Pakistan
| | - Aftab Ahmed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Amin Athar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
30
|
Shende P, Khair R, Gaud RS. Nanostructured cochleates: a multi-layered platform for cellular transportation of therapeutics. Drug Dev Ind Pharm 2019; 45:869-881. [PMID: 30767577 DOI: 10.1080/03639045.2019.1583757] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among lipid-based nanocarriers, multi-layered cochleates emerge as a novel delivery system because of prevention of oxidation of hydrophobic and hydrophilic drugs, enhancement in permeability, and reduction in dose of drugs. It also improves oral bioavailability and increases the safety of a drug by targeting at a specific site with less side effects. Nanostructured cochleates are used as a carrier for the delivery of water-insoluble or hydrophobic drugs of anticancer, antiviral and anti-inflammatory action. This review article focuses on different methods for preparation of cochleates, mechanism of formation of cochleates, mechanism of action like cochleate undergoes macrophagic endocytosis and release the drug into the systemic circulation by acting on membrane proteins, phospholipids, and receptors. Advanced methods such as calcium-substituted and β-cyclodextrin-based cochleates, novel techniques include microfluidic and modified trapping method. Cochleates showed enhancement in oral bioavailability of amphotericin B, delivery of factor VII, oral mucosal vaccine adjuvant-delivery system, and delivery of volatile oil. In near future, cochleate will be one of the interesting delivery systems to overcome the stability and encapsulation efficiency issues associated with liposomes. The current limiting factors for commercial preparation of cochleates involve high cost of manufacturing, lack of standardization, and specialized equipments.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Rohan Khair
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Ram S Gaud
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| |
Collapse
|
31
|
Ng SW, Chan Y, Chellappan DK, Madheswaran T, Zeeshan F, Chan YL, Collet T, Gupta G, Oliver BG, Wark P, Hansbro N, Hsu A, Hansbro PM, Dua K, Panneerselvam J. Molecular modulators of celastrol as the keystones for its diverse pharmacological activities. Biomed Pharmacother 2019; 109:1785-1792. [DOI: 10.1016/j.biopha.2018.11.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 12/30/2022] Open
|
32
|
An H, Wei D, Qian Y, Li N, Wang X. SQYZ granules, a traditional Chinese herbal, attenuate cognitive deficits in AD transgenic mice by modulating on multiple pathogenesis processes. Am J Transl Res 2018; 10:3857-3875. [PMID: 30662636 PMCID: PMC6291719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) involves multiple contributing factors, including amyloid β (Aβ) peptide aggregation, inflammation, oxidative stress, and others. Effective therapeutic drugs for treating AD are urgently needed. SQYZ granules (SQYZ), a Chinese herbal preparation, are mainly composed of the ginsenoside Rg1, astragaloside A and baicalin, and have been widely used to treat dementias for decades in China. In this study, we found the therapeutic effects of SQYZ on the cognitive impairments in an AD mouse model, the β-amyloid precursor protein (APP) and presenilin-1 (PS1) double-transgenic mouse, which co-expresses five familial AD mutations (5XFAD); next, we further explored the underlying mechanism and observed that after SQYZ treatment, the Aβ burden and inflammatory reactions in the brain were significantly attenuated. Through a proteomic approach, we found that SQYZ regulated the expression of 27 proteins, mainly those related to neuroinflammation, stress responses and energy metabolism. These results suggested that SQYZ has the ability to improve the cognitive impairment and ameliorate the neural pathological changes in AD, and the therapeutic mechanism may be related to the modulation of multiple processes related to AD pathogenesis, especially anti-neuroinflammation, promotion of stress recovery and improvement of energy metabolism.
Collapse
Affiliation(s)
- Haiting An
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing 100700, China
| | - Yanjing Qian
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Ning Li
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Xiaomin Wang
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| |
Collapse
|
33
|
Devi S, Yadav R, Chanana P, Arya R. Fighting the Cause of Alzheimer's and GNE Myopathy. Front Neurosci 2018; 12:669. [PMID: 30374284 PMCID: PMC6196280 DOI: 10.3389/fnins.2018.00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Age is the common risk factor for both neurodegenerative and neuromuscular diseases. Alzheimer disease (AD), a neurodegenerative disorder, causes dementia with age progression while GNE myopathy (GNEM), a neuromuscular disorder, causes muscle degeneration and loss of muscle motor movement with age. Individuals with mutations in presenilin or amyloid precursor protein (APP) gene develop AD while mutations in GNE (UDP N-acetylglucosamine 2 epimerase/N-acetyl Mannosamine kinase), key sialic acid biosynthesis enzyme, cause GNEM. Although GNEM is characterized with degeneration of muscle cells, it is shown to have similar disease hallmarks like aggregation of Aβ and accumulation of phosphorylated tau and other misfolded proteins in muscle cell similar to AD. Similar impairment in cellular functions have been reported in both disorders such as disruption of cytoskeletal network, changes in glycosylation pattern, mitochondrial dysfunction, oxidative stress, upregulation of chaperones, unfolded protein response in ER, autophagic vacuoles, cell death, and apoptosis. Interestingly, AD and GNEM are the two diseases with similar phenotypic condition affecting neuron and muscle, respectively, resulting in entirely different pathology. This review represents a comparative outlook of AD and GNEM that could lead to target common mechanism to find a plausible therapeutic for both the diseases.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pratibha Chanana
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
34
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
35
|
Cheng J, North BJ, Zhang T, Dai X, Tao K, Guo J, Wei W. The emerging roles of protein homeostasis-governing pathways in Alzheimer's disease. Aging Cell 2018; 17:e12801. [PMID: 29992725 PMCID: PMC6156496 DOI: 10.1111/acel.12801] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Pathways governing protein homeostasis are involved in maintaining the structural, quantitative, and functional stability of intracellular proteins and involve the ubiquitin-proteasome system, autophagy, endoplasmic reticulum, and mTOR pathway. Due to the broad physiological implications of protein homeostasis pathways, dysregulation of proteostasis is often involved in the development of multiple pathological conditions, including Alzheimer's disease (AD). Similar to other neurodegenerative diseases that feature pathogenic accumulation of misfolded proteins, Alzheimer's disease is characterized by two pathological hallmarks, amyloid-β (Aβ) plaques and tau aggregates. Knockout or transgenic overexpression of various proteostatic components in mice results in AD-like phenotypes. While both Aβ plaques and tau aggregates could in turn enhance the dysfunction of these proteostatic pathways, eventually leading to apoptotic or necrotic neuronal death and pathogenesis of Alzheimer's disease. Therefore, targeting the components of proteostasis pathways may be a promising therapeutic strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Brian J. North
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Tao Zhang
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Xiangpeng Dai
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Kaixiong Tao
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianping Guo
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Wenyi Wei
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
36
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
37
|
Luttrull JK, Sinclair SH, Elmann S, Glaser BM. Low incidence of choroidal neovascularization following subthreshold diode micropulse laser (SDM) in high-risk AMD. PLoS One 2018; 13:e0202097. [PMID: 30138455 PMCID: PMC6107149 DOI: 10.1371/journal.pone.0202097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/02/2018] [Indexed: 01/10/2023] Open
Abstract
Purpose To determine the incidence of new choroidal neovascularization (CNV) in eyes with dry age-related macular degeneration (AMD) following subthreshold diode micropulse laser (SDM). Method In an observational retrospective cohort study, the records of all patients active in the electronic medical records database were reviewed to identify eyes with dry AMD treated with SDM. Identified eyes were classified by simplified AREDS categories, and analyzed for the primary endpoint of new CNV after treatment. Results The EMR revealed SDM was offered to 373/392 (95%) patients with dry AMD and elected by 363/373 (97%) between 2008–2017. Follow up was available for 354/363 patients (547 eyes, 98%) (range 6–108 mos., avg. 22). CNV risk factors included age (median 84 years, 67% > 80); reticular pseudodrusen (214 eyes, 39%); AREDS category (78% category 3 and 4); and fellow eye CNV (128 eyes, 23%). New CNV developed in 9/547 eyes (1.6%, annualized rate 0.87%). Visual acuity was unchanged. There were no adverse treatment effects. Summary In a review of a large group of eyes with exceptionally high-risk AMD, SDM was followed by a very low incidence of new CNV. If confirmed by further study, SDM would offer a new and highly effective treatment to reduce the risk of vision loss from AMD.
Collapse
|
38
|
Cunningham TJ, Greenstein J, Yao L, Fischer I, Connors T. Heptamer Peptide Disassembles Native Amyloid in Human Plasma Through Heat Shock Protein 70. Rejuvenation Res 2018; 21:527-534. [PMID: 29651925 DOI: 10.1089/rej.2017.2049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proteostasis, which includes the repair and disposal of misfolded proteins, depends, in part, on the activity of heat shock proteins (HSPs), a well-known class of chaperone molecules. When this process fails, abnormally folded proteins may accumulate in cells, tissues, and blood. These species are a hallmark of protein aggregation diseases, but also amass during aging, often in the absence of an identified clinical disorder. We report that a neuroprotective cyclic heptapeptide, CHEC-7, which has been applied systemically as a therapeutic in animal neurodegeneration models, disrupts such aggregates and inhibits amyloidogenesis when added in nanomolar concentrations to human plasma. This effect includes aggregates of amyloid beta (Aβ1-40, 1-42), prominent features of Alzheimer's disease pathology. The activity of endogenous HSP70, a recently discovered target of the peptide, is required as demonstrated by both antibody blocking and application of pifithrin-μ, an HSP70 inhibitor. CHEC-7 is the first high-affinity compound to stimulate HSP70's disaggregase activity and therefore enable this endogenous mechanism in a human systemic environment, increasing the likelihood of a convenient therapy for protein aggregate disease, including age-related failures of protein repair.
Collapse
Affiliation(s)
- Timothy J Cunningham
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Lihua Yao
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Theresa Connors
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Kitzlerová E, Fišar Z, Lelková P, Jirák R, Zvěřová M, Hroudová J, Manukyan A, Martásek P, Raboch J. Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer's Disease or Depressive Disorder. Med Sci Monit 2018; 24:2599-2619. [PMID: 29703883 PMCID: PMC5944403 DOI: 10.12659/msm.907202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer’s disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. Material/Methods A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. Results Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ɛ4 allele of APOE. Conclusions Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ɛ4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ɛ4 allele.
Collapse
Affiliation(s)
- Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Lelková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ada Manukyan
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
40
|
Cantres-Rosario YM, Acevedo-Mariani FM, Pérez-Laspiur J, Haskins WE, Plaud M, Cantres-Rosario YM, Skolasky R, Méndez-Bermúdez I, Wojna V, Meléndez LM. Microwave & magnetic proteomics of macrophages from patients with HIV-associated cognitive impairment. PLoS One 2017; 12:e0181779. [PMID: 28746408 PMCID: PMC5528838 DOI: 10.1371/journal.pone.0181779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE HIV-infected monocytes can infiltrate the blood brain barrier as differentiated macrophages to the central nervous system, becoming the primary source of viral and cellular neurotoxins. The final outcome is HIV-associated cognitive impairment (HACI), which remain prevalent today, possibly due to the longer life-span of the patients treated with combined anti-retroviral therapy. Our main goal was to characterize the proteome of monocyte-derived macrophages (MDM) from HACI patients, and its association with their cognitive status, to find novel targets for therapy. METHODS MDM were isolated from the peripheral blood of 14 HIV-seropositive women characterized for neurocognitive function, including: four normal cognition (NC), five asymptomatic (A), and five with cognitive impaired (CI). Proteins from macrophage lysates were isobaric-labeled with the microwave and magnetic (M2) sample preparation method followed by liquid chromatography-tandem mass spectrometry-based protein identification and quantification. Differences in protein abundance across groups classified by HACI status were determined using analysis of variance. RESULTS A total of 2,519 proteins were identified with 2 or more peptides and 28 proteins were quantified as differentially expressed. Statistical analysis revealed increased abundance of 17 proteins in patients with HACI (p<0.05), including several enzymes associated to the glucose metabolism. Western blot confirmed increased expression of 6-Phosphogluconate dehydrogenase and L-Plastin in A and CI patients over NC and HIV seronegatives. CONCLUSIONS This is the first quantitative proteomics study exploring the changes in protein abundance of macrophages isolated from patients with HACI. Further studies are warranted to determine if these proteins may be target candidates for therapy development against HACI.
Collapse
Affiliation(s)
- Yisel M. Cantres-Rosario
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Juliana Pérez-Laspiur
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Marines Plaud
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Yadira M. Cantres-Rosario
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Richard Skolasky
- John Hopkins University, Department of Orthopedic Surgery, Baltimore, Maryland, United States of America
| | - Israel Méndez-Bermúdez
- Department of Biostatistics and Epidemiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Valerie Wojna
- Department of Medicine, Neurology Division, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
41
|
Pasban-Aliabadi H, Esmaeili-Mahani S, Abbasnejad M. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res 2017; 20:125-133. [PMID: 27814668 DOI: 10.1089/rej.2016.1836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.
Collapse
Affiliation(s)
- Hamzeh Pasban-Aliabadi
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| | - Saeed Esmaeili-Mahani
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran .,2 Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences , Kerman, Iran
| | - Mehdi Abbasnejad
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| |
Collapse
|
42
|
Yi-Zhi-Fang-Dai Formula Protects against A β1-42 Oligomer Induced Cell Damage via Increasing Hsp70 and Grp78 Expression in SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8591656. [PMID: 27829867 PMCID: PMC5086516 DOI: 10.1155/2016/8591656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 11/19/2022]
Abstract
Yi-Zhi-Fang-Dai formula (YZFDF) is an experiential prescription used to cure dementia cases like Alzheimer's disease (AD). In this study, the main effective compounds of YZFDF have been identified from this formula, and the neuroprotective effect against Aβ1–42 oligomer of YZFDF has been tested in SH-SY5Y cells. Our results showed that YZFDF could increase cell viability and could attenuate endothelial reticula- (ER-) mediated apoptosis. Evidence indicated that protein folding and endothelial reticula stress (ERS) played an important role in the AD pathological mechanism. We further explored the expression of Hsp70, an important molecular chaperon facilitating the folding of other proteins, and Grp78, the marker protein of ERS in SH-SY5Y cells. Data told us that YZFDF pretreatment could influence the mRNA and protein expression of these two proteins. At last, we also found that YZFDF pretreatment could activate Akt in SH-SY5Y cells. All these above indicate that YZFDF could be a potent therapeutic candidate for AD treatment.
Collapse
|
43
|
Maitre M, Klein C, Mensah-Nyagan AG. A proposed preventive role for Gamma-hydroxybutyrate (Xyrem(R)) in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2016; 8:37. [PMID: 27601032 PMCID: PMC5013588 DOI: 10.1186/s13195-016-0205-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Gamma-hydroxybutyrate (GHB or XyremR) is frequently used in humans for several clinical indications, including anesthesia, narcolepsy/cataplexy, and alcohol-withdrawal symptoms. Pharmacological effects induced in the brain by therapeutic doses of XyremR are generally GABAergic-dependent. These effects allow sedation, stress/anxiety reduction, deep sleep induction, decrease of neuroinflammation, and neuroprotection. Furthermore, XyremR promotes the expression of pivotal genes reducing toxic proteinopathies, as demonstrated in laboratory animal models. Altogether, these data represent additional evidence to suggest that XyremR may be tested during repeated short periods in populations at risk for Alzheimer’s disease.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000, Strasbourg, France.
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000, Strasbourg, France
| | - Ayikoe G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000, Strasbourg, France
| |
Collapse
|
44
|
Chemical modifications of amyloid-β(1-42) have a significant impact on the repertoire of brain amyloid-β(1-42) binding proteins. Biochimie 2016; 128-129:55-8. [DOI: 10.1016/j.biochi.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
|
45
|
Khan AT, Dobson RJB, Sattlecker M, Kiddle SJ. Alzheimer's disease: are blood and brain markers related? A systematic review. Ann Clin Transl Neurol 2016; 3:455-62. [PMID: 27547773 PMCID: PMC4891999 DOI: 10.1002/acn3.313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/29/2016] [Accepted: 04/07/2016] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Peripheral protein biomarkers of Alzheimer's disease (AD) may help identify novel treatment avenues by allowing early diagnosis, recruitment to clinical trials, and treatment initiation. The purpose of this review was to determine which proteins have been found to be differentially expressed in the AD brain and whether these proteins are also found within the blood of AD patients. METHODS A two-stage approach was conducted. The first stage involved conducting a systematic search to identify discovery-based brain proteomic studies of AD. The second stage involved comparing whether proteins found to be differentially expressed in AD brain were also differentially expressed in the blood. RESULTS Across 11 discovery based brain proteomic studies 371 proteins were at different levels in the AD brain. Nine proteins were frequently found, defined as appearing in at least three separate studies. Of these proteins heat-shock cognate 71 kDa, ubiquitin carboxyl-terminal hydrolase isozyme L1, and 2',3'-cyclic nucleotide 3' phosphodiesterase alone were found to share a consistent direction of change, being consistently upregulated in studies they appeared in. Eighteen proteins seen as being differentially expressed within the AD brain were present in blood proteomic studies of AD. Only complement C4a was seen multiple times within both the blood and brain proteomic studies. INTERPRETATION We report a number of proteins appearing in both the blood and brain of AD patients. Of these proteins, C4a may be a good candidate for further follow-up in large-scale replication efforts.
Collapse
Affiliation(s)
- Ali T. Khan
- GKT School of Medical EducationKing's College LondonLondonUnited Kingdom
| | - Richard J. B. Dobson
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| | - Martina Sattlecker
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| | - Steven J. Kiddle
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| |
Collapse
|
46
|
|
47
|
The Role of α-Synuclein and LRRK2 in Tau Phosphorylation. PARKINSONS DISEASE 2015; 2015:734746. [PMID: 25977830 PMCID: PMC4419261 DOI: 10.1155/2015/734746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023]
Abstract
There is now a considerable body of experimental evidence that Parkinson's disease arises through physiological interaction of causative molecules, leading to tau pathology. In this review, we discuss the physiological role of α-synuclein and LRRK2 in the abnormal phosphorylation of tau. In addition, as recent reports have indicated that heat shock proteins- (HSPs-) inducing drugs can help to ameliorate neurodegenerative diseases associated with tau pathology, we also discuss therapeutic strategies for PD focusing on inhibition of α-synuclein- and LRRK2-associated tau phosphorylation by HSPs.
Collapse
|