1
|
Khol M, Ma F, Lei L, Liu W, Liu X. A Frontier Review of Nutraceutical Chinese Yam. Foods 2024; 13:1426. [PMID: 38790726 PMCID: PMC11119861 DOI: 10.3390/foods13101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Yams are the edible subterranean rhizomes, or tubers, of plants from the genus Dioscorea. There are approximately 600 species of yam plants in the world, with more than 90 of these growing in East Asia. One particular species, Dioscorea opposita Thunb., is highly praised as "the Chinese yam". This distinction arises from millennia of storied history, both as a nutritional food source and as a principal ingredient in traditional Chinese medicine. Among the many cultivars of Dioscorea opposita Thunb., Huai Shanyao has been widely regarded as the best. This review surveyed the historical background, physiochemical composition, applications as food and medicine, and research prospects for the Chinese yam. Modern science is finally beginning to confirm the remarkable health benefits of this yam plant, long-known to the Chinese people. Chinese yam promises anti-diabetic, anti-oxidative, anti-inflammatory, immunomodulatory, anti-hyperlipidemic, anti-hypertensive, anti-cancer, and combination treatment applications, both as a functional food and as medicine.
Collapse
Affiliation(s)
- Matthew Khol
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
- School of Pharmacy, Henan University, Zhengzhou 450046, China
| | - Fanyi Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou 450046, China
| | - Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
| | - Wei Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Aguilar-Guadarrama AB, Yáñez-Ibarra G, Cancino-Marentes ME, González-Ibarra P, Ortiz-Andrade R, Sánchez-Recillas A, Rodríguez-Carpena JG, Aguirre-Vidal Y, Medina-Diaz IM, Ávila-Villarreal G. Chromatographic Techniques and Pharmacological Analysis as a Quality Control Strategy for Serjania triquetra a Traditional Medicinal Plant. Pharmaceuticals (Basel) 2022; 15:ph15101289. [PMID: 36297401 PMCID: PMC9611020 DOI: 10.3390/ph15101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Serjania triquetra is a medicinal plant widely used in traditional medicine for the treatment of urinary tract diseases, renal affections, and its complications. The population can buy this plant in folk markets as a raw material mixed with several herbal remedies or as a health supplement. On the market, two commercial presentations were found for the vegetal material; one had a bulk appearance and the other was marketed wrapped in cellophane bags (HESt-2, HESt-3). Nevertheless, the plant has not been exhaustively investigated and quality control techniques have not been developed. This research aimed to realize a phytochemical study using an authentic, freshly collected sample as a reference for S. triquetra (HESt-1), using the compounds identified. A method for the determination of preliminary chromatographic fingerprinting was developed. Additionally, the vasorelaxant effect from three samples was evaluated with ex vivo rat models. Thus, three hydroalcoholic extracts (HESt-1, HESt-2, and HESt-3) were prepared by maceration. A total of nine compounds were fully identified from HESt-1 after the extract was subjected to open-column chromatography. Seven metabolites were detected by gas chromatography, while ursolic acid (UA) and allantoin were isolated and identified using UPLC-MS and NMR, respectively. Three extracts were analyzed for their chromatographic fingerprint by UPLC-MS. Biological activity was explored by ex vivo rat aorta ring model to evaluate vasorelaxant activity. All extracts showed a vasorelaxant effect in a concentration-dependent and endothelium-dependent manner. S. triquetra vascular activity may be attributed to UA and allantoin compounds previously described in the literature for this activity.
Collapse
Affiliation(s)
- A. Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico
| | - Guadalupe Yáñez-Ibarra
- Centro Nayarita de Innovación y Transferencia de Tecnología A. C. “Unidad Especializada en I+D+i en Calidad de Alimentos y Productos Naturales”, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | | | - Paola González-Ibarra
- Unidad Académica de Salud Integral, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Rolffy Ortiz-Andrade
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida 97069, Mexico
| | - Amanda Sánchez-Recillas
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida 97069, Mexico
| | - Javier-German Rodríguez-Carpena
- Centro Nayarita de Innovación y Transferencia de Tecnología A. C. “Unidad Especializada en I+D+i en Calidad de Alimentos y Productos Naturales”, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Yoshajandith Aguirre-Vidal
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A.C. (INECOL), Xalapa 91073, Mexico
| | - Irma-Martha Medina-Diaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico
| | - Gabriela Ávila-Villarreal
- Centro Nayarita de Innovación y Transferencia de Tecnología A. C. “Unidad Especializada en I+D+i en Calidad de Alimentos y Productos Naturales”, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
- Correspondence:
| |
Collapse
|
3
|
Hamidi-zad Z, Moslehi A, Rastegarpanah M. Attenuating effects of allantoin on oxidative stress in a mouse model of nonalcoholic steatohepatitis: role of SIRT1/Nrf2 pathway. Res Pharm Sci 2021; 16:651-659. [PMID: 34760013 PMCID: PMC8562413 DOI: 10.4103/1735-5362.327511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/21/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is considered a common and serious liver disease, which develops into cirrhosis, fibrosis, and even hepatocellular carcinoma. Oxidative stress is identified as an important factor in the induction and promotion of NASH. Allantoin is a natural and safe compound and has notable effects on lipid metabolism, inflammation, and oxidative stress. Therefore, this study was aimed to assess the role of allantoin on the oxidative stress and SIRT1/Nrf2 pathway in a mouse model of NASH. EXPERIMENTAL APPROACH C57/BL6 male mice received saline and allantoin (saline as the control and allantoin as the positive control groups). NASH was induced by a methionine-choline deficient diet (MCD). In the NASH-allantoin (NASH-Alla) group, allantoin was injected for 4 weeks in the mice feeding on an MCD diet. Afterward, histopathological, serum, oxidative stress, and western blot evaluations were performed. FINDINGS/RESULTS We found NASH provided hepatic lipid accumulation and inflammation. Superoxide dismutase (SOD) and glutathione (GSH) levels decreased, lipid peroxidation increased, and the expression of SIRT1 and Nrf2 downregulated. However, allantoin-treatment decreased serum cholesterol, ALT, and AST. Liver steatosis and inflammation were improved. Protein expression of SIRT1 and Nrf2 were upregulated and SOD, CAT, and GSH levels increased and lipid peroxidation decreased. CONCLUSION AND IMPLICATIONS It seems that the antioxidant effects of allantoin might have resulted from the activation of SIRT1/Nrf2 pathway and increase of cellular antioxidant power.
Collapse
Affiliation(s)
- Zeinab Hamidi-zad
- Physiology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Azam Moslehi
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, I.R. Iran
| | | |
Collapse
|
4
|
Allantoin from Valuable Romanian Animal and Plant Sources with Promising Anti-Inflammatory Activity as a Nutricosmetic Ingredient. SUSTAINABILITY 2021. [DOI: 10.3390/su131810170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Helix aspersa (HA), Helix pomatia (HP) and Symphytum officinale are common organisms in Romania’s biosphere, widely known for their allantoin content and their therapeutic properties. Herein, the allantoin was separated and quantified from the aqueous extracts of Romanian comfrey root and the secretions of HA and HP snails. This study also focused on determining the antioxidant and anti-inflammatory activities of these Romanian allantoin-rich samples. The plant extracts were obtained through two methods: ultrasonic extraction and enzymatic ultrasonic extraction. A microplate method was used for the quantitative determination of allantoin content. The antioxidant activity was measured by using the DPPH radical scavenging method. The antioxidant capacity of the samples was studied in order to observe the type of interactions generated by the chemical complex present in their composition. High concentrations of allantoin were obtained by enzymatic ultrasonic extraction method (EUE—102 ± 0.74 μg/mL), and also in the water-soluble fraction of the snail secretion (FS1—22.051 μg/mL). The antioxidant screening suggests that Symphytum officinale and snail mucus extracts could be used as promising natural substitutes for synthetic antioxidants in products used for therapeutic purposes. The evaluation of anti-inflammatory activity was also investigated, allantoin-rich samples showing a promising action (FS1—81.87 ± 2.34%). In future, the inclusion of allantoin-rich extracts in various novel pharmaceutical forms for new therapeutic applications could be achieved. The study will continue with the formulation of a nutricosmetic product with snail mucus and Symphytum officinale extract as principal bioactive ingredients.
Collapse
|
5
|
Cha SB, Kim SS, Oh JJ, Lee WJ, Song SW, Lim JO, Kim JC. Evaluation of the in vitro and in vivo genotoxicity of a Dioscorea Rhizome water extract. Toxicol Res 2021; 37:385-393. [PMID: 34295802 PMCID: PMC8249543 DOI: 10.1007/s43188-020-00077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022] Open
Abstract
Dioscorea Rhizome is commonly used in traditional herbal medicines for the treatment of diabetes, hyperthyroidism, liver damage, neuropathy, and asthma. Here, we investigated the genotoxicity potential of D. Rhizome water extract (DRWE) using three standard battery systems in accordance with the test guidelines of the Organisation for Economic Cooperation and Development and Ministry of Food and Drug Safety as well as the principles of Good Laboratory Practice. A bacterial reverse mutation test (Ames test) was performed using the direct plate incorporation method in the presence or absence of a metabolic activation system (S9 mixture). The tester strains used included four histidine auxotrophic strains of Salmonella typhimurium, TA100, TA1535, TA98, and TA1537, along with a tryptophan auxotrophic strain of Escherichia coli, WP2 uvrA. An in vitro chromosome aberration test was performed using CHL/IU cells originally derived from the lung of a female Chinese hamster in the presence or absence of the S9 mixture. An in vivo mouse bone marrow micronucleus test was performed using male ICR mice. The micronucleus was confirmed after observation of the micro-nucleated polychromatic. The Ames test showed that DRWE did not induce gene mutations at any dose level in any of the tested strains. Additionally, DRWE did not result in any chromosomal aberrations specified in the in vitro chromosomal aberration and in vivo micronucleus tests. These results showed that DRWE exhibited neither mutagenic nor clastogenic potential in either the in vitro or in vivo test systems.
Collapse
Affiliation(s)
- Seung-Beom Cha
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Seong-Sook Kim
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Jeong-Ja Oh
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Woo-Joo Lee
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Si-Whan Song
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Je-Oh Lim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| |
Collapse
|
6
|
Hautbergue T, Antigny F, Boët A, Haddad F, Masson B, Lambert M, Delaporte A, Menager JB, Savale L, Pavec JL, Fadel E, Humbert M, Junot C, Fenaille F, Colsch B, Mercier O. Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure. Cells 2021; 10:1559. [PMID: 34205639 PMCID: PMC8235667 DOI: 10.3390/cells10061559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure. METHODS In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models. RESULTS CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Angèle Boët
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Réanimation des Cardiopathies Congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - François Haddad
- Cardiovascular Medicine, Stanford Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Amélie Delaporte
- Service d’Anesthésie, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France;
| | - Jean-Baptiste Menager
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Laurent Savale
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jérôme Le Pavec
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Elie Fadel
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Benoit Colsch
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| |
Collapse
|
7
|
Wu W, Yang S, Liu P, Yin L, Gong Q, Zhu W. Systems Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of Radix Puerariae for Treatment of Hypertension. Front Pharmacol 2020; 11:345. [PMID: 32265716 PMCID: PMC7107014 DOI: 10.3389/fphar.2020.00345] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertension is a clinical cardiovascular syndrome characterized by elevated systemic arterial pressure with or without multiple cardiovascular risk factors. Radix Pueraria (RP) has the effects of anti-myocardial ischemia, anti-arrhythmia, vasodilatation, blood pressure reduction, anti-inflammation, and attenuating insulin resistance. Although RP can be effective for the treatment of hypertension, its active compounds, drug targets, and exact molecular mechanism are still unclear. In this study, systems pharmacology was used to analyze the active compounds, drug target genes, and key pathways of RP in the treatment of hypertension. Thirteen active compounds and related information on RP were obtained from the TCMSP database, and 140 overlapping genes related to hypertension and drugs were obtained from the GeneCards and OMIM databases. A PPI network and a traditional Chinese medicine (TCM) comprehensive network (Drug-Compounds-Genes-Disease network) were constructed, and 2,246 GO terms and 157 pathways were obtained by GO enrichment analysis and KEGG pathway enrichment analysis. Some important active compounds and targets were evaluated by in vitro experiments. This study shows that RP probably acts by influencing the proliferation module, apoptosis module, inflammation module, and others when treating hypertension. This study provides novel insights for researchers to systematically explore the mechanism of action of TCM.
Collapse
Affiliation(s)
| | | | | | | | - Qianfeng Gong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
De Becker B, Coremans C, Chaumont M, Delporte C, Van Antwerpen P, Franck T, Rousseau A, Zouaoui Boudjeltia K, Cullus P, van de Borne P. Severe Hypouricemia Impairs Endothelium-Dependent Vasodilatation and Reduces Blood Pressure in Healthy Young Men: A Randomized, Placebo-Controlled, and Crossover Study. J Am Heart Assoc 2019; 8:e013130. [PMID: 31752638 PMCID: PMC6912967 DOI: 10.1161/jaha.119.013130] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Uric acid (UA) is a plasmatic antioxidant that has possible effects on blood pressure. The effects of UA on endothelial function are unclear. We hypothesize that endothelial function is not impaired unless significant UA depletion is achieved through selective xanthine oxidase inhibition with febuxostat and recombinant uricase (rasburicase). Methods and Results Microvascular hyperemia, induced by iontophoresis of acetylcholine and sodium nitroprusside, and heating‐induced local hyperemia after iontophoresis of saline and a specific nitric oxide synthase inhibitor were assessed by laser Doppler imaging. Blood pressure and renin‐angiotensin system markers were measured, and arterial stiffness was assessed. CRP (C‐reactive protein), allantoin, chlorotyrosine/tyrosine ratio, homocitrulline/lysine ratio, myeloperoxidase activity, malondialdehyde, and interleukin‐8 were used to characterize inflammation and oxidative stress. Seventeen young healthy men were enrolled in a randomized, double‐blind, placebo‐controlled, 3‐way crossover study. The 3 compared conditions were placebo, febuxostat alone, and febuxostat together with rasburicase. The allantoin (μmol/L)/UA (μmol/L) ratio differed between sessions (P<0.0001). During the febuxostat‐rasburicase session, heating‐induced hyperemia became altered in the presence of nitric oxide synthase inhibition; and systolic blood pressure, angiotensin II, and myeloperoxidase activity decreased (P≤0.03 versus febuxostat). The aldosterone concentration decreased in the febuxostat‐rasburicase group (P=0.01). Malondialdehyde increased when UA concentration decreased (both P<0.01 for febuxostat and febuxostat‐rasburicase versus placebo). Other parameters remained unchanged. Conclusions A large and short‐term decrease in UA in humans alters heat‐induced endothelium‐dependent microvascular vasodilation, slightly reduces systolic blood pressure through renin‐angiotensin system activity reduction, and markedly reduces myeloperoxidase activity when compared with moderate UA reduction. A moderate or severe hypouricemia leads to an increase in lipid peroxidation through loss of antioxidant capacity of plasma. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03395977.
Collapse
Affiliation(s)
- Benjamin De Becker
- Department of Cardiology Erasme Hospital Université Libre de Bruxelles Brussels Belgium
| | - Catherine Coremans
- Department A: Research in Drug Development (RD3)-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy Université Libre de Bruxelles Brussels Belgium
| | - Martin Chaumont
- Department of Cardiology Erasme Hospital Université Libre de Bruxelles Brussels Belgium
| | - Cédric Delporte
- Department A: Research in Drug Development (RD3)-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy Université Libre de Bruxelles Brussels Belgium
| | - Pierre Van Antwerpen
- Department A: Research in Drug Development (RD3)-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy Université Libre de Bruxelles Brussels Belgium
| | - Thierry Franck
- Centre of Oxygen, Research and Development Institute of Chemistry B 6a University of Liège-Sart Tilman Liège Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB 222) Medicine Faculty Université Libre de Bruxelles Centre Hospitalier Universitaire de Charleroi, Hopital Vesale Montigny-le-Tilleul Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222) Medicine Faculty Université Libre de Bruxelles Centre Hospitalier Universitaire de Charleroi, Hopital Vesale Montigny-le-Tilleul Belgium
| | - Pierre Cullus
- Biostatistics Department Medicine Faculty Université Libre de Bruxelles Brussels Belgium
| | - Philippe van de Borne
- Department of Cardiology Erasme Hospital Université Libre de Bruxelles Brussels Belgium
| |
Collapse
|
9
|
N S V, Mohamad A, Razdan R. Allantoin attenuates deficits of behavioural and motor nerve conduction in an animal model of cisplatin-induced neurotoxicity in rats. Animal Model Exp Med 2019; 2:114-120. [PMID: 31392304 PMCID: PMC6601039 DOI: 10.1002/ame2.12070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The aim of the present study was to evaluate the neuroprotective effect of allantoin in cisplatin-induced toxicity in rats. METHODS Adult male Wistar rats weighing 160-200 g were used. Neuropathy was induced by injecting cisplatin (2 mg/kg, ip, twice a week for 6 weeks) and the rats were concurrently treated with allantoin (200 and 400 mg/kg, po) for 8 weeks. At the end of the study, body weight and hemogram were measured. Behavioural tests were performed, including tests for cold and hot hyperalgesia, motor co-ordination, locomotor activity, mechano-tactile allodynia and mechanical hyperalgesia. The rats were then sacrificed and sciatic nerve conduction velocity was determined. The antioxidant enzyme and nitric oxide levels in sciatic nerve homogenates were measured. RESULTS In this study, allantoin restored the motor nerve conduction velocity deficits induced by cisplatin, and the allantoin-treated rats showed improvement in cold and thermal hyperalgesia, mechano-tactile allodynia, and mechanical hyperalgesia. Allantoin treatment also improved the rats' hematological status, increasing haemoglobin, platelet and RBC counts compared to the cisplatin-treated group. Allantoin treatment also mitigated the functional abnormalities seen in the cisplatin neuropathy group, protecting neurons from the neurotoxic effects of cisplatin. CONCLUSION Allantoin shows promise for use as an adjuvant drug in cancer treatment to protect against cisplatin-induced neuropathy.
Collapse
Affiliation(s)
- Vindya N S
- Department of PharmacologyAl‐Ameen College of PharmacyBangaloreKarnataka
| | - Aqib Mohamad
- Department of PharmacologyAl‐Ameen College of PharmacyBangaloreKarnataka
| | - Rema Razdan
- Department of PharmacologyAl‐Ameen College of PharmacyBangaloreKarnataka
| |
Collapse
|
10
|
Park NC, Kim SW, Hwang SY, Park HJ. Efficacy and safety of an herbal formula (KBMSI-2) in the treatment of erectile dysfunction: A preliminary clinical study. Investig Clin Urol 2019; 60:275-284. [PMID: 31294137 PMCID: PMC6607068 DOI: 10.4111/icu.2019.60.4.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/25/2019] [Indexed: 01/18/2023] Open
Abstract
Purpose To investigate the efficacy and safety of KBMSI-2, an herbal formula consisting of Ginseng Radix Rubra, Dioscorea tenuipes, Cornus officinalis Sieb. et Zucc., Lycium chinense Mill, and Curcuma longa Linn, for the treatment of erectile dysfunction (ED). Materials and Methods Patients were instructed to take placebo or 6 g of KBMSI-2 twice per day for 8 weeks, at least 1 hour after food intake. The primary outcome was a change from baseline in erectile function (EF) domain scores of the International Index of Erectile Function (IIEF) questionnaire. Secondary outcome included changes from baseline in all domain scores of the IIEF, scores on the Aging Males' Symptoms scale, and serum total testosterone levels, as well as changes in questions 2 and 3 of the Sexual Encounter Profile, responses to the Global Assessment Question, and changes in the number of ‘yes’ responses on the Androgen Deficiency in Aging Males questionnaire. Results Patients receiving KBMSI-2 had a statistically significant improvement in baseline IIEF-EF domain scores at 8 weeks compared to the placebo group. Intercourse satisfaction domain and the total IIEF scores also increased in the KBMSI-2 group. However, we could not find any significant differences in other efficacy variables between the groups. Only one patient had an adverse event, which was mild in severity. Conclusions This preliminary clinical study of KBMSI-2 shows significant improvements in EF and intercourse satisfaction, as measured by the IIEF in patients with ED. Further studies using a larger number of patients in the long term should follow.
Collapse
Affiliation(s)
- Nam Cheol Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea.,Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Sae Woong Kim
- Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea.,Medical Research Institute of Pusan National University Hospital, Busan, Korea
| |
Collapse
|
11
|
Effects of Rhizome Extract of Dioscorea batatas and Its Active Compound, Allantoin, on the Regulation of Myoblast Differentiation and Mitochondrial Biogenesis in C2C12 Myotubes. Molecules 2018; 23:molecules23082023. [PMID: 30104552 PMCID: PMC6222821 DOI: 10.3390/molecules23082023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
With the aging process, a loss of skeletal muscle mass and dysfunction related to metabolic syndrome is observed in older people. Yams are commonly use in functional foods and medications with various effects. The present study was conducted to investigate the effects of rhizome extract of Dioscorea batatas (Dioscoreae Rhizoma, Chinese yam) and its bioactive compound, allantoin, on myoblast differentiation and mitochondrial biogenesis in skeletal muscle cells. Yams were extracted in water and allantoin was analyzed by high performance liquid chromatography (HPLC). The expression of myosin heavy chain (MyHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), sirtuin-1 (Sirt-1), nuclear respiratory factor-1 (NRF-1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) or western blot. The glucose levels and total ATP contents were measured by glucose consumption, glucose uptake and ATP assays, respectively. Treatment with yam extract (1 mg/mL) and allantoin (0.2 and 0.5 mM) significantly increased MyHC expression compared with non-treated myotubes. Yam extract and allantoin significantly increased the expression of PGC-1α, Sirt-1, NRF-1 and TFAM, as well as the phosphorylation of AMPK and ACC in C2C12 myotubes. Furthermore, yam extract and allantoin significantly increased glucose uptake levels and ATP contents. Finally, HPLC analysis revealed that the yam water extract contained 1.53% of allantoin. Yam extract and allantoin stimulated myoblast differentiation into myotubes and increased energy production through the upregulation of mitochondrial biogenesis regulators. These findings indicate that yam extract and allantoin can help to prevent skeletal muscle dysfunction through the stimulation of the energy metabolism.
Collapse
|
12
|
Soldatov VO, Shmykova EA, Pershina MA, Ksenofontov AO, Zamitsky YM, Kulikov AL, Peresypkina AA, Dovgan AP, Belousova YV. Imidazoline receptors agonists: possible mechanisms of endothelioprotection. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.27221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imidazoline receptor agonists are one of the groups of contemporary antihypertensive drugs with the pleiotropic cardiovascular effects. In this review, the historical, physiological, pathophysiological aspects concerning imidazoline receptor agonists and possible mechanisms for their participation in endothelioprotection were considered. Illuminated the molecular biology of each subtype of imidazoline receptors and their significance in the pharmacological correction of cardiovascular disease.IR type 1 are localized in the brain nucleus, carrying out the descending tonic control of sympathetic activation, as well as in the endothelial cells of the vessels and kidneys. Their activation leads to a decrease in blood pressure, slowing the remodeling of the vascular wall and increasing sodium nares. IR type 2 is expressed predominantly in the adrenal gland, fat and muscle tissues. The physiological effects of their stimulation are associated with an increase in glucose utilization by peripheral tissues. IR type 3 are mainly present in pancreatic cells and are associated with the regulation of insulin secretion. Their stimulation leads to an increase in insulin liberation. Thus, IR agonists are able to improve endothelial function through various mechanisms, including blood pressure reduction, improvement in metabolic profile, and direct positive effects on the vascular wall.Current information on the pharmacological effects of this group compounds allows us to conclude that they are a promising group for correcting endothelial dysfunction and complications associated with it.
Collapse
|
13
|
Antidiabetic Effects of Yam (Dioscorea batatas) and Its Active Constituent, Allantoin, in a Rat Model of Streptozotocin-Induced Diabetes. Nutrients 2015; 7:8532-44. [PMID: 26501316 PMCID: PMC4632431 DOI: 10.3390/nu7105411] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/03/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to investigate the therapeutic efficacies of crude yam (Dioscorea batatas) powder (PY), water extract of yam (EY), and allantoin (the active constituent of yam) in streptozotocin (STZ)-induced diabetic rats with respect to glucose, insulin, glucagon-like peptide-1 (GLP-1), C-peptide, glycated hemoglobin (HbAlc), lipid metabolism, and oxidative stress. For this purpose, 50 rats were divided into five groups: normal control (NC), diabetic control (STZ), and STZ plus treatment groups (STZ + PY, STZ + EY, and STZ + allantoin). After treatment for one-month, there was a decrease in blood glucose: 385 ± 7 in STZ, 231 ± 3 in STZ + PY, 214 ± 11 in STZ + EY, and 243 ± 6 mg/dL in STZ + allantoin, respectively. There were significant statistical differences (p < 0.001) compared to STZ (100%): 60% in STZ + PY, 55% in STZ + EY, and 63% in STZ + allantoin. With groups in the same order, there were significant decreases (p < 0.001) in HbAlc (100% as 24.4 ± 0.6 ng/mL, 78%, 75%, and 77%), total cholesterol (100% as 122 ± 3 mg/dL, 70%, 67%, and 69%), and low-density lipoprotein (100% as 29 ± 1 mg/dL, 45%, 48%, and 38%). There were also significant increases (p < 0.001) in insulin (100% as 0.22 ± 0.00 ng/mL, 173%, 209%, and 177%), GLP-1 (100% as 18.4 ± 0.7 pmol/mL, 160%, 166%, and 162%), and C-peptide (100% as 2.56 ± 0.10 ng/mL, 129%, 132%, and 130%). The treatment effectively ameliorated antioxidant stress as shown by a significant decrease (p < 0.001) in malondialdehyde (100% as 7.25 ± 0.11 nmol/mL, 87%, 86%, and 85%) together with increases (p < 0.01) in superoxide dismutase (100% as 167 ± 6 IU/mL, 147%, 159%, and 145%) and reduced glutathione (100% as 167 ± 6 nmol/mL, 123%, 141%, and 140%). The results indicate that yam and allantoin have antidiabetic effects by modulating antioxidant activities, lipid profiles and by promoting the release of GLP-1, thereby improving the function of β-cells maintaining normal insulin and glucose levels.
Collapse
|
14
|
Amitani M, Cheng KC, Asakawa A, Amitani H, Kairupan TS, Sameshima N, Shimizu T, Hashiguchi T, Inui A. Allantoin ameliorates chemically-induced pancreatic β-cell damage through activation of the imidazoline I3 receptors. PeerJ 2015; 3:e1105. [PMID: 26290782 PMCID: PMC4540048 DOI: 10.7717/peerj.1105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023] Open
Abstract
Objective. Allantoin is the primary active compound in yams (Dioscorea spp.). Recently, allantoin has been demonstrated to activate imidazoline 3 (I3) receptors located in pancreatic tissues. Thus, the present study aimed to investigate the role of allantoin in the effect to improve damage induced in pancreatic β-cells by streptozotocin (STZ) via the I3 receptors. Research Design and Methods. The effect of allantoin on STZ-induced apoptosis in pancreatic β-cells was examined using the ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and Western blottings. The potential mechanism was investigated using KU14R: an I3 receptor antagonist, and U73122: a phospholipase C (PLC) inhibitor. The effects of allantoin on serum glucose and insulin secretion were measured in STZ-treated rats. Results. Allantoin attenuated apoptosis and cytotoxicity and increased the viability of STZ-induced β-cells in a dose-dependent manner; this effect was suppressed by KU14R and U73112. Allantoin decreased the level of caspase-3 and increased the level of phosphorylated B-cell lymphoma 2 (Bcl-2) expression detected by Western blotting. The improvement in β-cells viability was confirmed using flow cytometry analysis. Daily injection of allantoin for 8 days in STZ-treated rats significantly lowered plasma glucose and increased plasma insulin levels. This action was inhibited by treatment with KU14R. Conclusion. Allantoin ameliorates the damage of β-cells induced by STZ. The blockade by pharmacological inhibitors indicated that allantoin can activate the I3 receptors through a PLC-related pathway to decrease this damage. Therefore, allantoin and related analogs may be effective in the therapy for β-cell damage.
Collapse
Affiliation(s)
- Marie Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Timothy Sean Kairupan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Nanami Sameshima
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Toshiaki Shimizu
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| |
Collapse
|
15
|
Chen MF, Tsai JT, Chen LJ, Wu TP, Yang JJ, Yin LT, Yang YL, Chiang TA, Lu HL, Wu MC. Characterization of imidazoline receptors in blood vessels for the development of antihypertensive agents. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182846. [PMID: 24800210 PMCID: PMC3996295 DOI: 10.1155/2014/182846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/09/2014] [Indexed: 01/01/2023]
Abstract
It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R) may reduce the blood pressure in spontaneously hypertensive rats (SHRs). Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s). Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP) channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.
Collapse
Affiliation(s)
- Mei-Fen Chen
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Taipei Medical University-Shuang Ho Hospital, and College of Medicine, Taipei Medical University, Taipei City 10361, Taiwan
| | - Li-Jen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Tung-Pi Wu
- Department of Obs/Gyn, Tainan Sin-Lau Hospital, The Presbyterian Church in Taiwan, Tainan City 70142, Taiwan
| | - Jia-Jang Yang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Li-Te Yin
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Yu-lin Yang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Tai-An Chiang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Han-Lin Lu
- Department of Chinese Medicine, Tainan Sin-Lau Hospital, The Presbyterian Church in Taiwan, Tainan City 70142, Taiwan
| | - Ming-Chang Wu
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
| |
Collapse
|