1
|
Kumar Singh N, Srivastava AK, Sreekrishnan TR, Shivakumar S. Production of medical-grade biopolymer in air lift bioreactors. Prep Biochem Biotechnol 2025:1-8. [PMID: 40277398 DOI: 10.1080/10826068.2025.2496246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Microbes are known to produce biopolymers for societal applications. Economical production of biopolymer (PHB) is desperately required to significantly replace or reduce usage of non-degradable polypropylene produced by disappearing petroleum resources. Besides it is also equally important to ensure abundant availability of low cost medical grade biopolymers which can be used for several medical applications in society. It has been invariably observed that mechanical agitation in the bioreactors features major power consumption in the operation of bioreactors therefore usage of air lift bioreactors are likely to reduce power consumption by mechanical agitation significantly thereby leading to economic biopolymer production. Present investigation evaluates the possible role of pneumatic bioreactors (e.g., Bubble Column, Outer Aeration Inner Settling, Inner Aeration Outer Settling) as alternates to mechanically agitated bioreactors for the economic production of medical grade biopolymers P(3HB) by Bacillus thuringiensis IAM12077 using glycerol and glucose as major substrates. It was observed that Bacillus thuringiensis IAM12077 cultivations featured Biopolymer P(3HB) accumulations of 22.48%, 37.07%, 27.73%, in BC, OAIS, IAOS air lift bioreactors. Relatively higher product yield, volumetric productivity and P(3HB) accumulation was observed in Outer Aeration Inner Settling (OAIS) air lift bioreactor configuration as opposed to other pneumatic bioreactors.
Collapse
Affiliation(s)
- Navodit Kumar Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashok Kumar Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Srividya Shivakumar
- School of Allied Healthcare and Sciences, Jain deemed-to-be University, Bangalore, Professor Microbiology & Director
| |
Collapse
|
2
|
Le HG, Lee Y, Lee SM. Synthetic biology strategies for sustainable bioplastic production by yeasts. J Microbiol 2025; 63:e2501022. [PMID: 40195837 DOI: 10.71150/jm.2501022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
The increasing environmental concerns regarding conventional plastics have led to a growing demand for sustainable alternatives, such as biodegradable plastics. Yeast cell factories, specifically Saccharomyces cerevisiae and Yarrowia lipolytica, have emerged as promising platforms for bioplastic production due to their scalability, robustness, and ease of manipulation. This review highlights synthetic biology approaches aimed at developing yeast cell factories to produce key biodegradable plastics, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly (butylene adipate-co-terephthalate) (PBAT). We explore recent advancements in engineered yeast strains that utilize various synthetic biology strategies, such as the incorporation of new genetic elements at the gene, pathway, and cellular system levels. The combined efforts of metabolic engineering, protein engineering, and adaptive evolution have enhanced strain efficiency and maximized product yields. Additionally, this review addresses the importance of integrating computational tools and machine learning into the Design-Build-Test-Learn cycle for strain development. This integration aims to facilitate strain development while minimizing effort and maximizing performance. However, challenges remain in improving strain robustness and scaling up industrial production processes. By combining advanced synthetic biology techniques with computational approaches, yeast cell factories hold significant potential for the sustainable and scalable production of bioplastics, thus contributing to a greener bioeconomy.
Collapse
Affiliation(s)
- Huong-Giang Le
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yongjae Lee
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sun-Mi Lee
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Sabri I, Mohd Yusoff MZ, Nor Muhammad NA, Ho LS, Ramli N. Metabolic conversion of phenol to polyhydroxyalkanoate (PHA) for addressing dual environmental challenges: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100352. [PMID: 39958774 PMCID: PMC11830346 DOI: 10.1016/j.crmicr.2025.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
A sustainable approach to microbial polyhydroxyalkanoate (PHA) production involves utilizing waste as a substrate, which can include toxic pollutants like phenol as a carbon feedstock. Phenol-contaminated effluents offer cost-effective and readily available resources for PHA production, while simultaneously addressing phenol contamination issues. Understanding the metabolic conversion of phenol to PHA is crucial to enhance its efficiency, especially considering phenol's toxicity to microbial cells and the substrate-dependent nature of microbial PHA production. In this review, the mechanisms of phenol biodegradation and PHA biosynthesis are first independently elucidated to comprehend the role of bacteria in these processes. Phenol can be metabolized aerobically via various pathways, including catechol meta-cleavage I and II, catechol ortho-cleavage, protocatechuate ortho-cleavage, and protocatechuate meta-cleavage, as well as anaerobically via 4-hydrozybenzoate and/or n-caproate formation. Meanwhile, PHA can be synthesized through the acetoacetyl-CoA (pathway I), de novo fatty acids synthesis (pathway II), β-oxidation (pathway III), and the tricarboxylic acid (TCA) cycle, with the induction of these pathways are highly dependent on the substrate. Given that the link between these two mechanisms was not comprehensively reported before, the second part of the review delve into understanding phenol conversion into PHA, specifically polyhydroxybutyrate (PHB). While phenol toxicity can inhibit bacterial performance, it can be alleviated through the utilization of microbial mixed culture (MMC), which offers a wider range of metabolic capabilities. Utilizing phenol as a carbon feedstock for PHB accumulation could offer a viable approach to boost PHA's commercialization while addressing the issue of phenol pollution.
Collapse
Affiliation(s)
- Izzati Sabri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Li Sim Ho
- SD Guthrie Technology Centre Sdn. Bhd., Serdang 43400, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Santolin L, Eichenroth RSJ, Cornehl P, Wortmann H, Forbrig C, Schulze A, Haq IU, Brantl S, Rappsilber J, Riedel SL, Neubauer P, Gimpel M. Elucidating regulation of polyhydroxyalkanoate metabolism in Ralstonia eutropha: Identification of transcriptional regulators from phasin and depolymerase genes. J Biol Chem 2024; 300:107523. [PMID: 38969063 PMCID: PMC11332829 DOI: 10.1016/j.jbc.2024.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Despite the ever-growing research interest in polyhydroxyalkanoates (PHAs) as green plastic alternatives, our understanding of the regulatory mechanisms governing PHA synthesis, storage, and degradation in the model organism Ralstonia eutropha remains limited. Given its importance for central carbon metabolism, PHA homeostasis is probably controlled by a complex network of transcriptional regulators. Understanding this fine-tuning is the key for developing improved PHA production strains thereby boosting the application of PHAs. We conducted promoter pull-down assays with crude protein extracts from R. eutropha Re2058/pCB113, followed by liquid chromatography with tandem mass spectrometry, to identify putative transcriptional regulators involved in the expression control of PHA metabolism, specifically targeting phasin phaP1 and depolymerase phaZ3 and phaZ5 genes. The impact on promoter activity was studied in vivo using β-galactosidase assays and the most promising candidates were heterologously produced in Escherichia coli, and their interaction with the promoters investigated in vitro by electrophoretic mobility shift assays. We could show that R. eutropha DNA-binding xenobiotic response element-family-like protein H16_B1672, specifically binds the phaP1 promoter in vitro with a KD of 175 nM and represses gene expression from this promoter in vivo. Protein H16_B1672 also showed interaction with both depolymerase promoters in vivo and in vitro suggesting a broader role in the regulation of PHA metabolism. Furthermore, in vivo assays revealed that the H-NS-like DNA-binding protein H16_B0227 and the peptidyl-prolyl cis-trans isomerase PpiB, strongly repress gene expression from PphaP1 and PphaZ3, respectively. In summary, this study provides new insights into the regulation of PHA metabolism in R. eutropha, uncovering specific interactions of novel transcriptional regulators.
Collapse
Affiliation(s)
- Lara Santolin
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | | | - Paul Cornehl
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | - Henrike Wortmann
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | - Christian Forbrig
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Anne Schulze
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Inam Ul Haq
- Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Sabine Brantl
- Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Sebastian Lothar Riedel
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany; Berliner Hochschule für Technik, Environmental and Bioprocess Engineering Laboratory, Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany
| | - Matthias Gimpel
- Technische Universität Berlin, Chair of Bioprocess Engineering, Berlin, Germany.
| |
Collapse
|
5
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
6
|
Sangtani R, Nogueira R, Yadav AK, Kiran B. Systematizing Microbial Bioplastic Production for Developing Sustainable Bioeconomy: Metabolic Nexus Modeling, Economic and Environmental Technologies Assessment. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2741-2760. [PMID: 36811096 PMCID: PMC9933833 DOI: 10.1007/s10924-023-02787-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. In-silico results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universität Hannover, Hannover, Germany
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bala Kiran
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| |
Collapse
|
7
|
Flow cytometry: a tool for understanding the behaviour of polyhydroxyalkanoate accumulators. Appl Microbiol Biotechnol 2023; 107:581-590. [PMID: 36525042 DOI: 10.1007/s00253-022-12318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The use of mixed microbial cultures (MMCs) is seen as an attractive strategy for polyhydroxyalkanoate (PHA) production. In order to optimize the MMC-PHA production process, tools are required to improve our understanding of the physiological state of the PHA-storing microorganisms within the MMC. In the present study, we explored the use of flow cytometry to analyse the metabolic state and polyhydroxybutyrate (PHB) content of the microorganisms from an MMC-PHA production process. A sequencing batch reactor under a feast and famine regime was used to enrich an MMC with PHB-storing microorganisms. Interestingly, once the PHB-storing microorganisms are selected, the level of PHB accumulation depends largely on the metabolic state of these microorganisms and not exclusively on the consortium composition. These results demonstrate that flow cytometry is a powerful tool to help to understand the PHA storage response of an MMC-PHA production process. KEY POINTS: • Flow cytometry allows to measure PHB content and metabolic activity over time. • Microorganisms showing high PHB content also have high metabolic activity. • PHB producers with low metabolic activity show low PHB content.
Collapse
|
8
|
Chhetri G, Kim I, Kim J, So Y, Park S, Jung Y, Seo T. Paraburkholderia tagetis sp. nov., a novel species isolated from roots of Tagetes patula enhances the growth and yield of Solanum lycopersicum L. (tomato). Front Microbiol 2023; 14:1140484. [PMID: 37082173 PMCID: PMC10110911 DOI: 10.3389/fmicb.2023.1140484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
A multifunctional, Gram-stain-negative, aerobic, motile by flagella, short-rod shaped bacteria, designated strain RG36T was isolated from roots of marigold plant (Tagetes patula) sampled at Dongguk University, Republic of Korea. A 16S rRNA sequences indicated that the closest phylogenetic neighbors were Paraburkholderia acidiphila 7Q-K02T (99.0%) and Paraburkholderia sacchari IPT101T (98.9%) of the family Burkholderiaceae. The draft genome size was 8.52 Mb (63.7% GC). The genome contained 7,381 coding sequences. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of strain RG36T with its most closely related species were only 83.1-88.7 and 27.6-36.7%, respectively. Strain RG36T contained Q-8 as the major respiratory quinone and its main fatty acids (>10%) were C16:0, C17:0 cyclo, C19:0 cyclo ω8c, and summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c). Strain RG36T accumulates polyhydroxybutyrates (PHB) and exhibits multiple plant growth-promoting properties including production of indole-3-acetic acid (IAA), siderophores, protease, phosphate solubilization, and harboring gene clusters for its multifunctional properties. A pot experiment was conducted to evaluate the effect of PGPR on the growth of Solanum lycopersicum L. (Tomato). Result also confirmed the ability of strain RG36T to promote tomato plant growth, especially it increases the yield of tomatoes. Structural assessment of the bioplastic by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and GC-MS spectroscopy, which confirmed the structure of the polymer as PHB. Our study revealed the potential of strain RG36T to promote the growth of tomato plant and fruit yield by stimulating the various phytohormones, which could be use as bio-fertilizers to reduce the use of chemical fertilizers and promotes sustainable agricultural production. The phenotypic, chemotaxonomic and phylogenetic data, and genome analysis showed that strain RG36T represents a novel species of the genus Paraburkholderia, for which the name Paraburkholderia tagetis sp. nov. is proposed. The type strain is RG36T (=KACC 22685T = TBRC 15696T).
Collapse
|
9
|
Initial pH Conditions Shape the Microbial Community Structure of Sewage Sludge in Batch Fermentations for the Improvement of Volatile Fatty Acid Production. Microorganisms 2022; 10:microorganisms10102073. [PMID: 36296349 PMCID: PMC9611766 DOI: 10.3390/microorganisms10102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Conversion of wastewater treatment plants into biorefineries is a sustainable alternative for obtaining valuable compounds, thus reducing pollutants and costs and protecting the environment and human health. Under specific operating conditions, microbial fermentative products of sewage sludge are volatile fatty acids (VFA) that can be precursors of polyhydroxyalkanoate thermoplastic polyesters. The role of various operating parameters in VFA production has yet to be elucidated. This study aimed to correlate the levels of VFA yields with prokaryotic microbiota structures of sewage sludge in two sets of batch fermentations with an initial pH of 8 and 10. The sewage sludge used to inoculate the batch fermentations was collected from a Sicilian WWTP located in Marineo (Italy) as a case study. Gas chromatography analysis revealed that initial pH 10 stimulated chemical oxygen demands (sCOD) and VFA yields (2020 mg COD/L) in comparison with initial pH 8. Characterization of the sewage sludge prokaryotic community structures—analyzed by next-generation sequencing of 16S rRNA gene amplicons—demonstrated that the improved yield of VFA paralleled the increased abundance of fermenting bacteria belonging to Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes phyla and, conversely, the reduced abundance of VFA-degrading strains, such as archaeal methanogens.
Collapse
|
10
|
Nanda N, Bharadvaja N. Algal bioplastics: current market trends and technical aspects. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2022; 24:2659-2679. [PMID: 35855786 PMCID: PMC9281343 DOI: 10.1007/s10098-022-02353-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Abstract Plastics are undebatably a hot topic of discussion across international forums due to their huge ecological footprint. The onset of COVID-19 pandemic has exacerbated the issue in an irreversible manner. Bioplastics produced from renewable sources are a result of lookout for sustainable alternatives. Replacing a ton of synthetic plastics with biobased ones reduces 1.8 tons CO2 emissions. Here, we begin with highlighting the problem statement-Plastic accumulation and its associated negative impacts. Microalgae outperforms plants and microbes, when used to produce bioplastic due to superior growth rate, non-competitive nature to food, and simultaneous wastewater remediation. They have minimal nutrient requirements and less dependency on climatic conditions for cultivation. These are the reasons for current boom in the algal bioplastic market. However, it is still not at par in price with the petroleum-based plastics. A brief market research has been done to better evaluate the current global status and future scope of algal bioplastics. The objective of this review is to propose possible solutions to resolve the challenges in scale up of bioplastic industry. Various bioplastic production technologies have been comprehensively discussed along with their optimization strategies. Overall studies discussed show that in order to make it cost competitive adopting a multi-dimensional approach like algal biorefinery is the best way out. A holistic comparison of any bio-based alternative with its conventional counterpart is imperative to assess its impact upon commercialization. Therefore, the review concludes with the life cycle assessment of bioplastics and measures to improve their inclusivity in a circular economy. Graphical Abstract
Collapse
Affiliation(s)
- Neha Nanda
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
11
|
Villota-Calvachi GE, González Marín KV, Marulanda Moreno SM, Galeano Vanegas NF, Velasco Ortega DS, Ocampo Henao LA, Castañeda Betancur L, Giraldo Morales C, Rodríguez Montes N. Aislamiento y caracterización de bacterias productoras de biopolimeros a partir de efluentes industriales. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2022. [DOI: 10.15446/rev.colomb.biote.v24n1.76660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se realizó una caracterización físico-química de los efluentes procedentes de industrias del sector educación, metalmecánico, lácteos y confitería de la ciudad de Manizales, Caldas; posteriormente se obtuvieron aislamientos, en medios diferenciales suplementados, de bacterias con potencial para la producción de biopolímeros a los cuales se les aplicó pruebas para la caracterización morfológica, bioquímica y molecular. Los parámetros físico químicos obtenidos de los efluentes industriales demuestran diferencias entre ellos, ya que cada industria genera diferentes residuos aportando una determinada contaminación al efluente, se obtuvieron 73 aislamientos productores de exopolisacáridos (EPS) y 101 productores de polihidroxialcanoatos (PHA), con características morfológicas y bioquímicas variables. El estudio muestra que los efluentes industriales son una gran fuente de bacterias de interés para la producción de diversos polímeros microbianos; principalmente aquellos que producen polímeros tipo biopoliésteres intracelulares como PHA, debido a su variabilidad físico-química y nutricional permitiendo que los microorganismos se adapten a diversas características medioambientales y de composición.
Collapse
|
12
|
Lee SM, Cho DH, Jung HJ, Kim B, Kim SH, Bhatia SK, Gurav R, Jeon JM, Yoon JJ, Kim W, Choi KY, Yang YH. Finding of novel polyhydroxybutyrate producer Loktanella sp. SM43 capable of balanced utilization of glucose and xylose from lignocellulosic biomass. Int J Biol Macromol 2022; 208:809-818. [PMID: 35364206 DOI: 10.1016/j.ijbiomac.2022.03.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/05/2022]
Abstract
Polyhydroxybutyrate (PHB) is a potential substitute for plastics derived from fossil fuels, owing to its biodegradable and biocompatible properties. Lignocellulosic biomass could be used to reduce PHB production costs; however, the co-utilization of sugars, such as glucose and xylose, without catabolite repression is a difficult problem to be solved. Here, we selected a novel Loktanella sp. SM43 from a marine environment and optimized the conditions for PHB production. Loktanella sp. SM43 showed high PHB production (66.5% content) from glucose. When glucose and xylose were used together, this strain showed high utilization of both substrates compared to other high PHB-producers such as Halomonas sp. and Cupriavidus necator, which showed glucose preference. Loktanella sp. SM43 showed high growth and PHB production with lignocellulosic hydrolysates. When pine tree hydrolysates were used, PHB production was the highest at 3.66 ± 0.01 g/L, followed by Miscanthus (3.46 ± 0.09 g/L) and barley straw hydrolysate (3.36 ± 0.36 g/L). Overall, these results reveal the potential of Loktanella sp. SM43 to produce PHB using various lignocellulosic hydrolysates as feedstock and the first systematic study for PHB production with Loktanella sp. The approach of screening novel strains is a strategy to overcome co-utilization of sugars without genetic engineering.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea.
| |
Collapse
|
13
|
Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. CHEMOSPHERE 2022; 294:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
14
|
Bellary S, Patil M, Mahesh A, Lali A. Microbial conversion of lignin rich biomass hydrolysates to medium chain length polyhydroxyalkanoates (mcl-PHA) using Pseudomonas putida KT2440. Prep Biochem Biotechnol 2022; 53:54-63. [PMID: 35266860 DOI: 10.1080/10826068.2022.2036999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As world moves toward increasing number of products being produced from renewable lignocellulosic agricultural and forest residues, the major classes of products that will shift to greener routes on priority are energy, fuels, and materials in that order. In materials segment, polyhydroxyalkanoates are an emerging class of biopolyesters with several potential industrial uses. The present work investigates medium chain length polyhydroxyalkanoates (mcl-PHA) producing capabilities of Pseudomonas putida KT2440 from a mixture of compounds produced from lignocellulosic biomass deconstruction. The hydrolysates obtained from nitric acid pretreatment of lignin rich cotton stalk (CS) and palm empty fruit bunch (EFB) were used as substrates for production of mcl-PHA. Presence of 3-hydroxydecanoate and 3-hydroxyocytanoate observed on GC-MS confirmed PHA accumulation in the cells. PHA accumulation was estimated between 20% and 35% of cell dry weight when grown on both model substrates as well as biomass hydrolysates. PHA titers obtained on hydrolysates of CS and EFB were 0.24 g/L and 0.21 g/L, respectively.
Collapse
Affiliation(s)
- Suveera Bellary
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Mallikarjun Patil
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Aruna Mahesh
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
15
|
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters produced by numerous microorganisms for energy and carbon storage. Simultaneous synthesis and degradation of PHA drives a dynamic cycle linked to the central carbon metabolism, which modulates numerous and diverse bacterial processes, such as stress endurance, pathogenesis, and persistence. Here, we analyze the role of the PHA cycle in conferring robustness to the model bacterium P. putida KT2440. To assess the effect of this cycle in the cell, we began by constructing a PHA depolymerase (PhaZ) mutant strain that had its PHA cycle blocked. We then restored the flux through the cycle in the context of an engineered library of P. putida strains harboring differential levels of PhaZ. High-throughput phenotyping analyses of this collection of strains revealed significant changes in response to PHA cycle performance impacting cell number and size, PHA accumulation, and production of extracellular (R)-hydroxyalkanoic acids. To understand the metabolic changes at the system level due to PHA turnover, we contextualized these physiological data using the genome-scale metabolic model iJN1411. Model-based predictions suggest successive metabolic steady states during the growth curve and an important carbon flux rerouting driven by the activity of the PHA cycle. Overall, we demonstrate that modulating the activity of the PHA cycle gives us control over the carbon metabolism of P. putida, which in turn will give us the ability to tailor cellular mechanisms driving stress tolerance, e.g., defenses against oxidative stress, and any potential biotechnological applications. IMPORTANCE Despite large research efforts devoted to understanding the flexible metabolism of Pseudomonas beyond the role of key regulatory players, the metabolic basis powering the dynamic control of its biological fitness under disturbance conditions remains largely unknown. Among other metabolic hubs, the so-called PHA cycle, involving simultaneous synthesis and degradation of PHAs, is emerging as a pivotal metabolic trait powering metabolic robustness and resilience in this bacterial group. Here, we provide evidence suggesting that metabolic states in Pseudomonas can be anticipated, controlled, and engineered by tailoring the flux through the PHA cycle. Overall, our study suggests that the PHA cycle is a promising metabolic target toward achieving control over bacterial metabolic robustness. This is likely to open up a broad range of applications in areas as diverse as pathogenesis and biotechnology.
Collapse
|
16
|
Kajla S, Kumari R, Nagi GK. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 2022; 204:149. [DOI: 10.1007/s00203-021-02677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
|
17
|
Jaffur N, Jeetah P, Kumar G. A review on enzymes and pathways for manufacturing polyhydroxybutyrate from lignocellulosic materials. 3 Biotech 2021; 11:483. [PMID: 34790507 DOI: 10.1007/s13205-021-03009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, major focus in the biopolymer field is being drawn on the exploitation of plant-based resources grounded on holistic sustainability trends to produce novel, affordable, biocompatible and environmentally safe polyhydroxyalkanoate biopolymers. The global PHA market, estimated at USD 62 Million in 2020, is predicted to grow by 11.2 and 14.2% between 2020-2024 and 2020-2025 correspondingly based on market research reports. The market is primarily driven by the growing demand for PHA products by the food packaging, biomedical, pharmaceutical, biofuel and agricultural sectors. One of the key limitations in the growth of the PHA market is the significantly higher production costs associated with pure carbon raw materials as compared to traditional polymers. Nonetheless, considerations such as consumer awareness on the toxicity of petroleum-based plastics and strict government regulations towards the prohibition of the use and trade of synthetic plastics are expected to boost the market growth rate. This study throws light on the production of polyhydroxybutyrate from lignocellulosic biomass using environmentally benign techniques via enzyme and microbial activities to assess its feasibility as a green substitute to conventional plastics. The novelty of the present study is to highlight the recent advances, pretreatment techniques to reduce the recalcitrance of lignocellulosic biomass such as dilute and concentrated acidic pretreatment, alkaline pretreatment, steam explosion, ammonia fibre explosion (AFEX), ball milling, biological pretreatment as well as novel emerging pretreatment techniques notably, high-pressure homogenizer, electron beam, high hydrostatic pressure, co-solvent enhanced lignocellulosic fractionation (CELF) pulsed-electric field, low temperature steep delignification (LTSD), microwave and ultrasound technologies. Additionally, inhibitory compounds and detoxification routes, fermentation downstream processes, life cycle and environmental impacts of recovered natural biopolymers, review green procurement policies in various countries, PHA strategies in line with the United Nations Sustainable Development Goals (SDGs) along with the fate of the spent polyhydroxybutyrate are outlined.
Collapse
Affiliation(s)
- Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
18
|
Lhamo P, Behera SK, Mahanty B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Biotechnol J 2021; 16:e2100136. [PMID: 34132046 DOI: 10.1002/biot.202100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention. This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics. Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension. Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
Collapse
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
19
|
Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review. Int J Biol Macromol 2021; 183:1881-1890. [PMID: 34090850 DOI: 10.1016/j.ijbiomac.2021.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
Bioplastics have been an interesting area of research and development in the last few decades. Normal plastics are made out of petroleum products, which is a non-renewable resource. Apart from that, its non-biodegradable nature makes it a serious threat to the environment, and hence a better alternative is needed. Bioplastics are synthesized by microorganisms and are biodegradable; this property makes them a promising alternative to normal plastic. However, the major drawback related to bioplastic is the high cost of its production. Polyhydroxyalkanoate (PHA) is a very popular biopolymer produced by different types of microbes. The review focuses on the different methods of extraction of PHA based on the percentage of purity, recovery, eco-friendly, and cost-effectiveness. There is a wide array of extraction methods reported to date, wherein there is the involvement of different types of solvents (like halogenated, non-halogenated, and green solvents) or mechanical or enzymatic methods. Each extraction process has its advantages and disadvantages. In this study, we have attempted to present a structured comparison of these different methods and highlight the factors that can be addressed for better extraction of PHA thereby making it a feasible alternative to commercial synthetic plastic.
Collapse
|
20
|
Dutt Tripathi A, Paul V, Agarwal A, Sharma R, Hashempour-Baltork F, Rashidi L, Khosravi Darani K. Production of polyhydroxyalkanoates using dairy processing waste - A review. BIORESOURCE TECHNOLOGY 2021; 326:124735. [PMID: 33508643 DOI: 10.1016/j.biortech.2021.124735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Bio-plastics are eco-friendly biopolymers finding tremendous application in the food and pharmaceutical industries. Bio-plastics have suitable physicochemical, mechanical properties, and do not cause any type of hazardous pollution upon disposal but have a high production cost. This can be minimized by screening potential bio-polymers producing strains, selecting inexpensive raw material, optimized cultivation conditions, and upstream processing. These bio-plastics specifically microbial-produced bio-polymers such as polyhydroxyalkanoates (PHAs) find application in food industries as packaging material owing to their desirable water barrier and gas permeability properties. The present review deals with the production, recovery, purification, characterization, and applications of PHAs. This is a comprehensive first review will also focus on different strategies adopted for efficient PHA production using dairy processing waste, its biosynthetic mechanism, metabolic engineering, kinetic aspects, and also biodegradability testing at the lab and pilot plant level. In addition to that, the authors will be emphasizing more on novel PHAs nanocomposites synthesis strategies and their commercial applicability.
Collapse
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Fataneh Hashempour-Baltork
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran
| | - Ladan Rashidi
- Department of Food and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj, Iran
| | - Kianoush Khosravi Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran.
| |
Collapse
|
21
|
Hawkins S, Fonseca IBDC, Lima da Silva R, Quirino RL. Aquaculture Waste: Potential Synthesis of Polyhydroxyalkanoates. ACS OMEGA 2021; 6:2434-2442. [PMID: 33553861 PMCID: PMC7859940 DOI: 10.1021/acsomega.0c05304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Petroleum-based plastics commonly and widely used on a daily basis are a threat to ecological health as they do not degrade in an ecologically feasible time frame. A class of natural polymers known as polyhydroxyalkanoates (PHAs) represents an up-and-coming alternative to petroleum-based materials, as they share properties similar to those of commodity plastics, such as polyethylene, polystyrene, among others, with the advantage of being biodegradable. PHAs are naturally produced by microorganisms under stress, and various farming practices have been proposed to be used for the synergistic and sustainable production of PHA for commercial purposes. Aquaculture has demonstrated particular potential for the production of PHA; however, a large struggle in commercializing these polymers is in procuring necessary feedstocks for manufacture outside of the laboratory environment. Through the coupling of PHA production and biofloc technology in aquaculture, the impediments to commercial exploitation can be potentially surmounted, while also providing for higher production efficiency in aquafarms. This mini-review covers the basic aspects of biofloc technology applied to aquaculture for the commercial production of PHA in large scale and offers a brief perspective on the next steps associated with the research and implementation of PHA production with biofloc technology.
Collapse
Affiliation(s)
- Shane Hawkins
- Chemistry
Department, Georgia Southern University, Statesboro, Georgia 30460, United States
| | | | - Raimundo Lima da Silva
- Aliment@
LLC, Goiânia, GO 74605-010, Brazil
- FarmCred
LLC, Goiânia, GO 74605-010, Brazil
- Haplogenics
Corporation, Brownsville, Texas 78520, United States
- Replicon
Research Center, School of Agricultural Sciences and Biology, Pontifical Catholic University of Goiás, Goiânia, GO 74605-010, Brazil
| | - Rafael Lopes Quirino
- Chemistry
Department, Georgia Southern University, Statesboro, Georgia 30460, United States
| |
Collapse
|
22
|
Corchado-Lopo C, Martínez-Avila O, Marti E, Llimós J, Busquets AM, Kucera D, Obruca S, Llenas L, Ponsá S. Brewer's spent grain as a no-cost substrate for polyhydroxyalkanoates production: Assessment of pretreatment strategies and different bacterial strains. N Biotechnol 2021; 62:60-67. [PMID: 33516825 DOI: 10.1016/j.nbt.2021.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/25/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters of significant interest due to their biodegradability and properties similar to petroleum-derived plastics, as well as the fact that they can be produced from renewable sources such as by-product streams. In this study, brewer's spent grain (BSG), the main by-product of the brewing industry, was subjected to a set of physicochemical pretreatments and their effect on the release of reducing sugars (RS) was evaluated. The RS obtained were used as a substrate for further PHA production in Burkholderia cepacia, Bacillus cereus, and Cupriavidus necator in liquid cultures. Although some pretreatments proved efficient in releasing RS (acid-thermal pretreatment up to 42.1 gRS L-1 and 0.77 gRS g-1 dried BSG), the generation of inhibitors in such scenarios likely affected PHA production compared with the process run without pretreatment (direct enzymatic hydrolysis of BSG). Thus, the maximum PHA accumulation from BSG hydrolysates was found in the reference case with 0.31 ± 0.02 g PHA per g cell dried weight, corresponding to 1.13 ± 0.06 g L-1 and a PHA yield of 23 ± 1 mg g-1 BSG. It was also found that C. necator presented the highest PHA accumulation of the tested strains followed closely by B. cepacia, reaching their maxima at 48 h. Although BSG has been used as a source for other bioproducts, these results show the potential of this by-product as a no-cost raw material for producing PHAs in a waste valorization and circular economy scheme.
Collapse
Affiliation(s)
- Carlos Corchado-Lopo
- BETA Technological Center, TECNIO Network, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain.
| | - Oscar Martínez-Avila
- BETA Technological Center, TECNIO Network, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain.
| | - Elisabet Marti
- BETA Technological Center, TECNIO Network, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain.
| | - Jordi Llimós
- BETA Technological Center, TECNIO Network, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain.
| | - Anna María Busquets
- BETA Technological Center, TECNIO Network, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain.
| | - Dan Kucera
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Laia Llenas
- BETA Technological Center, TECNIO Network, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain.
| | - Sergio Ponsá
- BETA Technological Center, TECNIO Network, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain.
| |
Collapse
|
23
|
Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate- co-4-hydroxybutyrate): A Review on the Promising Next-Generation Biomaterial. Polymers (Basel) 2020; 13:polym13010051. [PMID: 33375622 PMCID: PMC7795663 DOI: 10.3390/polym13010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are bacteria derived bio-based polymers that are synthesised under limited conditions of nutritional elements with excess carbon sources. Among the members of PHAs, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] emerges as an attractive biomaterial to be applied in medical applications owing to its desirable mechanical and physical properties, non-genotoxicity and biocompatibility eliciting appropriate host tissue responses. The tailorable physical and chemical properties and easy surface functionalisation of P(3HB-co-4HB) increase its practicality to be developed as functional medical substitutes. However, its applicability is sometimes limited due to its hydrophobic nature due to fewer bio-recognition sites. In this review, we demonstrate how surface modifications of PHAs, mainly P(3HB-co-4HB), will overcome these limitations and facilitate their use in diverse medical applications. The integration of nanotechnology has drastically enhanced the functionality of P(3HB-co-4HB) biomaterials for application in complex biological environments of the human body. The design of versatile P(3HB-co-4HB) materials with surface modifications promise a non-cytotoxic and biocompatible material without inducing severe inflammatory responses for enhanced effective alternatives in healthcare biotechnology. The enticing work carried out with P(3HB-co-4HB) promises to be one of the next-generation materials in biomedicines which will facilitate translation into the clinic in the future.
Collapse
|
24
|
Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 Biotech 2020; 10:549. [PMID: 33269183 DOI: 10.1007/s13205-020-02550-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) is the most promising solution to major ecological problem of plastic accumulation. The biodegradable and biocompatible properties of PHA make it highly demanding in the biomedical and agricultural field. The limited market share of PHA industries despite having tremendous demand as concerned with environment has led to knock the doors of scientific research for finding ways for the economic production of PHA. Therefore, new methods of its production have been applied such as using a wide variety of feedstock like organic wastes and modifying PHA synthesizing enzyme at molecular level. Modifying metabolic pathways for PHA production using new emerging techniques like CRISPR/Cas9 technology has simplified the process spending less amount of time. Using green solvents under pressurized conditions, ionic liquids, supercritical solvents, hypotonic cell disintegration for release of PHA granules, switchable anionic surfactants and even digestion of non-PHA biomass by animals are some novel strategies for PHA recovery which play an important role in sustainable production of PHA. Hence, this review provides a view of recent applications, significance of PHA and new methods used for its production which are missing in the available literature.
Collapse
|
25
|
Tůma S, Izaguirre J, Bondar M, Marques M, Fernandes P, da Fonseca M, Cesário M. Upgrading end-of-line residues of the red seaweed Gelidium sesquipedale to polyhydroxyalkanoates using Halomonas boliviensis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 27:e00491. [PMID: 32612942 PMCID: PMC7317225 DOI: 10.1016/j.btre.2020.e00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
Agar extraction from Gelidium and Gracilaria red seaweed species produces hundred thousand ton of carbohydrate-rich residues annually. Gelidium sesquipedale waste biomass obtained after agar extraction, still contained 44.2 % w/w total carbohydrates (dry-weight basis). These residues were biologically up-graded to poly-3-hydroxybutyrate (P3HB) after saccharification of their carbohydrate fraction to simple sugars. A combined hydrolysis treatment using sulfamic acid followed by enzymatic hydrolysis with cellulases produced a glucose-rich hydrolysate with a negligible content of inhibitors. With this treatment a sugar yield of circa 30 % (g glucose/g biomass) was attained. The algal hydrolysates were assessed as carbon source for the production of P3HB by the halotolerant bacteria Halomonas boliviensis. A cell concentration of 8.3 g L-1 containing 41 % (w/w) of polymer and a yield (YP/S ) of 0.16 gpolymer/gglucose were attained in shake flask assays. In this work, cellulose-rich seaweed waste was shown to be an upgradable, sustainable source of carbohydrates.
Collapse
Key Words
- AGU, AmyloGlucosidase Unit
- AHG, anhydro-L-galactose
- AOAC, Association of Official Agricultural Chemists
- BHU (2), Biomass Hydrolysis Unit
- CBU, CelloBiase Unit
- CDW, cell dry weight
- FID, flame ionization detector
- FPU, Filter Paper Unit
- Fr, Froude number
- G. sesquipedale, Gelidium sesquipedale
- Gelidium sesquipedale
- H. boliviensis, Halomonas boliviensis
- HMF, 5-hydroxymethyl furfural
- Halomonas boliviensis
- KNU, Kilo Novo alpha-amylase Unit
- MSG, monosodium glutamate
- Macroalgae residues
- Mw, molecular weight
- NABH, neoagarobiose hydrolase
- NREL, National Renewable Energy. Laboratory
- P3HB, poly-3-hydroxybutyrate
- Poly-3-hydroxybutyrate
- Seaweed residues
- Waste seaweed
- dw basis, dry weight basis
Collapse
Affiliation(s)
- S. Tůma
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - J.K. Izaguirre
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
- Neiker-Tecnalia, Basque Institute for Agricultural Research, Vitoria-Gasteiz, Spain
| | - M. Bondar
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - M.M. Marques
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - P. Fernandes
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - M.M.R. da Fonseca
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - M.T. Cesário
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
26
|
Melendez-Rodriguez B, Torres-Giner S, Lorini L, Valentino F, Sammon C, Cabedo L, Lagaron JM. Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers for Food Packaging Applications. ACS APPLIED BIO MATERIALS 2020; 3:6110-6123. [DOI: 10.1021/acsabm.0c00698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Paterna, Spain
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Paterna, Spain
| | - Laura Lorini
- Department of Chemistry, “La Sapienza” University of Rome, 00185 Rome, Italy
| | - Francesco Valentino
- Department of Chemistry, “La Sapienza” University of Rome, 00185 Rome, Italy
| | - Chris Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), 12071 Castellón, Spain
| | - Jose Maria Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Paterna, Spain
| |
Collapse
|
27
|
Moriya H, Takita Y, Matsumoto A, Yamahata Y, Nishimukai M, Miyazaki M, Shimoi H, Kawai SJ, Yamada M. Cobetia sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Front Bioeng Biotechnol 2020; 8:974. [PMID: 32984275 PMCID: PMC7479843 DOI: 10.3389/fbioe.2020.00974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
We isolated the Cobetia sp. strains IU 180733JP01 (5-11-6-3) and 190790JP01 (5-25-4-2) from seaweeds and showed that both strains accumulate poly(3-hydroxybutyrate) [P(3HB)] homopolymer in a nitrogen-limiting mineral salt medium containing alginate as a sole carbon source. Genome sequence analysis of the isolated strains showed that they have putative genes which encode enzymes relevant to alginate assimilation and P(3HB) synthesis, and the putative alginate-assimilating genes formed a cluster. Investigation of the optimum culture conditions for high accumulation of P(3HB) showed that when the 5-11-6-3 strain was cultured in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and 3% (w/v) alginate as a sole carbon source for 2 days, the P(3HB) content and P(3HB) production reached 62.1 ± 3.4 wt% and 3.11 ± 0.16 g/L, respectively. When the 5-25-4-2 strain was cultured in a nitrogen-limiting mineral salt medium (pH 4.0) containing 5% NaCl and 3% (w/v) alginate for 2 days, the P(3HB) content and P(3HB) production reached 56.9 ± 2.1 wt% and 2.67 ± 0.11 g/L, respectively. Moreover, the 5-11-6-3 strain also produced P(3HB) in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and freeze-dried and crushed waste Laminaria sp., which is classified into brown algae and contains alginate abundantly. The resulting P(3HB) content and P(3HB) productivity were 13.5 ± 0.13 wt% and 3.99 ± 0.15 mg/L/h, respectively. Thus, we demonstrated the potential application of the isolated strains to a simple P(3HB) production process from seaweeds without chemical hydrolysis and enzymatic saccharification.
Collapse
Affiliation(s)
- Hiroki Moriya
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Yuto Takita
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Akira Matsumoto
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Yuki Yamahata
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Hitoshi Shimoi
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Sung-Jin Kawai
- New Field Pioneering Division, New Value Creation Center, Toyota Boshoku Corporation, Kariya, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
- Education and Research on Sanriku Fishery Industry Department, Organization for Revitalization of the Sanriku Region and Regional Development, Iwate University, Morioka, Japan
| |
Collapse
|
28
|
Izaguirre JK, da Fonseca MMR, Fernandes P, Villarán MC, Castañón S, Cesário MT. Upgrading the organic fraction of municipal solid waste to poly(3-hydroxybutyrate). BIORESOURCE TECHNOLOGY 2019; 290:121785. [PMID: 31319213 DOI: 10.1016/j.biortech.2019.121785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The organic fraction of municipal solid waste was studied as feedstock for the production of poly(3-hydroxybutyrate) (P(3HB)). To release the monosaccharides, a diluted acid pre-treatment followed by an enzymatic hydrolysis was applied. A sugar yield of 49% was achieved using a pre-treated waste and an enzyme cocktail of Pentopan 500 BG and Celluclast BG. The addition of Glucoamylase NS 22035 helped to hydrolyze the starch fraction, improving the hydrolysis yield to 56%. The hydrolysate was used as culture medium to produce P(3HB) by Burkholderia sacchari DSM 17165. Assays at shaking flask scale showed that when the hydrolysate was used as substrate, the attained cell concentration was slightly higher than in the control medium. It was necessary to supplement the hydrolysate with extra glucose to increase the C/N ratio and with a mineral solution to overcome the nutritional deficiencies. The P(3HB) accumulation using the supplemented hydrolysate was 58% (g polymer/g biomass).
Collapse
Affiliation(s)
- Jon Kepa Izaguirre
- Plant Health Department, NEIKER-Tecnalia, Arkaute, Spain; iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - M Manuela R da Fonseca
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Fernandes
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Carmen Villarán
- TECNALIA, Health Division, Technological Park of Alava, Leonardo Da Vinci 11, 01510 Miñano, Alava, Spain
| | - Sonia Castañón
- Plant Health Department, NEIKER-Tecnalia, Arkaute, Spain
| | - M Teresa Cesário
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
29
|
Scale Up Studies for Polyhydroxyalkanoate Production by a Bacillus flexus Strain with Industrial Potential. Indian J Microbiol 2019; 59:383-386. [PMID: 31388219 DOI: 10.1007/s12088-019-00807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are synthesized by bacteria under unfavourable growth conditions like excess of carbon over nitrogen, coupled with oxygen limitation. The PHA polymers of microbial origin are diverse in chemical composition and material properties. A bioprocess for PHA production by indigenously isolated Bacillus flexus MTCC 12841 was devised and optimized at a laboratory fermentor scale. Fermentation strategies that involved modifications in some parameters like aeration, agitation, temperature, nutrient feeding or changes in C:N ratio led to substantial improvement of 59% in PHA production reaching highest concentration of 9.73 g/L. Biomass too was enhanced to 15.70 g/L equivalent to 126% increase over the optimized shake flask runs. PHA (Yp/s) and biomass (Yx/s) yields were found to be 0.32 and 0.51 g/g respectively, indicating good carbon utilization efficiency. The characterization of polymer by GC-MS revealed that the culture produced poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) as a co-polymer. The novelty of the research findings lies in the demonstration of increased production of PHA at lab fermentor level coupled with the identification of the natural ability of the strain to also produce PHBV without any need for exogenous addition of precursors. The fermentation process as well as the strain may be subjected to further optimization to increase the PHA production as well as to increase the % of HV content in the co-polymer.
Collapse
|
30
|
|
31
|
Hassan EA, Abd‐Alla MH, Zohri AA, Ragaey MM, Ali SM. Production of butanol and polyhydroxyalkanoate from industrial waste by Clostridium beijerinckiiASU10. INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2019; 43:3640-3652. [DOI: 10.1002/er.4514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/26/2019] [Indexed: 09/02/2023]
Affiliation(s)
- Elhagag Ahmed Hassan
- Botany and Microbiology Department, Faculty of ScienceAssiut University Assiut Egypt
| | | | | | - Marwa M. Ragaey
- Botany Department, Faculty of ScienceNew Valley University El‐Kharja Egypt
| | - Shimaa Mohamed Ali
- Botany Department, Faculty of ScienceNew Valley University El‐Kharja Egypt
| |
Collapse
|
32
|
Thakur IS, Medhi K. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2019; 282:502-513. [PMID: 30898409 DOI: 10.1016/j.biortech.2019.03.069] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas. Even though its emissions is much lesser than CO2 but its global warming potential (GWP) is 298 times more than CO2. N2O emissions from wastewater treatment plants was caused due to incomplete nitrification or incomplete denitrification catalyzed by ammonia-oxidizing bacteria and heterotrophic denitrifiers. Low dissolved oxygen, high nitrite accumulation, change in optimal pH or temperature, fluctuation in C/N ratio, short solid retention time and non-availability of Cu ions were responsible for higher N2O leakage. Regulation of enzyme metabolic pathways involved in N2O production and reduction has also been reviewed. Sequential bioreactors, bioscrubbers, membrane biofilters usage have helped microbial nitrification-denitrification processes in succumbing N2O production in wastewater treatment plants. Reduction of N2O negativity has been studied through its valorization for the formation of value added products such as biopolymers has led to biorefinery approaches as an upcoming mitigation strategy.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Kristina Medhi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
33
|
Rigouin C, Lajus S, Ocando C, Borsenberger V, Nicaud JM, Marty A, Avérous L, Bordes F. Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microb Cell Fact 2019; 18:99. [PMID: 31151440 PMCID: PMC6545009 DOI: 10.1186/s12934-019-1140-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
Background The oleaginous yeast Yarrowia lipolytica is an organism of choice for the tailored production of various compounds such as biofuels or biopolymers. When properly engineered, it is capable of producing medium-chain-length polyhydroxyalkanoate (mcl-PHA), a biobased and biodegradable polymer that can be used as bioplastics or biopolymers for environmental and biomedical applications. Results This study describes the bioproduction and the main properties of two different mcl-PHA polymers. We generated by metabolic engineering, strains of Y. lipolytica capable of accumulating more than 25% (g/g) of mcl-PHA polymers. Depending of the strain genetic background and the culture conditions, we produced (i) a mcl-PHA homopolymer of 3-hydroxydodecanoic acids, with a mass-average molar mass (Mw) of 316,000 g/mol, showing soft thermoplastic properties with potential applications in packaging and (ii) a mcl-PHA copolymer made of 3-hydroxyoctanoic (3HO), decanoic (3HD), dodecanoic (3HDD) and tetradecanoic (3TD) acids with a Mw of 128,000 g/mol, behaving like a thermoplastic elastomer with potential applications in biomedical material. Conclusion The ability to engineer Y. lipolytica to produce tailored PHAs together with the range of possible applications regarding their biophysical and mechanical properties opens new perspectives in the field of PHA bioproduction. Electronic supplementary material The online version of this article (10.1186/s12934-019-1140-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Coraline Rigouin
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Sophie Lajus
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Connie Ocando
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | | | - Jean Marc Nicaud
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| | - Alain Marty
- Carbios - Biopôle Clermont-Limagne, 3 rue Emile Duclaux, 63360, Saint-Beauzire, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Florence Bordes
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France.
| |
Collapse
|
34
|
Yang E, Miao S, Zhong J, Zhang Z, Mills DK, Zhang LG. Bio-Based Polymers for 3D Printing of Bioscaffolds. POLYM REV 2018; 58:668-687. [PMID: 30911289 PMCID: PMC6430134 DOI: 10.1080/15583724.2018.1484761] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/06/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) printing technologies enable not only faster bioconstructs development but also on-demand and customized manufacturing, offering patients a personalized biomedical solution. This emerging technique has a great potential for fabricating bioscaffolds with complex architectures and geometries and specifically tailored for use in regenerative medicine. The next major innovation in this area will be the development of biocompatible and histiogenic 3D printing materials with bio-based printable polymers. This review will briefly discuss 3D printing techniques and their current limitations, with a focus on novel bio-based polymers as 3D printing feedstock for clinical medicine and tissue regeneration.
Collapse
Affiliation(s)
- Elisa Yang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Jing Zhong
- The University of Akron, Akron, 44304, USA
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, PR China
| | - David K. Mills
- School of Biological Sciences and the Center for Biomedical Engineering & Rehabilitation Science. Louisiana Tech University, Ruston, LA 71272, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
- Department of Medicine, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
35
|
McGraw M, Chen EYX. Catalytic Lewis Pair Polymerization of Renewable Methyl Crotonate to High-Molecular-Weight Polymers. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael McGraw
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
36
|
Vandi LJ, Chan CM, Werker A, Richardson D, Laycock B, Pratt S. Wood-PHA Composites: Mapping Opportunities. Polymers (Basel) 2018; 10:polym10070751. [PMID: 30960676 PMCID: PMC6403649 DOI: 10.3390/polym10070751] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) biopolymers are emerging as attractive new sustainable polymers due to their true biodegradability and highly tuneable mechanical properties. However, despite significant investments, commercialisation barriers are hindering the capacity growth of PHA. In this work, we investigated the market potential for wood plastic composites (WPCs) based on PHAs. We considered the latest global production capacity of PHAs, estimated at 66,000 tonnes/year, and examined the implications of using PHAs for WPC production on the WPC market. Results indicate that a hypothetical usage of the current global PHA production for WPC manufacture would only represent the equivalent of 4.4% of the global WPC market, which is currently experiencing a 10.5% compounded annual growth rate. An economic assessment revealed that a wood-PHA composite as a drop-in alternative WPC product could cost as little as 37% of the cost of its neat PHA counterpart. Thus, WPCs with PHA offer a means to access benefits of PHA in engineering applications at reduced costs; however, further developments are required to improve strain at failure. The successful adoption of wood-PHA composites into the market is furthermore reliant on support from public sector to encourage biodegradable products where recycling is not a ready solution.
Collapse
Affiliation(s)
- Luigi-Jules Vandi
- School of Chemical Engineering, University of Queensland, St. Lucia, QSD 4072, Australia.
| | - Clement Matthew Chan
- School of Chemical Engineering, University of Queensland, St. Lucia, QSD 4072, Australia.
| | - Alan Werker
- School of Chemical Engineering, University of Queensland, St. Lucia, QSD 4072, Australia.
- Promiko AB, 23442 Lomma, Sweden.
| | - Des Richardson
- Norske Skog Paper Mills (Australia) Ltd., Boyer, TAS 7140, Australia.
| | - Bronwyn Laycock
- School of Chemical Engineering, University of Queensland, St. Lucia, QSD 4072, Australia.
| | - Steven Pratt
- School of Chemical Engineering, University of Queensland, St. Lucia, QSD 4072, Australia.
| |
Collapse
|
37
|
Mahler N, Tschirren S, Pflügl S, Herwig C. Optimized bioreactor setup for scale-up studies of extreme halophilic cultures. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Draft Genome Sequence of the Endophyte Bacillus mycoides Strain GM5LP Isolated from Lolium perenne. GENOME ANNOUNCEMENTS 2018; 6:6/4/e01517-17. [PMID: 29371354 PMCID: PMC5786680 DOI: 10.1128/genomea.01517-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus mycoides GM5LP is a Gram-positive endophytic bacterium isolated from aerial plant tissues of Lolium perenne L. The 6.0-Mb draft genome harbors 6,132 protein-coding sequences, some of which might be involved in the biosynthesis of antimicrobial substances.
Collapse
|
39
|
Weiss TL, Young EJ, Ducat DC. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab Eng 2017; 44:236-245. [DOI: 10.1016/j.ymben.2017.10.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
40
|
Zhang X, Fevre M, Jones GO, Waymouth RM. Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 2017; 118:839-885. [DOI: 10.1021/acs.chemrev.7b00329] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyi Zhang
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Mareva Fevre
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Gavin O. Jones
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
41
|
A combined application of tunable diode laser absorption spectroscopy and isothermal micro-calorimetry for calorespirometric analysis. J Microbiol Methods 2017. [DOI: 10.1016/j.mimet.2017.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Marcos-García M, García-Fraile P, Filipová A, Menéndez E, Mateos PF, Velázquez E, Cajthaml T, Rivas R. Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17436-17445. [PMID: 28593540 DOI: 10.1007/s11356-017-9319-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Polyhydroxyalkanoic acids (PHAs) are natural polyesters that can be used to produce bioplastics which are biodegradable. Numerous microorganisms accumulate PHAs as energy reserves. Combinations of different PHAs monomers lead to the production of bioplastics with very different properties. In the present work, we show the capability of strains belonging to various phylogenetic lineages within the genus Mesorhizobium, isolated from Lotus corniculatus nodules, to produce different PHA monomers. Among our strains, we found the production of 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxydodecanoate, and 3-hydroxyhexadecanoate. Most of the PHA-positive strains were phylogenetically related to the species M. jarvisii. However, our findings suggest that the ability to produce different monomers forming PHAs is strain-dependent.
Collapse
Affiliation(s)
- Marta Marcos-García
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain
| | - Paula García-Fraile
- Mikrobiologický ústav, Akademie věd České republiky, Prague, Czech Republic.
| | - Alena Filipová
- Mikrobiologický ústav, Akademie věd České republiky, Prague, Czech Republic
- Přírodovědecká fakulta, Univerzita Karlova, Prague, Czech Republic
| | - Esther Menéndez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal
| | - Pedro F Mateos
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain
- Unidad Asociada Universidad de Salamanca-CSIC (IRNASA), Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain
- Unidad Asociada Universidad de Salamanca-CSIC (IRNASA), Salamanca, Spain
| | - Tomáš Cajthaml
- Mikrobiologický ústav, Akademie věd České republiky, Prague, Czech Republic
- Přírodovědecká fakulta, Univerzita Karlova, Prague, Czech Republic
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain
- Unidad Asociada Universidad de Salamanca-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
43
|
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2017; 4:bioengineering4020055. [PMID: 28952534 PMCID: PMC5590474 DOI: 10.3390/bioengineering4020055] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.
Collapse
|
44
|
Frutos OD, Cortes I, Cantera S, Arnaiz E, Lebrero R, Muñoz R. Nitrous Oxide Abatement Coupled with Biopolymer Production As a Model GHG Biorefinery for Cost-Effective Climate Change Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6319-6325. [PMID: 28467840 DOI: 10.1021/acs.est.7b00643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
N2O represents ∼6% of the global greenhouse gas emission inventory and the most important O3-depleting substance emitted in this 21st century. Despite its environmental relevance, little attention has been given to cost-effective and environmentally friendly N2O abatement methods. Here we examined, the potential of a bubble column (BCR) and an internal loop airlift (ALR) bioreactors of 2.3 L for the abatement of N2O from a nitric acid plant emission. The process was based on the biological reduction of N2O by Paracoccus denitrificans using methanol as a carbon/electron source. Two nitrogen limiting strategies were also tested for the coproduction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coupled with N2O reduction. High N2O removal efficiencies (REs) (≈87%) together with a low PHBV cell accumulation were observed in both bioreactors in excess of nitrogen. However, PHBV contents of 38-64% were recorded under N limiting conditions along with N2O-REs of ≈57% and ≈84% in the ALR and BCR, respectively. Fluorescence in situ hybridization analyses showed that P. denitrificans was dominant (>50%) after 6 months of experimentation. The successful abatement of N2O concomitant with PHBV accumulation confirmed the potential of integrating biorefinery concepts into biological gas treatment for a cost-effective GHG mitigation.
Collapse
Affiliation(s)
- Osvaldo D Frutos
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina , s/n, 47011, Valladolid, Spain
- Facultad de Ciencias Agrarias, Universidad Nacional de Asunción, Campus Ciudad de San Lorenzo , San Lorenzo, Paraguay
| | - Irene Cortes
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina , s/n, 47011, Valladolid, Spain
| | - Sara Cantera
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina , s/n, 47011, Valladolid, Spain
| | - Esther Arnaiz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina , s/n, 47011, Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina , s/n, 47011, Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina , s/n, 47011, Valladolid, Spain
| |
Collapse
|
45
|
Iszatty I, Noor Aidda O, Hema R, Amirul AA. Combination of 4-Hydroxybutyrate Carbon Precursors as Substrate for Simultaneous Production of P(3HB-co-4HB) and Yellow Pigment by Cupriavidus sp. USMAHM13. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2451-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Sathiyanarayanan G, Bhatia SK, Song HS, Jeon JM, Kim J, Lee YK, Kim YG, Yang YH. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Int J Biol Macromol 2017; 97:710-720. [DOI: 10.1016/j.ijbiomac.2017.01.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/03/2023]
|
47
|
Pagliano G, Ventorino V, Panico A, Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:113. [PMID: 28469708 PMCID: PMC5414342 DOI: 10.1186/s13068-017-0802-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/23/2017] [Indexed: 05/07/2023]
Abstract
Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, Azotobacter chroococcum, Azotobacter beijerincki, methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli, have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas production is given. The possibility of creating a unique integrated system is discussed because it represents a new approach for simultaneously producing energy and biopolymers for the plastic industry using by-products and waste as organic carbon sources.
Collapse
Affiliation(s)
- Giorgia Pagliano
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055 Naples, Italy
| | - Valeria Ventorino
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055 Naples, Italy
| | | | - Olimpia Pepe
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055 Naples, Italy
| |
Collapse
|
48
|
Genome Structure ofBacillus cereustsu1 and Genes Involved in Cellulose Degradation and Poly-3-Hydroxybutyrate Synthesis. INT J POLYM SCI 2017. [DOI: 10.1155/2017/6192924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In previous work, we reported on the isolation and genome sequence analysis ofBacillus cereusstrain tsu1 NCBI accession number JPYN00000000. The 36 scaffolds in the assembled tsu1 genome were all aligned withB. cereusB4264 genome with variations. Genes encoding for xylanase and cellulase and the cluster of genes in the poly-3-hydroxybutyrate (PHB) biosynthesis pathway were identified in tsu1 genome. The PHB accumulation inB. cereustsu1 was initially identified using Sudan Black staining and then confirmed using high-performance liquid chromatography. Physical properties of these PHB extracts, when analyzed with Raman spectra and Fourier transform infrared spectroscopy, were found to be comparable to the standard compound. The five PHB genes in tsu1(phaA,phaB,phaR,phaC,andphaP)were cloned and expressed with TOPO cloning, and the recombinant proteins were validated using peptide mapping of in-gel trypsin digestion followed by mass spectrometry analysis. The recombinantE. coliBL21 (DE3) (over)expressingphaCwas found to accumulate PHB particles. The cellulolytic activity of tsu1 was detected using carboxymethylcellulose (CMC) plate Congo red assay and the shift towards low-molecular size forms of CMC revealed by gel permeation chromatography in CMC liquid culture and the identification of a cellulase in the secreted proteome.
Collapse
|
49
|
Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech 2016; 6:142. [PMID: 28330214 PMCID: PMC4919136 DOI: 10.1007/s13205-016-0452-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/03/2016] [Indexed: 11/03/2022] Open
Abstract
The purpose of present study was to optimize polyhydroxyalkanotes (PHAs) production in a gamma ray mutant strain of Pseudomonas aeruginosa grown on soybean oil in minimal salts media under shake flask conditions. The production kinetics was studied by sampling on daily basis for 6 days to investigate the best conditions for PHAs production like biomass estimation, carbon source utilization and PHAs yield. The PHA accumulation was observed up to 50.27 % (w/w) of cell dry mass. The Pseudomonas species synthesized medium chain length PHA copolyester as per identified by LCMS and confirmed by FTIR spectroscopy. The ESI-MS analysis exhibited the major polyhydroxybutyrate with a molecular mass of m/z 448.5.
Collapse
|
50
|
Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol 2016; 43:294-312. [DOI: 10.1080/1040841x.2016.1206060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ganesan Saibaba
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, India
| |
Collapse
|