1
|
Arunachalam K, Matchado MS, Damazo AS, Cardoso CAL, Castro TLAD, Baranoski A, Neves SCD, Martins DTDO, Nascimento VAD, Oliveira RJ. Casearia sylvestris var. lingua (Càmbess.) Eichler leaves aqueous extract improves colon inflammation through mucogenic, antioxidant and anti-inflammatory actions in TNBS- induced IBD rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118393. [PMID: 38801913 DOI: 10.1016/j.jep.2024.118393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Casearia sylvestris var. lingua (Cambess.) Eichler, a member of the Salicaceae family, holds a prominent place in traditional medicine across various cultures due to its versatile therapeutic properties. Historically, indigenous communities have utilized different parts of the plant, including leaves, bark, and roots, to address a wide array of health conditions. Traditional uses of C. sylvestris var. lingua encompasses the treatment of gastrointestinal disorders, respiratory infections, wound healing, inflammation, and stomach ulcers. Pharmacological studies have demonstrated the plant's antimicrobial, anti-inflammatory, antioxidant, analgesic, gastroprotective, and immunomodulatory effects. This signifies the first scientific validation report for C. sylvestris var. lingua regarding its effectiveness against ulcerative colitis. The report aims to affirm the traditional use of this plant through pre-clinical experiments. AIM OF THE RESEARCH This work uses an aqueous extract from C. sylvestris var. lingua leaves (AECs) to evaluate the acute anti-ulcerative colitis efficacy in rat and HT-29 (human colorectal cancer cell line) models. METHODS To determine the secondary metabolites of AECs, liquid chromatography with a diode array detector (LC-DAD) study was carried out. 2,4,6-trinitrobenzenesulfonic acid (TNBS, 30 mg/0.25 mL EtOH 30% v/v) was used as an enema to cause acute colitis. Three days were spent giving the C. sylvestris var. lingua extract orally by gavage at dosages of 3, 30, and 300 mg/kg. The same route was used to deliver distilled water to the vehicle and naïve groups. After the animals were sacrificed on the fourth day, intestinal tissues were taken for histological examination and evaluation of biochemical tests such as those measuring superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), nitrite/nitrate, myeloperoxidase (MPO) activity. Additionally, interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin 10 (IL-10), were conducted on the intestinal tissues. Additionally, an MTT assay was used to evaluate the effect of AECs on the viability of HT-29 cells. Additionally, a molecular docking study was carried out to compare some potential target proteins with identified chemicals found in AECs. RESULTS LC-DAD analysis identified five compounds (caffeic acid, ellagic acid, ferulic acid, gallic acid, and quercetin) in AECs. Pre-administration of AECs (3; 30; 300 mg/kg) and mesalazine (500 mg/kg) reduced macroscopic scores (55%, 47%, 45%, and 52%, p < 0.001) and ulcerated areas (70.3%, 70.5%, 57%, and 56%, p < 0.001), respectively. It also increased SOD, GSH, and CAT activities (p < 0.01), while decreasing MDA (p < 0.001), nitrite/nitrate (p < 0.05), and MPO (p < 0.001) activities compared to the colitis group. Concerning inflammatory markers, significant modulations were observed: AECs (3, 30, and 300 mg/kg) lowered levels of IL-1β and TNF-α (p < 0.001) and increased IL-10 levels (p < 0.001) compared to the colitis groups. The viability of HT-29 cells was suppressed by AECs with an IC50 of 195.90 ± 0.01 μg/mL (48 h). During the molecular docking analysis, quercetin, gallic acid, ferulic acid, caffeic acid, and ellagic acid demonstrated consistent binding affinities, forming stable interactions with the 3w3l (TLR8) and the 3ds6 (MAPK14) complexes. CONCLUSION These results imply that the intestinal mucogenic, anti-inflammatory, and antioxidant properties of the C. sylvestris var. lingua leaf extract may be involved in its therapeutic actions for ulcerative colitis. The results of the in silico study point to the possibility of quercetin and ellagic acid interacting with P38 and TLR8, respectively, in a beneficial way.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Postgraduate Program in Health and Development of the Midwest Region, School of Medicine (FAMED), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Monica Steffi Matchado
- Ganga Orthopaedic Research & Education Foundation (GOREF), Coimbatore, Tamil Nadu, India.
| | - Amilcar Sabino Damazo
- Histology Laboratory, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Claudia Andrea Lima Cardoso
- Postgraduate Program in Natural Resources, State University of Mato Grosso Do Sul, Cidade Universitária de Dourados, Rodovia Itahum, Km 12, Dourados, MS, 79804-970, Brazil.
| | - Thiago Luis Aguayo de Castro
- Postgraduate Program in Natural Resources, State University of Mato Grosso Do Sul, Cidade Universitária de Dourados, Rodovia Itahum, Km 12, Dourados, MS, 79804-970, Brazil.
| | - Adrivanio Baranoski
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Silvia Cordeiro das Neves
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | | | - Valter Aragão do Nascimento
- Postgraduate Program in Health and Development of the Midwest Region, School of Medicine (FAMED), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Rodrigo Juliano Oliveira
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Postgraduate Program in Health and Development of the Midwest Region, School of Medicine (FAMED), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| |
Collapse
|
2
|
Almási N, Török S, Al-awar A, Veszelka M, Király L, Börzsei D, Szabó R, Varga C. Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants. Antioxidants (Basel) 2023; 12:1531. [PMID: 37627526 PMCID: PMC10451893 DOI: 10.3390/antiox12081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - László Király
- Zala-Cereália Kft, H-8790 Zalaszentgrót-Tüskeszentpéter, Hungary;
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| |
Collapse
|
3
|
Agbonifo-Chijiokwu E, Nwangwa KE, Oyovwi MO, Ben-Azu B, Naiho AO, Emojevwe V, Ohwin EP, Ehiwarior AP, Ojugbeli ET, Nwabuoku SU, Moke EG, Oghenetega BO. Underlying biochemical effects of intermittent fasting, exercise and honey on streptozotocin-induced liver damage in rats. J Diabetes Metab Disord 2023; 22:515-527. [PMID: 37255765 PMCID: PMC10225416 DOI: 10.1007/s40200-022-01173-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Purpose Derangements of liver transcriptional factors and enzymes have important implications in diabetes-induced related complications. Hence, this study which consists of two experimental phases was aimed at evaluating the possible underlying molecular mechanisms of intermittent fasting (IF), exercise starvation and honey in streptozotocin (STZ)-mediated liver damage in diabetic rats. Methods The diabetic rats were treated orally with distilled water (0.5 ml/kg), IF, starvation and honey at 1 g/kg body weight in the non-diabetic phase for four (4) weeks. After STZ injections, four (4) weeks of IF, exercise, starvation, and honey therapy were used as interventions prior to a biochemical evaluation of the liver. Results IF and exercise greatly decreased liver transcription factor (resistin, SREBP-1c), inflammatory cytokines/enzyme (TNF-α, IL-6, IL-1ß, MPO) as well as oxidative and nitrergic stress with correspondence increased liver PPAR-γ, IL-10, SOD, CAT and GSH in diabetic rats unlike starvation and honey regimen relative to diabetic controls. Furthermore, IF and exercise significantly improved hepatic glycogen synthase and decreased glycogen phosphorylase in diabetic rats compared to the diabetic control group, but starvation and honey therapy had no such influence. IF and exercise strategically reduces STZ-induced liver metabolic disorder via through modulation of liver transcriptional factors and inhibition of pro-inflammatory cytokines, oxido-nitrergic and adipokine signaling pathway.
Collapse
Affiliation(s)
- Ejime Agbonifo-Chijiokwu
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Kingsley E. Nwangwa
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Mega O. Oyovwi
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
- Department of Hunan Physiology, Achievers University, Owo, Ondo State Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Alexander O. Naiho
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State Nigeria
| | - Ejiro Peggy Ohwin
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Azuka Prosper Ehiwarior
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Evelyn Tarela Ojugbeli
- Department of Medical Biochemistry, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Shalom Udoka Nwabuoku
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Emuesiri Goodies Moke
- Department of Pharmacology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Bright O. Oghenetega
- Department of Physiology, Faculty of Basic Medical Science, Babcock University, Illisan-Romo, Ogun State Nigeria
| |
Collapse
|
4
|
Chijiokwu EA, Nwangwa EK, Oyovwi MO, Naiho AO, Emojevwe V, Ohwin EP, Ehiwarior PA, Ojugbeli ET, Nwabuoku US, Oghenetega OB, Ogheneyoma OO. Intermittent fasting and exercise therapy abates STZ-induced diabetotoxicity in rats through modulation of adipocytokines hormone, oxidative glucose metabolic, and glycolytic pathway. Physiol Rep 2022; 10:e15279. [PMID: 36305681 PMCID: PMC9615571 DOI: 10.14814/phy2.15279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetes is a global, costly, and growing public health issue. Intermittent fasting (IF) and exercise therapy have been shown to improve insulin sensitivity (IS) in large studies, although the underlying processes are still unknown. The goal of this study, which included both nondiabetic and diabetic rats, was to look at the mechanisms of intermittent fasting and exercise in the management of diabetotoxicity. The effects of starvation and honey on the oral glucose tolerance test, insulin tolerance test, adipocytokines, oxidative glucose metabolic enzymes, glycolytic enzymes, food intake, and body weight in rats with streptozotocin‐induced diabetes were also investigated. In the nondiabetic phase, rats were administered an oral regimen of distilled water (0.5 ml/rat), honey (1 g/kg body weight), and interventions with IF, and starvation for 4 weeks while in the diabetic phase, after STZ or citrate buffer injections, interventions with IF, exercise, starvation, and honey treatment began for 4 weeks. At all OGTT and ITT points, there was a substantial rise in glucose in the STZ group. Adipocytokines hormone, oxidative glucose metabolic enzymes, glycolytic enzymes, and body weight were all affected by STZ when compared to starvation and honey, however, IF and exercise significantly reduced these alterations. In diabetic rats, intermittent fasting and exercise enhanced serum adipocytokines levels. These findings imply that adipokines modulate glycolytic/nonmitochondrial enzymes and glucose metabolic/mitochondrial dehydrogenase to mediate the antidiabetic effects of intermittent fasting and exercise. Intermittent fasting and exercise therapy abates STZ‐induced diabetotoxicity in rats through modulation of adipocytokines hormone, oxidative glucose metabolic, and glycolytic pathway.
Collapse
Affiliation(s)
- Ejime A. Chijiokwu
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Eze K. Nwangwa
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Mega O. Oyovwi
- 524172Department of Human PhysiologyAchievers UniversityOwoOndo StateNigeria
| | - Alexander O. Naiho
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Victor Emojevwe
- Department of PhysiologyUniversity of Medical SciencesOndoOndo StateNigeria
| | - Ejiro P. Ohwin
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Prosper A. Ehiwarior
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Evelyn T. Ojugbeli
- Department of Medical BiochemistryFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Udoka S. Nwabuoku
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| | - Onome B. Oghenetega
- Department of PhysiologyFaculty of Basic Medical ScienceBabcock UniversityIlisan‐RomoOgun StateNigeria
| | - Ofulue O. Ogheneyoma
- Department of PhysiologyFaculty of Basic Medical ScienceCollege of Health SciencesDelta State UniversityAbrakaDelta StateNigeria
| |
Collapse
|
5
|
Boros É, Hegedűs Z, Kellermayer Z, Balogh P, Nagy I. Global alteration of colonic microRNAome landscape associated with inflammatory bowel disease. Front Immunol 2022; 13:991346. [PMID: 36177008 PMCID: PMC9513375 DOI: 10.3389/fimmu.2022.991346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that associates with, among others, increased risk of colorectal cancer. There is a growing evidence that miRNAs have important roles in pathological processes, such as inflammation or carcinogenesis. Understanding the molecular mechanisms such as alterations in microRNAome upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of IBD. Hence, we conducted a genome wide microRNAome analysis by applying miRNA-Seq in a rat model of experimental colitis, validated the data by QPCR, examined the expression of a selection of precursor and mature miRNAs, performed in depth biological interpretation using Ingenuity Pathway Analysis and tested the obtained results on samples derived from human patients. We identified specific, interdependent expression pattern of activator/repressor transcription factors, miRNAs and their direct targets in the inflamed colon samples. Particularly, decreased expression of the miR-200 family members (miR-200a/b/c,-141, and -429) and miR-27b correlates with the reduced level of their enhancers (HNF1B, E2F1), elevated expression of their repressors (ZEB2, NFKB1) and increased expression of their target genes (ZEB2, RUNX1). Moreover, the marked upregulation of six miR-27b target genes (IFI16, GCA, CYP1B1, RUNX1, MEF2C and MMP13) in the inflamed colon tissues is a possible direct consequence of the lack of repression due to the downregulated miRNA-27b expression. Our data indicate that changes in microRNAome are associated with the pathophysiology of IBD, consequently, microRNAs offer potential targets for the diagnosis, prognosis and treatment of IBD.
Collapse
Affiliation(s)
- Éva Boros
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
6
|
Bronczek GA, Soares GM, Marmentini C, Boschero AC, Costa-Júnior JM. Resistance Training Improves Beta Cell Glucose Sensing and Survival in Diabetic Models. Int J Mol Sci 2022; 23:ijms23169427. [PMID: 36012692 PMCID: PMC9409046 DOI: 10.3390/ijms23169427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance training increases insulin secretion and beta cell function in healthy mice. Here, we explored the effects of resistance training on beta cell glucose sensing and survival by using in vitro and in vivo diabetic models. A pancreatic beta cell line (INS-1E), incubated with serum from trained mice, displayed increased insulin secretion, which could be linked with increased expression of glucose transporter 2 (GLUT2) and glucokinase (GCK). When cells were exposed to pro-inflammatory cytokines (in vitro type 1 diabetes), trained serum preserved both insulin secretion and GCK expression, reduced expression of proteins related to apoptotic pathways, and also protected cells from cytokine-induced apoptosis. Using 8-week-old C57BL/6 mice, turned diabetic by multiple low doses of streptozotocin, we observed that resistance training increased muscle mass and fat deposition, reduced fasting and fed glycemia, and improved glucose tolerance. These findings may be explained by the increased fasting and fed insulinemia, along with increased beta cell mass and beta cell number per islet, observed in diabetic-trained mice compared to diabetic sedentary mice. In conclusion, we believe that resistance training stimulates the release of humoral factors which can turn beta cells more resistant to harmful conditions and improve their response to a glucose stimulus.
Collapse
Affiliation(s)
- Gabriela Alves Bronczek
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - José Maria Costa-Júnior
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
- Center for Diabetes Research, Division of Endocrinology, Erasmus Hospital, Universite Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-455-11-02-04
| |
Collapse
|
7
|
Honokiol alleviates ulcerative colitis by targeting PPAR-γ-TLR4-NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro. Int Immunopharmacol 2022; 111:109058. [PMID: 35901530 DOI: 10.1016/j.intimp.2022.109058] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is a chronic, idiopathic relapsing inflammatory bowel disease. Honokiol is a major active component of the traditional Chinese medicinal herb Magnolia officinalis, which has been widely used in traditional prescriptions to treat tumors, inflammation, and gastrointestinal disorders. In this study, we investigated the ability of this polyphenolic compound to suppress UC in mice and the possible regulatory mechanism. A mouse model of UC induced with dextran sulfate sodium (DSS) in 40 male C57BL/6J mice was used for the in vivo study, and in vitro experiments were performed in mouse RAW264.7 macrophages. Lipopolysaccharide was used to induce the inflammatory response. The mouse bodyweights, stool consistency, and bleeding were determined and the disease activity indices calculated. RAW264.7 macrophages were cultured with or without either honokiol or lipopolysaccharide. Gene and protein expression was analyzed with RT-PCR and western blotting, respectively. GW6471 and GW9662 were used to interrupt the transcription of peroxisome proliferator activated receptor alpha (PPAR-α) and peroxisome proliferator activated receptor gamma (PPAR-γ). Both the in vivo and in vitro experimental results showed that the oral administration of honokiol markedly attenuated the severity of UC by reducing the inflammatory signals and restoring the integrity of the colon. Honokiol dramatically reduced the proinflammatory cytokines TNF-α, IL6, IL1β, and IFN-γ in mice with DSS-induced UC. It also upregulated PPAR-γ expression, and downregulated the TLR4-NF-κB signaling pathway. Moreover, honokiol inhibited gasdermin-D-mediated cell pyroptosis. These findings demonstrate for the first time that honokiol exerts a strong anti-inflammatory effect in a mouse model of UC, and that its underlying mechanism is associated with the activation of the PPAR-γ-TLR4-NF-κB signaling pathway and gasdermin-D-mediated macrophage pyroptosis. Therefore, honokiol may be a promising new drug for the clinical management of UC.
Collapse
|
8
|
The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa. Int J Mol Sci 2022; 23:ijms23062964. [PMID: 35328382 PMCID: PMC8955215 DOI: 10.3390/ijms23062964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are commonly considered as Crohn's disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.
Collapse
|
9
|
The role of inflammatory cytokines in anemia and gastrointestinal mucosal injury induced by foot electric stimulation. Sci Rep 2021; 11:3101. [PMID: 33542312 PMCID: PMC7862408 DOI: 10.1038/s41598-021-82604-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Foot electrical stimulation (FES) has been considered as a classic stressor that can disturb homeostasis. Acute anemia was observed in the model induced by FES. The aim of this study was to explore the role of inflammatory cytokines underlying the acute anemia and gastrointestinal (GI) mucosal injury in the FES. Twenty-four male Kunming mice (20 ± 2 g) were randomly divided into control group and experimental group. The mice were placed in a footshock chamber that can generate 0.5 mA electrical impulse periodically for 0.5 h. After the process, red blood cell count, hemoglobin concentration and hematocrit, the levels of corticotropin releasing hormone (CRH) in serum and hypothalamus, and adrenocorticotropic hormone (ACTH) in serum and pituitary were detected separately. In addition, we investigated the expressions of inflammatory cytokines (IL-1, IL-6, TNF-α, iNOS, and IL-10) in the hypothalamus and duodenum by Polymerase Chain Reaction (PCR). Results showed that this FES model induced anemia, increased CRH and ACTH activity in the serum after the FES. Moreover, the expressions of IL-1β, IL-6, TNF-α, and iNOS were significantly increased following the process, while IL-10 was not activated. These findings suggest that anemia, the inflammatory cytokines in the hypothalamus and duodenum of the mice in the model induced by FES is closely related to GI mucosal injury/bleeding. Taken together, these results underscore the importance of anemia, GI mucosal injury/bleeding and stress, future studies would be needed to translate these findings into the benefit of affected patients.
Collapse
|
10
|
AphaMax ®, an Aphanizomenon Flos-Aquae Aqueous Extract, Exerts Intestinal Protective Effects in Experimental Colitis in Rats. Nutrients 2020; 12:nu12123635. [PMID: 33256017 PMCID: PMC7760929 DOI: 10.3390/nu12123635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aphanizomenon flos-aquae (AFA) is a unicellular cyanobacterium considered to be a "superfood" for its complete nutritional profile and beneficial properties. We investigated possible beneficial effects of an AFA extract, commercialized as AphaMax®, containing concentrated amount of phycocyanins and phytochrome, in 2,4 dinitrobenzensulfonic acid(DNBS)-induced colitis in rats. METHODS Effects of preventive oral treatment of AphaMax® (20, 50 or 100 mg/kg/day) in colitic rats were assessed and then macroscopic and microscopic analyses were performed to evaluate the inflammation degree. Myeloperoxidase (MPO) activity and NF-κB, pro-inflammatory citockines, cycloxygenase-2 (COX-2), and inducible NOS (iNOS) levels of expression were determined, as Reactive Oxygen Species (ROS) and nitrite levels. RESULTS AphaMax® treatment attenuated the severity of colitis ameliorating clinical signs. AphaMax® reduced the histological colonic damage and decreased MPO activity, NF-κB activation, as well as iNOS and COX-2 expression. AphaMax® treatment improved the altered immune response associated with colonic inflammation reducing IL-1β, IL-6 expression. Lastly, AphaMax® reduced oxidative stress, decreasing ROS and nitrite levels. CONCLUSIONS Preventive treatment with AphaMax® attenuates the severity of the inflammation in DNBS colitis rats involving decrease of the NF-kB activation, reduction of iNOS and COX-2 expression, and inhibition of oxidative stress. Due its anti-inflammatory and antioxidant proprieties AphaMax® could be a good candidate as a complementary drug in inflammatory bowel disease (IBD) treatment.
Collapse
|
11
|
Physical Activity Shapes the Intestinal Microbiome and Immunity of Healthy Mice but Has No Protective Effects against Colitis in MUC2 -/- Mice. mSystems 2020; 5:5/5/e00515-20. [PMID: 33024049 PMCID: PMC7542559 DOI: 10.1128/msystems.00515-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perturbation in the gut microbial ecosystem has been associated with various diseases, including inflammatory bowel disease. Habitual physical activity, through its ability to modulate the gut microbiome, has recently been shown to prophylactically protect against chemically induced models of murine colitis. Here, we (i) confirm previous reports that physical activity has limited but significant effects on the gut microbiome of mice and (ii) show that such changes are associated with anti-inflammatory states in the gut, such as increased production of beneficial short-chain fatty acids and lower levels of proinflammatory immune markers implicated in human colitis; however, we also show that (iii) these physical activity-derived benefits are completely lost in the absence of a healthy intestinal mucus layer, a hallmark phenotype of human colitis. The interactions among humans, their environment, and the trillions of microbes residing within the human intestinal tract form a tripartite relationship that is fundamental to the overall health of the host. Disruptions in the delicate balance between the intestinal microbiota and host immunity are implicated in various chronic diseases, including inflammatory bowel disease (IBD). There is no known cure for IBD; therefore, novel therapeutics targeting prevention and symptom management are of great interest. Recently, physical activity in healthy mice was shown to be protective against chemically induced colitis; however, the benefits of physical activity during or following disease onset are not known. In this study, we examine whether voluntary wheel running is protective against primary disease symptoms in a mucin 2-deficient (Muc2−/−) lifelong model of murine colitis. We show that 6 weeks of wheel running in healthy C57BL/6 mice leads to distinct changes in fecal bacteriome, increased butyrate production, and modulation in colonic gene expression of various cytokines, suggesting an overall primed anti-inflammatory state. However, these physical activity-derived benefits are not present in Muc2−/− mice harboring a dysfunctional mucosal layer from birth, ultimately showing no improvements in clinical signs. We extrapolate from our findings that while physical activity in healthy individuals may be an important preventative measure against IBD, for those with a compromised intestinal mucosa, a commonality in IBD patients, these benefits are lost. IMPORTANCE Perturbation in the gut microbial ecosystem has been associated with various diseases, including inflammatory bowel disease. Habitual physical activity, through its ability to modulate the gut microbiome, has recently been shown to prophylactically protect against chemically induced models of murine colitis. Here, we (i) confirm previous reports that physical activity has limited but significant effects on the gut microbiome of mice and (ii) show that such changes are associated with anti-inflammatory states in the gut, such as increased production of beneficial short-chain fatty acids and lower levels of proinflammatory immune markers implicated in human colitis; however, we also show that (iii) these physical activity-derived benefits are completely lost in the absence of a healthy intestinal mucus layer, a hallmark phenotype of human colitis.
Collapse
|
12
|
Arjunarishta alleviates experimental colitis via suppressing proinflammatory cytokine expression, modulating gut microbiota and enhancing antioxidant effect. Mol Biol Rep 2020; 47:7049-7059. [PMID: 32885365 DOI: 10.1007/s11033-020-05766-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/28/2020] [Indexed: 01/09/2023]
Abstract
Traditional ayurvedic medicine, Arjunarishta (AA) is used to treat several inflammatory conditions including dysentery associated with blood. The formulation is a decoction of Terminalia arjuna (Roxb.) Wight and Arn. (TA), Madhuca indica J.F.Gmel., Vitis vinifera L., Woodfordia fruticosa (L.) Kurz., and Saccharum officinarum L. Terminalia arjuna, a major constituent of this formulation has been recognized for anti-inflammatory effects. This study aimed at evaluating beneficial effects of AA and probable mechanism of action in Trinitrobenzenesulphonicacid (TNBS) induced colitis model. Response to AA treatment was explored through determination of disease activity index (DAI), histological assessment and damage scores, colonic pro-inflammatory cytokine/chemokine expression and estimation of oxidative stress biomarkers. Improvement in gut microbiome and plasma zinc level was also assessed. Study findings directed therapeutic effects of AA treatment in colitis model by attenuating the colitis symptoms such as weight loss, diarrhoea, blood in stool; histological damage; and downregulated expression of pro-inflammatory cytokines/chemokine (TNF-α, IL-1β, IL-6) and MCP-1). Similarly reduced oxidative stress by decreased level of Nitric Oxide (NO), Myeloperoxidase (MPO), Malondialdehyde (MDA) and enhanced level of Catalase (CAT), Superoxide dismutase (SOD) and Reduced Glutathione (GSH) was also witnessed. In addition, an improved beneficial fecal microbiome profile and restored plasma zinc status was revealed compared to the TNBS control group. The present study directs that downregulated pro-inflammatory cytokines/chemokine expression, enhancement of antioxidant effect, increased plasma zinc status and promising role in modulating fecal microbiome might be potential mechanisms for the therapeutic effect of AA treatment against colitis.
Collapse
|
13
|
Bilski J, Wojcik D, Danielak A, Mazur-Bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-Belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-2950. [PMID: 32338209 DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
14
|
Transcriptome Based Profiling of the Immune Cell Gene Signature in Rat Experimental Colitis and Human IBD Tissue Samples. Biomolecules 2020; 10:biom10070974. [PMID: 32610492 PMCID: PMC7407160 DOI: 10.3390/biom10070974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic intestinal inflammation is characteristic of Inflammatory Bowel Disease (IBD) that is associated with the exaggerated infiltration of immune cells. A complex interplay of inflammatory mediators and different cell types in the colon are responsible for the maintenance of tissue homeostasis and affect pathological conditions. Gene expression alteration of colon biopsies from IBD patients and an in vivo rat model of colitis were examined by RNA-Seq and QPCR, while we used in silico methods, such as Ingenuity Pathway Analysis (IPA) application and the Immune Gene Signature (ImSig) package of R, to interpret whole transcriptome data and estimate immune cell composition of colon tissues. Transcriptome profiling of in vivo colitis model revealed the most significant activation of signaling pathways responsible for leukocyte recruitment and diapedesis. We observed significant alteration of genes related to glycosylation or sensing of danger signals and pro- and anti-inflammatory cytokines and chemokines, as well as adhesion molecules. We observed the elevated expression of genes that implies the accumulation of monocytes, macrophages, neutrophils and B cells in the inflamed colon tissue. In contrast, the rate of T-cells slightly decreased in the inflamed regions. Interestingly, natural killer and plasma cells do not show enrichment upon colon inflammation. In general, whole transcriptome analysis of the in vivo experimental model of colitis with subsequent bioinformatics analysis provided a better understanding of the dynamic changes in the colon tissue of IBD patients.
Collapse
|
15
|
Almási N, Török S, Dvorácskó S, Tömböly C, Csonka Á, Baráth Z, Murlasits Z, Valkusz Z, Pósa A, Varga C, Kupai K. Lessons on the Sigma-1 Receptor in TNBS-Induced Rat Colitis: Modulation of the UCHL-1, IL-6 Pathway. Int J Mol Sci 2020; 21:E4046. [PMID: 32516975 PMCID: PMC7312485 DOI: 10.3390/ijms21114046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune ailment of the gastrointestinal (GI) tract, which is characterized by enhanced activation of proinflammatory cytokines. It is suggested that the sigma-1 receptor (σ1R) confers anti-inflammatory effects. As the exact pathogenesis of IBD is still unknown and treatment options are limited, we aimed to investigate the effects of σ1R in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis. To this end, male Wistar-Harlan rats were used to model colitic inflammation through the administration of TNBS. To investigate the effects of σ1R, Fluvoxamine (FLV, σ1R agonist) and BD1063 (σ1R antagonist) were applied via intracolonic administration to the animals once a day for three days. Our radioligand binding studies indicated the existence of σ1Rs as [3H](+)-pentazocine binding sites, and FLV treatment increased the reduced σ1R maximum binding capacity in TNBS-induced colitis. Furthermore, FLV significantly attenuated the colonic damage, the effect of which was abolished by the administration of BD1063. Additionally, FLV potentially increased the expression of ubiquitin C-terminal hydrolase ligase-1 (UCHL-1) and the levels of endothelial nitric oxide synthase (eNOS), and decreased the levels of interleukin-6 (IL-6) and inducible NOS (iNOS) expression. In summary, our study offers evidence for the anti-inflammatory potential of FLV and σ1R in experimental colitis, and our results present a promising approach to the development of new σ1R-targeted treatment options against IBD.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (S.D.); (C.T.)
- Department of Medical Chemistry, University of Szeged, H-6725 Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (S.D.); (C.T.)
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary;
| | - Zoltán Baráth
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Zsolt Murlasits
- Laboratory Animals Research Center, Qatar University, Doha 2713, Qatar;
| | - Zsuzsanna Valkusz
- 1st Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary;
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| |
Collapse
|
16
|
The Anti-Inflammatory Role of Mannich Curcuminoids; Special Focus on Colitis. Molecules 2019; 24:molecules24081546. [PMID: 31010141 PMCID: PMC6515261 DOI: 10.3390/molecules24081546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 01/18/2023] Open
Abstract
The incidence of inflammatory bowel disease (IBD) increases gradually in Western countries with high need for novel therapeutic interventions. Mannich curcuminoids, C142 or C150 synthetized in our laboratory, have been tested for anti-inflammatory activity in a rat model of TNBS (2,4,6-trinitrobenzenesulphonic acid) induced colitis. Treatment with C142 or C150 reduced leukocyte infiltration to the submucosa and muscular propria of the inflamed gut. C142 or C150 rescued the loss of body weight and C150 decreased the weight of standard colon preparations proportional with 20% less tissue oedema. Both C142 and C150 curcumin analogues caused 25% decrease in the severity of colonic inflammation and haemorrhagic lesion size. Colonic MPO (myeloperoxidase) enzyme activity as an indicator of intense neutrophil infiltration was 50% decreased either by C142 or C150 Mannich curcuminoids. Lipopolysaccharide (LPS) co-treatment with Mannich curcuminoids inhibited NF-κB (nuclear factor kappa B) activity on a concentration-dependent manner in an NF-κB-driven luciferase expressing reporter cell line. Co-treatment with LPS and curcuminoids, C142 or C150, resulted in NF-κB inhibition with 3.57 μM or 1.6 μM half maximal effective concentration (EC50) values, respectively. C150 exerted a profound inhibition of the expression of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-4 (IL-4) in human PBMCs (peripheral blood mononuclear cells) upon LPS stimulus. Mannich curcuminoids reported herein possess a powerful anti-inflammatory activity.
Collapse
|
17
|
Roca E, Cantó E, Nescolarde L, Perea L, Bayes-Genis A, Sibila O, Vidal S. Effects of a polysaccharide-based multi-ingredient supplement on salivary immunity in non-elite marathon runners. J Int Soc Sports Nutr 2019; 16:14. [PMID: 30909945 PMCID: PMC6434855 DOI: 10.1186/s12970-019-0281-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Extreme exercise may alter the innate immune system. Glycans are involved in several biological processes including immune system regulation. However, limited data regarding the impact of glycan supplementation on immunological parameters after strenuous exercise are available. We aimed to determine the impact of a standardized polysaccharide-based multi-ingredient supplement, Advanced Ambrotose© complex powder (AA) on salivary secretory Immunoglobulin A (sIgA) and pro- and anti-inflammatory protein levels before and after a marathon in non-elite runners. METHODS Forty-one male marathon runners who completed the 42.195 km of the 2016 Barcelona marathon were randomly assigned to two study groups. Of them, n = 20 (48%) received the AA supplement for 15 days prior the race (AA group) and n = 21 (52%) did not receive any AA supplement (non-AA group). Saliva and blood samples were collected the day before the marathon and two days after the end of the race. Salivary IgA, pro-inflammatory chemokines (Gro-alpha, Gro-beta, MCP-1) and anti-inflammatory proteins (Angiogenin, ACRP, Siglec 5) were determined using commercially ELISA kits in saliva supernatant. Biochemical parameters, including C-reactive protein, cardiac biomarkers, and blood hemogram were also evaluated. RESULTS Marathon runners who did not receive the AA supplement experienced a decrease of salivary sIgA and pro-inflammatory chemokines (Gro-alpha and Gro-beta) after the race, while runners with AA supplementation showed lower levels of anti-inflammatory chemokines (Angiogenin). Gro-alpha and Gro-beta salivary levels were lower before the race in the AA group and correlated with blood leukocytes and platelets. CONCLUSIONS Changes in salivary sIgA and inflammatory chemokines, especially Gro-alfa and Gro-beta, were observed in marathon runners supplemented with AA prior to the race. These findings suggested that AA may have a positive effect on immune response after a strenuous exercise.
Collapse
Affiliation(s)
- Emma Roca
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, 08034 Barcelona, Spain
| | - Elisabet Cantó
- Laboratory of Experimental Immunology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia Spain
| | - Lexa Nescolarde
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, 08034 Barcelona, Spain
- Department of Electronic, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Lidia Perea
- Laboratory of Experimental Immunology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia Spain
| | - Antoni Bayes-Genis
- Department of Cardiology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Research Program, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Oriol Sibila
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Catalonia Spain
| | - Silvia Vidal
- Laboratory of Experimental Immunology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia Spain
| |
Collapse
|
18
|
Cronin O, Barton W, Moran C, Sheehan D, Whiston R, Nugent H, McCarthy Y, Molloy CB, O'Sullivan O, Cotter PD, Molloy MG, Shanahan F. Moderate-intensity aerobic and resistance exercise is safe and favorably influences body composition in patients with quiescent Inflammatory Bowel Disease: a randomized controlled cross-over trial. BMC Gastroenterol 2019; 19:29. [PMID: 30755154 PMCID: PMC6373036 DOI: 10.1186/s12876-019-0952-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Overweight and metabolic problems now add to the burden of illness in patients with Inflammatory Bowel Disease. We aimed to determine if a program of aerobic and resistance exercise could safely achieve body composition changes in patients with Inflammatory Bowel Disease. METHODS A randomized, cross-over trial of eight weeks combined aerobic and resistance training on body composition assessed by Dual Energy X-ray Absorptiometry was performed. Patients in clinical remission and physically inactive with a mean age of 25 ± 6.5 years and Body Mass Index of 28.9 ± 3.8 were recruited from a dedicated Inflammatory Bowel Disease clinic. Serum cytokines were quantified, and microbiota assessed using metagenomic sequencing. RESULTS Improved physical fitness was demonstrated in the exercise group by increases in median estimated VO2max (Baseline: 43.41mls/kg/min; post-intervention: 46.01mls/kg/min; p = 0.03). Improvement in body composition was achieved by the intervention group (n = 13) with a median decrease of 2.1% body fat compared with a non-exercising group (n = 7) (0.1% increase; p = 0.022). Lean tissue mass increased by a median of 1.59 kg and fat mass decreased by a median of 1.52 kg in the exercising group. No patients experienced a deterioration in disease activity scores during the exercise intervention. No clinically significant alterations in the α- and β-diversity of gut microbiota and associated metabolic pathways were evident. CONCLUSIONS Moderate-intensity combined aerobic and resistance training is safe in physically unfit patients with quiescent Inflammatory Bowel Disease and can quickly achieve favourable body compositional changes without adverse effects. TRIAL REGISTRATION The study was registered at ClinicalTrials.gov; Trial number: NCT02463916 .
Collapse
Affiliation(s)
- Owen Cronin
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland. .,APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland.
| | - Wiley Barton
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland.,APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Carthage Moran
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland.,APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland
| | - Donal Sheehan
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland.,APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland
| | - Ronan Whiston
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Helena Nugent
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland
| | - Yvonne McCarthy
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland
| | - Catherine B Molloy
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland
| | - Orla O'Sullivan
- APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Michael G Molloy
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland.,APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland
| | - Fergus Shanahan
- Department of Medicine, National University of Ireland, University College Cork, Cork University Hospital, Wilton, T12 DC4A, Cork, Ireland.,APC Microbiome Ireland, National University of Ireland, Cork, T12 YT20, Ireland
| |
Collapse
|
19
|
Cantó E, Roca E, Perea L, Rodrigo-Troyano A, Suarez-Cuartin G, Giner J, Feliu A, Soria JM, Nescolarde L, Vidal S, Sibila O. Salivary immunity and lower respiratory tract infections in non-elite marathon runners. PLoS One 2018; 13:e0206059. [PMID: 30462646 PMCID: PMC6248899 DOI: 10.1371/journal.pone.0206059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/06/2018] [Indexed: 01/19/2023] Open
Abstract
RATIONALE Respiratory infections are common after strenuous exercise, when salivary immunity may be altered. We aim to investigate changes in salivary immunity after a marathon and its relationship with lower respiratory tract infections (LRTI) in healthy non-elite marathon runners. METHODS Forty seven healthy marathon runners (28 males and 19 females) who completed the 42.195 km of the 2016 Barcelona marathon were studied. Saliva and blood samples were collected the day before the marathon and two days after the end of the race. Salivary IgA, antimicrobial proteins (lactoferrin, lysozyme) and chemokines (Groα, Groβ, MCP-1) were determined using ELISA kits in saliva supernatant. Blood biochemistry and haemogram were analyzed in all participants. The presence of LRTI was considered in those runners who reported infectious lower respiratory tract symptoms during a minimum of 3 consecutive days in the 2 weeks after the race. RESULTS Eight participants (17%) presented a LRTI during the 2 weeks of follow-up. Higher lysozyme levels were detected after the race in runners with LRTI when compared with those without infection. A decrease in salivary lysozyme, Groα and Groβ levels after the race were observed in those runners who did not develop a LRTI when compared to basal levels. Salivary Groα levels correlated with basophil blood counts, and salivary lysozyme levels correlated with leukocyte blood counts. CONCLUSIONS LRTI are common after a marathon race in non-elite healthy runners. Changes in salivary antimicrobial proteins and chemokines are related to the presence of LRTI and correlate with systemic defense cells, which suggest an important role of salivary immunity in the development of LRTI in non-elite marathon runners.
Collapse
Affiliation(s)
- Elisabet Cantó
- Experimental Immunology, Institut de Recerca, Hospital Sant Pau, Barcelona, Spain
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Emma Roca
- Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Lidia Perea
- Experimental Immunology, Institut de Recerca, Hospital Sant Pau, Barcelona, Spain
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Ana Rodrigo-Troyano
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Guillermo Suarez-Cuartin
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Jordi Giner
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Anna Feliu
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Jose Manuel Soria
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Unit of Genomic of Complex Diseases, Barcelona, Spain
| | | | - Silvia Vidal
- Experimental Immunology, Institut de Recerca, Hospital Sant Pau, Barcelona, Spain
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Oriol Sibila
- Biomedical Research Insitute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Calva-Candelaria N, Meléndez-Camargo ME, Montellano-Rosales H, Estrada-Pérez AR, Rosales-Hernández MC, Fragoso-Vázquez MJ, Martínez-Archundia M, Correa-Basurto J, Márquez-Flores YK. Oenothera rosea L´Hér. ex Ait attenuates acute colonic inflammation in TNBS-induced colitis model in rats: in vivo and in silico myeloperoxidase role. Biomed Pharmacother 2018; 108:852-864. [PMID: 30372897 DOI: 10.1016/j.biopha.2018.09.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Oenothera rosea L´Hér. ex Ait is a species traditionally used in the treatment of inflammation, headache, stomach pain, infections, among others. The aim of this study was evaluating the acute anti-inflammatory activity of the aqueous extract of O. rosea by 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Rats were randomized into six groups: (I) Sham; (II) EtOH; (III) TNBS; and (IV-VI) 250, 500 and 750 mg/Kg, respectively. The colonic injury was induced (groups III-VI) by intrarectal instillation of 0.25 mL of TNBS (10 mg) in 50% ethanol. Groups I and II received an enema (0.25 mL) of physiological saline solution or 50% ethanol, respectively. Treatments were administered by oral gavage 48, 24 and 1 h prior, and 24 h after the induction. The inflammatory response was assessed considering the macroscopic and microscopic damage, the serum nitric oxide (NO), the colonic IL-1β levels, and the myeloperoxidase (MPO) activity. Moreover, we performed an LC-MS-based metabolite profiling, and a docking on the MPO. Doses of 500 and 750 mg/Kg showed a protective effect in the TNBS-induced colonic damage. This activity was related to the downregulation of evaluated parameters. Also, considering previous reports, 29 metabolites of 91 detected were selected for the docking, of which Isolimonic acid (29) and Kaempferol 3-(2'',4''-diacetylrhamnoside) (10) showed the highest affinity to MPO. The aqueous extract of O. rosea protected the TNBS-induced colonic damage in rats, an effect that could be associated with the presence of polyphenolic compounds, alkaloids, and terpenes; as well as their ability to down-regulate MPO activity.
Collapse
Affiliation(s)
- Natalia Calva-Candelaria
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, Mexico
| | - María Estela Meléndez-Camargo
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, Mexico
| | - Hortensia Montellano-Rosales
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico
| | - Alan R Estrada-Pérez
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - M Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - José Correa-Basurto
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340, Ciudad de México, Mexico
| | - Yazmín K Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, Mexico; Universidad Tecnológica de México, UNITEC MÉXICO, Campus Marina, Av. Marina Nacional 162 Col. Anáhuac Sección I, C.P. 11320, Miguel Hidalgo, Ciudad de México, Mexico.
| |
Collapse
|
21
|
Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 2018; 8:7391-7404. [PMID: 28030847 PMCID: PMC5352330 DOI: 10.18632/oncotarget.14080] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that regular physical exercise suppresses chronic inflammation. However, the potential inhibitory effects of swimming on dextran sulfate sodium (DSS)-induced chronic colitis, and its underlying mechanisms, remain unclear. In this study, rats were orally administered DSS to induce chronic colitis, and subsequently treated with or without swimming exercise. A 7-week swimming program (1 or 1.5 hours per day, 5 days per week) ameliorated DSS-caused colon shortening, colon barrier disruption, spleen enlargement, serum LDH release, and reduction of body weight gain. Swimming for 1.5 hours per day afforded greater protection than 1 hour per day. Swimming ameliorated DSS-induced decrease in crypt depth, and increases in myeloperoxidase activity, infiltration of Ly6G+ neutrophils and TNF-a- and IFN-?-expressing CD3+ T cells, as well as fecal calprotectin and lactoferrin. Swimming inhibited pro-inflammatory cytokine and chemokine production and decreased the protein expression of phosphorylated nuclear factor-?B p65 and cyclooxygenase 2, whereas it elevated interleukin-10 levels. Swimming impeded the generation of reactive oxygen species, malondialdehyde, and nitric oxide; however, it boosted glutathione levels, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities. Additionally, swimming decreased caspase-3 activity and expression of apoptosis-inducing factor, cytochrome c, Bax, and cleaved-caspase-3, but increased Bcl-2 levels. Overall, these results suggest that swimming exerts beneficial effects on DSS-induced chronic colitis by modulating inflammation, oxidative stress, and apoptosis.
Collapse
|
22
|
Zhang Y, Fu LT, Tang F. The protective effects of magnolol on acute trinitrobenzene sulfonic acid‑induced colitis in rats. Mol Med Rep 2017; 17:3455-3464. [PMID: 29286109 PMCID: PMC5802145 DOI: 10.3892/mmr.2017.8321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the protective effects of magnolol on acute 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, and its underlying mechanisms. Experimental colitis was induced by intracolonic administration of TNBS/ethanol into rats. The model rats were randomly assigned into groups: TNBS, magnolol (high, medium and low doses), and salazosulfapyridine (positive control). All intervention regimens were administered by oral gavage, once a day for 7 consecutive days, 24 h after colitis induction. Histological and biochemical changes in colonic inflammation were evaluated by hematoxylin and eosin and immunohistochemistry, respectively. Rats treated with all doses of magnolol exhibited decreased colonic myeloperoxidase activity (P<0.05 vs. TNBS), reduced serum levels of proinflammatory cytokines [including interleukin (IL)-6 and IL-17], and downregulated Toll-like receptor-4 (TLR-4) mRNA expression. Histological analysis revealed that medium and high doses of magnolol conferred an anti-inflammatory effect, which was indicated by a decrease in disease activity index, an increase in thymus index, and downregulation of nuclear factor (NF)-κB p65 mRNA and TLR-4 protein expression. However, only high-dose magnolol significantly ameliorated the elevated colon weight/length ratio. The results of the present study indicate that magnolol exerts protective effects against acute TNBS-induced colitis in rats, and the TLR-4/NF-κB signaling pathway-mediated inhibitory effect on inflammatory cascades may contribute to the protective activity of magnolol.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Li-Tang Fu
- Dingzhou Radi‑Glory Bio‑Chem Co., Ltd., Baoding, Hebei 073000, P.R. China
| | - Fang Tang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
23
|
H2S confers colonoprotection against TNBS-induced colitis by HO-1 upregulation in rats. Inflammopharmacology 2017; 26:479-489. [DOI: 10.1007/s10787-017-0382-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/22/2017] [Indexed: 12/31/2022]
|
24
|
Zhou JA, Jiang M, Yang X, Liu Y, Guo J, Zheng J, Qu Y, Song Y, Li R, Qin X, Wang X. Unconjugated bilirubin ameliorates the inflammation and digestive protease increase in TNBS-induced colitis. Mol Med Rep 2017; 16:1779-1784. [PMID: 28656252 PMCID: PMC5562003 DOI: 10.3892/mmr.2017.6825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
The authors previously demonstrated that unconjugated bilirubin (UCB) may inhibit the activities of various digestive proteases, including trypsin and chymotrypsin. The digestive proteases in the lower gut are important in the pathogenesis of inflammatory bowel diseases. The effects of UCB on the inflammation and levels of digestive proteases in feces of rats with colitis have not yet been revealed. The present study investigated the effect of UCB on the inflammatory status and levels of trypsin and chymotrypsin in the feces of rats with trinitrobenzenesulfonic acid (TNBS)‑induced colitis. The data indicated that treatment with TNBS resulted in a marked reduction in weight gain, which was significantly alleviated in UCB‑treated rats. Furthermore, UCB treatment alleviated the inflammation induced by TNBS, detected via macroscopic damage and microscopic inflammation scores, and pro‑inflammatory markers including myeloperoxidase (MPO), tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β. Furthermore, rats with colitis demonstrated significant increases in fecal trypsin and chymotrypsin levels, whereas UCB treatment significantly alleviated these increases. A significant positive correlation was additionally revealed among the pro‑inflammatory markers (MPO, TNF‑α and IL‑1β) and fecal digestive proteases (trypsin and chymotrypsin) in colitis. The results of the present study demonstrated that UCB ameliorated the inflammation and digestive protease increase in TNBS-induced colitis.
Collapse
Affiliation(s)
- Jin-An Zhou
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mingshan Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinguang Yang
- Department of Biochemistry and Molecular Biology, Daqing Branch of Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Junyu Guo
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiadong Zheng
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yilin Qu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Rongyan Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaofa Qin
- GI Biopharma Inc., Westfield, NJ 07090, USA
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
25
|
Specific Gene- and MicroRNA-Expression Pattern Contributes to the Epithelial to Mesenchymal Transition in a Rat Model of Experimental Colitis. Mediators Inflamm 2017; 2017:5257378. [PMID: 28572713 PMCID: PMC5442431 DOI: 10.1155/2017/5257378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to determine the gene- and microRNA-expression profile contributing to epithelial to mesenchymal transition in a rat model of experimental colitis. For this, inflammation was induced by injecting 2,4,6-trinitrobenzene sulphonic acid to the colon of male Wistar rats. Samples were taken from both inflamed and uninflamed regions of the same colon, total RNA was isolated, and the mRNA and microRNA expressions were monitored. We have determined that the expression of genes responsible for inducing mesenchymal phenotype, such as Egr1, Fgf2, Fgf7, Jak2, Notch2, Hif1α, Zeb2, Mmp9, Lox, and Vim, was all significantly induced in the inflamed regions of the affected colons while the epithelial marker E-cadherin (Cdh1) was downregulated. In contrast, the expression of microRNAs miR-192, miR-143, miR-375, miR-30a, miR-107, and miR-200b responsible for the regulation of the above mentioned genes was significantly downregulated in inflamed colon. Importantly, we detected moderate induction in the expression of five out of six tested microRNAs in the uninflamed regions. In summary, we identified numerous interacting genes and microRNAs with mutually exclusive expression pattern in inflamed regions of colitis-induced rats. These findings suggest that—among others—an important step in the epithelial to mesenchymal transition in experimental colitis is the dysregulated microRNA expression.
Collapse
|
26
|
Du X, Chen W, Wang Y, Chen C, Guo L, Ju R, Li J, Zhang D, Zhu L, Ye C. Therapeutic efficacy of carboxyamidotriazole on 2,4,6-trinitrobenzene sulfonic acid-induced colitis model is associated with the inhibition of NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol 2017; 45:16-25. [PMID: 28152446 DOI: 10.1016/j.intimp.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Abstract
Excess proinflammatory cytokines owing to the activation of NF-κB and NLRP3 inflammasome play the key role in inflammatory bowel disease (IBD). Previously, we reported the anti-inflammatory activity of carboxyamidotriazole (CAI) resulting from decreasing cytokines. Therefore, we investigated the therapeutic effects of CAI in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and the involvement of CAI action with NLRP3 inflammasome and NF-κB pathway. CAI was orally administered to TNBS-induced colitis rat. The severity of colitis was assessed, and NLRP3 inflammasome, NF-κB pathway and cytokines were determined. Our results showed that CAI significantly reduced weight loss and disease activity index (DAI) scores in colitis rats and alleviated the colonic macroscopic signs and pathological damage. In addition, the intestinal inflammatory markers and permeability index were markedly ameliorated by CAI treatment. The decreased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18 were also detected in the colon tissues of CAI-treated colitis rats. Moreover, the activation of NLRP3 inflammasome in inflamed colon was significantly suppressed by showing an obvious reduction in the NLRP3 and activated caspase-1 levels. Furthermore, CAI reduced NF-κB p65 expression and IκBα phosphorylation and degradation in colitis rats. Therefore, CAI attenuates TNBS-induced colitis, which may be attributed to its inhibition of NLRP3 inflammasome and NF-κB activation, and down-regulation of proinflammatory cytokines. These results provide further understanding of the intestinal anti-inflammatory effect of CAI and highlight it as a potential drug for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaowan Du
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yufeng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Ajayi BO, Adedara IA, Farombi EO. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice. Food Chem Toxicol 2016; 95:42-51. [DOI: 10.1016/j.fct.2016.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022]
|
28
|
Bilski J, Mazur-Bialy A, Brzozowski B, Magierowski M, Zahradnik-Bilska J, Wójcik D, Magierowska K, Kwiecien S, Mach T, Brzozowski T. Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacol Rep 2016; 68:827-836. [PMID: 27255494 DOI: 10.1016/j.pharep.2016.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
Abstract
The inflammatory bowel disease (IBD) consisting of Crohn's disease (CD) and ulcerative colitis (UC) are defined as idiopathic, chronic and relapsing intestinal disorders occurring in genetically predisposed individuals exposed to environmental risk factors such as diet and microbiome changes. Since conventional drug therapy is expensive and not fully efficient, there is a need for alternative remedies that can improve the outcome in patients suffering from IBD. Whether exercise, which has been proposed as adjunct therapy in IBD, can be beneficial in patients with IBD remains an intriguing question. In this review, we provide an overview of the effects of exercise on human IBD and experimental colitis in animal models that mimic human disease, although the information on exercise in human IBD are sparse and poorly understood. Moderate exercise can exert a beneficial ameliorating effect on IBD and improve the healing of experimental animal colitis due to the activity of protective myokines such as irisin released from working skeletal muscles. CD patients with higher levels of exercise were significantly less likely to develop active disease at six months. Moreover, voluntary exercise has been shown to exert a positive effect on IBD patients' mood, weight maintenance and osteoporosis. On the other hand, depending on its intensity and duration, exercise can evoke transient mild systemic inflammation and enhances pro-inflammatory cytokine release, thereby exacerbating the gastrointestinal symptoms. We discuss recent advances in the mechanism of voluntary and strenuous exercise affecting the outcome of IBD in patients and experimental animal models.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Janina Zahradnik-Bilska
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Wójcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Mach
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
29
|
Pósa A, Szabó R, Szalai Z, Kupai K, Deim Z, Murlasits Z, Bencsik O, Szekeres A, Vágvölgyi C, Balogh L, Juhász B, Szilvássy Z, Varga C. The effect of acute ophiobolin A treatment on HO-mediated inflammatory processes. Hum Exp Toxicol 2016; 36:594-602. [PMID: 27402683 DOI: 10.1177/0960327116658107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many microbial and plant-derived metabolites contribute to the production of inflammatory mediators and the expression of pro-inflammatory molecules. Ophiobolin A (OPA) is a fungal secondary metabolite produced by Bipolaris species. The aim of our study was to examine the acute effects of this compound on inflammatory processes. Male Wistar rats were treated with 5% ethanol, 0.01 mg/kg OPA, 0.1 mg/kg OPA and 1.0 mg/kg OPA per os. After 24 h of the administrations, inflammatory mediators such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and myeloperoxidase (MPO) enzyme as well as heme oxygenase (HO) activity were measured in both plasma and cardiac tissue, along with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We found that OPA caused a significant elevation in the concentrations of IL-6 and TNF-α, increased MPO activity and decreased HO enzyme activity in the plasma. While OPA induces inflammation in the plasma, it did not change the level of inflammatory mediators in the cardiac tissue and the concentrations of serum ALT and AST. Our findings indicate that rapid release of inflammatory mediators by OPA promotes systemic inflammation. However, this acute OPA treatment does not show toxic effects on the cardiac tissue and the concentrations of liver enzymes.
Collapse
Affiliation(s)
- Anikó Pósa
- 1 Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Renáta Szabó
- 1 Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zita Szalai
- 1 Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Krisztina Kupai
- 1 Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán Deim
- 1 Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Ottó Bencsik
- 3 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - András Szekeres
- 3 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- 3 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Balogh
- 4 Institute of Physical Education and Sport Science, Juhász Gyula Faculty of Education, University of Szeged, Szeged, Hungary
| | - Béla Juhász
- 5 Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szilvássy
- 5 Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Varga
- 1 Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
30
|
Cardioprotective effects of voluntary exercise in a rat model: role of matrix metalloproteinase-2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:876805. [PMID: 25874025 PMCID: PMC4385683 DOI: 10.1155/2015/876805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/24/2014] [Indexed: 12/26/2022]
Abstract
Background. Regular exercise at moderate intensity reduces cardiovascular risks. Matrix metalloproteinases (MMPs) play a major role in cardiac remodeling, facilitating physiological adaptation to exercise. The aim of this study was to examine the influence of voluntary physical exercise on the MMP-2 enzyme activity and to investigate the cardiac performance by measurement of angina susceptibility of the heart, the basal blood pressure, the surviving aorta ring contraction, and the cardiac infarct size after I/R-induced injury. Methods. Male Wistar rats were divided into control and exercising groups. After a 6-week period, the serum level of MMP-2, basal blood pressure, cardiac angina susceptibility (the ST segment depression provoked by epinephrine and 30 s later phentolamine), AVP-induced heart perfusion and aorta ring contraction, infarct size following 30 min ischemia and 120 min reperfusion, and coronary effluent MMP-2 activity were measured. Results. Voluntary wheel-running exercise decreased both the sera (64 kDa and 72 kDa) and the coronary effluent (64 kDa) MMP-2 level, reduced the development of ST depression, improved the isolated heart perfusion, and decreased the ratio of infarct size. Conclusion. 6 weeks of voluntary exercise training preserved the heart against cardiac injury. This protective mechanism might be associated with the decreased activity of MMP-2.
Collapse
|
31
|
Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:732090. [PMID: 25874021 PMCID: PMC4385680 DOI: 10.1155/2015/732090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022]
Abstract
We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.
Collapse
|
32
|
Exercise training and calorie restriction influence the metabolic parameters in ovariectomized female rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:787063. [PMID: 25874022 PMCID: PMC4383370 DOI: 10.1155/2015/787063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 01/13/2023]
Abstract
The estrogen deficiency after menopause leads to overweight or obesity, and physical exercise is one of the important modulators of this body weight gain. Female Wistar rats underwent ovariectomy surgery (OVX) or sham operation (SO). OVX and SO groups were randomized into new groups based on the voluntary physical activity (with or without running) and the type of diet for 12 weeks. Rats were fed standard chow (CTRL), high triglyceride diet (HT), or restricted diet (CR). The metabolic syndrome was assessed by measuring the body weight gain, the glucose sensitivity, and the levels of insulin, triglyceride, leptin, and aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT). The exercise training combined with the CR resulted in improvements in the glucose tolerance and the insulin sensitivity. Plasma TG, AST, and ALT levels were significantly higher in OVX rats fed with HT but these high values were suppressed by exercise and CR. Compared to SO animals, estrogen deprivation with HT caused a significant increase in leptin level. Our data provide evidence that CR combined with voluntary physical exercise can be a very effective strategy to prevent the development of a metabolic syndrome induced by high calorie diet.
Collapse
|
33
|
Paula FMM, Leite NC, Vanzela EC, Kurauti MA, Freitas-Dias R, Carneiro EM, Boschero AC, Zoppi CC. Exercise increases pancreatic β-cell viability in a model of type 1 diabetes through IL-6 signaling. FASEB J 2015; 29:1805-16. [PMID: 25609426 DOI: 10.1096/fj.14-264820] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/17/2014] [Indexed: 01/27/2023]
Abstract
Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic β cells. Exercise training enhances β-cell mass in T1D. Here, we investigated how exercise signals β cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1β plus IFN-γ). Islets from control mice and β-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-β-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and β cells were exposed to IL-1β plus IFN-γ. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1β plus IFN-γ-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced β-cell death, induced by IL-1β plus IFN-γ treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals β-cell survival in T1D through IL-6.
Collapse
Affiliation(s)
- Flavia M M Paula
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| | - Nayara C Leite
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| | - Emerielle C Vanzela
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| | - Mirian A Kurauti
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| | - Ricardo Freitas-Dias
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| | - Everardo M Carneiro
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| | - Antonio C Boschero
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| | - Claudio C Zoppi
- *Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil; and Department of Physical Therapy, Laboratory of Exercise Physiology and Genetics, University of Pernambuco, Petrolina, Brazil
| |
Collapse
|
34
|
Archer T, Garcia D. Exercise and Dietary Restriction for Promotion of Neurohealth Benefits. Health (London) 2015. [DOI: 10.4236/health.2015.71016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Kupai K, Szabó R, Veszelka M, Awar AA, Török S, Csonka A, Baráth Z, Pósa A, Varga C. Consequences of exercising on ischemia-reperfusion injury in type 2 diabetic Goto-Kakizaki rat hearts: role of the HO/NOS system. Diabetol Metab Syndr 2015; 7:85. [PMID: 26448786 PMCID: PMC4595319 DOI: 10.1186/s13098-015-0080-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is well established that physical exercise continues to be one of the most valuable forms of non-pharmacological therapy against diabetes mellitus; however, the precise mechanism remains unknown. The aim of this study was to investigate the cardioprotective effect of voluntary exercise in the Goto-Kakizaki type 2 diabetic rat heart against ischemia-reperfusion injury and to clarify its biochemical background, focusing on the nitric oxide synthase/heme oxygenase system. METHODS One group of male Goto-Kakizaki rats were allowed voluntary exercise, whereas others were kept sedentary for 6 weeks. At the end of the 6th week the hearts were isolated from both groups and subjected to 45-min coronary occlusion followed by 120-min reperfusion. The infarct size was evaluated by means of triphenyltetrazolium chloride staining. The cardiac and aortic nitric oxide synthase/heme oxygenase activities, plasma leptin and glucose concentrations were also assessed. RESULTS The sedentary state prior to the ischemia-reperfusion injury was associated with a significantly higher infarct size (24.56 ± 2.21 vs. 16.66 ± 1.87 %) as compared with that in the voluntary wheel-running group. Exercise altered the constitutive nitric oxide synthase activity; an enhancement was evident in the cardiac (42.5 ± 2.72 vs. 75.6 ± 13.34 pmol/min/mg protein) and aortic tissues (382.5 ± 66.57 vs. 576.9 ± 63.16 pmol/min/mg protein). Exercise lead to a higher heme oxygenase activity (0.68 ± 0.08 vs. 0.92 ± 0.04 nmol bilirubin/h/mg protein) in the diabetic rat hearts. Exercise was associated with lower plasma leptin (192.23 ± 7.22 vs. 169.65 ± 4.6 ng/L) and blood glucose (19.61 ± 0.76 vs. 14.58 ± 0.88 mmol/L) levels. CONCLUSIONS These results indicate the beneficial role of exercise against myocardial ischemia-reperfusion injury in diabetic rats. These observations in experimental diabetes suggest that the cytoprotective mechanism of exercise involves modulation of the nitric oxide synthase/heme oxygenase system and metabolic parameters that may be responsible for cardioprotection.
Collapse
Affiliation(s)
- Krisztina Kupai
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| | - Renáta Szabó
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| | - Médea Veszelka
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| | - Amin Al Awar
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| | - Szilvia Török
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| | - Anett Csonka
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| | - Zoltán Baráth
- />Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| | - Anikó Pósa
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| | - Csaba Varga
- />Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, 6726 Szeged, Hungary
| |
Collapse
|