1
|
Li Q, Peng Q, Li Z, Smagghe G, Li G. Knockdown of farnesyl pyrophosphate synthetase gene TuFPPS by RNAi extends quiescent period and halts molting of the spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2025; 95:4. [PMID: 40418354 DOI: 10.1007/s10493-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
In insects, farnesyl pyrophosphate synthase (FPPS), a pivotal enzyme in the mevalonate pathway, is crucial in the juvenile hormone (JH)/methyl farnesoate (MF) biosynthesis pathway, particularly regulating the molting process. However, its role in the post-embryonic development and molting in Acari remains unclear. This study therefore investigated the function of TuFPPS in the deutonymphal stage of the two-spotted spider mite, Tetranychus urticae, an important pest in agriculture. Real time quantitative PCR (qPCR) revealed a significant increase in TuFPPS expression in the middle of the quiescent period (28 h). RNA interference (RNAi)-mediated knockdown of TuFPPS caused developmental delays, notably extending the quiescent period and delaying the molting process. Ultimately, the treated mites failed to molt and died with 80% mortality at 108 h before molting, while > 90% of the mites in the control successfully molted. To investigate the potential functions of TuFPPS during the quiescent period and molting process in T. urticae, we performed a genome-wide RNA sequencing following RNAi knockdown of TuFPPS. Four genes were identified based on the thresholds of|FC| ≥ 3 and FDR < 0.05, and these are involved in carbohydrate metabolism, fatty acid and lipid metabolism, amino acid metabolism, and ABC transporters. Altogether, our data suggest that TuFPPS plays a critical role in regulating energy transport, intracellular digestion, and energy supply, as seen in ametabolous insects. These findings lay the foundation for further studies of the molecular mechanism of JH/MF in post-embryonic development and molting in mites, and also identify a potential target for pest control, as demonstrated in T. urticae.
Collapse
Affiliation(s)
- Qingyan Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China
| | - Qixiang Peng
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China
| | - Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Nian X, Wang B, Holford P, Beattie GAC, Tan S, Yuan W, Cen Y, He Y, Zhang S. Neuropeptide Ecdysis-Triggering Hormone and Its Receptor Mediate the Fecundity Improvement of 'Candidatus Liberibacter Asiaticus'-Infected Diaphorina citri Females and CLas Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412384. [PMID: 40112150 PMCID: PMC12079412 DOI: 10.1002/advs.202412384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 03/22/2025]
Abstract
The severe Asiatic form of huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), threatens global citrus production via the citrus psyllid, Diaphorina citri. Culturing challenges of CLas necessitate reducing D. citri populations for disease management. CLas boosts the fecundity of CLas-positive (CLas+) D. citri and fosters its own proliferation by modulating the insect host's juvenile hormone (JH), but the intricate endocrine regulatory mechanisms remain elusive. Here, it is reported that the D. citri ecdysis-triggering hormone (DcETH) and its receptor DcETHR play pivotal roles in the reciprocal benefits between CLas and D. citri within the ovaries, influencing energy metabolism and reproductive development in host insects; miR-210, negatively regulates DcETHR expression, contributing to this symbiotic interaction. CLas infection reduces 20-hydroxyecdysone (20E) levels and stimulates DcETH release, elevating JH production via DcETHR, enhancing fecundity and CLas proliferation. Furthermore, circulating JH levels suppress 20E production in CLas+ ovaries. Collectively, the orchestrated functional interplay involving 20E, ETH, and JH increases energy metabolism and promotes the fecundity of CLas+ D. citri and CLas proliferation. These insights not only broaden the knowledge of how plant pathogens manipulate the reproductive behavior of insect hosts but also offer novel targets and strategies for combatting HLB and D. citri.
Collapse
Affiliation(s)
- Xiaoge Nian
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Bo Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Paul Holford
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | | | - Shijian Tan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Weiwei Yuan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yijing Cen
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yurong He
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Songdou Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
3
|
Mejías S, Jiménez NE, Conca C, Salgado JC, Gerdtzen ZP. Unveiling Wolbachia transcriptomic signature in the arboviral vector Aedes aegypti. Front Cell Infect Microbiol 2025; 15:1538459. [PMID: 40357403 PMCID: PMC12066770 DOI: 10.3389/fcimb.2025.1538459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The mosquito Aedes aegypti is the main vector of arboviral diseases such as dengue and imposes a global health burden. A promising control strategy is to infect A. aegypti populations with Wolbachia, a genus of intracellular bacteria capable of blocking arboviral infections. Enhancing and preserving the efficacy of this method will depend on a solid mechanistic knowledge of the A. aegypti-Wolbachia symbiosis. By identifying differences between Wolbachia-infected and uninfected A. aegypti, previous transcriptomic studies proposed a wide range of symbiotic interactions, but a systematic identification of consistent effects across datasets is still missing. Methods To identify A. aegypti genes and functions consistently affected by Wolbachia, we performed differential expression and functional enrichment analysis on published transcriptomic datasets, followed by a meta-analysis of the obtained p-values using the maxP method. Six datasets were retrieved from Gene Expression Omnibus, Sequence Read Archive and ArrayExpress (last searched in July 2024, considering lack of replication as the exclusion criteria). After discarding one dataset from wAlbB-infected cell line due to poor mapping to the A. aegypti genome, the data comprised adult female A. aegypti heads, muscles, carcasses, midguts and bodies, and Wolbachia strains wMel and wMelPop. Results and Discussion Meta-analysis revealed 10 and 21 consistently down- and upregulated host genes, some of which have escaped the focus of previous research, including the consistently downregulated exonuclease AAEL009650 which has a pro-dengue virus homolog in Drosophila. At the function level, we found consistent upregulation of electron transport chain (ETC), carbohydrate transport and serine-type peptidase activity and inhibition, and downregulation of DNA replication. ETC upregulation suggests an alternative mechanism for Wolbachia's induction of antiviral oxidative stress, previously attributed to dual- and NADPH-oxidases which here showed downregulation or no regulation. Through analysis of previously published datasets, this work identifies promising molecular and functional targets for future studies aimed at elucidating the most fundamental mechanisms of the A. aegypti-Wolbachia symbiosis.
Collapse
Affiliation(s)
- Sebastián Mejías
- Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago, Santiago, Chile
- Millennium Nucleus Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | - Natalia E. Jiménez
- Millennium Nucleus Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Santiago Metropolitan Region (RM), Chile
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Santiago Metropolitan Region (RM), Chile
| | - Carlos Conca
- Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago, Santiago, Chile
- Center for Mathematical Modeling, (CMM) (UMI CNRS 2807), Department of Mathematical Engineering, University of Chile, Santiago, Chile
| | - J. Cristian Salgado
- Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago, Santiago, Chile
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Ziomara P. Gerdtzen
- Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago, Santiago, Chile
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Santiago Metropolitan Region (RM), Chile
- Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| |
Collapse
|
4
|
Zhang LJ, Liu T, Gao R, Xu H, Wang R, Zheng H, Zhou S. Juvenile hormone and energy metabolism shape the optimal timing of flight to reproduction transition in migratory locusts. INSECT SCIENCE 2025. [PMID: 40229961 DOI: 10.1111/1744-7917.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Migratory insects are capable of long-distance flight and strong fecundity, but often have finite amounts of resources available for these energy-demanding traits. Although the trade-off between flight and reproduction has been reported in migratory insects, the optimal timing of flight to reproduction transition remains largely unknown. Here, using the gregarious phase of migratory locust Locusta migratoria, we report that 4-d-old adult females possessed the strongest flight capacity in the first gonadotrophic cycle. Tethered flight assays demonstrated that the timing point between ending of previtellogenesis and beginning of vitellogenesis, when vitellogenin (Vg) was not yet massively synthesized, was optimal for locust flight. Transcriptome and metabolome analyses showed that glycogen and triglyceride were primarily synthesized in the fat body of adult females during previtellogenic stage. Sustained flight of adult females significantly reduced Vg expression levels accompanied by blocked oocyte growth, prolonged preoviposition period and declined egg number. In addition, long-term flight led to significantly reduced expression of juvenile hormone (JH) synthesis genes JHAMT, HMGR, and allatotropin, but not JH metabolism genes JHE and JHEH. Application of JH mimic to JH-deprived 4-d-old adult females at a lower dose was conducive to flight. In contrast, JH administration at higher doses stimulated vitellogenesis and egg production but suppressed flight capacity. Our results suggest that JH along with energy metabolism regulate the optimal timing of flight to reproduction switch in adult females of migratory locust. The findings shed new light on the regulation of trade-off between flight and reproduction, as well as the sustainable control of migratory locusts.
Collapse
Affiliation(s)
- Lin-Jie Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Tingting Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Ruoyan Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Huan Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Rui Wang
- College of Agriculture, Henan University, Kaifeng, Henan Province, China
| | - Hongyuan Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
5
|
Li H, Kong X, Yang D, Fang Y, Yang H, Zhang W, Wei J, Li X. Differential regulation of reproduction and molting by juvenile hormone in aphids. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104791. [PMID: 40043901 DOI: 10.1016/j.jinsphys.2025.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Insects rely on juvenile hormones to regulate various physiological processes, including reproduction and molting; currently eight forms of this hormone are known. In most insects, only JH Ⅲ is synthesized. Meanwhile, aphids produce JH Ⅲ and JH Ⅲ skipped bisepoxide (JHSB3). However, it remains unclear whether these compounds play distinct roles in functional regulation. In this study, we demonstrated that the tested concentrations of JH Ⅲ effectively increased the number of aphid offspring, whereas high concentrations of JHSB3 affected the molting process. Drip experiments showed that 10 mg/L JH Ⅲ increased the number of offspring from 39.38 ± 8.03 to 56.50 ± 13.17, whereas 10 mg/L JHSB3 resulted in a 60.00 %± 5.77 % failure rate in molting before adulthood. Transcriptomic analysis also revealed that in the JH Ⅲ treatment group, 9 genes and 7 pathways associated with reproduction were expressed, but not genes or pathways associated with molting. In addition, 16 genes and 9 pathways associated with molting as well as 5 genes and 4 pathways associated with reproduction were identified in the JHSB3 treatment group. JH Ⅲ promotes reproduction in aphids by enhancing Vg expression, whereas JHSB3 affects molting by inhibiting the synthesis of molting hormone-related enzymes. The results indicate that JH Ⅲ and JHSB3 exhibit diverse functions in Aphis craccivora. The findings have significant implications for further studies on the physiological functions of different JHs.
Collapse
Affiliation(s)
- Haolin Li
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Xue Kong
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100000, People's Republic of China
| | - Dongyu Yang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Yan Fang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Han Yang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Wenjie Zhang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Xuesheng Li
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
6
|
Izadi H. Endocrine and enzymatic shifts during insect diapause: a review of regulatory mechanisms. Front Physiol 2025; 16:1544198. [PMID: 40161974 PMCID: PMC11949959 DOI: 10.3389/fphys.2025.1544198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Insect diapause is a vital survival strategy that enables insects to enter a state of suspended development, allowing them to withstand unfavorable environmental conditions. During diapause, insects significantly lower their metabolic rate and build up energy reserves, which they gradually utilize throughout this period. The regulation of diapause involves a complex interaction of hormones and enzymes. Juvenile hormones (JHs) affect adults and larvae differently; in adults, the absence of JH typically triggers diapause, while in larvae, the presence of JH encourages this state. Ecdysteroids, which regulate molting and metamorphosis, are carefully controlled to prevent premature development. Reduced signaling of insulin-like peptides enhances stress resistance and promotes energy storage. Several enzymes play crucial roles in the metabolic adjustments necessary for diapause. These adjustments include the degradation of JH, the ecdysteroidogenic pathway, and the metabolism of fatty acids, glycogen, cryoprotectants, and stress responses. Understanding diapause's molecular and biochemical mechanisms is essential for fundamental entomological research and practical applications. Despite recent advances, many aspects of diapause regulation, especially the interactions among hormonal pathways and the role of enzymes, remain poorly understood. This review analyzes approximately 250 papers to consolidate current knowledge on the enzymatic and hormonal regulation of diapause. It offers a comprehensive overview of key processes based on recent studies and suggests future research directions to fill gaps in our understanding of this significant biological phenomenon. The review also lays the groundwork for enhancing pest control strategies and ecological conservation by deepening our understanding of diapause mechanisms.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
7
|
Yang JC, Zhang JP, Wu CY, Bai Y, Guedes RNC, Dewer Y, Li FQ, Zang LS. Diversity and role of volatile terpene and terpenoid pheromones in insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:9-18. [PMID: 39578941 DOI: 10.1093/jee/toae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Insect pheromones are critical chemical signals that regulate intraspecific behavior and play a key role in the dynamic monitoring and control of pest populations. Historically, research on insect pheromones has primarily focused on lipid-based compounds. However, terpenes and terpenoids, which are widely occurring classes of bioactive compounds, also play significant roles in insect pheromone blends. Over 50 terpene and terpenoid-based pheromones have been identified in over 52 insect species, spanning various orders such as Coleoptera, Hymenoptera, Blattodea, Hemiptera, Diptera, and Lepidoptera. These compounds are associated with several types of pheromones, including female or male sex pheromones, aggregation pheromones, alarm pheromones, and aphrodisiac pheromones. Terpenes and terpenoids may act as either primary or secondary components of pheromone blends and influence a wide range of critical insect behaviors. They play essential roles in the physiological and ecological adaptation of insects to their environment. This review provides a comprehensive overview of current research on terpene and terpenoid-based pheromones in insects, examining their structures, types, and physiological and ecological functions. Additionally, we propose future research directions to guide the application of these pheromones in insect behavioral regulation and pest management, while advocating for their broader use in insect pest monitoring and control.
Collapse
Affiliation(s)
- Jiu-Chun Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin-Ping Zhang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Yan Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yun Bai
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Raul Narciso C Guedes
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Feng-Qi Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Wang K, Zhao YL, Jiang YZ, Liu W, Wang XP. Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi. INSECT SCIENCE 2025. [PMID: 39822051 DOI: 10.1111/1744-7917.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear. Seven up (Svp), a transcription factor from the nuclear receptor family, plays a crucial role in various developmental processes in insects. In this study, using the cabbage beetle Colaphellus bowringi as a model, we observed higher expression of Svp in the heads of female adults under reproductive photoperiodic conditions (short-day [SD]) compared to diapause conditions (long-day [LD]). RNA interference-mediated knockdown of Svp in SD females induced typical diapause phenotypes, including ovarian arrest and lipid accumulation. The application of methoprene (ME), a JH receptor agonist, reversed these diapause phenotypes and restored reproduction, indicating that Svp's regulation of reproductive diapause is dependent on JH signaling. Additionally, Svp knockdown led to the downregulation of JH pathway genes and a reduction in JH titers. Further evidence suggested that Svp regulates the expression of JHAMT1, a critical gene in JH biosynthesis, which determines diapause entry in C. bowringi. These findings suggest that diapause-inducing photoperiods suppress Svp expression, blocking JH production and triggering diapause. This work reveals a critical transcription factor that regulates reproductive diapause initiation through modulating JH production, providing a potential target for controlling pests capable of entering reproductive diapause.
Collapse
Affiliation(s)
- Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Lian Zhao
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan-Zi Jiang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, G-504, Biological Sciences Bldg., Edmonton, Alberta, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Zhang Z, Liu Z, Yuan Y, Zhang W, Zhang S. Manipulation of juvenile hormone signaling by the fire blight pathogen Erwinia amylovora mediates fecundity enhancement of pear psylla. PEST MANAGEMENT SCIENCE 2025; 81:402-414. [PMID: 39329350 DOI: 10.1002/ps.8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND In nature, plant pathogens often rely on insect vectors for transmission. Through long-term evolution, plant pathogens and insect vectors have established a mutually beneficial symbiotic relationship. Fire blight, caused by the Gram-negative bacterium Erwinia amylovora (Eam), poses a significant global threat to apple and pear production due to its rapid dissemination among host plants of the Rosaceae family. Despite evidence of E. amylovora transmission by various insects, the association between this pathogen and the pear psylla Cacopsylla chinensis, a common vector insect in pear orchards, remains unclear. RESULTS Sampling investigations and qRT-PCR results revealed that C. chinensis, from 11 pear orchards severely affected by fire blight disease in Xinjiang of China, harbored varying levels of this pathogen. Eam-positive females exhibited significantly higher fecundity compared to Eam-negative individuals, displaying accelerated ovarian development and a notable increase in egg production. Further RNAi results revealed that juvenile hormone (JH) receptor methoprene-tolerant (CcMet) and a crucial downstream gene Krüppel-homologue 1 (CcKr-h1) mediated the fecundity improvement of C. chinensis induced by Eam. Additionally, miR-2b, which targets CcKr-h1, was identified as being involved in Eam-induced fecundity enhancement in C. chinensis. CONCLUSION This study unveils, for the first time, that Eam colonize and amplify the fecundity of C. chinensis females. Host miR-2b targets CcKr-h1 of the JH signaling pathway to regulate the heightened fecundity of C. chinensis induced by Eam. These findings not only broaden our understanding of the interaction between plant pathogens and insect vectors, but also provide novel strategies for managing fire blight and pear psylla. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenya Liu
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- Key Lab of Xinjiang Production and Construction Corps in Comprehensive Agricultural Pest Management in Southern Xinjiang, Tarim University, Alar, China
| | - Yulin Yuan
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- Key Lab of Xinjiang Production and Construction Corps in Comprehensive Agricultural Pest Management in Southern Xinjiang, Tarim University, Alar, China
| | - Wangbin Zhang
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Tarim University, Alar, China
- Key Lab of Xinjiang Production and Construction Corps in Comprehensive Agricultural Pest Management in Southern Xinjiang, Tarim University, Alar, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya City, China
| |
Collapse
|
10
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Kato-Noguchi H, Kato M. Defense Molecules of the Invasive Plant Species Ageratum conyzoides. Molecules 2024; 29:4673. [PMID: 39407602 PMCID: PMC11478290 DOI: 10.3390/molecules29194673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ageratum conyzoides L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems. The life history traits of Ageratum conyzoides, such as its short life cycle, early reproductive maturity, prolific seed production, and high adaptive ability to various environmental conditions, may contribute to its naturalization and increasing population. Possible evidence of the molecules involved in the defense of Ageratum conyzoides against its natural enemies, such as herbivore insects and fungal pathogens, and the allelochemicals involved in its competitive ability against neighboring plant species has been accumulated in the literature. The volatiles, essential oils, extracts, residues, and/or rhizosphere soil of Ageratum conyzoides show insecticidal, fungicidal, nematocidal, and allelopathic activity. The pyrrolizidine alkaloids lycopsamine and echinatine, found in the species, are highly toxic and show insecticidal activity. Benzopyran derivatives precocenes I and II show inhibitory activity against insect juvenile hormone biosynthesis and trichothecene mycotoxin biosynthesis. A mixture of volatiles emitted from Ageratum conyzoides, such as β-caryophyllene, β-bisabolene, and β-farnesene, may work as herbivore-induced plant volatiles, which are involved in the indirect defense function against herbivore insects. Flavonoids, such as nobiletin, eupalestin, 5'-methoxynobiletin, 5,6,7,3',4',5'-hexamethoxyflavone, and 5,6,8,3,4',5'-hexamethoxyflavone, show inhibitory activity against the spore germination of pathogenic fungi. The benzoic acid and cinnamic acid derivatives found in the species, such as protocatechuic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid, may act as allelopathic agents, causing the germination and growth inhibition of competitive plant species. These molecules produced by Ageratum conyzoides may act as defense molecules against its natural enemies and as allelochemicals against neighboring plant species, and they may contribute to the naturalization of the increasing population of Ageratum conyzoides in new habitats as an invasive plant species. This article presents the first review focusing on the defense function and allelopathy of Ageratum conyzoides.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
12
|
Zhou Z, Mang D, Smagghe G, Liu Y, Mu Y, Yang L, Wang X, Chen X. A Farnesyl Pyrophosphate Synthase Gene Is Expressed in Fat Body Regulates Cantharidin Synthesis in Male Epicauta impressicornis Blister Beetle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12935-12945. [PMID: 38822796 DOI: 10.1021/acs.jafc.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Blister beetles of Epicauta impressicornis have attracted attention because they contain a large amount of cantharidin (CTD). To date, however, the synthesis and transfer of CTD in adults of E. impressicornis are largely unknown. Here, we showed that the larvae E. impressicornis are capable of synthesizing CTD and they consume CTD during pupation. Before sexual maturity, both male and female adults synthesized a small amount of CTD, while after sexual maturity, males produced larger amounts of CTD, but females did not. The newly synthesized CTD in males first appeared in the hemolymph and then accumulated in the reproductive system. During the mating, the males transferred CTD to the reproductive system of females. In addition, a farnesyl pyrophosphate synthase (FPPS) gene was identified in male E. impressicornis. RNA-seq analysis, quantitative RT-PCR, and RNA interference analyses were conducted to investigate expression patterns and the functional roles of E. impressicornis FPPS (EiFPPS). Our results indicate that EiFPPS is highly expressed in the fat body of males. Moreover, the knock-down of EiFPPS led to a significant decrease in CTD synthesis. The current study indicates that EiFPPS is expressed in the fat body to regulate CTD synthesis in male E. impressicornis blister beetles.
Collapse
Affiliation(s)
- Zhicheng Zhou
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Dingze Mang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Guy Smagghe
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Yangyang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, 550005, China
| | - Yinlin Mu
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Lin Yang
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Xuewen Wang
- Health Science Center, University of North Texas, Fort Worth, Texas 76107, United States
| | - Xiangsheng Chen
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Hou J, Guo X, Li H, Zhang W, Zhang Y, Zhang F, Li H, Wei J, Li X. Precise Regulation of Juvenile Hormone III R-Stereoisomer Synthesis by Apis mellifera through Specifically Binding Methyl-(2 E,6 E)-farnesoate and Strictly Controlling Its Titer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20155-20166. [PMID: 38051952 DOI: 10.1021/acs.jafc.3c05385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Juvenile hormone III (JH III) is a crucial hormone synthesized exclusively as R-stereoisomer in most insects. Herein, we established a mature Tris-HCl culture system for essential biochemical reactions and applied stable instrumental detection methods to analyze JH III, methyl farnesoate (MF) and juvenile hormone acid (JHA) using UPLC-MS/MS. Our results revealed that the R-JH III terminal synthesis pathway in Apis mellifera follows the "esterify then epoxidize" sequence, with precise methyl-(2E,6E)-farnesoate titer regulation and its spatial cis-trans isomerism, achieving selective R-JH III synthesis. Furthermore, we observed that the preferred generation of S/R-JH III chiral enantiomers varied depending on the spatial cis-trans isomerism of different MFs. Our results suggest that S-JH III could theoretically exist in insects, offering a novel perspective for understanding the synthesis mechanism of diverse complex juvenile hormones in different insect species.
Collapse
Affiliation(s)
- Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaxia Guo
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Fu Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
14
|
Hussain M, Qi Z, Hedges LM, Nouzova M, Noriega FG, Asgari S. Investigating the role of aae-miR-34-5p in the regulation of juvenile hormone biosynthesis genes in the mosquito Aedes aegypti. Sci Rep 2023; 13:19023. [PMID: 37923767 PMCID: PMC10624809 DOI: 10.1038/s41598-023-46154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Juvenile hormone (JH) controls the development and reproduction of insects. Therefore, a tight regulation of the expression of JH biosynthetic enzymes is critical. microRNAs (miRNAs) play significant roles in the post-transcriptional regulation of gene expression by interacting with complementary sequences in target genes. Previously, we reported that several miRNAs were differentially expressed during three developmental stages of Aedes aegypti mosquitoes with different JH levels (no JH, high JH, and low JH). One of these miRNAs was aae-miR-34-5p. In this study, we identified the presence of potential target sequences of aae-miR-34-5p in the transcripts of some genes encoding JH biosynthetic enzymes. We analysed the developmental expression patterns of aae-miR-34-5p and the predicted target genes involved in JH biogenesis. Increases in miRNA abundance were followed, with a delay, by decreases in transcript levels of target genes. Application of an inhibitor and a mimic of aae-miR-34-5p led respectively to increased and decreased levels of thiolase transcripts, which is one of the early genes of JH biosynthesis. Female adult mosquitoes injected with an aae-miR-34-5p inhibitor exhibited significantly increased transcript levels of three genes encoding JH biosynthetic enzymes, acetoacetyl-CoA thiolase (thiolase), farnesyl diphosphate phosphatase, and farnesal dehydrogenase. Overall, our results suggest a potential role of miRNAs in JH production by directly targeting genes involved in its biosynthesis.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren M Hedges
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Kumar R, Das J, Rode S, Kaur H, Shah V, Verma P, Sharma AK. Farnesol dehydrogenase from Helicoverpa armigera (Hübner) as a promising target for pest management: molecular docking, in vitro and insect bioassay studies using geranylgeraniol as potential inhibitor. 3 Biotech 2023; 13:175. [PMID: 37188291 PMCID: PMC10175528 DOI: 10.1007/s13205-023-03598-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Juvenile hormone (JH) plays pivotal roles in several critical developmental processes in insects, including metamorphosis and reproduction. JH-biosynthetic pathway enzymes are considered highly promising targets for discovering novel insecticides. The oxidation of farnesol to farnesal, catalysed by farnesol dehydrogenase (FDL), represents a rate-limiting step in JH biosynthesis. Here, we report farnesol dehydrogenase (HaFDL) from H. armigera as a promising insecticidal target. The inhibitory potential of natural substrate analogue geranylgeraniol (GGol) was tested in vitro, wherein it showed a high binding affinity (kd 595 µM) for HaFDL in isothermal titration calorimetry (ITC) and subsequently exhibited dose-dependent enzyme inhibition in GC-MS coupled qualitative enzyme inhibition assay. Moreover, the experimentally determined inhibitory activity of GGol was augmented by the in silico molecular docking simulation which showed that GGol formed a stable complex with HaFDL, occupied the active site pocket and interacted with key active site residues (Ser147 and Tyr162) as well as other residues that are crucial in determining the active site architecture. Further, the diet-incorporated oral feeding of GGol caused detrimental effects on larval growth and development, exhibiting a significantly reduced rate of larval weight gain (P < 0.01), aberrant pupal and adult morphogenesis, and a cumulative mortality of ~ 63%. To the best of our knowledge, the study presents the first report on evaluating GGol as a potential inhibitor for HaFDL. Overall, the findings revealed the suitability of HaFDL as a potential insecticidal target for the management H. armigera.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Pooja Verma
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
| |
Collapse
|
16
|
Almadiy AA, Al-Ghamdi MS, Al-Akeel RK, Soliman MM, Ali MM. Qualitative structure-activity relationships of aryl isoprenoid derivatives as biorational juvenoids - reweighing. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2023; 43:1-11. [PMID: 37360917 PMCID: PMC10206361 DOI: 10.1007/s42690-023-01025-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Juvenoids are juvenile hormone (JH) mimetics, with specific structural features and defined molecular size that disrupt the target insect development. Juvenoid activity (= JH-type activity) of various isoprenoid-based derivatives as insecticidal candidates of the insect growth disruptors (IGDs) type were rated against the house fly, Musca domestica L. The epoxidized decenyl and nonenyl phenyl ether derivatives have more active compounds than those of both parent alkoxidized or olefinic structures. The highest juvenoid potency was shown by 3,4-methylenedioxyphenyl ethers of 8,9-epoxy-5,9-dimethy1-3,8-decadiene. Qualitative structure-activity relationships are offered to relate the chemical structure criteria to observed juvenoid-related activity. Differences in activity among the reported isoprenoid-based derivatives were qualitatively rationalized. This study advances understanding of the structural qualifications and activity determinants of isoprenoid juvenoids, which is important for the development of new filth flies eco-friendly insecticides. Supplementary Information The online version contains supplementary material available at 10.1007/s42690-023-01025-3.
Collapse
Affiliation(s)
- Abdulrhman A. Almadiy
- Group Leader of Medical Entomology, College of Science and Arts, Department of Biology, Najran University, King Abdulaziz Road, Najran, 1988 Saudi Arabia
| | - Mariam S. Al-Ghamdi
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 24381 Saudi Arabia
| | - Rasha K. Al-Akeel
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mustafa M. Soliman
- Department of Entomology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mona M. Ali
- Department of Entomology, Faculty of Science, Cairo University, Giza, 12613 Egypt
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| |
Collapse
|
17
|
Yi G, Ba R, Luo J, Zou L, Huang M, Li Y, Li H, Li X. Simultaneous Detection and Distribution of Five Juvenile Hormones in 58 Insect Species and the Absolute Configuration in 32 Insect Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7878-7890. [PMID: 37191197 DOI: 10.1021/acs.jafc.3c01168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Juvenile hormone (JH) plays an important role in regulating various insect physiological processes. Herein, a novel method (chiral and achiral) for the simultaneous detection of five JHs was established by processing a whole insect without complicated hemolymph extraction. The proposed method was used to determine the distribution of JHs in 58 insect species and the absolute configuration of JHs in 32 species. The results showed that JHSB3 was uniquely synthesized in Hemiptera, JHB3 was unique to Diptera, and JH I and JH II were unique to Lepidoptera. JH III was present in most insect species surveyed, with social insects having generally higher JH III titers. Interestingly, JHSB3 and JHB3, both double epoxidation JHs, were found in insects with sucking mouthparts. The absolute conformation of JH III and the 10C of the detected JHs were all R stereoisomers.
Collapse
Affiliation(s)
- Guoqiang Yi
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Rikang Ba
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Luo
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Lixia Zou
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Mingfeng Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuxuan Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
18
|
Lyu XY, Wang XL, Geng DQ, Jiang H, Zou Z. Juvenile hormone acts on male accessory gland function via regulating l-asparaginase expression and triacylglycerol mobilization in Aedes aegypti. INSECT SCIENCE 2023; 30:81-94. [PMID: 35633120 DOI: 10.1111/1744-7917.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Hormones control the reproductive development of Aedes aegypti mosquitoes. The adult male reproductive process and mating behavior require adequate nutrients and energy. Understanding the molecular mechanism linking hormones, energy metabolism, and reproduction in male mosquitoes is important. In this study, we found that the size of the male accessory gland, an essential part of the male reproductive system, gradually increased after eclosion. However, it was significantly reduced in male mosquitoes deficient in methoprene-tolerant (Met), the receptor of juvenile hormone. Likewise, egg hatchability of females that mated with Met-depleted males showed the same downward trend. The mRNA level of the gene encoding accessory gland protein, l-asparaginase (ASNase), was reduced in Met dsRNA-treated males. Electrophoretic mobility shift assay and quantitative reverse transcription-PCR results revealed that Met was capable of binding directly to the promoter of ASNase and activated its transcription. RNA interference of ASNase in males resulted in the reduction of egg hatchability of the females with which they mated. These results showed that Met influenced the fecundity of male mosquitoes by directly upregulating the expression of the ASNase gene. Moreover, the levels of triacylglycerol and the sizes of lipid droplets were decreased by 72-78 h after eclosion in the fat body cells, whereas both of them increased in Met-depleted male mosquitoes, indicating that Met knockdown reduced lipid catabolism. These data demonstrate that Met might influence the egg hatchability of females by regulating lipid metabolism and the development of the male accessory gland in male mosquitoes.
Collapse
Affiliation(s)
- Xiang-Yang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Qian Geng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Li Z, Zhou C, Chen Y, Ma W, Cheng Y, Chen J, Bai Y, Luo W, Li N, Du E, Li S. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach. BMC Biol 2022; 20:278. [PMID: 36514097 PMCID: PMC9749228 DOI: 10.1186/s12915-022-01484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In insects, an interplay between the activities of distinct hormones, such as juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulates the progression through numerous life history hallmarks. As a crucial endocrine factor, JH is mainly synthesized in the corpora allata (CA) to regulate multiple physiological and developmental processes, including molting, metamorphosis, and reproduction. During the last century, significant progress has been achieved in elucidating the JH signal transduction pathway, while less progress has been made in dissecting the regulatory mechanism of JH biosynthesis. Previous work has shown that receptor tyrosine kinase (RTK) signaling regulates hormone biosynthesis in both insects and mammals. Here, we performed a systematic RNA interference (RNAi) screening to identify RTKs involved in regulating JH biosynthesis in the CA of adult Blattella germanica females. RESULTS We found that the epidermal growth factor receptor (Egfr) is required for promoting JH biosynthesis in the CA of adult females. The Egf ligands Vein and Spitz activate Egfr, followed by Ras/Raf/ERK signaling, and finally activation of the downstream transcription factor Pointed (Pnt). Importantly, Pnt induces the transcriptional expression of two key enzyme-encoding genes in the JH biosynthesis pathway: juvenile hormone acid methyltransferase (JHAMT) and methyl farnesoate epoxidase (CYP15A1). Dual-luciferase reporter assay shows that Pnt is able to activate a promoter region of Jhamt. In addition, electrophoretic mobility shift assay confirms that Pnt directly binds to the - 941~ - 886 nt region of the Jhamt promoter. CONCLUSIONS This study reveals the detailed molecular mechanism of Egfr signaling in promoting JH biosynthesis in the German cockroach, shedding light on the intricate regulation of JH biosynthesis during insect development.
Collapse
Affiliation(s)
- Zhaoxin Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Caisheng Zhou
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yumei Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wentao Ma
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yunlong Cheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinxin Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Luo
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Erxia Du
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
20
|
Genetics tools for corpora allata specific gene expression in Aedes aegypti mosquitoes. Sci Rep 2022; 12:20426. [PMID: 36443489 PMCID: PMC9705396 DOI: 10.1038/s41598-022-25009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Juvenile hormone (JH) is synthesized by the corpora allata (CA) and controls development and reproduction in insects. Therefore, achieving tissue-specific expression of transgenes in the CA would be beneficial for mosquito research and control. Different CA promoters have been used to drive transgene expression in Drosophila, but mosquito CA-specific promoters have not been identified. Using the CRISPR/Cas9 system, we integrated transgenes encoding the reporter green fluorescent protein (GFP) close to the transcription start site of juvenile hormone acid methyl transferase (JHAMT), a locus encoding a JH biosynthetic enzyme, specifically and highly expressed in the CA of Aedes aegypti mosquitoes. Transgenic individuals showed specific GFP expression in the CA but failed to reproduce the full pattern of jhamt spatiotemporal expression. In addition, we created GeneSwitch driver and responder mosquito lines expressing an inducible fluorescent marker, enabling the temporal regulation of the transgene via the presence or absence of an inducer drug. The use of the GeneSwitch system has not previously been reported in mosquitoes and provides a new inducible binary system that can control transgene expression in Aedes aegypti.
Collapse
|
21
|
Leyria J, Orchard I, Lange AB. Impact of JH Signaling on Reproductive Physiology of the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 23:ijms232213832. [PMID: 36430311 PMCID: PMC9692686 DOI: 10.3390/ijms232213832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago.
Collapse
|
22
|
da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. Juvenile hormone modulates hydrocarbon expression and reproduction in the german wasp Vespula germanica. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1024580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Juvenile hormone (JH) affects multiple physiological traits in insects. In social insects, besides development, JH has been demonstrated to influence caste determination and the production of chemical compounds. In social wasps, JH triggers behavioral maturation, gonadotropic effects, and hydrocarbon modulation. Here, we investigated whether JH displays the same function in fertility and fertility cue production in females of the German wasp Vespula germanica, previously shown in the related species Vespula vulgaris. By experimentally treating workers with JH-analog, an anti-JH, and acetone solvent control, we tested whether JH modulates the cuticular chemical expression (CHCs), the Dufour’s gland chemical composition, and hence the compounds found over the egg’s surface. Additionally, we explored whether JH has a gonadotropic effect on workers. Workers treated with the JH-analog acquired a chemical profile that was intermediate between the queen and other treated workers. Interestingly, the same pattern was also seen in the Dufour’s glands and eggs, although more subtle. Furthermore, workers treated with the JH-analog were more fertile when compared to the controls, supporting the fact that JH acts as a gonadotropic hormone. Our results indicate a similar function of JH in societies of related wasp species V. germanica and V. vulgaris.
Collapse
|
23
|
Anderson CE, Malek MC, Jonas-Closs RA, Cho Y, Peshkin L, Kirschner MW, Yampolsky LY. Inverse Lansing Effect: Maternal Age and Provisioning Affecting Daughters' Longevity and Male Offspring Production. Am Nat 2022; 200:704-721. [PMID: 36260845 DOI: 10.1086/721148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
AbstractMaternal age effects on offspring life history are known in a variety of organisms, with offspring of older mothers typically having lower life expectancy (the Lansing effect). However, there is no consensus on the generality and mechanisms of this pattern. We tested predictions of the Lansing effect in several Daphnia magna clones and observed clone-specific magnitude and direction of the maternal age effect on offspring longevity. We also report ambidirectional, genotype-specific effects of maternal age on the propensity of daughters to produce male offspring. Focusing on two clones with contrasting life histories, we demonstrate that maternal age effects can be explained by lipid provisioning of embryos by mothers of different ages. Individuals from a single-generation maternal age reversal treatment showed intermediate life span and intermediate lipid content at birth. In the clone characterized by the "inverse Lansing effect," neonates produced by older mothers showed higher mitochondrial membrane potential in neural tissues than their counterparts born to younger mothers. We conclude that an inverse Lansing effect is possible and hypothesize that it may be caused by age-specific maternal lipid provisioning creating a calorically restricted environment during embryonic development, which in turn reduces fecundity and increases life span in offspring.
Collapse
|
24
|
Sun Y, Li Y, Zhang W, Jiang B, Tao SM, Dai HY, Xu XT, Sun YX, Yang L, Zhang YJ. The main component of the aphid alarm pheromone ( E)-β-farnesene affects the growth and development of Spodoptera exigua by mediating juvenile hormone-related genes. FRONTIERS IN PLANT SCIENCE 2022; 13:863626. [PMID: 36082292 PMCID: PMC9445801 DOI: 10.3389/fpls.2022.863626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The (E)-β-farnesene (EβF) is one of the most important secondary metabolites in some plants and provides indirect defense against aphids. However, the direct effect of EβF against pests is still unclear. In this study, various concentrations of EβF (0.16, 0.8, and 4 g/kg) were provided in an artificial diet to determine the direct effects of EβF on Spodoptera exigua. The results showed that an artificial diet containing 4 g/kg of EβF reduced the final survival of the S. exigua larvae and per female fecundity of adults significantly when compared with CK and SC controls (p < 0.05), then ultimately it also significantly affected the intrinsic rate of increase (p < 0.05). Furthermore, the results of the EβF bioassay in an artificial diet also indicated that the proliferation of the S. exigua population was inhibited by the ingestion of EβF in a dose-dependent manner. Combined differential RNA-seq data and RT-qPCR analysis, it was found that four key genes involved in juvenile hormone degradation significantly upregulated in S. exigua larvae treated by EβF at a dose of 0.8 and 4 g/kg when compared with two controls (p < 0.05). This indicated that EβF could disturb the normal function of juvenile hormones and reduce the survival rate of S. exigua larvae. Additionally, two key genes that regulate per fecundity of S. exigua females, including SeVg and SeVgR, were significantly downregulated in adult females (p < 0.05) when they were treated with 0.8 and 4 g/kg of EβF at the larval stage, relative to the expression of these genes after treatment with controls. These findings suggested that EβF first disturbed the normal function of juvenile hormone by upregulating key degradation genes, and then inhibited the expression of SeVg/SeVgR genes and proteins, thus reducing the population size of S. exigua by increasing larval mortality and inhibiting per female fecundity.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Si-Min Tao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Han-Yang Dai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin-Tong Xu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yue-Xin Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lei Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Ramos LFC, Martins M, Murillo JR, Domont GB, de Oliveira DMP, Nogueira FCS, Maciel-de-Freitas R, Junqueira M. Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia. Front Cell Infect Microbiol 2022; 12:900608. [PMID: 35873163 PMCID: PMC9302590 DOI: 10.3389/fcimb.2022.900608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Zika is a vector-borne disease caused by an arbovirus (ZIKV) and overwhelmingly transmitted by Ae. aegypti. This disease is linked to adverse fetal outcomes, mostly microcephaly in newborns, and other clinical aspects such as acute febrile illness and neurologic complications, for example, Guillain-Barré syndrome. One of the most promising strategies to mitigate arbovirus transmission involves releasing Ae. aegypti mosquitoes carrying the maternally inherited endosymbiont bacteria Wolbachia pipientis. The presence of Wolbachia is associated with a reduced susceptibility to arboviruses and a fitness cost in mosquito life-history traits such as fecundity and fertility. However, the mechanisms by which Wolbachia influences metabolic pathways leading to differences in egg production remains poorly known. To investigate the impact of coinfections on the reproductive tract of the mosquito, we applied an isobaric labeling-based quantitative proteomic strategy to investigate the influence of Wolbachia wMel and ZIKV infection in Ae. aegypti ovaries. To the best of our knowledge, this is the most complete proteome of Ae. aegypti ovaries reported so far, with a total of 3913 proteins identified, were also able to quantify 1044 Wolbachia proteins in complex sample tissue of Ae. aegypti ovary. Furthermore, from a total of 480 mosquito proteins modulated in our study, we discuss proteins and pathways altered in Ae. aegypti during ZIKV infections, Wolbachia infections, coinfection Wolbachia/ZIKV, and compared with no infection, focusing on immune and reproductive aspects of Ae. aegypti. The modified aspects mainly were related to the immune priming enhancement by Wolbachia presence and the modulation of the Juvenile Hormone pathway caused by both microorganism’s infection.
Collapse
Affiliation(s)
- Luís Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jimmy Rodriguez Murillo
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| | - Magno Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| |
Collapse
|
26
|
Sun Y, Fu D, Liu B, Wang L, Chen H. Functional Characterization of Allatostatin C (PISCF/AST) and Juvenile Hormone Acid O-Methyltransferase in Dendroctonus armandi. Int J Mol Sci 2022; 23:ijms23052749. [PMID: 35269892 PMCID: PMC8910878 DOI: 10.3390/ijms23052749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Allatostatin C (PISCF/AST) is a neuropeptide gene that affects juvenile hormone (JH) synthesis in the corpora allata. Juvenile hormone acid O-methyltransferase (JHAMT) is a key gene in the JH biosynthetic pathway. In this study, two genes encoding DaAST and DaJHAMT were cloned. Both DaAST and DaJHAMT were expressed in the larvae, pupae and adults of Chinese white pine beetle (Dendroctonus armandi), and highly expressed in the head and the gut. The expression of the two genes was induced by JH analog (JHA) methoprene and the functions of the two genes were then investigated by RNAi. Considering the role of hormones in metamorphosis, JHA significantly induced DaAST and DaJHAMT in the larval stage. DaAST knockdown in larvae, pupae and adults significantly increased the DaJHAMT mRNA levels. Moreover, knockdown of DaAST instead of DaJHAMT increased pupae mortality and the abnormal rate of emergence morphology and reduced emergence rates. However, knockdown of DaJHAMT instead of DaAST significantly reduced frontalin biosynthesis in adult males. The results showed that DaAST acts as an allatostatin and inhibits JH biosynthesis, and that JHAMT is a key regulatory enzyme for JH synthesis in the D. armandi.
Collapse
Affiliation(s)
- Yaya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Danyang Fu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Bin Liu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Linjun Wang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: ; Tel.: +86-02085280256
| |
Collapse
|
27
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|
28
|
Bian HX, Chen DB, Li YP, Tan EG, Su X, Huang JC, Su JF, Liu YQ. Transcriptomic analysis of Bombyx mori corpora allata with comparison to prothoracic glands in the final instar larvae. Gene 2021; 813:146095. [PMID: 34902509 DOI: 10.1016/j.gene.2021.146095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The corpus allatum (CA) is an endocrine organ of insects that synthesizes juvenile hormone (JH). Yet little is known regarding the global gene expression profile for the CA, although JH signaling pathway has been well-studied in insects. Here, we report the availability of the transcriptome resource of the isolated CA from the final (fifth) instar larvae of the silkworm, Bombyx mori when the JH titer is low. We also compare it with prothoracic gland (PG) that produces the precursor of 20-hydroxyecdysone (20E), to find some common features in the JH and 20E related genes between the two organs. A total of 17,262 genes were generated using a combination of genome-guided assembly and annotation, in which 10,878 unigenes were enriched in 58 Gene Ontology terms, representing almost all expressed genes in the CA of the 5th instar larvae of B. mori. Transcriptome analysis confirmed that gene for Torso, the receptor of prothoracicotropic hormone (PTTH), is present in the PG but not in the CA. Transcriptome comparison and quantitative real time-PCR indicated that 11 genes related to JH biosynthesis and regulation and six genes for 20E are expressed in both the CA and PG, suggesting that the two organs may cross talk with each other through these genes. The temporal expression profiles of the two genes for the multifunctional neurohormonal factor sericotropin precursor and the uncharacterized protein LOC114249572, the most abundant in the CA and PG transcriptomes respectively, suggested that they might play important roles in the JH and 20E biosynthesis. The present work provides new insights into the CA and PG.
Collapse
Affiliation(s)
- Hai-Xu Bian
- College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - En-Guang Tan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xin Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jing-Chao Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jun-Fang Su
- Center for Experimental Teaching, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
29
|
Kurogi Y, Mizuno Y, Imura E, Niwa R. Neuroendocrine Regulation of Reproductive Dormancy in the Fruit Fly Drosophila melanogaster: A Review of Juvenile Hormone-Dependent Regulation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.715029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animals can adjust their physiology, helping them survive and reproduce under a wide range of environmental conditions. One of the strategies to endure unfavorable environmental conditions such as low temperature and limited food supplies is dormancy. In some insect species, this may manifest as reproductive dormancy, which causes their reproductive organs to be severely depleted under conditions unsuitable for reproduction. Reproductive dormancy in insects is induced by a reduction in juvenile hormones synthesized in the corpus allatum (pl. corpora allata; CA) in response to winter-specific environmental cues, such as low temperatures and short-day length. In recent years, significant progress has been made in the study of dormancy-inducing conditions dependent on CA control mechanisms in Drosophila melanogaster. This review summarizes dormancy control mechanisms in D. melanogaster and discusses the implications for future studies of insect dormancy, particularly focusing on juvenile hormone-dependent regulation.
Collapse
|
30
|
Sun Y, Fu D, Kang X, Liu B, Ning H, Chen H. Function of mevalonate pathway genes in the synthesis of frontalin in Chinese white pine beetle, Dendroctonus armandi (curculionidae: Scolytinae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21828. [PMID: 34173689 DOI: 10.1002/arch.21828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The Chinese white pine beetle (Dendroctonus armandi Tsai and Li) is a significant pest of pine forests in the Qinling and Bashan Mountains of China. Adult males commonly produce frontalin using precursors synthesized through the mevalonate pathway, which is regulated by juvenile hormone III (JHIII). In this study, the expression levels of mevalonate pathway genes were quantified after phloem feeding and topical application of the JHIII solution. The frontalin was quantified by gas chromatography-mass spectrometry. Both the phloem feeding and JHIII treatments produced an evident upregulation in the male gut, mainly in 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). Moreover, HMGS, HMGR, isopentenyl diphosphate isomerase, and geranyl diphosphate synthase/farnesyl diphosphate synthase were upregulated in fed and JHIII-stimulated males of D. armandi under both conditions (solitary and paired). The expression levels were higher in paired compared to solitary males. Males had higher expression levels compared with females. Correspondingly, the phloem-feeding males produced more frontalin than JHIII-treated males, and the production of frontalin was higher in paired males than in solitary males. The knockdown of mevalonate pathway genes using RNAi in vivo effectively reduced the messenger RNA level of these genes and inhibited the production of frontalin. Among them, the silencing of HMGR or HMGS genes reduced the synthesis of frontalin most significantly.
Collapse
Affiliation(s)
- Yaya Sun
- College of Forestry, Northwest A and F University, Yangling, Shaanxi, China
| | - Danyang Fu
- College of Forestry, Northwest A and F University, Yangling, Shaanxi, China
| | - Xiaotong Kang
- College of Forestry, Northwest A and F University, Yangling, Shaanxi, China
| | - Bin Liu
- College of Forestry, Northwest A and F University, Yangling, Shaanxi, China
| | - Hang Ning
- College of Forestry, Northwest A and F University, Yangling, Shaanxi, China
| | - Hui Chen
- College of Forestry, Northwest A and F University, Yangling, Shaanxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Waterhouse RM, Vlachou D, Christophides GK. Anopheles coluzzii stearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding. PLoS Pathog 2021; 17:e1009486. [PMID: 34015060 PMCID: PMC8171932 DOI: 10.1371/journal.ppat.1009486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 06/02/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases. Female mosquitoes can become infected with malaria parasites upon ingestion of blood from an infected person and can transmit the disease when they bite another person some days later. The bloodmeal is rich in proteins which female mosquitoes use to develop their eggs after converting them first to saturated and then to unsaturated fatty acids inside their gut cells. Here, we present the characterization of the enzyme that mosquitoes use to convert saturated to unsaturated fatty acids and show that when this enzyme is eliminated or inhibited mosquitoes cannot produce eggs and die soon after they feed on blood. The mosquito death appears to be primarily associated with the collapse of their gut epithelial barrier due to the loss of cell membrane integrity, leading to their inner body cavity being filled with the ingested blood. These mosquitoes also suffer from an acute and detrimental auto-inflammatory condition due to mounting of a potent immune response in the absence of any infection. We conclude that this enzyme and the mechanism of converting blood-derived proteins to unsaturated fatty acids as a whole can be a good target of interventions aiming at limiting the mosquito abundance and blocking malaria transmission.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Health Science Research Centre, University of Roehampton, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
32
|
Habenstein J, Thamm M, Rössler W. Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus. J Comp Neurol 2021; 529:3155-3170. [PMID: 33950523 DOI: 10.1002/cne.25166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Age-related behavioral plasticity is a major prerequisite for the ecological success of insect societies. Although ecological aspects of behavioral flexibility have been targeted in many studies, the underlying intrinsic mechanisms controlling the diverse changes in behavior along the individual life history of social insects are not completely understood. Recently, the neuropeptides allatostatin-A, corazonin, and tachykinin have been associated with the regulation of behavioral transitions in social insects. Here, we investigated changes in brain localization and expression of these neuropeptides following major behavioral transitions in Cataglyphis nodus ants. Our immunohistochemical analyses in the brain revealed that the overall branching pattern of neurons immunoreactive (ir) for the three neuropeptides is largely independent of the behavioral stages. Numerous allatostatin-A- and tachykinin-ir neurons innervate primary sensory neuropils and high-order integration centers of the brain. In contrast, the number of corazonergic neurons is restricted to only four neurons per brain hemisphere with cell bodies located in the pars lateralis and axons extending to the medial protocerebrum and the retrocerebral complex. Most interestingly, the cell-body volumes of these neurons are significantly increased in foragers compared to freshly eclosed ants and interior workers. Quantification of mRNA expression levels revealed a stage-related change in the expression of allatostatin-A and corazonin mRNA in the brain. Given the presence of the neuropeptides in major control centers of the brain and the neurohemal organs, these mRNA-changes strongly suggest an important modulatory role of both neuropeptides in the behavioral maturation of Cataglyphis ants.
Collapse
Affiliation(s)
- Jens Habenstein
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Following de novo triglyceride dynamics in ovaries of Aedes aegypti during the previtellogenic stage. Sci Rep 2021; 11:9636. [PMID: 33953286 PMCID: PMC8099868 DOI: 10.1038/s41598-021-89025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding the molecular and biochemical basis of egg development is a central topic in mosquito reproductive biology. Lipids are a major source of energy and building blocks for the developing ovarian follicles. Ultra-High Resolution Mass Spectrometry (UHRMS) combined with in vivo metabolic labeling of follicle lipids with deuterated water (2H2O) can provide unequivocal identification of de novo lipid species during ovarian development. In the present study, we followed de novo triglyceride (TG) dynamics during the ovarian previtellogenic (PVG) stage (2-7 days post-eclosion) of female adult Aedes aegypti. The incorporation of stable isotopes from the diet was evaluated using liquid chromatography (LC) in tandem with the high accuracy (< 0.3 ppm) and high mass resolution (over 1 M) of a 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (14.5 T FT-ICR MS) equipped with hexapolar detection. LC-UHRMS provides effective lipid class separation and chemical formula identification based on the isotopic fine structure. The monitoring of stable isotope incorporation into de novo incorporated TGs suggests that ovarian lipids are consumed or recycled during the PVG stage, with variable time dynamics. These results provide further evidence of the complexity of the molecular mechanism of follicular lipid dynamics during oogenesis in mosquitoes.
Collapse
|
34
|
Guo S, Tian Z, Wu QW, King-Jones K, Liu W, Zhu F, Wang XP. Steroid hormone ecdysone deficiency stimulates preparation for photoperiodic reproductive diapause. PLoS Genet 2021; 17:e1009352. [PMID: 33529191 PMCID: PMC7880476 DOI: 10.1371/journal.pgen.1009352] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/12/2021] [Accepted: 01/09/2021] [Indexed: 01/21/2023] Open
Abstract
Diapause, a programmed developmental arrest primarily induced by seasonal environmental changes, is very common in the animal kingdom, and found in vertebrates and invertebrates alike. Diapause provides an adaptive advantage to animals, as it increases the odds of surviving adverse conditions. In insects, individuals perceive photoperiodic cues and modify endocrine signaling to direct reproductive diapause traits, such as ovary arrest and increased fat accumulation. However, it remains unclear as to which endocrine factors are involved in this process and how they regulate the onset of reproductive diapause. Here, we found that the long day-mediated drop in the concentration of the steroid hormone ecdysone is essential for the preparation of photoperiodic reproductive diapause in Colaphellus bowringi, an economically important cabbage beetle. The diapause-inducing long-day condition reduced the expression of ecdysone biosynthetic genes, explaining the drop in the titer of 20-hydroxyecdysone (20E, the active form of ecdysone) in female adults. Application of exogenous 20E induced vitellogenesis and ovarian development but reduced fat accumulation in the diapause-destined females. Knocking down the ecdysone receptor (EcR) in females destined for reproduction blocked reproductive development and induced diapause traits. RNA-seq and hormone measurements indicated that 20E stimulates the production of juvenile hormone (JH), a key endocrine factor in reproductive diapause. To verify this, we depleted three ecdysone biosynthetic enzymes via RNAi, which confirmed that 20E is critical for JH biosynthesis and reproductive diapause. Importantly, impairing Met function, a component of the JH intracellular receptor, partially blocked the 20E-regulated reproductive diapause preparation, indicating that 20E regulates reproductive diapause in both JH-dependent and -independent manners. Finally, we found that 20E deficiency decreased ecdysis-triggering hormone signaling and reduced JH production, thereby inducing diapause. Together, these results suggest that 20E signaling is a pivotal regulator that coordinates reproductive plasticity in response to environmental inputs. Developmental arrest pervades organismal development and physiology where it facilitates an enormous range of adaptive responses to stressful conditions. Many animals exhibit various forms of developmental arrest that ensures survival under the most adverse environments. Reproductive diapause occurs when adults temporarily suspend reproduction in response to environmental stress and has been documented for a variety of invertebrates, particularly insects. Endocrine signals play a central role in translating environmental cues such as photoperiod into reproductive diapause-related physiology and behavior. However, it has been an unresolved issue as to which endocrine factors can respond to photoperiodic inputs and regulate diapause outputs. In this study, we found that a decrease in ecdysone levels is critical for reproductive diapause to occur. Also, ecdysone could interact with juvenile hormone to regulate the occurrence of reproductive diapause in response to photoperiodic cues. Our findings provide new insight into endocrine mechanisms of photoperiodic reproductive diapause and an example of phenotypic plasticity in animals.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Qing-Wen Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (WL); (X-PW)
| | - Fen Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (WL); (X-PW)
| |
Collapse
|
35
|
Sun Y, Dai L, Kang X, Fu D, Gao H, Chen H. Isolation and expression of five genes in the mevalonate pathway of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21760. [PMID: 33231898 DOI: 10.1002/arch.21760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The Chinese white pine beetle Dendroctonus armandi (Tsai and Li) is a significant pest of the Qinling and Bashan Mountains pine forests of China. The Chinese white pine beetle can overcome the defences of Chinese white pine Pinus armandi (Franch) through pheromone-assisted aggregation that results in a mass attack of host trees. We isolated five full-length complementary DNAs encoding mevalonate pathway-related enzyme genes from the Chinese white pine beetle (D. armandi), which are acetoacetyl-CoA thiolase (AACT), geranylgeranyl diphosphate synthase (GGPPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MPDC), and phosphomevalonate kinase (PMK). Bioinformatic analyses were performed on the full-length deduced amino acid sequences. Differential expression of these five genes was observed between sexes, and within these significant differences among topically applied juvenile hormone III (JH III), fed on phloem of P. armandi, tissue distribution, and development stage. Mevalonate pathway genes expression were induced by JH III and feeding.
Collapse
Affiliation(s)
- Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaotong Kang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Yusoff N, Abd Ghani I, Othman NW, Aizat WM, Hassan M. Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). INSECTS 2021; 12:109. [PMID: 33513706 PMCID: PMC7910910 DOI: 10.3390/insects12020109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cruciferous vegetables worldwide. In this study, we evaluated the properties of selected farnesyl derivative compounds against P. xylostella. The toxicity and sublethal concentration (LC50) of farnesyl acetate, farnesyl acetone, farnesyl bromide, farnesyl chloride, and hexahydrofarnesyl acetone were investigated for 96 h. The leaf-dip bioassays showed that farnesyl acetate had a high level of toxicity against P. xylostella compared to other tested farnesyl derivatives. The LC50 value was 56.41 mg/L on the second-instar larvae of P. xylostella. Then, the sublethal effects of farnesyl acetate on biological parameters of P. xylostella were assessed. Compared to the control group, the sublethal concentration of farnesyl acetate decreased pupation and emergence rates, pupal weight, fecundity, egg hatching rate, female ratio, and oviposition period. Furthermore, the developmental time of P. xylostella was extended after being exposed to farnesyl acetate. Moreover, the application of farnesyl acetate on P. xylostella induced morphogenetic abnormalities in larval-pupal intermediates, adults that emerged with twisted wings, or complete adults that could not emerge from the cocoon. These results suggested that farnesyl acetate was highly effective against P. xylostella. The sublethal concentration of farnesyl acetate could reduce the population of P. xylostella by increasing abnormal pupal and adults, and by delaying its development period.
Collapse
Affiliation(s)
- Norazila Yusoff
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| | - Idris Abd Ghani
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (I.A.G.); (N.W.O.)
| | - Nurul Wahida Othman
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (I.A.G.); (N.W.O.)
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| |
Collapse
|
37
|
Sheldon KS, Padash M, Carter AW, Marshall KE. Different amplitudes of temperature fluctuation induce distinct transcriptomic and metabolomic responses in the dung beetle Phanaeus vindex. J Exp Biol 2020; 223:jeb233239. [PMID: 33139393 DOI: 10.1242/jeb.233239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Most studies exploring molecular and physiological responses to temperature have focused on constant temperature treatments. To gain a better understanding of the impact of fluctuating temperatures, we investigated the effects of increased temperature variation on Phanaeus vindex dung beetles across levels of biological organization. Specifically, we hypothesized that increased temperature variation is energetically demanding. We predicted that thermal sensitivity of metabolic rate and energetic reserves would be reduced with increasing fluctuation. To test this, we examined the responses of dung beetles to constant (20°C), low fluctuation (20±5°C), or high fluctuation (20±12°C) temperature treatments using respirometry, assessment of energetic reserves and HPLC-MS-based metabolomics. We found no significant differences in metabolic rate or energetic reserves, suggesting increased fluctuations were not energetically demanding. To understand why there was no effect of increased amplitude of temperature fluctuation on energetics, we assembled and annotated a de novo transcriptome, finding non-overlapping transcriptomic and metabolomic responses of beetles exposed to different fluctuations. We found that 58 metabolites increased in abundance in both fluctuation treatments, but 15 only did so in response to high-amplitude fluctuations. We found that 120 transcripts were significantly upregulated following acclimation to any fluctuation, but 174 were upregulated only in beetles from the high-amplitude fluctuation treatment. Several differentially expressed transcripts were associated with post-translational modifications to histones that support a more open chromatin structure. Our results demonstrate that acclimation to different temperature fluctuations is distinct and may be supported by increasing transcriptional plasticity. Our results indicate for the first time that histone modifications may underlie rapid acclimation to temperature variation.
Collapse
Affiliation(s)
- Kimberly S Sheldon
- Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA
| | - Mojgan Padash
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Amanda W Carter
- Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
38
|
Adhitama N, Kato Y, Matsuura T, Watanabe H. Roles of and cross-talk between ecdysteroid and sesquiterpenoid pathways in embryogenesis of branchiopod crustacean Daphnia magna. PLoS One 2020; 15:e0239893. [PMID: 33035251 PMCID: PMC7546464 DOI: 10.1371/journal.pone.0239893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
The ecdysteroid and sesquiterpenoid pathways control growth, developmental transition, and embryogenesis in insects. However, the function of orthologous genes and the cross-talk between both pathways remain largely uncharacterized in non-insect arthropods. Spook (Spo) and Juvenile hormone acid o-methyltransferase (Jhamt) have been suggested to function as rate-limiting factors in ecdysteroid and sesquiterpenoid biosynthesis, respectively, in insects. In this study, we report on the functions of Spo and Jhamt and the cross-talk between them in embryos of the branchiopod crustacean Daphnia magna. Spo expression was activated at the onset of gastrulation, with the depletion of Spo transcript by RNAi resulting in developmental arrest at this stage. This phenotype could be partially rescued by supplementation with 20-hydroxyecdysone, indicating that Spo may play the same role in ecdysteroid biosynthesis in early embryos, as reported in insects. After hatching, Spo expression was repressed, while Jhamt expression was activated transiently, despite its silencing during other embryonic stages. Jhamt RNAi showed little effect on survival, but shortened the embryonic period. Exposure to the sesquiterpenoid analog Fenoxycarb extended the embryonic period and rescued the Jhamt RNAi phenotype, demonstrating a previously unidentified role of sesquiterpenoid in the repression of precocious embryogenesis. Interestingly, the knockdown of Jhamt resulted in the derepression of ecdysteroid biosynthesis genes, including Spo, similar to regulation during insect hormonal biosynthesis. Sesquiterpenoid signaling via the Methoprene-tolerant gene was found to be responsible for the repression of ecdysteroid biosynthesis genes. It upregulated an ortholog of CYP18a1 that degrades ecdysteroid in insects. These results illuminate the conserved and specific functions of the ecdysteroid and sesquiterpenoid pathways in Daphnia embryos. We also infer that the common ancestor of branchiopod crustaceans and insects exhibited antagonism between the two endocrine hormones before their divergence 400 million years ago.
Collapse
Affiliation(s)
- Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Frontier Research Base of Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
39
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
40
|
Luo W, Veeran S, Wang J, Li S, Li K, Liu SN. Dual roles of juvenile hormone signaling during early oogenesis in Drosophila. INSECT SCIENCE 2020; 27:665-674. [PMID: 31207060 DOI: 10.1111/1744-7917.12698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH) signaling plays crucial roles in insect metamorphosis and reproduction. Function of JH signaling in germline stem cells (GSCs) remains largely unknown. Here, we found that the number of GSCs significantly declined in the ovaries of Met, Gce and JHAMT mutants. Then we inhibited JH signaling in selected cell types of ovaries by expressing Met and Gce or Kr-h1 double-stranded RNAs (dsRNAs) using different Gal4 drivers. Blocking of JH signaling in muscle cells has no effect on GSC numbers. Blocking of JH signaling in cap cells reduced GSCs cells. Inductive expression of Met and Gce dsRNA but not Kr-h1 by Nos-Gal4 increased GSC cells. These results indicate that JH signaling plays an important role in GSC maintenance.
Collapse
Affiliation(s)
- Wei Luo
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sethuraman Veeran
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
41
|
Photoperiod and temperature separately regulate nymphal development through JH and insulin/TOR signaling pathways in an insect. Proc Natl Acad Sci U S A 2020; 117:5525-5531. [PMID: 32098850 DOI: 10.1073/pnas.1922747117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects living in the temperate zone enter a physiological state of arrested or slowed development to overcome an adverse season, such as winter. Developmental arrest, called diapause, occurs at a species-specific developmental stage, and embryonic and pupal diapauses have been extensively studied in mostly holometabolous insects. Some other insects overwinter in the nymphal stage with slow growth for which the mechanism is poorly understood. Here, we show that this nymphal period of slow growth is regulated by temperature and photoperiod through separate pathways in the cricket Modicogryllus siamensis The former regulates the growth rate, at least in part, through the insulin / target of rapamycin (TOR) signaling pathway. Lower temperature down-regulates the expression of insulin -like peptide (Ms'Ilp) and Target of rapamycin (Ms'Tor) genes to slow down the growth rate without affecting the number of molts. The latter regulates the number of molts independent of temperature. Short days increase the number of molts through activation of the juvenile hormone (JH) pathway and down-regulation of myoglianin (Ms'myo), a member of the TGFβ family, which induces adult metamorphosis. In contrast, long days regulate Ms'myo expression to increase during the fifth to sixth instar to initiate adult metamorphosis. When Ms'myo expression is suppressed, juvenile hormone O-methyl transferase (Ms'jhamt) was up-regulated and increased molts to prolong the nymphal period even under long-day conditions. The present findings suggested that the photoperiod regulated Ms'myo, and the JH signaling pathway and the temperature-controlled insulin/TOR pathway cooperated to regulate nymphal development for overwintering to achieve seasonal adaptation of the life cycle in M. siamensis.
Collapse
|
42
|
The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci Rep 2020; 10:3091. [PMID: 32080221 PMCID: PMC7033181 DOI: 10.1038/s41598-020-59495-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 11/27/2022] Open
Abstract
Juvenile hormones (JHs) are sesquiterpenoids synthesized by the corpora allata (CA). They play critical roles during insect development and reproduction. The first JH was described in 1934 as a “metamorphosis inhibitory hormone” in Rhodnius prolixus by Sir Vincent B. Wigglesworth. Remarkably, in spite of the importance of R. prolixus as vectors of Chagas disease and model organisms in insect physiology, the original JH that Wigglesworth described for the kissing-bug R. prolixus remained unidentified. We employed liquid chromatography mass spectrometry to search for the JH homologs present in the hemolymph of fourth instar nymphs of R. prolixus. Wigglesworth’s original JH is the JH III skipped bisepoxide (JHSB3), a homolog identified in other heteropteran species. Changes in the titer of JHSB3 were studied during the 10-day long molting cycle of 4th instar nymph, between a blood meal and the ecdysis to 5th instar. In addition we measured the changes of mRNA levels in the CA for the 13 enzymes of the JH biosynthetic pathway during the molting cycle of 4th instar. Almost 90 years after the first descriptions of the role of JH in insects, this study finally reveals that the specific JH homolog responsible for Wigglesworth’s original observations is JHSB3.
Collapse
|
43
|
Taylor DM, Olds CL, Haney RS, Torrevillas BK, Luckhart S. Comprehensive and Durable Modulation of Growth, Development, Lifespan and Fecundity in Anopheles stephensi Following Larval Treatment With the Stress Signaling Molecule and Novel Antimalarial Abscisic Acid. Front Microbiol 2020; 10:3024. [PMID: 32010091 PMCID: PMC6979008 DOI: 10.3389/fmicb.2019.03024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
The larval environment of holometabolous insects determines many adult life history traits including, but not limited to, rate and success of development and adult lifespan and fecundity. The ancient stress signaling hormone abscisic acid (ABA), released by plants inundated with water and by leaf and root fragments in water, is likely ubiquitous in the mosquito larval environment and is well known for its wide ranging effects on invertebrate biology. Accordingly, ABA is a relevant stimulus and signal for mosquito development. In our studies, the addition of ABA at biologically relevant levels to larval rearing containers accelerated the time to pupation and increased death of A. stephensi pupae. We could not attribute these effects, however, to ABA-dependent changes in JH biosynthesis-associated gene expression, 20E titers or transcript patterns of insulin-like peptide genes. Adult females derived from ABA-treated larvae had reduced total protein content and significantly reduced post blood meal transcript expression of vitellogenin, effects that were consistent with variably reduced egg clutch sizes and oviposition success from the first through the third gonotrophic cycles. Adult female A. stephensi derived from ABA-treated larvae also exhibited reduced lifespans relative to controls. Collectively, these effects of ABA on A. stephensi life history traits are robust, durable and predictive of multiple impacts of an important malaria vector spreading to new malaria endemic regions.
Collapse
Affiliation(s)
- Dean M Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Cassandra L Olds
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Reagan S Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Brandi K Torrevillas
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
44
|
Ramirez CE, Nouzova M, Michalkova V, Fernandez-Lima F, Noriega FG. Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103287. [PMID: 31760138 PMCID: PMC6983331 DOI: 10.1016/j.ibmb.2019.103287] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
This study reports the development and application of a liquid chromatography method coupled to electrospray tandem mass spectrometry (LC-MS/MS) for the identification and quantification of the five most common juvenile hormone (JH) homologs and methyl farnesoate (MF). The protocol allows the simultaneous analysis in a single LC run of JH I, JH II, JH III, JH III bisepoxide (JHB3) and JH III skipped bisepoxide (JHSB3). The identification of JHs is based on multiple reaction monitoring (MRM), using two of the most abundant fragmentation transitions for each hormone. Addition of deuterated JH III as an internal standard permits the absolute quantification of the different JHs. The JH homologs common structural features led to similar chromatographic behavior, as well as related fragmentation patterns, which facilitated the simultaneous detection of all the homologs in a single LC-MS/MS run. The protocol detects JHs in the low femtomole range, allowing often the analysis of JH in individual insects. Fragmentation of each of the JH homologs generates unique diagnostic ions that permitted the identification and quantification of JHs from samples of different species of Diptera, Lepidoptera, Heteroptera and Hymenoptera. Having a simple protocol, which can undisputedly determine the identity of the homologs present in a particular species, provides us with the opportunity to identify and quantify JHs existing in insects that are pests, vector of diseases or important research models.
Collapse
Affiliation(s)
- Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA
| | - Marcela Nouzova
- Department of Biology, Florida International University, Miami, USA; Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | | | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA; Biomolecular Science Institute, Florida International University, Miami, USA
| | - Fernando G Noriega
- Department of Biology, Florida International University, Miami, USA; Biomolecular Science Institute, Florida International University, Miami, USA.
| |
Collapse
|
45
|
Holken Lorensi G, Soares Oliveira R, Leal AP, Zanatta AP, Moreira de Almeida CG, Barreto YC, Eduarda Rosa M, de Brum Vieira P, Brito Ramos CJ, de Carvalho Victoria F, Batista Pereira A, LaneuvilleTeixeira V, Dal Belo CA. Entomotoxic Activity of Prasiola crispa (Antarctic Algae) in Nauphoeta cinerea Cockroaches: Identification of Main Steroidal Compounds. Mar Drugs 2019; 17:md17100573. [PMID: 31658661 PMCID: PMC6835979 DOI: 10.3390/md17100573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Prasiola crispa is a macroscopic green algae found in abundance in Antarctica ice free areas. Prasiola crispan-hexaneextract (HPC) induced insecticidal activity in Nauphoeta cinerea cockroaches after 24 h of exposure. The chemical analysis of HPC revealed the presence of the followingphytosterols: β-sitosterol, campesterol and stigmasterol. The incubation of cockroach semi-isolated heart preparations with HPC caused a significant negative chronotropic activity in the heartbeats. HPC affected the insect neuromuscular function by inducing a complete inhibition of the cockroach leg-muscle twitch tension. When the isolated phytosterols were injected at in vivo cockroach neuromuscular preparations, there was a progressive inhibition of muscle twitches on the following order of potency: β-sitosterol > campesterol > stigmasterol. HPC also provoked significant behavioral alterations, characterized by the increase or decrease of cockroach grooming activity, depending on the dose assayed. Altogether, the results presented here corroborate the insecticide potential of Prasiola crispa Antarctic algae. They also revealed the presence of phytosterols and the involvement of these steroidal compounds in the entomotoxic activity of the algae, potentially by modulating octopaminergic-cholinergic pathways. Further phytochemical-combined bioguided analysis of the HPC will unveil novel bioactive compounds that might be an accessory to the insecticide activity of the algae.
Collapse
Affiliation(s)
- Graziela Holken Lorensi
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Allan P Leal
- Programa de Pós-Graduação em Bioquímica Toxicológica, PPGBtox, Universidade Federal de Santa Maria, UFSM, Bairro Camobi, Santa Maria, RS 9705-900, Brazil.
| | - Ana Paula Zanatta
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | | | - Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Patrícia de Brum Vieira
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
- Grupo de Pesquisa em Estresse Oxidativo e Sinalização Celular, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Carlos José Brito Ramos
- Programa de Pós-Graduação em Biodiversidade Neotropical, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ 22290-255, Brazil.
| | - Filipe de Carvalho Victoria
- Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Rio Grande do Sul 97307-020, Brazil.
| | - Antônio Batista Pereira
- Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Rio Grande do Sul 97307-020, Brazil.
| | - Valéria LaneuvilleTeixeira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Centro, Niterói, RJ 24020-141, Brazil.
- Programa de Pós-Graduação em Biodiversidade Neotropical, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ 22290-255, Brazil.
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
- Programa de Pós-Graduação em Bioquímica Toxicológica, PPGBtox, Universidade Federal de Santa Maria, UFSM, Bairro Camobi, Santa Maria, RS 9705-900, Brazil.
| |
Collapse
|
46
|
Nouzova M, Michalkova V, Ramirez CE, Fernandez-Lima F, Noriega FG. Inhibition of juvenile hormone synthesis in mosquitoes by the methylation inhibitor 3-deazaneplanocin A (DZNep). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103183. [PMID: 31265905 PMCID: PMC6733609 DOI: 10.1016/j.ibmb.2019.103183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH), synthesized by the corpora allata (CA), controls development and reproduction in mosquitoes through its action on thousands of JH-responsive genes. These JH-dependent processes can be studied using tools that increase or decrease JH titers in vitro and in vivo. Juvenile hormone acid methyl transferase (JHAMT) is a critical JH biosynthetic enzyme. JHAMT utilizes the methyl donor S-adenosyl-methionine (SAM) to methylate farnesoic acid (FA) into methyl farnesoate (MF), releasing the product S-adenosyl-L-homocysteine (AdoHcy), which inhibits JHAMT. S-adenosyl-homocysteine hydrolase (SAHH) catalyzes AdoHcy hydrolysis to adenosine and homocysteine, alleviating AdoHcy inhibition of JHAMT. 3-deazaneplanocin A (DZNep), an analog of adenosine, is an inhibitor of SAHH, and an epigenetic drug for cancer therapy. We tested the effect of DZNep on in vitro JH synthesis by CA of mosquitoes. DZNep inhibited JH synthesis in a dose-response fashion. Addition of MF, but not of FA relieved the inhibition, demonstrating a direct effect on JHAMT. In vivo experiments, with addition of DZNep to the sugar ingested by mosquitoes, resulted in a dose-response decrease in JH synthesis and JH hemolymphatic titers, as well as expression of early trypsin, a JH-dependent gene. Our studies suggest that DZNep can be employed to lower JH synthesis and titer in experiments evaluating JH-controlled processes in mosquitoes.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA; Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA; Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA; Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
47
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
48
|
Roy A, Palli SR. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics 2018; 19:934. [PMID: 30547764 PMCID: PMC6295036 DOI: 10.1186/s12864-018-5323-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic modifications including DNA methylation and post-translational modifications of histones are known to regulate gene expression. Antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) mediate transcriptional reprogramming during insect development as shown in Drosophila melanogaster and other insects. Juvenile hormones (JH) play vital roles in the regulation of growth, development, metamorphosis, reproduction and other physiological processes. However, our current understanding of epigenetic regulation of JH action is still limited. Hence, we studied the role of CREB binding protein (CBP, contains HAT domain) and Trichostatin A (TSA, HDAC inhibitor) on JH action. RESULTS Exposure of Tribolium castaneum cells (TcA cells) to JH or TSA caused an increase in expression of Kr-h1 (a known JH-response gene) and 31 or 698 other genes respectively. Knockdown of the gene coding for CBP caused a decrease in the expression of 456 genes including Kr-h1. Interestingly, the expression of several genes coding for transcription factors, nuclear receptors, P450 and fatty acid synthase family members that are known to mediate JH action were affected by CBP knockdown or TSA treatment. CONCLUSIONS These data suggest that acetylation and deacetylation mediated by HATs and HDACs play an important role in JH action.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
- Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21 Suchdol, Czech Republic
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
49
|
Nouzova M, Rivera-Pérez C, Noriega FG. Omics approaches to study juvenile hormone synthesis. CURRENT OPINION IN INSECT SCIENCE 2018; 29:49-55. [PMID: 30551825 PMCID: PMC6470398 DOI: 10.1016/j.cois.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
The juvenile hormones (JHs) are a family of insect acyclic sesquiterpenoids produced by the corpora allata (CA), a pair of endocrine glands connected to the brain. They are involved in the regulation of development, reproduction, behavior, caste determination, diapause, stress response, and numerous polyphenisms. In the post-genomics era, comprehensive analyses using functional 'omics' technologies such as transcriptomics, proteomics and metabolomics have increased our understanding of the activity of the minute CA. This review attempts to summarize some of the 'omics' studies that have contributed to further understand JH synthesis in insects, with an emphasis on our own research on the mosquito Aedes aegypti.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
50
|
An IDS-Type Sesquiterpene Synthase Produces the Pheromone Precursor (Z)-α-Bisabolene in Nezara viridula. J Chem Ecol 2018; 45:187-197. [PMID: 30267360 DOI: 10.1007/s10886-018-1019-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Insects use a wide range of structurally diverse pheromones for intra-specific communication. Compounds in the class of terpenes are emitted as sex, aggregation, alarm, or trail pheromones. Despite the common occurrence of terpene pheromones in different insect lineages, their origin from dietary host plant precursors or de novo biosynthetic pathways often remains unknown. Several stink bugs (Hemiptera: Pentatomidae) release bisabolene-type sesquiterpenes for aggregation and mating. Here we provide evidence for de novo biosynthesis of the sex pheromone trans-/cis-(Z)-α-bisabolene epoxide of the Southern green stink bug, Nezara viridula. We show that an enzyme (NvTPS) related to isoprenyl diphosphate synthases (IDSs) of the core terpene metabolic pathway functions as a terpene synthase (TPS), which converts the general intermediate (E,E)-farnesyl diphosphate (FPP) to the putative pheromone precursor (+)-(S,Z)-α-bisabolene in vitro and in protein lysates. A second identified IDS-type protein (NvFPPS) makes the TPS substrate (E,E)-FPP and functions as a bona fide FPP synthase. NvTPS is highly expressed in male epidermal tissue associated with the cuticle of ventral sternites, which is in agreement with the male specific release of the pheromone from glandular cells in this tissue. Our study supports findings of the function of similar TPS enzymes in the biosynthesis of aggregation pheromones from the pine engraver beetle Ips pini, the striped flea beetle Phyllotreta striolata, and the harlequin bug Murgantia histrionica, and hence provides growing evidence for the evolution of terpene de novo biosynthesis by IDS-type TPS families in insects.
Collapse
|