1
|
Lenders M, Menke ER, Brand E. Progress and Challenges in the Treatment of Fabry Disease. BioDrugs 2025:10.1007/s40259-025-00723-3. [PMID: 40310476 DOI: 10.1007/s40259-025-00723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Fabry disease is a rare but life-threatening, X-linked, inherited lysosomal storage disorder in which globotriaosylceramide is insufficiently metabolized because of reduced α-galactosidase A activity. Cellular globotriaosylceramide accumulation causes a multisystemic disease, which, if left untreated, reduces life expectancy in female and male individuals by around 10 and 20 years, respectively, leading to progressive renal failure, hypertrophic cardiomyopathy, cardiac arrhythmia, and premature cerebral infarction. The method of choice for confirming the diagnosis is the determination of reduced α-galactosidase A activity in leukocytes in male individuals and the molecular genetic detection of a disease-causing mutation in female individuals. Current approved treatment includes enzyme replacement therapy (agalsidase alfa [0.2 mg/kg body weight], agalsidase beta or pegunigalsidase alfa [both 1.0 mg/kg body weight]) every other week intravenously or, if a responding ('amenable') α-galactosidase A mutation is present, oral pharmacological chaperone therapy (migalastat 123 mg, every other day). Future therapeutic options may include substrate reduction therapy, gene therapy, messenger RNA therapy, and/or vesicle-packaged enzyme replacement therapy. This review presents current and future treatment options with advantages and disadvantages of the different treatment options.
Collapse
Affiliation(s)
- Malte Lenders
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Elise Raphaela Menke
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Eva Brand
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
| |
Collapse
|
2
|
Teissonnière M, Point M, Biver E, Hadji P, Bonnelye E, Ebeling PR, Kendler D, de Villiers T, Holzer G, Body JJ, Fuleihan GEH, Brandi ML, Rizzoli R, Confavreux CB. Bone Effects of Anti-Cancer Treatments in 2024. Calcif Tissue Int 2025; 116:54. [PMID: 40146323 PMCID: PMC11950069 DOI: 10.1007/s00223-025-01362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Considerable progress has been made in the management of cancer patients in the last decade with the arrival of anti-cancer immunotherapies (immune checkpoint inhibitors) and targeted therapies. As a result, a broad spectrum of cancers, not just hormone-sensitive ones, have seen several patients achieve profound and prolonged remissions, or even cures. The management of medium- and long-term side-effects of treatment and quality of life of patients are essential considerations. This is especially true for bone, as bone fragility can lead to increased fractures and loss of autonomy, ultimately reducing the possibility of resuming physical activity. Physical activity is essential for lasting oncological remission and prevention of fatigue. While the issue of hormone therapies and their association with breast cancer has been recognized for some time, the situation is relatively new with regards to targeted therapies and immunotherapies. This is particularly challenging given the wide range of available targeted therapies and their application to numerous cancer types. This article provides a comprehensive review of the bone effects of the main anti-cancer therapies currently in use. The review goes beyond glucocorticoids and hormone therapies and discusses for each drug category what is known regarding cellular effects, BMD effects, and fracture incidence.
Collapse
Affiliation(s)
- Marie Teissonnière
- Pharmacie, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Mathieu Point
- INSERM UMR1033-LYOS, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peyman Hadji
- Frankfurt Center of Bone Health & Philipps University of Marburg, Frankfurt, Germany
| | - Edith Bonnelye
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - David Kendler
- Department of Medicine (Endocrinology), University of British Columbia, Vancouver, Canada
| | - Tobias de Villiers
- Department Gynaecology, Stellenbosch University, Cape Town, South Africa
| | | | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghada El Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program WHO Center for Metabolic Bone Disorders, American University of Beirut, Beirut, Lebanon
| | - Maria Luisa Brandi
- FIRMO Foundation, Florence and University Vita-Salute San Raffaele, Milan, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Cyrille B Confavreux
- INSERM UMR1033-LYOS, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
- Rheumatology Department, Bone Metastasis Expert Center (CEMOS), Hospices Civils of Lyon Cancer Institute (IC-HCL), Hôpital Lyon Sud, Pierre-Bénite, France.
- Centre Expert Des Métastases Osseuses (CEMOS), Service de Rhumatologie Sud, Hôpital Lyon Sud, 165 chemin du Grand Revoyet, 69310, Pierre Bénite, France.
| |
Collapse
|
3
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Davaeil B, Saremipour A, Moosavi-Movahedi F, Asghari SM, Moosavi-Movahedi AA. Differential scanning calorimetric domain dissection for HSA upon interaction with Bortezomib: Unveiling the binding dynamics. Int J Biol Macromol 2024; 283:137728. [PMID: 39551302 DOI: 10.1016/j.ijbiomac.2024.137728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Human serum albumin (HSA), a crucial plasma protein, plays a significant role in drug interactions within the bloodstream, bearing considerable clinical relevance. Bortezomib (BTZ) is a potent anti-cancer drug for multiple myeloma (MM) and mantle cell lymphoma (MC). The mechanism of BTZ transfer in the blood remains undetermined. This study aims to investigate the binding of BTZ to HSA using the techniques of differential scanning calorimetry (DSC), circular dichroism (CD), fluorescence spectroscopy, and computational methods such as molecular docking and molecular dynamics simulations. This study presents the thermal dissection of domain I (DI) of HSA by subjecting it to a temperature elevation of 79.2 °C (2 °C above Tm of DI) using DSC, which provides new information on the thermal behavior of HSA domains. Furthermore, the deconvolution analysis of the HSA thermogram in the absence and presence of BTZ revealed that the drug binding site is located in DI and impacts DII. The interaction between BTZ and HSA with a binding affinity (Kb) of 7.744±0.2 ×105 M-1 influences protein dynamics and reduces HSA's thermal stability by almost 1 °C. This study is crucial for predicting the pharmacokinetics and pharmacodynamics of BTZ, aiding in developing safer and more effective treatments for MM and MC.
Collapse
Affiliation(s)
- Bagher Davaeil
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Anita Saremipour
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
5
|
Larsson P, De Rosa MC, Righino B, Olsson M, Florea BI, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Integrated transcriptomics- and structure-based drug repositioning identifies drugs with proteasome inhibitor properties. Sci Rep 2024; 14:18772. [PMID: 39138277 PMCID: PMC11322189 DOI: 10.1038/s41598-024-69465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Computational pharmacogenomics can potentially identify new indications for already approved drugs and pinpoint compounds with similar mechanism-of-action. Here, we used an integrated drug repositioning approach based on transcriptomics data and structure-based virtual screening to identify compounds with gene signatures similar to three known proteasome inhibitors (PIs; bortezomib, MG-132, and MLN-2238). In vitro validation of candidate compounds was then performed to assess proteasomal proteolytic activity, accumulation of ubiquitinated proteins, cell viability, and drug-induced expression in A375 melanoma and MCF7 breast cancer cells. Using this approach, we identified six compounds with PI properties ((-)-kinetin-riboside, manumycin-A, puromycin dihydrochloride, resistomycin, tegaserod maleate, and thapsigargin). Although the docking scores pinpointed their ability to bind to the β5 subunit, our in vitro study revealed that these compounds inhibited the β1, β2, and β5 catalytic sites to some extent. As shown with bortezomib, only manumycin-A, puromycin dihydrochloride, and tegaserod maleate resulted in excessive accumulation of ubiquitinated proteins and elevated HMOX1 expression. Taken together, our integrated drug repositioning approach and subsequent in vitro validation studies identified six compounds demonstrating properties similar to proteasome inhibitors.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Maxim Olsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bogdan Iulius Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Center, Leiden, The Netherlands
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Larsson P, Olsson M, Sarathchandra S, Fäldt Beding A, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Multi-omics analysis identifies repurposing bortezomib in the treatment of kidney-, nervous system-, and hematological cancers. Sci Rep 2024; 14:18576. [PMID: 39127727 PMCID: PMC11316778 DOI: 10.1038/s41598-024-62339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/15/2024] [Indexed: 08/12/2024] Open
Abstract
Repurposing of FDA-approved drugs is a quick and cost-effective alternative to de novo drug development. Here, we identify genes involved in bortezomib sensitivity, predict cancer types that may benefit from treatment with bortezomib, and evaluate the mechanism-of-action of bortezomib in breast cancer (BT-474 and ZR-75-30), melanoma (A-375), and glioblastoma (A-172) cells in vitro. Cancer cell lines derived from cancers of the blood, kidney, nervous system, and skin were found to be significantly more sensitive to bortezomib than other organ systems. The in vitro studies confirmed that although bortezomib effectively inhibited the β5 catalytic site in all four cell lines, cell cycle arrest was only induced in G2/M phase and apoptosis in A-375 and A-172 after 24h. The genomic and transcriptomic analyses identified 33 genes (e.g. ALDH18A1, ATAD2) associated with bortezomib resistance. Taken together, we identified biomarkers predictive of bortezomib sensitivity and cancer types that might benefit from treatment with bortezomib.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maxim Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Fäldt Beding
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Southern Älvsborg Hospital, Borås, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Ren E, Ren W, Collins AC, Robinson A, Vaidya R. Chemotherapy Release From Bortezomib-Impregnated Polymethylmethacrylate-Coated Intramedullary Nails: A Novel In Vitro Study for a Local Chemotherapy Delivery Device. Cureus 2024; 16:e64181. [PMID: 39119424 PMCID: PMC11309748 DOI: 10.7759/cureus.64181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Bortezomib (BAN) is a proteasome inhibitor approved for the treatment of multiple myeloma and lymphoma. Despite its efficacy in various tumor models, systemic administration can result in toxicity to healthy organs. The purpose of this study is to evaluate the elution profile of BAN from PMMA cement for the local treatment of orthopedic tumors. BAN solution (5 mg; 2 mg/mL) was mixed with Simplex cement (40 g, Stryker), followed by injection of cement into an antibiotic cement nail mold (13 mm) to coat a 10 mm titanium femoral nail (DePuy Synthes). Once the cement polymerized, the nail was cut into 2 cm segments for the BAN elution study. There is a sustained release of BAN for up to 28 days. The overall concentration of BAN released at each time point was between 74 and 263 ng/ml, which is compatible with the peak blood concentration of a single intravenous BAN injection. This study demonstrates the feasibility of using PMMA bone cement as a local BAN delivery tool, essential for future studies and treatment targeting multiple myeloma cells.
Collapse
Affiliation(s)
- Emily Ren
- Department of Orthopaedic Surgery, Wayne State University Detroit Medical Center, Detroit, USA
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, USA
| | - Angela C Collins
- Department of Orthopaedic Surgery, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Andrew Robinson
- Department of Orthopaedic Surgery, Wayne State University Detroit Medical Center, Detroit, USA
| | - Rahul Vaidya
- Department of Orthopaedic Surgery, Wayne State University Detroit Medical Center, Detroit, USA
| |
Collapse
|
8
|
Fabiani I, Chianca M, Aimo A, Emdin M, Dent S, Fedele A, Cipolla CM, Cardinale DM. Use of new and emerging cancer drugs: what the cardiologist needs to know. Eur Heart J 2024; 45:1971-1987. [PMID: 38591670 DOI: 10.1093/eurheartj/ehae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
The last decade has witnessed a paradigm shift in cancer therapy, from non-specific cytotoxic chemotherapies to agents targeting specific molecular mechanisms. Nonetheless, cardiovascular toxicity of cancer therapies remains an important concern. This is particularly relevant given the significant improvement in survival of solid and haematological cancers achieved in the last decades. Cardio-oncology is a subspecialty of medicine focusing on the identification and prevention of cancer therapy-related cardiovascular toxicity (CTR-CVT). This review will examine the new definition of CTR-CVT and guiding principles for baseline cardiovascular assessment and risk stratification before cancer therapy, providing take-home messages for non-specialized cardiologists.
Collapse
Affiliation(s)
- Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Michela Chianca
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Antonella Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| |
Collapse
|
9
|
Bishop RT, Miller AK, Froid M, Nerlakanti N, Li T, Frieling JS, Nasr MM, Nyman KJ, Sudalagunta PR, Canevarolo RR, Silva AS, Shain KH, Lynch CC, Basanta D. The bone ecosystem facilitates multiple myeloma relapse and the evolution of heterogeneous drug resistant disease. Nat Commun 2024; 15:2458. [PMID: 38503736 PMCID: PMC10951361 DOI: 10.1038/s41467-024-46594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.
Collapse
Affiliation(s)
- Ryan T Bishop
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anna K Miller
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Matthew Froid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Niveditha Nerlakanti
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Tao Li
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy S Frieling
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mostafa M Nasr
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Karl J Nyman
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ariosto Siqueira Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kenneth H Shain
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther 2023; 251:108548. [PMID: 37858628 DOI: 10.1016/j.pharmthera.2023.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Dyuti Bhandary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
12
|
Groen K, Schjesvold FH, van der Holt B, Levin MD, Seefat MR, Hansson M, Leys MB, Regelink JC, Waage A, Szatkowski D, Axelsson P, Hieu Do T, Svirskaite A, van der Spek E, Haukas E, Knut-Bojanowska D, Ypma PF, Blimark CH, Mellqvist UH, van de Donk NW, Sonneveld P, Klostergaard A, Vangsted AJ, Abildgaard N, Zweegman S. Ixazomib-Thalidomide-Dexamethasone Induction Followed by Ixazomib or Placebo Maintenance in Nontransplant Eligible Newly Diagnosed Multiple Myeloma Patients: Long-term Results of HOVON-126/NMSG 21.13. Hemasphere 2023; 7:e940. [PMID: 37663673 PMCID: PMC10470677 DOI: 10.1097/hs9.0000000000000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Kazimierz Groen
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, the Netherlands
| | - Fredrik H. Schjesvold
- Department of Hematology, Oslo Myeloma Center, Oslo University Hospital, Norway
- KG Jebsen Center for B Cell Malignancies, University of Oslo, Norway
| | - Bronno van der Holt
- Department of Hematology, HOVON Data Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Maarten R. Seefat
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, the Netherlands
| | - Markus Hansson
- Department of Hematology, Skåne University Hospital Lund, Sweden
| | - Maria B.L. Leys
- Department of Internal Medicine, Maasstad Hospital, Rotterdam, the Netherlands
| | - Josien C. Regelink
- Department of Internal Medicine, Meander Medical Centre, Amersfoort, the Netherlands
| | - Anders Waage
- Institute of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Damian Szatkowski
- Department of Oncology and Hematology, Førde Central Hospital, Norway
| | - Per Axelsson
- Department of Internal Medicine, Helsingborg Hospital, Sweden
| | - Trung Hieu Do
- Haematology Department H 60, Roskilde Sjaelland University, Denmark
| | - Asta Svirskaite
- Department of Hematology, Aalborg University Hospital, Denmark
| | - Ellen van der Spek
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, the Netherlands
| | - Einar Haukas
- Department for Blood and Cancer Diseases, Stavanger University Hospital, Norway
| | | | - Paula F. Ypma
- Department of Hematology, Haga Hospital, The Hague, the Netherlands
| | - Cecilie H. Blimark
- Hematology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Niels W.C.J. van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, the Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Niels Abildgaard
- Department of Hematology, Hematology Research Unit and Academy of Geriatric Research, Odense University Hospital and University of Southern Denmark, Denmark
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, the Netherlands
| |
Collapse
|
13
|
Ludwig MP, Galbraith MD, Eduthan NP, Hill AA, Clay MR, Tellez CM, Wilky BA, Elias A, Espinosa JM, Sullivan KD. Proteasome Inhibition Sensitizes Liposarcoma to MDM2 Inhibition with Nutlin-3 by Activating the ATF4/CHOP Stress Response Pathway. Cancer Res 2023; 83:2543-2556. [PMID: 37205634 PMCID: PMC10391328 DOI: 10.1158/0008-5472.can-22-3173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Liposarcoma is the most commonly occurring soft-tissue sarcoma and is frequently characterized by amplification of chromosome region 12q13-15 harboring the oncogenes MDM2 and CDK4. This unique genetic profile makes liposarcoma an attractive candidate for targeted therapeutics. While CDK4/6 inhibitors are currently employed for treatment of several cancers, MDM2 inhibitors have yet to attain clinical approval. Here, we report the molecular characterization of the response of liposarcoma to the MDM2 inhibitor nutlin-3. Treatment with nutlin-3 led to upregulation of two nodes of the proteostasis network: the ribosome and the proteasome. CRISPR/Cas9 was used to perform a genome-wide loss of function screen that identified PSMD9, which encodes a proteasome subunit, as a regulator of response to nutlin-3. Accordingly, pharmacologic studies with a panel of proteasome inhibitors revealed strong combinatorial induction of apoptosis with nutlin-3. Mechanistic studies identified activation of the ATF4/CHOP stress response axis as a potential node of interaction between nutlin-3 and the proteasome inhibitor carfilzomib. CRISPR/Cas9 gene editing experiments confirmed that ATF4, CHOP, and the BH3-only protein, NOXA, are all required for nutlin-3 and carfilzomib-induced apoptosis. Furthermore, activation of the unfolded protein response using tunicamycin and thapsigargin was sufficient to activate the ATF4/CHOP stress response axis and sensitize to nutlin-3. Finally, cell line and patient-derived xenograft models demonstrated combinatorial effects of treatment with idasanutlin and carfilzomib on liposarcoma growth in vivo. Together, these data indicate that targeting of the proteasome could improve the efficacy of MDM2 inhibitors in liposarcoma. SIGNIFICANCE Targeting the proteasome in combination with MDM2 inhibition activates the ATF4/CHOP stress response axis to induce apoptosis in liposarcoma, providing a potential therapeutic approach for the most common soft-tissue sarcoma.
Collapse
Affiliation(s)
- Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amanda A. Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cristiam Moreno Tellez
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Breelyn A. Wilky
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
14
|
Dumbrava M, Galardy P, Feldman AL, Kuhn A, Khan S, Ferdjallah A, Kohorst MA. An Effective Combination Therapy for the Treatment of Pediatric Monomorphic Post-transplant Lymphoproliferative Disorder With Plasmacytic Differentiation. J Pediatr Hematol Oncol 2023; 45:e624-e627. [PMID: 36719134 DOI: 10.1097/mph.0000000000002629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/01/2022] [Indexed: 02/01/2023]
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is a complication of immunosuppressive therapy following solid organ or hematopoietic cell transplantation. Initial treatment typically includes a reduction of immunosuppression with or without rituximab. However, the optimal therapy for PTLD with plasmacytic differentiation is unclear. We present 3 cases of pediatric patients with plasmacytic PTLD. Two patients received a standard rituximab-based approach and relapsed, prompting additional chemotherapy. The third patient was treated with a novel regimen of bortezomib, dexamethasone, and daratumumab. This regimen was safe, well-tolerated, and resulted in a 2-year remission. Larger studies are needed to further explore this regimen.
Collapse
Affiliation(s)
| | - Paul Galardy
- Division of Pediatric Hematology/Oncology, Department of Pediatric and Adolescent Medicine
| | - Andrew L Feldman
- Division of Hematopathology, Department of Laboratory Medicine and Pathology
| | - Alexis Kuhn
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota
| | - Shakila Khan
- Division of Pediatric Hematology/Oncology, Department of Pediatric and Adolescent Medicine
| | - Asmaa Ferdjallah
- Division of Pediatric Hematology/Oncology, Department of Pediatric and Adolescent Medicine
| | - Mira A Kohorst
- Division of Pediatric Hematology/Oncology, Department of Pediatric and Adolescent Medicine
| |
Collapse
|
15
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
16
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
17
|
Liu X, Rossio V, Paulo JA. Spin column-based peptide fractionation alternatives for streamlined tandem mass tag (SL-TMT) sample processing. J Proteomics 2023; 276:104839. [PMID: 36758854 PMCID: PMC9990130 DOI: 10.1016/j.jprot.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Fractionation is essential to achieving deep proteome coverage for sample multiplexing experiments where currently up to 18 samples can be analyzed concurrently. However, peptide fractionation (i.e., upstream of LC-MS/MS analysis) with a liquid chromatography system constrains sample processing as only a single sample can be fractionated at once. Here, we highlight the use of spin column-based methods which permit multiple multiplexed samples to be fractionated simultaneously. These methods require only a centrifuge and eliminate the need for a dedicated liquid chromatography system. We investigate peptide fractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), while starting with <25 μg of protein per channel. Our datasets showcase the proteome alterations in two human cell lines resulting from treatment with inhibitors acting on the ubiquitin-proteasome system. We recommend this spin column-based peptide fractionation strategy for high-throughput screening applications or whenever a liquid chromatograph is not readily available. SIGNIFICANCE: Fractionation is a means to achieve deep proteome coverage for global proteomics analysis. Typical liquid chromatography systems may be a prohibitive expense for many laboratories. Here, we investigate prefractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both, as peptide fractionation methods. These spin columns have advantages over liquid chromatography systems, which include relative affordability, higher throughput capability, no carry over, and fewer potential instrument-related malfunctions. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), thereby showing the utility of each or a combination of both spin columns for global proteome analysis.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
18
|
Teramachi J, Miki H, Nakamura S, Hiasa M, Harada T, Abe M. Myeloma bone disease: pathogenesis and management in the era of new anti-myeloma agents. J Bone Miner Metab 2023; 41:388-403. [PMID: 36856824 PMCID: PMC9975874 DOI: 10.1007/s00774-023-01403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignancy of plasma cells with characteristic bone disease. Despite recent great strides achieved in MM treatment owing to the implementation of new anti-MM agents, MM is still incurable and bone destruction remains a serious unmet issue in patients with MM. APPROACH In this review, we will summarize and discuss the mechanisms of the formation of bone disease in MM and the available preclinical and clinical evidence on the treatment for MM bone disease. CONCLUSIONS MM cells produce a variety of cytokines to stimulate receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis and suppress osteoblastic differentiation from bone marrow stromal cells, leading to extensive bone destruction with rapid loss of bone. MM cells alter the microenvironment through bone destruction where they colonize, which in turn favors tumor growth and survival, thereby forming a vicious cycle between tumor progression and bone destruction. Denosumab or zoledronic acid is currently recommended to be administered at the start of treatment in newly diagnosed patients with MM with bone disease. Proteasome inhibitors and the anti-CD38 monoclonal antibody daratumumab have been demonstrated to exert bone-modifying activity in responders. Besides their anti-tumor activity, the effects of new anti-MM agents on bone metabolism should be more precisely analyzed in patients with MM. Because prognosis in patients with MM has been significantly improved owing to the implementation of new agents, the therapeutic impact of bone-modifying agents should be re-estimated in the era of these new agents.
Collapse
Affiliation(s)
- Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University Graduate School, 2-5-1 Shikata, Okayama, 700-8525, Japan.
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
19
|
Ertl HCJ. Mitigating Serious Adverse Events in Gene Therapy with AAV Vectors: Vector Dose and Immunosuppression. Drugs 2023; 83:287-298. [PMID: 36715794 DOI: 10.1007/s40265-023-01836-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
Gene transfer with high doses of adeno-associated viral (AAV) vectors has resulted in serious adverse events and even death of the recipients. Toxicity could most likely be circumvented by repeated injections of lower and less toxic doses of vectors. This has not been pursued as AAV vectors induce potent neutralizing antibodies, which prevent cell transduction upon reinjection of the same vector. This review discusses different types of immune responses against AAV vectors and how they offer targets for the elimination or inhibition of vector-specific neutralizing antibodies. Such antibodies can be circumvented by using different virus serotypes for sequential injections, they can be removed by plasmapheresis, or they can be destroyed by enzymatic degradation. Antibody producing cells can be eliminated by proteasome inhibitors. Drugs that inhibit T-cell responses, B-cell signaling, or presentation of the vector's antigens to B cells can prevent or reduce induction of AAV-specific antibodies. Combinations of different approaches and drugs are likely needed to suppress or eliminate neutralizing antibodies, which would then allow for repeated dosing. Alternatively, novel AAV vectors with higher transduction efficacy are being developed and may allow for a dose reduction, although it remains unknown if this will completely address the problem of high-dose adverse events.
Collapse
|
20
|
Bollmann LM, Skerhut AJ, Asfaha Y, Horstick N, Hanenberg H, Hamacher A, Kurz T, Kassack MU. The Novel Class IIa Selective Histone Deacetylase Inhibitor YAK540 Is Synergistic with Bortezomib in Leukemia Cell Lines. Int J Mol Sci 2022; 23:13398. [PMID: 36362189 PMCID: PMC9656955 DOI: 10.3390/ijms232113398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
The treatment of leukemias, especially acute myeloid leukemia (AML), is still a challenge as can be seen by poor 5-year survival of AML. Therefore, new therapeutic approaches are needed to increase the treatment success. Epigenetic aberrations play a role in pathogenesis and resistance of leukemia. Histone deacetylase (HDAC) inhibitors (HDACIs) can normalize epigenetic disbalance by affecting gene expression. In order to decrease side effects of so far mainly used pan-HDACIs, this paper introduces the novel highly selective class IIa HDACI YAK540. A synergistic cytotoxic effect was observed between YAK540 and the proteasome inhibitor bortezomib (BTZ) as analyzed by the Chou-Talalay method. The combination of YAK540 and BTZ showed generally increased proapoptotic gene expression, increased p21 expression, and synergistic, caspase 3/7-mediated apoptosis. Notably, the cytotoxicity of YAK540 is much lower than that of pan-HDACIs. Further, combinations of YAK540 and BTZ are clearly less toxic in non-cancer HEK293 compared to HL-60 leukemia cells. Thus, the synergistic combination of class IIa selective HDACIs such as YAK540 and proteasome inhibitors represents a promising approach against leukemias to increase the anticancer effect and to reduce the general toxicity of HDACIs.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Alexander J. Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Nadine Horstick
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| |
Collapse
|
21
|
Torres ID, Loureiro JA, Coelho MAN, Carmo Pereira M, Ramalho MJ. Drug delivery in glioblastoma therapy: a review on nanoparticles targeting MGMT-mediated resistance. Expert Opin Drug Deliv 2022; 19:1397-1415. [DOI: 10.1080/17425247.2022.2124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Inês David Torres
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A N Coelho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
22
|
Candelaria PV, Nava M, Martínez-Maza O, Daniels-Wells TR, Penichet ML. Combination Therapy of an Antibody Specific for Transferrin Receptor 1 (ch128.1/IgG1) With Bortezomib or Lenalidomide Results in Increased Survival in an In Vivo Model of Human Multiple Myeloma: A Brief Communication. J Immunother 2022; 45:227-230. [PMID: 35467582 PMCID: PMC9153518 DOI: 10.1097/cji.0000000000000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/19/2022] [Indexed: 11/26/2022]
Abstract
Transferrin receptor 1 (TfR1) is a universal cancer marker and a meaningful target for antibody-based immunotherapy. We previously developed a mouse/human chimeric antibody (ch128.1/IgG1) specific for the human TfR1 and reported that treatment of SCID-Beige mice bearing disseminated human multiple myeloma (MM) cells with ch128.1/IgG1 results in significant antitumor activity in early-stage and late-stage disease. Both bortezomib and lenalidomide are Food and Drug Administration (FDA) approved therapeutics used to treat MM in combination with other agents. Since combining treatments with different mechanisms of action is an effective antitumor strategy and given the relevance of bortezomib and lenalidomide in MM therapy, we decided to explore, for the first time, the combination of bortezomib or lenalidomide treatment with ch128.1/IgG1 within the context of late-stage MM disease. We found that treatment with a single dose of ch128.1/IgG1, or multiple doses of bortezomib or lenalidomide, used as single agents, results in significant antitumor activity in SCID-Beige mice bearing late-stage disseminated human MM.1S tumors. However, this antitumor activity is superior when ch128.1/IgG1 is combined with either bortezomib or lenalidomide, showing significantly longer survival compared with any therapy used alone. These novel results suggest that the combinations of ch128.1/IgG1 and bortezomib or lenalidomide are promising strategies against MM.
Collapse
Affiliation(s)
- Pierre V. Candelaria
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Miguel Nava
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Otoniel Martínez-Maza
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, UCLA, Los Angeles, California
- AIDS Institute, UCLA, Los Angeles, California
- Department of Epidemiology, UCLA Fielding School of Public Health, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Tracy R. Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Manuel L. Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California
- AIDS Institute, UCLA, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- The Molecular Biology Institute, UCLA, Los Angeles, California
| |
Collapse
|
23
|
Gau YC, Yeh TJ, Hsu CM, Hsiao SY, Hsiao HH. Pathogenesis and Treatment of Myeloma-Related Bone Disease. Int J Mol Sci 2022; 23:ijms23063112. [PMID: 35328533 PMCID: PMC8951013 DOI: 10.3390/ijms23063112] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is a hematologic malignancy of plasma cells that causes bone-destructive lesions and associated skeletal-related events (SREs). The pathogenesis of myeloma-related bone disease (MBD) is the imbalance of the bone-remodeling process, which results from osteoclast activation, osteoblast suppression, and the immunosuppressed bone marrow microenvironment. Many important signaling cascades, including the RANKL/RANK/OPG axis, Notch signaling, the Wnt/β-Catenin signaling pathways, and signaling molecules, such as DKK-1, sclerostin, osteopontin, activin A, chemokines, and interleukins are involved and play critical roles in MBD. Currently, bisphosphonate and denosumab are the gold standard for MBD prevention and treatment. As the molecular mechanisms of MBD become increasingly well understood, novel agents are being thoroughly explored in both preclinical and clinical settings. Herein, we will provide an updated overview of the pathogenesis of MBD, summarize the clinical management and guidelines, and discuss novel bone-modifying therapies for further management of MBD.
Collapse
Affiliation(s)
- Yuh-Ching Gau
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
| | - Samuel Yien Hsiao
- Department of Biology, University of Rutgers-Camden, Camden, NJ 08102, USA;
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +816-7-3162429
| |
Collapse
|
24
|
Constitutive Activation of p62/Sequestosome-1-Mediated Proteaphagy Regulates Proteolysis and Impairs Cell Death in Bortezomib-Resistant Mantle Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14040923. [PMID: 35205670 PMCID: PMC8869867 DOI: 10.3390/cancers14040923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary To decipher the molecular mechanism underlying the resistance of a significant fraction of mantle cell lymphoma (MCL) patients to the first-in-class proteasome inhibitor bortezomib (BTZ), we have characterized the ubiquitin-related proteome (i.e., ubiquitome) of a set of MCL cell lines with different degrees of sensitivity to the drug by coupling a tandem ubiquitin-binding entity (TUBE) approach to mass spectrometry, followed by phenotypic and functional validations in both in vitro and in vivo models of MCL. We identified an enrichment of autophagy–lysosome system (ALS) components in BTZ-resistant cells, which was associated with constitutive intracellular inactivation of proteasome subunits by a process called proteaphagy. Blockade of this phenomenon by the pharmacological or genetic inactivation of the autophagy receptor p62/SQSTM1 reactivated normal proteasomal activity and restored the BTZ antitumor effect in in vitro and in vivo models of BTZ resistance. Abstract Protein ubiquitylation coordinates crucial cellular events in physiological and pathological conditions. A comparative analysis of the ubiquitin proteome from bortezomib (BTZ)-sensitive and BTZ-resistant mantle cell lymphoma (MCL) revealed an enrichment of the autophagy–lysosome system (ALS) in BTZ-resistant cells. Pharmacological inhibition of autophagy at the level of lysosome-fusion revealed a constitutive activation of proteaphagy and accumulation of proteasome subunits within autophagosomes in different MCL cell lines with acquired or natural resistance to BTZ. Inhibition of the autophagy receptor p62/SQSTM1 upon verteporfin (VTP) treatment disrupted proteaphagosome assembly, reduced co-localization of proteasome subunits with autophagy markers and negatively impacted proteasome activity. Finally, the silencing or pharmacological inhibition of p62 restored the apoptosis threshold at physiological levels in BTZ-resistant cells both in vitro and in vivo. In total, these results demonstrate for the first time a proteolytic switch from the ubiquitin–proteasome system (UPS) to ALS in B-cell lymphoma refractory to proteasome inhibition, pointing out a crucial role for proteaphagy in this phenomenon and paving the way for the design of alternative therapeutic venues in treatment-resistant tumors.
Collapse
|
25
|
Imtiaz H, Khan M, Ehsan H, Wahab A, Rafae A, Khan AY, Jamil A, Sana MK, Jamal A, Ali TJ, Ansar I, Khan MM, Khouri J, Anwer F. Efficacy and Toxicity Profile of Carfilzomib-Based Regimens for Treatment of Newly Diagnosed Multiple Myeloma: A Systematic Review. Onco Targets Ther 2021; 14:4941-4960. [PMID: 34629878 PMCID: PMC8493667 DOI: 10.2147/ott.s317570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Carfilzomib (CFZ) is a proteasome inhibitor currently approved for the treatment of relapsed and refractory multiple myeloma (RRMM). Multiple trials are ongoing to evaluate its efficacy and safety in newly diagnosed multiple myeloma (NDMM). The use of CFZ-based two- or three-drug combination regimens as induction for the management of NDMM is an emerging approach. CFZ-based regimens include combinations of immunomodulators, alkylating agents, and monoclonal antibodies along with dexamethasone. In this review, we assess the efficacy and toxicity of CFZ-based regimens in NDMM. We reviewed a total of 27 studies (n=4538 patients) with overall response rates (ORR) ranging between 80% and 100%. Studies evaluating the combination of CFZ with daratumumab reported an ORR of approximately 100%. Achievement of minimal residual disease (MRD) negativity, measured by multi-parameter flow cytometry (MPFC), ranged between 60% and 95% in 4 (n=251) out of 6 studies that measured MRD-negativity. The interim results of the ENDURANCE trial failed to show superior efficacy and progression-free survival (PFS) of carfilzomib-lenalidomide when compared to bortezomib–lenalidomide combination, albeit with a lower incidence of neuropathy. Hematological toxicity was the most common adverse event observed with these regimens, and the most common non-hematological adverse events were related to cardiovascular and electrolyte disturbances. We need to further evaluate the role of CFZ in NDMM by conducting more Phase III trials with different combinations.
Collapse
Affiliation(s)
- Hassaan Imtiaz
- Department of Internal Medicine, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Maimoona Khan
- Department of Medicine, Shifa College of Medicine, Islamabad, Pakistan
| | - Hamid Ehsan
- Department of Hematology/Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Ahsan Wahab
- Hospital Medicine/Internal Medicine, Baptist Medical Center South, Montgomery, AL, USA
| | - Abdul Rafae
- Department of Internal Medicine, McLaren Regional Medical Center, Flint, MI, USA
| | - Ali Y Khan
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Abdur Jamil
- Department of Internal Medicine, Central Michigan University, Saginaw, MI, USA
| | - Muhammad Khawar Sana
- Department of Internal Medicine, John H. Stroger Jr. Hospital of Cook County, Chicago, IL, USA
| | - Abdullah Jamal
- Department of Internal Medicine, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Taimoor Jaffar Ali
- Department of Internal Medicine, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Iqraa Ansar
- Department of Medicine, Shifa College of Medicine, Islamabad, Pakistan
| | - Muzammil M Khan
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jack Khouri
- Hematology, Oncology, Stem Cell Transplantation, Multiple Myeloma Program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Faiz Anwer
- Hematology, Oncology, Stem Cell Transplantation, Multiple Myeloma Program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
26
|
Hoerig CM, Plant-Fox AS, Pulley MD, Di K, Bota DA. Exploring the role and clinical implications of proteasome inhibition in medulloblastoma. Pediatr Blood Cancer 2021; 68:e29168. [PMID: 34114315 PMCID: PMC10516099 DOI: 10.1002/pbc.29168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Ubiquitin proteasome-mediated protein degradation has been implicated in posttranslational oncogenesis in medulloblastoma. Current research is evaluating the clinical implications of proteasome inhibition as a therapeutic target. In medulloblastoma cell lines, proteasome inhibitors induce apoptosis and inhibit cell proliferation via multiple pathways involving activation of caspase pathways, NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway inhibition, reduced AKT/mTOR pathway activity, and pro-apoptotic protein expression. Second-generation proteasome inhibitors demonstrate blood-brain barrier penetration while maintaining antitumor effect. This review summarizes the ubiquitin-proteasome system in the pathogenesis of medulloblastoma and the potential clinical implications.
Collapse
Affiliation(s)
- Clay M Hoerig
- Department of Pediatric Hematology/Oncology, Children's Hospital Orange County, Orange, California, USA
- University of California, Irvine, California, USA
| | - Ashley S Plant-Fox
- Department of Pediatric Oncology, Ann and Robert H. Lurie Children's Hospital Chicago, Illinois, USA
- University of California, Irvine, California, USA
| | - Michelle D Pulley
- Department of Pediatric Hematology/Oncology, Children's Hospital Orange County, Orange, California, USA
- University of California, Irvine, California, USA
| | - Kaijun Di
- University of California, Irvine, California, USA
| | - Daniela A Bota
- Department of Neurology, University of California, Irvine, California, USA
| |
Collapse
|
27
|
Xie Z, Xu Y, Wei X, An G, Hao M, Yu Z, Qiu L. Four and a Half LIM Domains Protein 2 Mediates Bortezomib-Induced Osteogenic Differentiation of Mesenchymal Stem Cells in Multiple Myeloma Through p53 Signaling and β-Catenin Nuclear Enrichment. Front Oncol 2021; 11:729799. [PMID: 34589431 PMCID: PMC8473907 DOI: 10.3389/fonc.2021.729799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Myeloma bone disease (MBD), caused by the inhibition of osteoblast activity and the activation of osteoclast in the bone marrow environment, is the most frequent and life-threatening complication in multiple myeloma (MM) patients. Bortezomib (Bzb) was shown to promote MM-derived mesenchymal stem cells (MM-MSCs) differentiation to osteoblast in vitro and in animal models, promoting the bone formation and regeneration, may be mediated via β-catenin/T-cell factor (TCF) pathway. Further defining molecular mechanism of Bzb-enhanced bone formation in MM will be beneficial for the treatment of myeloma patients. The present study has identified for the first time four and a half LIM domains protein 2 (FHL2), a tissue-specific coregulator that interacts with many osteogenic marker molecules, as a therapeutic target to ameliorate MM bone disease. First, increased messenger RNA (mRNA) and protein levels of FHL2, and the mRNA level of main osteoblast markers (including Runx2, ALP, and Col1A1), were found in MM-patients-derived MSCs after Bzb treatment. FHL2 KD with short hairpin RNA (shRNA) reduced the expression of osteoblast marker genes and blocked the osteogenic differentiation of MM-MSCs regardless of the presence or absence of Bzb, implying that FHL2 is an important activator of the osteogenic differentiation of human MSCs under a proteasome inhibition condition. Molecular analysis showed that the enhanced expression of FHL2 was associated with the Bzb-induced upregulation of p53. No significant change at protein level of total β-catenin was observed with or without Bzb treatment. However, it was mostly enriched to nuclei in MSCs after Bzb treatment. Moreover, β-catenin was restricted to the perinuclear region in FHL2 KD cells. These data provide evidence that FHL2 is essential for promoting β-catenin nuclear enrichment in MM-MSCs. In conclusion, FHL2 is critical for Bzb-induced osteoblast differentiation of MM-MSCs and promotes the osteogenesis, through p53 signaling and β-catenin activation. Targeting FHL2 in MM may provide a new therapeutic strategy for treating MBD.
Collapse
Affiliation(s)
- Zhenqing Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
28
|
Gulla A, Morelli E, Samur MK, Botta C, Hideshima T, Bianchi G, Fulciniti M, Malvestiti S, Prabhala RH, Talluri S, Wen K, Tai YT, Richardson PG, Chauhan D, Sewastianik T, Carrasco RD, Munshi NC, Anderson KC. Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer Discov 2021; 2:468-483. [PMID: 34568832 DOI: 10.1158/2643-3230.bcd-21-0047] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteasome inhibitor bortezomib induces apoptosis in multiple myeloma (MM) cells, and has transformed patient outcome. Using in vitro as well as in vivo immunodeficient and immunocompetent murine MM models, we here show that bortezomib also triggers immunogenic cell death (ICD) characterized by exposure of calreticulin on dying MM cells, phagocytosis of tumor cells by dendritic cells, and induction of MM specific immunity. We identify a bortezomib-triggered specific ICD-gene signature associated with better outcome in two independent MM patient cohorts. Importantly, bortezomib stimulates MM cells immunogenicity via activation of cGAS/STING pathway and production of type-I interferons; and STING agonists significantly potentiate bortezomib-induced ICD. Our studies therefore delineate mechanisms whereby bortezomib exerts immunotherapeutic activity, and provide the framework for clinical trials of STING agonists with bortezomib to induce potent tumor-specific immunity and improve patient outcome in MM.
Collapse
Affiliation(s)
- Annamaria Gulla
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Eugenio Morelli
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA.,Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Cirino Botta
- Department of Oncohematology, "Annunziata" Hospital, Cosenza, Italy
| | - Teru Hideshima
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Giada Bianchi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard medical School, Boston, MA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Stefano Malvestiti
- Freiburg University Hospital, Department of Pediatric hematology and Oncology, Germany
| | - Rao H Prabhala
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA.,VA Boston Healthcare System, Boston, MA
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA.,VA Boston Healthcare System, Boston, MA
| | - Kenneth Wen
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Paul G Richardson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Dharminder Chauhan
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA.,VA Boston Healthcare System, Boston, MA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Shen J, Fu B, Li Y, Wu Y, Sang H, Zhang H, Lin H, Liu H, Huang W. E3 Ubiquitin Ligase-Mediated Regulation of Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2021; 9:706395. [PMID: 34513836 PMCID: PMC8430030 DOI: 10.3389/fcell.2021.706395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is an essential pathway that regulates the homeostasis and function of intracellular proteins and is a crucial protein-degradation system in osteoblast differentiation and bone formation. Abnormal regulation of ubiquitination leads to osteoblast differentiation disorders, interfering with bone formation and ultimately leading to osteoporosis. E3 ubiquitin ligases (E3) promote addition of a ubiquitin moiety to substrate proteins, specifically recognizing the substrate and modulating tyrosine kinase receptors, signaling proteins, and transcription factors involved in the regulation of osteoblast proliferation, differentiation, survival, and bone formation. In this review, we summarize current progress in the understanding of the function and regulatory effects of E3 ligases on the transcription factors and signaling pathways that regulate osteoblast differentiation and bone formation. A deep understanding of E3 ligase-mediated regulation of osteoblast differentiation provides a scientific rationale for the discovery and development of novel E3-targeting therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanfang Li
- Department of Pediatric Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Heshi Zhang
- Department of Vessel and Breast, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
30
|
Bila J, Katodritou E, Guenova M, Basic-Kinda S, Coriu D, Dapcevic M, Ibricevic-Balic L, Ivanaj A, Karanfilski O, Zver S, Beksac M, Terpos E, Dimopoulos MA. Bone Marrow Microenvironment Interplay and Current Clinical Practice in Multiple Myeloma: A Review of the Balkan Myeloma Study Group. J Clin Med 2021; 10:jcm10173940. [PMID: 34501388 PMCID: PMC8432054 DOI: 10.3390/jcm10173940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The course of multiple myeloma (MM) is influenced by a variety of factors, including the specificity of the tumour microenvironment (TME). The aim of this review is to provide insight into the interplay of treatment modalities used in the current clinical practice and TME. Bortezomib-based triplets are the standard for MM first-line treatment. Bortezomib is a proteasome inhibitor (PI) which inhibits the nuclear factor kappa B (NF-κB) pathway. However, bortezomib is decreasing the expression of chemokine receptor CXCR4 as well, possibly leading to the escape of extramedullary disease. Immunomodulatory drugs (IMiDs), lenalidomide, and pomalidomide downregulate regulatory T cells (Tregs). Daratumumab, anti-cluster of differentiation 38 (anti-CD38) monoclonal antibody (MoAb), downregulates Tregs CD38+. Bisphosphonates inhibit osteoclasts and angiogenesis. Sustained suppression of bone resorption characterises the activity of MoAb denosumab. The plerixafor, used in the process of stem cell mobilisation and harvesting, block the interaction of chemokine receptors CXCR4-CXCL12, leading to disruption of MM cells’ interaction with the TME, and mobilisation into the circulation. The introduction of several T-cell-based immunotherapeutic modalities, such as chimeric-antigen-receptor-transduced T cells (CAR T cells) and bispecific antibodies, represents a new perspective in MM treatment affecting TME immune evasion. The optimal treatment approach to MM patients should be adjusted to all aspects of the individual profile including the TME niche.
Collapse
Affiliation(s)
- Jelena Bila
- Clinic of Hematology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-638-292-992
| | - Eirini Katodritou
- Department of Hematology, Theagenio Cancer Hospital, 54639 Thessaloniki, Greece;
| | - Margarita Guenova
- Laboratory of Haematopathology and Immunology, National Specialised Hospital for Active Treatment of Haematological Diseases, 1756 Sofia, Bulgaria;
| | - Sandra Basic-Kinda
- Divison of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daniel Coriu
- Centre of Hematology and Bone Marrow Transplant, “Fundeni” Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania;
| | - Milena Dapcevic
- Division of Hematology, Clinical Center of Montenegro, Podgorica 81000, Montenegro;
| | - Lejla Ibricevic-Balic
- Clinic of Hematology, University Clinical Center of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Arben Ivanaj
- Department of Hematology, University Medical Center “Mother Teresa”, 1001 Tirana, Albania;
| | - Oliver Karanfilski
- University Clinic of Hematology, Faculty of Medicine, University of Skopje, 1000 Skopje, North Macedonia;
| | - Samo Zver
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Meral Beksac
- Department of Hematology, Tissue Typing Laboratory and Donor Registry, Faculty of Medicine, University of Ankara, Ankara 06590, Turkey;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| | - Meletios Athanassios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| |
Collapse
|
31
|
Colberg L, Cammann C, Wesche J, Topfstedt E, Seifert U, Greinacher A. The platelet proteasome and immunoproteasome are stable in buffy-coat derived platelet concentrates for up to 7 days. Transfusion 2021; 61:2746-2755. [PMID: 34331776 DOI: 10.1111/trf.16605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Characterization of the proteasome and its stability in buffy-coat derived platelet concentrates (PCs) during storage. BACKGROUND The proteasome plays a key role in cell homeostasis by processing misfolded or abnormal proteins and regulating the levels and activities of a high number of proteins contributing to cell cycle, survival, and proliferation. Controversial data exist, whether inhibition of the proteasome affects platelet function. Little is known about function, expression, and stability of the proteasome in PCs during storage, and the potential role of the platelet proteasome in storage lesions. STUDY DESIGN AND METHODS PCs were produced by the buffy-coat method in additive solution and stored at room temperature under agitation. Platelet aggregation was monitored by light transmission aggregometry. Proteasome complexes were assessed by immunoprecipitation and immunoblotting, and proteasome activity was measured using fluorogenic substrates specific for the three different proteolytic activities over 7 days of storage. RESULTS Proteasome inhibition led to a decreased platelet aggregation response after activation with collagen, ADP, TRAP-6, and thrombin. There were no changes in the expression of the catalytic active subunits as well as the proteasome activity during storage of PCs, comparing baseline and day 7. DISCUSSION Platelet proteasome function is relevant for platelet aggregation in response to various agonists. The constitutive and stable expression of the active standard- and immunoproteasome in platelets makes it unlikely that loss of proteasome function is a relevant cause of storage lesions.
Collapse
Affiliation(s)
- Lisa Colberg
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.,Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jan Wesche
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic Targeting of the Leukaemia Microenvironment. Int J Mol Sci 2021; 22:6888. [PMID: 34206957 PMCID: PMC8267786 DOI: 10.3390/ijms22136888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or "sanctuary" where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular "crosstalk" with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia-bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.
Collapse
Affiliation(s)
- Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
33
|
Additive Benefits of Radium-223 Dichloride and Bortezomib Combination in a Systemic Multiple Myeloma Mouse Model. Int J Mol Sci 2021; 22:ijms22115570. [PMID: 34070363 PMCID: PMC8197539 DOI: 10.3390/ijms22115570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Osteolytic bone disease is a hallmark of multiple myeloma (MM) mediated by MM cell proliferation, increased osteoclast activity, and suppressed osteoblast function. The proteasome inhibitor bortezomib targets MM cells and improves bone health in MM patients. Radium-223 dichloride (radium-223), the first targeted alpha therapy approved, specifically targets bone metastases, where it disrupts the activity of both tumor cells and tumor-supporting bone cells in mouse models of breast and prostate cancer bone metastasis. We hypothesized that radium-223 and bortezomib combination treatment would have additive effects on MM. In vitro experiments revealed that the combination treatment inhibited MM cell proliferation and demonstrated additive efficacy. In the systemic, syngeneic 5TGM1 mouse MM model, both bortezomib and radium-223 decreased the osteolytic lesion area, and their combination was more effective than either monotherapy alone. Bortezomib decreased the number of osteoclasts at the tumor-bone interface, and the combination therapy resulted in almost complete eradication of osteoclasts. Furthermore, the combination therapy improved the incorporation of radium-223 into MM-bearing bone. Importantly, the combination therapy decreased tumor burden and restored body weights in MM mice. These results suggest that the combination of radium-223 with bortezomib could constitute a novel, effective therapy for MM and, in particular, myeloma bone disease.
Collapse
|
34
|
Innao V, Allegra A, Ginaldi L, Pioggia G, De Martinis M, Musolino C, Gangemi S. Reviewing the Significance of Vitamin D Substitution in Monoclonal Gammopathies. Int J Mol Sci 2021; 22:4922. [PMID: 34066482 PMCID: PMC8124934 DOI: 10.3390/ijms22094922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Vitamin D is a steroid hormone that is essential for bone mineral metabolism and it has several other effects in the body, including anti-cancer actions. Vitamin D causes a reduction in cell growth by interrupting the cell cycle. Moreover, the active form of vitamin D, i.e., 1,25-dihydroxyvitamin D, exerts various effects via its interaction with the vitamin D receptor on the innate and adaptive immune system, which could be relevant in the onset of tumors. Multiple myeloma is a treatable but incurable malignancy characterized by the growth of clonal plasma cells in protective niches in the bone marrow. In patients affected by multiple myeloma, vitamin D deficiency is commonly correlated with an advanced stage of the disease, greater risk of progression, the development of pathological fractures, and a worse prognosis. Changes in the vitamin D receptor often contribute to the occurrence and progress of deficiencies, which can be overcome by supplementation with vitamin D or analogues. However, in spite of the findings available in the literature, there is no clear standard of care and clinical practice varies. Further research is needed to better understand how vitamin D influences outcomes in patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.D.M.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.D.M.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
35
|
Terpos E, Ntanasis-Stathopoulos I, Katodritou E, Kyrtsonis MC, Douka V, Spanoudakis E, Papatheodorou A, Eleutherakis-Papaiakovou E, Kanellias N, Gavriatopoulou M, Makras P, Kastritis E, Dimopoulos MA. Carfilzomib Improves Bone Metabolism in Patients with Advanced Relapsed/Refractory Multiple Myeloma: Results of the CarMMa Study. Cancers (Basel) 2021; 13:cancers13061257. [PMID: 33809268 PMCID: PMC7998249 DOI: 10.3390/cancers13061257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Carfilzomib with dexamethasone is an important therapeutic option for patients with relapsed/refractory multiple myeloma. We sought to evaluate the effect of this regimen on the bone-related outcomes, which are associated with both quality of life and survival. Among 25 patients, less than one third experienced a new skeletal-related event during treatment, even in the absence of any bone-targeted agent. Interestingly, there was a significant decrease in serum biomarkers of bone resorption, which was at least partially due to the sRANKL/OPG ratio reduction. Furthermore, Kd produced an increase in markers of bone formation. Importantly, these changes were independent of myeloma response to treatment. Therefore, the combination of carfilzomib and dexamethasone improves bone metabolism and bone health in patients with advanced multiple myeloma. Abstract Carfilzomib with dexamethasone (Kd) is a well-established regimen for the treatment of relapsed/refractory multiple myeloma (RRMM). There is limited information for the effects of Kd on myeloma-related bone disease. This non-interventional study aimed to assess skeletal-related events (SREs) and bone metabolism in patients with RRMM receiving Kd, in the absence of any bone-targeted agent. Twenty-five patients were enrolled with a median of three prior lines of therapy; 72% of them had evidence of osteolytic bone disease at study entry. During Kd treatment, the rate of new SREs was 28%. Kd produced a clinically relevant (≥30%) decrease in C-telopeptide of collagen type-1 (p = 0.048) and of tartrate-resistant acid phosphatase-5b (p = 0.002) at 2 months. This reduction was at least partially due to the reduction in the osteoclast regulator RANKL/osteoprotegerin ratio, at 2 months (p = 0.026). Regarding bone formation, there was a clinically relevant increase in osteocalcin at 6 months (p = 0.03) and in procollagen type I N-propeptide at 8 months post-Kd initiation. Importantly, these bone metabolism changes were independent of myeloma response to treatment. In conclusion, Kd resulted in a low rate of SREs among RRMM patients, along with an early, sustained and clinically relevant decrease in bone resorption, which was accompanied by an increase in bone formation, independently of myeloma response and in the absence of any bone-targeted agent use.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
- Correspondence: ; Tel.: +30-2132162846
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Eirini Katodritou
- Department of Hematology, Theagenio Cancer Hospital, PS 54639 Thessaloniki, Greece;
| | - Marie-Christine Kyrtsonis
- First Department of Propedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece;
| | - Vassiliki Douka
- Department of Hematology and Bone Marrow Transplantation Unit, General Hospital “G.Papanikolaou”, PS 57010 Thessaloniki, Greece;
| | - Emmanouil Spanoudakis
- Department of Hematology, Faculty of Medicine, Democritus University of Thrace, PS 68131 Alexandroupolis, Greece;
| | - Athanasios Papatheodorou
- Department of Medical Research, 251 General Air-Force Hospital, PS 11525 Athens, Greece; (A.P.); (P.M.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Polyzois Makras
- Department of Medical Research, 251 General Air-Force Hospital, PS 11525 Athens, Greece; (A.P.); (P.M.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| |
Collapse
|
36
|
Chen Y, Quan L, Jia C, Guo Y, Wang X, Zhang Y, Jin Y, Liu A. Proteomics-Based Approach Reveals the Involvement of SERPINB9 in Recurrent and Relapsed Multiple Myeloma. J Proteome Res 2021; 20:2673-2686. [PMID: 33650432 DOI: 10.1021/acs.jproteome.1c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy with poorly understood recurrence and relapse mechanisms. Notably, bortezomib resistance leading to relapse makes MM treatment significantly challenging. To clarify the drug resistance mechanism, we employed a quantitative proteomics approach to identify differentially expressed protein candidates implicated in bortezomib-resistant recurrent and relapsed MM (RRMM). Bone marrow aspirates from five patients newly diagnosed with MM (NDMM) were compared with those from five patients diagnosed with bortezomib-resistant RRMM using tandem mass tag-mass spectrometry (TMT-MS). Subcellular localization and functional classification of the differentially expressed proteins were determined by gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and hierarchical clustering analyses. The top candidates identified were validated with parallel reaction monitoring (PRM) analysis using tissue samples from 11 NDMM and 8 RRMM patients, followed by comparison with the NCBI Gene Expression Omnibus (GEO) dataset of 10 MM patients and 10 healthy controls (accession no.: GSE80608). Thirty-four differentially expressed proteins in RRMM, including proteinase inhibitor 9 (SERPINB9), were identified by TMT-MS. Subsequent functional enrichment analyses of the identified protein candidates indicated their involvement in regulating cellular metabolism, apoptosis, programmed cell death, lymphocyte-mediated immunity, and defense response pathways in RRMM. The top protein candidate SERPINB9 was confirmed by PRM analysis and western blotting as well as by comparison with an NCBI GEO dataset. We elucidated the proteome landscape of bortezomib-resistant RRMM and identified SERPINB9 as a promising novel therapeutic target. Our results provide a resource for future studies on the mechanism of RRMM.
Collapse
Affiliation(s)
- Yao Chen
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Lina Quan
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yiwei Guo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Xinya Wang
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yu Zhang
- Immunology Department, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Aichun Liu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
37
|
Conserved amino acids in the region connecting membrane spanning domain 1 to nucleotide binding domain 1 are essential for expression of the MRP1 (ABCC1) transporter. PLoS One 2021; 16:e0246727. [PMID: 33571281 PMCID: PMC7877750 DOI: 10.1371/journal.pone.0246727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) (gene symbol ABCC1) is an ATP-binding cassette (ABC) transporter which effluxes xeno- and endobiotic organic anions including estradiol glucuronide and the pro-inflammatory leukotriene C4. MRP1 also confers multidrug resistance by reducing intracellular drug accumulation through active efflux. MRP1 has three membrane spanning domains (MSD), and two nucleotide binding domains (NBD). MSD1 and MSD2 are linked to NBD1 and NBD2 by connecting regions (CR) 1 and CR2, respectively. Here we targeted four residues in CR1 (Ser612, Arg615, His622, Glu624) for alanine substitution and unexpectedly, found that cellular levels of three mutants (S612A, R615A, E624A) in transfected HEK cells were substantially lower than wild-type MRP1. Whereas CR1-H622A properly trafficked to the plasma membrane and exhibited organic anion transport activity comparable to wild-type MRP1, the poorly expressing R615A and E624A (and to a lesser extent S612A) mutant proteins were retained intracellularly. Analyses of cryogenic electron microscopic and atomic homology models of MRP1 indicated that Arg615 and Glu624 might participate in bonding interactions with nearby residues to stabilize expression of the transporter. However, this was not supported by double exchange mutations E624K/K406E, R615D/D430R and R615F/F619R which failed to improve MRP1 levels. Nevertheless, these experiments revealed that the highly conserved CR1-Phe619 and distal Lys406 in the first cytoplasmic loop of MSD1 are also essential for expression of MRP1 protein. This study is the first to demonstrate that CR1 contains several highly conserved residues critical for plasma membrane expression of MRP1 but thus far, currently available structures and models do not provide any insights into the underlying mechanism(s). Additional structures with rigorous biochemical validation data are needed to fully understand the bonding interactions critical to stable expression of this clinically important ABC transporter.
Collapse
|
38
|
Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. ACTA ACUST UNITED AC 2021; 28:640-660. [PMID: 33494319 PMCID: PMC7924384 DOI: 10.3390/curroncol28010063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by excessive clonal proliferation of plasma cells. The treatment of multiple myeloma presents a variety of unique challenges due to the complex molecular pathophysiology and incurable status of the disease at this time. Given that MM is the second most common blood cancer with a characteristic and unavoidable relapse/refractory state during the course of the disease, the development of new therapeutic modalities is crucial. Belantamab mafodotin (belamaf, GSK2857916) is a first-in-class therapeutic, indicated for patients who have previously attempted four other treatments, including an anti-CD38 monoclonal antibody, a proteosome inhibitor, and an immunomodulatory agent. In November 2017, the FDA designated belamaf as a breakthrough therapy for heavily pretreated patients with relapsed/refractory multiple myeloma. In August 2020, the FDA granted accelerated approval as a monotherapy for relapsed or treatment-refractory multiple myeloma. The drug was also approved in the EU for this indication in late August 2020. Of note, belamaf is associated with the following adverse events: decreased platelets, corneal disease, decreased or blurred vision, anemia, infusion-related reactions, pyrexia, and fetal risk, among others. Further studies are necessary to evaluate efficacy in comparison to other standard treatment modalities and as future drugs in this class are developed.
Collapse
|
39
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
40
|
Catechol Containing Polyelectrolyte Complex Nanoparticles as Local Drug Delivery System for Bortezomib at Bone Substitute Materials. Pharmaceutics 2020; 12:pharmaceutics12090799. [PMID: 32847150 PMCID: PMC7557399 DOI: 10.3390/pharmaceutics12090799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 11/17/2022] Open
Abstract
The proteasome inhibitor bortezomib (BZM) is one of the most potent anti-cancer drugs in the therapy of multiple myeloma. In this study, an adhesive drug delivery system (DDS) for BZM was developed. Therefore, we extended the present DDS concept of polyelectrolyte complex (PEC) nanoparticle (NP) based on electrostatic interactions between charged drug and polyelectrolyte (PEL) to a DDS concept involving covalent bonding between PEL and uncharged drugs. For this purpose, 3,4-dihydroxyphenyl acetic acid (DOPAC) was polymerized via an oxidatively induced coupling reaction. This novel chemo-reactive polyanion PDOPAC is able to temporarily bind boronic acid groups of BZM via its catechol groups, through esterification. PDOPAC was admixed to poly(l-glutamic acid) (PLG) and poly(l-lysine) (PLL) forming a redispersible PEC NP system after centrifugation, which is advantageous for further colloid and BZM loading processing. It was found that the loading capacity (LC) strongly depends on the PDOPAC and catechol content in the PEC NP. Furthermore, the type of loading and the net charge of the PEC NP affect LC and the residual content (RC) after release. Release experiments of PDOPAC/PEC coatings were performed at medically relevant bone substitute materials (calcium phosphate cement and titanium niobium alloy) whereby the DDS worked independently of the surface properties. Additionally, in contrast to electrostatically based drug loading the release behavior of covalently bound, uncharged BZM is independent of the ionic strength (salt content) in the release medium.
Collapse
|
41
|
The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers (Basel) 2020; 12:cancers12071898. [PMID: 32674429 PMCID: PMC7409207 DOI: 10.3390/cancers12071898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is the main cellular degradation machinery designed for controlling turnover of critical proteins involved in cancer pathogenesis, including hematological malignancies. UPS plays a functional role in regulating turnover of key proteins involved in cell cycle arrest, apoptosis and terminal differentiation. When deregulated, it leads to several disorders, including cancer. Several studies indicate that, in some subtypes of human hematological neoplasms such as multiple myeloma and Burkitt’s lymphoma, abnormalities in the UPS made it an attractive therapeutic target due to pro-cancer activity. In this review, we discuss the aberrant role of UPS evaluating its impact in hematological malignancies. Finally, we also review the most promising therapeutic approaches to target UPS as powerful strategies to improve treatment of blood cancers.
Collapse
|
42
|
Bloom GB, Mears SC, Edwards PK, Barnes CL, Stambough JB. Total Knee Periprosthetic Joint Infection in the Setting of Hematologic Malignancy: Considerations for Management. Arthroplast Today 2020; 6:309-315. [PMID: 32514420 PMCID: PMC7267679 DOI: 10.1016/j.artd.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022] Open
Abstract
Patients with malignancy are often profoundly immunocompromised due to chemotherapy, placing them at potential increased risk for periprosthetic joint infection (PJI). However, there is little information regarding PJI management in these patients. We describe 4 patients with a history of primary total knee arthroplasty followed by diagnosis of multiple myeloma or Waldenström macroglobulinemia who received chemotherapy within 4 months prior to PJI. The Musculoskeletal Infection Society major and minor criteria and either debridement, antibiotics, and implant retention or a 2-stage approach appear to be effective for acute or chronic PJI, respectively. We recommend an anticoagulant be administered concomitantly with antineoplastics that significantly increase deep vein thrombosis risk, and we recommend long-term oral suppressive antibiotics postoperatively, especially if chemotherapy will be resumed. Additional studies are needed to investigate risks and benefits of PJI prophylaxis during chemotherapy and long-term suppressive antibiotics after PJI treatment.
Collapse
Affiliation(s)
- G Barnes Bloom
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Simon C Mears
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul K Edwards
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - C Lowry Barnes
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey B Stambough
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
43
|
Bird SA, Jackson GH, Pawlyn C. Maintenance Strategies Post-Autologous Stem Cell Transplantation for Newly Diagnosed Multiple Myeloma. Clin Hematol Int 2020; 2:59-68. [PMID: 34595444 PMCID: PMC8432350 DOI: 10.2991/chi.d.200502.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 12/04/2022] Open
Abstract
Multiple myeloma, the second most common hematological malignancy worldwide, has demonstrated dramatic improvements in outcome in the last decade. In newly diagnosed patients, induction chemotherapy followed by autologous stem cell transplantation (ASCT) is the standard of care. After ASCT, the majority of patients experience disease remission but, despite recent therapeutic developments, most will eventually relapse. In this review we consider clinical aspects of maintenance therapies that can be used post-ASCT to prolong remission duration. We discuss the evidence for the effectiveness of each of these drugs as a maintenance therapy, alongside other benefits and drawbacks to their use, for example, route of administration and potential toxicities. We discuss questions which remain unanswered around the optimal use of currently available maintenance therapies and review newer agents being considered for use as maintenance such as emerging immunotherapies.
Collapse
Affiliation(s)
- Sarah A Bird
- The Institute of Cancer Research, London.,The Royal Marsden NHS Foundation Trust, London
| | - Graham H Jackson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, England
| | - Charlotte Pawlyn
- The Institute of Cancer Research, London.,The Royal Marsden NHS Foundation Trust, London
| |
Collapse
|
44
|
Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the ubiquitin-proteasome system in platelets. J Thromb Haemost 2020; 18:771-780. [PMID: 31898400 DOI: 10.1111/jth.14730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Platelets are small anucleate blood cells with a life span of 7 to 10 days. They are main regulators of hemostasis. Balanced platelet activity is crucial to prevent bleeding or occlusive thrombus formation. Growing evidence supports that platelets also participate in immune reactions, and interaction between platelets and leukocytes contributes to both thrombosis and inflammation. The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis by its ability to degrade non-functional self-, foreign, or short-lived regulatory proteins. Platelets express standard and immunoproteasomes. Inhibition of the proteasome impairs platelet production and platelet function. Platelets also express major histocompatibility complex (MHC) class I molecules. Peptide fragments released by proteasomes can bind to MHC class I, which makes it also likely that platelets can activate epitope specific cytotoxic T lymphocytes (CTLs). In this review, we focus on current knowledge on the significance of the proteasome for the functions of platelets as critical regulators of hemostasis as well as modulators of the immune response.
Collapse
Affiliation(s)
- Lisa Colberg
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Consolidation with carfilzomib, lenalidomide, and dexamethasone (KRd) following ASCT results in high rates of minimal residual disease negativity and improves bone metabolism, in the absence of bisphosphonates, among newly diagnosed patients with multiple myeloma. Blood Cancer J 2020; 10:25. [PMID: 32123158 PMCID: PMC7052253 DOI: 10.1038/s41408-020-0297-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
|
46
|
Marino S, Petrusca DN, Roodman GD. Therapeutic targets in myeloma bone disease. Br J Pharmacol 2020; 178:1907-1922. [PMID: 31647573 DOI: 10.1111/bph.14889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is the second most common haematological malignancy and is characterized by a clonal proliferation of neoplastic plasma cells within the bone marrow. MM is the most frequent cancer involving the skeleton, causing osteolytic lesions, bone pain and pathological fractures that dramatically decrease MM patients' quality of life and survival. MM bone disease (MBD) results from uncoupling of bone remodelling in which excessive bone resorption is not compensated by new bone formation, due to a persistent suppression of osteoblast activity. Current management of MBD includes antiresorptive agents, bisphosphonates and denosumab, that are only partially effective due to their inability to repair the existing lesions. Thus, research into agents that prevent bone destruction and more importantly repair existing lesions by inducing new bone formation is essential. This review discusses the mechanisms regulating the uncoupled bone remodelling in MM and summarizes current advances in the treatment of MBD. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Medicine, Division Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniela N Petrusca
- Department of Medicine, Division Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - G David Roodman
- Department of Medicine, Division Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Ixazomib Improves Bone Remodeling and Counteracts sonic Hedgehog signaling Inhibition Mediated by Myeloma Cells. Cancers (Basel) 2020; 12:cancers12020323. [PMID: 32019102 PMCID: PMC7073172 DOI: 10.3390/cancers12020323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone disease is a common manifestation observed in MM patients and represents the most severe cause of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce differentiation of human monocytes into OCs and to inhibit the expression of OC markers when added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling pathway activation, thus, representing a promising therapeutic option to improve the complex pathological condition of MM patients.
Collapse
|
48
|
Xie H, Gu Y, Wang W, Wang X, Ye X, Xin C, Lu M, Reddy BA, Shu P. Silencing of SENP2 in Multiple Myeloma Induces Bortezomib Resistance by Activating NF-κB Through the Modulation of IκBα Sumoylation. Sci Rep 2020; 10:766. [PMID: 31964975 PMCID: PMC6972929 DOI: 10.1038/s41598-020-57698-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
The proteasome inhibitor bortezomib is the most successfully applied chemotherapeutic drug for treating multiple myeloma. However, its clinical efficacy reduced due to resistance development. The underlying molecular mechanisms of bortezomib resistance are poorly understood. In this study, by combining in silico analysis and sgRNA library based drug resistance screening assay, we identified SENP2 (Sentrin/SUMO-specific proteases-2) as a bortezomib sensitive gene and found its expression highly downregulated in bortezomib resistant multiple myeloma patient's samples. Furthermore, down regulation of SENP2 in multiple myeloma cell line RPMI8226 alleviated bortezomib induced cell proliferation inhibition and apoptosis, whereas, overexpression of SENP2 sensitized these cells to bortezomib treatment. We further demonstrate that knockdown of SENP2 in RPMI8226 cells increased SUMO2 conjugated IκBα that resulted in the activation of NF-κB. Taken together, we report that silencing of SENP2 and consequent activation of NF-κB through the modulation of IκBα sumoylation as a novel mechanism inducing bortezomib resistance in multiple myeloma.
Collapse
Affiliation(s)
- Hongyi Xie
- Clinical Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Yuanliang Gu
- Department of prevention and health care, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Wenjuan Wang
- Department of Hematology & Oncology, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Xuyao Wang
- Molecular Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Xiaojuan Ye
- Department of Hematology & Oncology, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Chao Xin
- Clinical Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Mengjiao Lu
- Clinical Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - B Ashok Reddy
- Division of Oncology, Liveon Biolabs, 46 & 47, Water tank Road, KIADB-Phase II, Antharasanahalli, Tumakuru, Karnataka, PIN-572106, India.
| | - Peng Shu
- Molecular Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China.
| |
Collapse
|
49
|
Łuczkowska K, Rogińska D, Ulańczyk Z, Paczkowska E, Schmidt CA, Machaliński B. Molecular Mechanisms of Bortezomib Action: Novel Evidence for the miRNA-mRNA Interaction Involvement. Int J Mol Sci 2020; 21:E350. [PMID: 31948068 PMCID: PMC6981510 DOI: 10.3390/ijms21010350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Bortezomib is an anti-tumor agent, which inhibits 26S proteasome degrading ubiquitinated proteins. While apoptotic transcription-associated activation in response to bortezomib has been suggested, mechanisms related to its influence on post-transcriptional gene silencing mediated regulation by non-coding RNAs remain not fully elucidated. In the present study, we examined changes in global gene and miRNA expression and analyzed the identified miRNA-mRNA interactions after bortezomib exposure in human neuroblastoma cells to define pathways affected by this agent in this type of cells. Cell viability assays were performed to assess cytotoxicity of bortezomib. Global gene and miRNA expression profiles of neuroblastoma cells after 24-h incubation with bortezomib were determined using genome-wide RNA and miRNA microarray technology. Obtained results were then confirmed by qRT-PCR and Western blot. Further bioinformatical analysis was performed to identify affected biological processes and pathways. In total, 719 genes and 28 miRNAs were downregulated, and 319 genes and 61 miRNAs were upregulated in neuroblastoma cells treated with bortezomib. Possible interactions between dysregulated miRNA/mRNA, which could be linked to bortezomib-induced neurotoxicity, affect neurogenesis, cellular calcium transport, and neuron death. Bortezomib might exert toxic effects on neuroblastoma cells and regulate miRNA-mRNA interactions influencing vital cellular functions. Further studies on the role of specific miRNA-mRNA interactions are needed to elucidate mechanisms of bortezomib action.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Christian Andreas Schmidt
- Department of Internal Medicine C-Haematology, and Oncology, Stem Cell Transplantation, Palliative Care, University Hospital Greifswald, Ernst-Moritz-Arndt University, 17489 Greifswald, Germany;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| |
Collapse
|
50
|
Cornell RF, Ky B, Weiss BM, Dahm CN, Gupta DK, Du L, Carver JR, Cohen AD, Engelhardt BG, Garfall AL, Goodman SA, Harrell SL, Kassim AA, Jadhav T, Jagasia M, Moslehi J, O’Quinn R, Savona MR, Slosky D, Smith A, Stadtmauer EA, Vogl DT, Waxman A, Lenihan D. Prospective Study of Cardiac Events During Proteasome Inhibitor Therapy for Relapsed Multiple Myeloma. J Clin Oncol 2019; 37:1946-1955. [PMID: 31188726 PMCID: PMC9798911 DOI: 10.1200/jco.19.00231] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Cardiovascular adverse events (CVAEs) can occur during proteasome inhibitor (PI) therapy. We conducted a prospective, observational, multi-institutional study to define risk factors and outcomes in patients with multiple myeloma (MM) receiving PIs. PATIENTS AND METHODS Patients with relapsed MM initiating carfilzomib- or bortezomib-based therapy underwent baseline assessments and repeated assessments at regular intervals over 6 months, including cardiac biomarkers (troponin I or T, brain natriuretic peptide [BNP], and N-terminal proBNP), ECG, and echocardiography. Monitoring occurred over 18 months for development of CVAEs. RESULTS Of 95 patients enrolled, 65 received carfilzomib and 30 received bortezomib, with median 25 months of follow-up. Sixty-four CVAEs occurred, with 55% grade 3 or greater in severity. CVAEs occurred in 51% of patients treated with carfilzomib and 17% of those treated with bortezomib (P = .002). Median time to first CVAE from treatment start was 31 days, and 86% occurred within the first 3 months. Patients receiving carfilzomib-based therapy with a baseline elevated BNP level higher than 100 pg/mL or N-terminal proBNP level higher than 125 pg/mL had increased risk for CVAE (odds ratio, 10.8; P < .001). Elevated natriuretic peptides occurring mid-first cycle of treatment with carfilzomib were associated with a substantially higher risk of CVAEs (odds ratio, 36.0; P < .001). Patients who experienced a CVAE had inferior progression-free survival (log-rank P = .01) and overall survival (log-rank P < .001). PI therapy was safely resumed in 89% of patients, although 41% required chemotherapy modifications. CONCLUSION CVAEs are common during PI therapy for relapsed MM, especially with carfilzomib, particularly within the first 3 months of therapy. CVAEs were associated with worse overall outcomes, but usually, discontinuation of therapy was not required. Natriuretic peptides were highly predictive of CVAEs; however, validation of this finding is necessary before uniform incorporation into the routine management of patients receiving carfilzomib.
Collapse
Affiliation(s)
- Robert F. Cornell
- Vanderbilt University Medical Center, Nashville, TN,Robert F. Cornell, MS, MD, Division of Hematology and Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, Nashville, TN 37232; Twitter: @myeloma_doc_com; e-mail:
| | - Bonnie Ky
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Liping Du
- Vanderbilt University Medical Center, Nashville, TN
| | - Joseph R. Carver
- University of Pennsylvania, Philadelphia, PA,Abramson Cancer Center, Penn Medicine, Philadelphia, PA
| | - Adam D. Cohen
- Abramson Cancer Center, Penn Medicine, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | | | | - David Slosky
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Dan T. Vogl
- Abramson Cancer Center, Penn Medicine, Philadelphia, PA
| | - Adam Waxman
- Abramson Cancer Center, Penn Medicine, Philadelphia, PA
| | | |
Collapse
|