1
|
Li Z, Zheng Y, Liu K, Liang Y, Lu J, Li Q, Zhao B, Liu X, Li X. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: Recent perspectives. Phytother Res 2023; 37:5599-5621. [PMID: 37669911 DOI: 10.1002/ptr.8003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.
Collapse
Affiliation(s)
- Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
3
|
Ni Y, Zhang J, Zhu W, Duan Y, Bai H, Luan C. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH/ROS/ER stress. J Cell Mol Med 2022; 26:5414-5425. [PMID: 36201630 PMCID: PMC9639035 DOI: 10.1111/jcmm.17564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Prevalence of heart failure (HF) continues to rise over time and is a global difficult problem; new drug targets are urgently needed. In recent years, pyroptosis is confirmed to promote cardiac remodelling and HF. Echinacoside (ECH) is a natural phenylethanoid glycoside and is the major active component of traditional Chinese medicine Cistanches Herba, which is reported to possess powerful anti‐oxidation and anti‐inflammatory effects. In addition, we previously reported that ECH reversed cardiac remodelling and improved heart function, but the effect of ECH on pyroptosis has not been studied. So, we investigated the effects of ECH on cardiomyocyte pyroptosis and the underlying mechanisms. In vivo, we established HF rat models induced by isoproterenol (ISO) and pre‐treated with ECH. Indexes of heart function, pyroptotic marker proteins, ROS levels, and the expressions of NOX2, NOX4 and ER stress were measured. In vitro, primary cardiomyocytes of neonatal rats were treated with ISO and ECH; ASC speckles and caspase‐1 mediated pyroptosis in cardiomyocytes were detected. Hoechst/PI staining was also used to evaluate pyroptosis. ROS levels, pyroptotic marker proteins, NOX2, NOX4 and ER stress levels were all tested. In vivo, we found that ECH effectively inhibited pyroptosis, down‐regulated NOX2 and NOX4, decreased ROS levels, suppressed ER stress and improved heart function. In vitro, ECH reduced cardiomyocyte pyroptosis and suppressed NADPH/ROS/ER stress. We concluded that ECH inhibited cardiomyocyte pyroptosis and improved heart function via suppressing NADPH/ROS/ER stress.
Collapse
Affiliation(s)
- YaJuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenjing Zhu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixuan Duan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - HongYuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chunhong Luan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Liu X, Song L, Yu J, Huang F, Li Y, Ma C. Mdivi-1: a promising drug and its underlying mechanisms in the treatment of neurodegenerative diseases. Histol Histopathol 2022; 37:505-512. [PMID: 35199329 DOI: 10.14670/hh-18-443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria are energy-producing organelles, and neurons are high energy consumption cells. Therefore, mitochondrial dysfunction is a critical factor in neurodegenerative processes. Mitochondrial division inhibitor-1 (Mdivi-1) is a small chemical inhibitor of mitochondrial division dynamin, which plays multiple roles in mitochondrial dynamics, mitochondrial autophagy, ATP production, the immune response, and Ca²⁺ homeostasis. Mdivi-1 inhibition of excessive mitochondrial fission exerted cytoprotective effects in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Mdivi-1 changed the mRNA expression of the electron transport chain (ETC) and reduced Ca²⁺ overload against neuronal injury. Elucidation of the molecular mechanism of Mdivi-1 in neurodegenerative diseases will help evaluate its therapeutic potential and promote its application in clinical studies. The present article focused on the multiple effects of Mdivi-1 on mitochondrial function and its potential therapeutic effects in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Neurology, The Fourth People's Hospital, Datong, China
| | - Fang Huang
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Datong University, Datong, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China.
| |
Collapse
|
5
|
Han G, Zhen W, Dai Y, Yu H, Li D, Ma T. Dihuang-Yinzi Alleviates Cognition Deficits via Targeting Energy-Related Metabolism in an Alzheimer Mouse Model as Demonstrated by Integration of Metabolomics and Network Pharmacology. Front Aging Neurosci 2022; 14:873929. [PMID: 35431901 PMCID: PMC9011333 DOI: 10.3389/fnagi.2022.873929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Energy metabolism disturbance and the consequent reactive oxygen species (ROS) overproduction play a key and pathogenic role in the onset and progression of Alzheimer’s disease (AD). Dihuang-Yinzi (DHYZ) is a traditional Chinese herbal prescription clinically applied to treat AD and other neurodegenerative diseases for a long time. However, the systematical metabolic mechanism of DHYZ against AD remains largely unclear. Here we aimed to explore the mechanism of DHYZ in the treatment of AD comprehensively in an in vivo metabolic context by performing metabolomics analysis coupled with network pharmacology study and experimental validation. The network pharmacology was applied to dig out the potential target of DHYZ against AD. The metabolomics analysis based on UPLC-HRMS was carried out to profile the urine of 2× Tg-AD mice treated with DHYZ. By integrating network pharmacology and metabolomics, we found DHYZ could ameliorate 4 key energy-related metabolic pathways, including glycerophospholipid metabolism, nicotinate/nicotinamide metabolism, glycolysis, and tricarboxylic acid cycle. Besides, we identified 5 potential anti-AD targets of DHYZ, including DAO, HIF1A, PARP1, ALDH3B2, and ACHE, and 14 key differential metabolites involved in the 4 key energy-related metabolic pathways. Furthermore, DHYZ depressed the mitochondrial dysfunction and the resultant ROS overproduction through ameliorating glycerophospholipid metabolism disturbance. Thereby DHYZ increased nicotinamide adenine dinucleotide (NAD+) content and promoted glycolysis and tricarboxylic acid (TCA) cycle, and consequently improved oxidative phosphorylation and energy metabolism. In the present study, we provided a novel, comprehensive and systematic insight into investigating the therapeutic efficacy of DHYZ against AD via ameliorating energy-related metabolism.
Collapse
Affiliation(s)
- Guanghui Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weizhe Zhen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongni Yu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyue Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Tao Ma,
| |
Collapse
|
6
|
Yang X, Yv Q, Ye F, Chen S, He Z, Li W, Dong F. Echinacoside Protects Dopaminergic Neurons Through Regulating IL-6/JAK2/STAT3 Pathway in Parkinson’s Disease Model. Front Pharmacol 2022; 13:848813. [PMID: 35281889 PMCID: PMC8914071 DOI: 10.3389/fphar.2022.848813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Echinacoside (ECH), the major active constituent of Cistanche deserticola, was found to exert neuroprotection through neurotrophic and anti-inflammatory functions in Parkinson’s disease (PD) models. However, a clear intermediate molecule or pathway that unifies these two effects has to be found. In this study, our results demonstrate that ECH can protect DA neurons in PD mice with Western blot and immunohistochemistry staining. The quantitative real-time polymerase chain reaction was adapted to confirm its anti-inflammatory function with decreased cytokines (interleukin- (IL-) 6, IL-1β, and TNF-α) in PD mice and LPS-induced BV2 cells. Further studies found that ECH inhibited the IL-6/JAK2/STAT3 pathway and decreased phosphorylation of STAT3 on tyr705 by Western blot. It can also increase p-STAT3 (ser727) and brain-derived neurotrophic factor (BDNF) expression in PD mice and LPS-induced BV2 cells. This study revealed that ECH exerts neurotrophic and anti-inflammatory effects by regulating the IL-6/JAK2/STAT3 pathway and the phosphorylation of STAT3, promoting the mutually beneficial influence of the two effects to maximize its neuroprotective function.
Collapse
Affiliation(s)
- Xueping Yang
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Qingyun Yv
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fanlong Ye
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Sheng Chen
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhang He
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenwei Li
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Wenwei Li, ; Fang Dong,
| | - Fang Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wenwei Li, ; Fang Dong,
| |
Collapse
|
7
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
8
|
The Positive Role and Mechanism of Herbal Medicine in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9923331. [PMID: 34567415 PMCID: PMC8457986 DOI: 10.1155/2021/9923331] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease, manifested by the progressive functional impairment of the midbrain nigral dopaminergic neurons. Due to the unclear underlying pathogenesis, disease-modifying drugs for PD remain elusive. In Asia, such as in China and India, herbal medicines have been used in the treatment of neurodegenerative disease for thousands of years, which recently attracted considerable attention because of the development of curative drugs for PD. In this review, we first summarized the pathogenic factors of PD including protein aggregation, mitochondrial dysfunction, ion accumulation, neuroinflammation, and oxidative stress, and the related recent advances. Secondly, we summarized 32 Chinese herbal medicines (belonging to 24 genera, such as Acanthopanax, Alpinia, and Astragalus), 22 Chinese traditional herbal formulations, and 3 Indian herbal medicines, of which the ethanol/water extraction or main bioactive compounds have been extensively investigated on PD models both in vitro and in vivo. We elaborately provided pictures of the representative herbs and the structural formula of the bioactive components (such as leutheroside B and astragaloside IV) of the herbal medicines. Also, we specified the potential targets of the bioactive compounds or extractions of herbs in view of the signaling pathways such as PI3K, NF-κB, and AMPK which are implicated in oxidative and inflammatory stress in neurons. We consider that this knowledge of herbal medicines or their bioactive components can be favorable for the development of disease-modifying drugs for PD.
Collapse
|
9
|
Zhang ZN, Hui Z, Chen C, Liang Y, Tang LL, Wang SL, Xu CC, Yang H, Zhang JS, Zhao Y. Neuroprotective Effects and Related Mechanisms of Echinacoside in MPTP-Induced PD Mice. Neuropsychiatr Dis Treat 2021; 17:1779-1792. [PMID: 34113108 PMCID: PMC8184243 DOI: 10.2147/ndt.s299685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To explore the neuroprotective effect and the related mechanisms of echinacoside (ECH) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. METHODS Parkinson's disease is induced in mice by MPTP and the neurobehaviors of mice in different groups are observed. Then, immunohistochemistry and Western blot analysis are adopted to measure the expression of tyrosine hydroxylase (TH) and α-synuclein in the substantia nigra (SN). The content of dopamine (DA) and other neurotransmitters in the brain is detected by high-performance liquid chromatography. The expression of nerve growth factors and inflammatory factors in SN in mice in each group is measured by quantitative polymerase chain reaction. Finally, the expression of oxidative stress-related parameters in each group is measured. RESULTS Compared with the model group, the pole-climbing time among mice in the moderate and high-dose ECH groups is significantly reduced (P < 0.01). The rotarod staying time, as well as fore and hind-limb strides, shows a significant increase (P < 0.01), as does spontaneous activity (P < 0.01). Moreover, the expression levels of TH, DA, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor in SN in mice show significant increases in these two groups (P < 0.01). The content of superoxide dismutase, catalase, and glutathione peroxidase indicates significant increases in the low, moderate, and high-dose ECH groups (P < 0.01), and the content of MDA was reduced (P < 0.01). In the high-dose ECH group, the expression of interleukin (IL) 6 and tumor necrosis factor-α is significantly reduced (P < 0.01), while the expression of IL-10 shows a marked increase (P < 0.01) alongside a decrease in the expression of α-synuclein (P < 0.01). CONCLUSION Echinacoside improves neurobehavioral symptoms in PD mice and significantly increases the expression of TH and DA. The neuroprotective effect potentially correlates with anti-inflammation and anti-oxidation actions, promotes the expression of nerve growth factor, and reduces the accumulation of α-synuclein.
Collapse
Affiliation(s)
- Zhen-Nian Zhang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Zhen Hui
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Chang Chen
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Yan Liang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Li-Li Tang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Su-Lei Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Cheng-Cheng Xu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Hui Yang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| | - Jing-Si Zhang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, People's Republic of China
| |
Collapse
|
10
|
Ni Y, Deng J, Liu X, Li Q, Zhang J, Bai H, Zhang J. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J Cell Mol Med 2021; 25:203-216. [PMID: 33314649 PMCID: PMC7810933 DOI: 10.1111/jcmm.15904] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.
Collapse
Affiliation(s)
- Yajuan Ni
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Jie Deng
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Xin Liu
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Qing Li
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Juanli Zhang
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Hongyuan Bai
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Jingwen Zhang
- Department of Cardiology, NHC Key Laboratory on Assisted Circulation of the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
11
|
Zhao Y, Yi Y, Gu B, Wang H, Ma J, Guo Z. Echinacoside protects adenine-induced uremic rats from sciatic nerve damage by up-regulating α-Klotho. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:413-421. [PMID: 34465681 PMCID: PMC8426649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVES To investigate the therapeutic effect of Echinacoside on uremia-induced sciatic nerve injury and explore the specific molecular mechanism and role of α-Klotho. METHODS SD rats were given continuous gavage of adenine to prepare a uremia-induced sciatic nerve injury model. The model was given either Echinacoside or α-Klotho by gavage. Histopathological changes of kidney and sciatic nerve were detected by H&E staining. The changes of creatinine, urea nitrogen, and urine protein were detected by biochemical detection. The changes of IL-1β and IL-18 were detected by ELISA. Nerve activity-related indicators were detected by biochemical detection. Changes in related mRNA and protein expression were detected by qPCR and western blot. RESULTS Creatinine, urea nitrogen, urine protein, and malondialdehyde (MDA) in the model group were significantly increased and inhibited by Echinacoside and α-Klotho treatment with Echinacoside dose-dependence. Meanwhile, the activities of ATP concentration, potassium adenosine triphosphate (Na+, K+ ATPase), succinate dehydrogenase (SDH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) showed opposite trends. CONCLUSIONS Echinacoside can significantly relieve uremia-induced sciatic nerve injury in rats. Its specific molecular mechanism is related to the inhibition of the classical cellular pyroptosis pathway, which is likely achieved by promoting α-Klotho expression.
Collapse
Affiliation(s)
- Yingdan Zhao
- Department of Nephrology, Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Yang Yi
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bo Gu
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hanqing Wang
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jun Ma
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China,Jun Ma, Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China E-mail:
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Dai Y, Han G, Xu S, Yuan Y, Zhao C, Ma T. Echinacoside Suppresses Amyloidogenesis and Modulates F-actin Remodeling by Targeting the ER Stress Sensor PERK in a Mouse Model of Alzheimer's Disease. Front Cell Dev Biol 2020; 8:593659. [PMID: 33330477 PMCID: PMC7717986 DOI: 10.3389/fcell.2020.593659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) plays a vital and pathogenic role in the onset and progression of Alzheimer’s disease (AD). Phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) induced by ERS depresses the interaction between actin-binding protein filamin-A (FLNA) and PERK, which promotes F-actin accumulation and reduces ER-plasma membrane (PM) communication. Echinacoside (ECH), a pharmacologically active component purified from Cistanche tubulosa, exhibits multiple neuroprotective activities, but the effects of ECH on ERS and F-actin remodeling remain elusive. Here, we found ECH could inhibit the phosphorylation of PERK. Firstly ECH can promote PERK-FLNA combination and modulate F-actin remodeling. Secondly, ECH dramatically decreased cerebral Aβ production and accumulation by inhibiting the translation of BACE1, and significantly ameliorated memory impairment in 2 × Tg-AD mice. Furthermore, ECH exhibited high affinity to either mouse PERK or human PERK. These findings provide novel insights into the neuroprotective actions of ECH against AD, indicating that ECH is a potential therapeutic agent for halting and preventing the progression of AD.
Collapse
Affiliation(s)
- Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghui Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongna Yuan
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Congrong Shujing Granule-Induced GRP78 Expression Reduced Endoplasmic Reticulum Stress and Neuronal Apoptosis in the Midbrain in a Parkinson's Disease Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4796236. [PMID: 33062012 PMCID: PMC7547351 DOI: 10.1155/2020/4796236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
The main pathological changes inherent in Parkinson's disease (PD) are degeneration and loss of dopamine neurons in the midbrain and formation of Lewy bodies. Many studies have shown that the pathogenesis of PD is closely related to endoplasmic reticulum (ER) oxidative stress. This study combined various traditional Chinese medicines to prepare Congrong Shujing granules (CSGs). The optimal dose combination of the ingredients was identified by experimental intervention in SH-SY5Y cells in vitro. A PD rat model was established by intraperitoneal injection of rotenone sunflower oil emulsion. The suspension tests were performed on the 14th day after modeling and also on the 14th day after CSG intervention (5.88 g/kg, 11.76 g/kg, and 23.52 g/kg). We evaluated the changes in motor function and the expression of neuronal cell functional marker proteins, ER stress (ERS) marker proteins, and apoptosis-related pathway proteins of neuronal cells. Changes in cellular ultrastructure were observed by electron microscopy. Our results showed that CSG treatment lengthened the duration of PD rats' gripping to the wire. 78 kDa glucose-regulated protein (GRP78) expression in the substantia nigra was significantly upregulated in the middle- and high-dose CSG groups after 14 days of treatment compared with the model group. The expression of the key dopaminergic neuron functional enzyme tyrosine hydroxylase (TH) and cerebral dopamine neurotrophic factor (CDNF) was elevated. The expression of c-Jun N-terminal kinase (JNK) and phosphorylated c-Jun decreased, and cell apoptosis was significantly reduced. Compared with the model group, the treatment groups had fewer ER fragmentation and degranulation (ribosome shedding) and abundant ER and mitochondria suggesting that CSG reduced ER stress and neuronal apoptosis in the midbrain of a PD rat model by inducing the expression of molecular chaperone GRP78.
Collapse
|
14
|
Tabatabaei Mirakabad FS, Khoramgah MS, Tahmasebinia F, Darabi S, Abdi S, Abbaszadeh HA, Khoshsirat S. The Effect of Low-Level Laser Therapy and Curcumin on the Expression of LC3, ATG10 and BAX/BCL2 Ratio in PC12 Cells Induced by 6-Hydroxide Dopamine. J Lasers Med Sci 2020; 11:299-304. [PMID: 32802291 DOI: 10.34172/jlms.2020.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The neuroinflammation in the brain of PD patients is one of the critical processes in the immune pathogenesis of PD leading to the neural loss in the substantia nigra. Due to the anti-inflammatory effects of curcumin (CU) and low-level laser therapy (LLLT), we examined the protective effect of CU and LLLT on PC12 cells treated with 6-hydroxydopamine (6-OHDA) as a Parkinson model. Methods: PC12 cells were pretreated using various concentrations of 6-OHDA for 24 hours to induce oxidative and cellular damages. PC12-6-OHDA cells were co-treated with CU and LLLT. The effects of CU and LLLT on Bax/Bcl2 and LC3/ATG10 expression were analyzed by real-time PCR and cell viability was assessed by MTT assay. Cell A Software was used to calculate the length of the Neurite and cell body areas. Results: The results of this study show that the combination of CU dose-dependently and LLLT has a significant neuroprotective effect on cells and cellular death significantly decreases by increasing CU concentration. CU+LLLT decreases Bax/Bcl2 ratio which is an indicator of apoptosis and it also rescued a decrease in LC3 and ATG10 expression in comparison with 6-OHDA group. Conclusion: This study shows that the combination of 5 μM CU and LLLT has the best neuroprotective effect on PC12 cells against 6-OHDA by decreasing the BAX/BCL2 ratio.
Collapse
Affiliation(s)
| | - Maryam Sadat Khoramgah
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foozhan Tahmasebinia
- Proteomics Research Center, Faculty of Paramedical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Saeed Abdi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Uppakara K, Jamornwan S, Duan LX, Yue KR, Sunrat C, Dent EW, Wan SB, Saengsawang W. Novel α-Lipoic Acid/3- n-Butylphthalide Conjugate Enhances Protective Effects against Oxidative Stress and 6-OHDA Induced Neuronal Damage. ACS Chem Neurosci 2020; 11:1634-1642. [PMID: 32374999 DOI: 10.1021/acschemneuro.0c00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are irreversible conditions that result in progressive degeneration and death of nerve cells. Although the underlying mechanisms may vary, oxidative stress is considered to be one of the major causes of neuronal loss. Importantly, there are still no comprehensive treatments to completely cure these diseases. Therefore, protecting neurons from oxidative damage may be the most effective therapeutic strategy. Here we report a neuroprotective effects of a novel hybrid compound (dlx-23), obtained by conjugating α-lipoic acid (ALA), a natural antioxidant agent, and 3-n-butylphthalide (NBP), a clinical anti-ischemic drug. Dlx-23 protected against neuronal death induced by both H2O2 induced oxidative stress in Cath.-a-differentiated (CAD) cells and 6-OHDA, a toxin model of Parkinson's disease (PD) in SH-SY5Y cells. These activities proved to be more potent than the parent compound (ALA) alone. Dlx-23 scavenged free radicals, increased glutathione levels, and prevented mitochondria damage. In addition, live imaging of primary cortical neurons demonstrated that dlx-23 protected against neuronal growth cone damage induced by H2O2. Taken together these results suggest that dlx-23 has substantial potential to be further developed into a novel neuroprotective agent against oxidative damage and toxin induced neurodegeneration.
Collapse
Affiliation(s)
- Kwanchanok Uppakara
- Toxicology Graduate Program; Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sopana Jamornwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Liang-xing Duan
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kai-rui Yue
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chotchanit Sunrat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Sheng-biao Wan
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
GRP78/BIP/HSPA5 as a Therapeutic Target in Models of Parkinson's Disease: A Mini Review. Adv Pharmacol Sci 2019; 2019:2706783. [PMID: 30949202 PMCID: PMC6425347 DOI: 10.1155/2019/2706783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective loss of dopamine neurons in the substantia nigra pars compacta of the midbrain. Reports from postmortem studies in the human PD brain, and experimental PD models reveal that endoplasmic reticulum (ER) stress is implicated in the pathogenesis of PD. In times of stress, the unfolded or misfolded proteins overload the folding capacity of the ER to induce a condition generally known as ER stress. During ER stress, cells activate the unfolded protein response (UPR) to handle increasing amounts of abnormal proteins, and recent evidence has demonstrated the activation of the ER chaperone GRP78/BiP (78 kDa glucose-regulated protein/binding immunoglobulin protein), which is important for proper folding of newly synthesized and partly folded proteins to maintain protein homeostasis. Although the activation of this protein is essential for the initiation of the UPR in PD, there are inconsistent reports on its expression in various PD models. Consequently, this review article aims to summarize current knowledge on neuroprotective agents targeting the expression of GRP78/BiP in the regulation of ER stress in experimental PD models.
Collapse
|
17
|
Zheng H, Su Y, Sun Y, Tang T, Zhang D, He X, Wang J. Echinacoside alleviates hypobaric hypoxia‐induced memory impairment in C57 mice. Phytother Res 2019; 33:1150-1160. [DOI: 10.1002/ptr.6310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Hongnan Zheng
- Department of Natural Medicine, School of PharmacyFourth Military Medical University Xi'an China
| | - Yuting Su
- School of New Media ArtXi'an Polytechnic University Xi'an China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of PharmacyFourth Military Medical University Xi'an China
| | - Tianle Tang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of PharmacyFourth Military Medical University Xi'an China
| | - Di Zhang
- Department of PharmacyXijing Hospital, Fourth Military Medical University Xi'an China
| | - Xuefeng He
- Department of Natural Medicine, School of PharmacyFourth Military Medical University Xi'an China
| | - Jianbo Wang
- Department of Natural Medicine, School of PharmacyFourth Military Medical University Xi'an China
- Product R & D DepartmentSichuan Institute for Translational Chinese Medicine Chengdu China
| |
Collapse
|
18
|
Inhibition of Amyloid Beta Aggregation and Deposition of Cistanche tubulosa Aqueous Extract. Molecules 2019; 24:molecules24040687. [PMID: 30769881 PMCID: PMC6412839 DOI: 10.3390/molecules24040687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/28/2023] Open
Abstract
Cistanche tubulosa aqueous extract (CTE) is already used as a botanical prescription drug for treating dementia in China. Our previous studies reported that phenylethanoid glycosides of CTE have anti-Alzheimer's disease (AD) activity by inhibiting amyloid β peptide (Aβ) aggregation and deposition. However, recent studies considered that the phenylethanoid glycosides may be metabolized by intestinal bacteria, because all analysis results showed that the bioavailability of phenylethanoid glycosides is extremely low. In this study we demonstrate how iron chelation plays a crucial role in the Aβ aggregation and deposition inhibition mechanism of phenylethanoid glycosides of CTE. In addition, we further proved phenylethanoid glycosides (1⁻3) could reach brain. Active CTE component and action mechanism confirmation will be a great help for product quality control and bioavailability studies in the future. At the same time, we provide a new analysis method useful in determining phenylethanoid glycosides (1⁻3) in plants, foods, blood, and tissues for chemical fingerprint and pharmacokinetic research.
Collapse
|
19
|
Shan CS, Zhang HF, Xu QQ, Shi YH, Wang Y, Li Y, Lin Y, Zheng GQ. Herbal Medicine Formulas for Parkinson's Disease: A Systematic Review and Meta-Analysis of Randomized Double-Blind Placebo-Controlled Clinical Trials. Front Aging Neurosci 2018; 10:349. [PMID: 30467472 PMCID: PMC6236206 DOI: 10.3389/fnagi.2018.00349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Parkinson's disease (PD) is a debitlitating, chronic, progressive neurodegenerative disorder without modifying therapy. Here, we aimed to evaluate the available evidence of herbal medicine (HM) formulas for patients with PD according to randomized double-blind placebo-controlled clinical trials. Methods: HM formulas for PD were searched in eight main databases from their inception to February 2018. The methodological quality was assessed using Cochrane Collaboration risk of bias tool. Meta-analysis was performed using RevMan 5.3 software. Results: Fourteen trials with Seventeen comparisons comprising 1,311 patients were identified. Compared with placebo groups, HM paratherapy (n = 16 comparisons) showed significant better effects in the assessments of total Unified Parkinson's Disease Rating Scale (UPDRS) (WMD: -5.43, 95% CI:-8.01 to -2.86; P < 0.0001), UPDRS I (WMD: -0.30, 95% CI: -0.54 to -0.06; P = 0.02), UPDRS II (WMD: -2.21, 95% CI: -3.19 to -1.22; P < 0.0001), UPDRS III (WMD: -3.26, 95% CI:-4.36 to -2.16; P < 0.00001), Parkinson's Disease Quality of Life Questionnaire (p < 0.01) and Parkinson's Disease Questionnaire-39 (WMD: -7.65, 95% CI: -11.46 to -3.83; p < 0.0001), Non-motor Symptoms Questionnaire (p < 0.01) and Non-Motor Symptoms Scale (WMD: -9.19, 95% CI: -13.11 to -5.28; P < 0.00001), Parkinson's Disease Sleep Scale (WMD: 10.69, 95% CI: 8.86 to 12.53; P < 0.00001), and Hamilton depression rating scale (WMD: -5.87, 95% CI: -7.06 to -4.68; P < 0.00001). The efficiency of HM monotherapy (n = 1 comparison) was not superior to the placebo according to UPDRS II, UPDRS III and total UPDRS score in PD patients who never received levodopa treatment, all P > 0.05. HM formulas paratherapy were generally safe and well tolerated for PD patients (RR: 0.41, 95% CI: 0.21 to 0.80; P = 0.009). Conclusion: The findings of present study supported the complementary use of HM paratherapy for PD patients, whereas the question on the efficacy of HM monotherapy in alleviating PD symptoms is still open.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Lin
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Fu C, Li J, Aipire A, Xia L, Yang Y, Chen Q, Lv J, Wang X, Li J. Cistanche tubulosa phenylethanoid glycosides induce apoptosis in Eca-109 cells via the mitochondria-dependent pathway. Oncol Lett 2018; 17:303-313. [PMID: 30655768 PMCID: PMC6313098 DOI: 10.3892/ol.2018.9635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
Abstract
Cistanche tubulosa has various biological functions. In the present study, the antitumor effect of water-soluble phenylethanoid glycosides of C. tubulosa (CTPG-W) on esophageal cancer was investigated. Eca-109 cells were treated with CTPG-W and the cell viability was measured by MTT assay. The apoptosis, cell cycle, mitochondrial membrane potential (Δψm) and reactive oxygen species were analyzed by flow cytometry. The levels of proteins in apoptotic pathways were detected by western blot analysis. It was determined that CTPG-W significantly reduced the viability of Eca-109 cells through the induction of apoptosis and cell cycle arrest. Following CTPG-W treatment, the Δψm of Eca-109 was notably decreased, which is associated with the upregulated levels of B-cell lymphoma-2 (Bcl-2)-associated X and downregulated levels of Bcl-2. Consequently, the levels of cytochrome c and c-Jun NH2-terminal kinase were increased, which upregulated the levels of cleaved-poly (ADP-ribose) polymerase and cleaved-caspase-3, −7 and −9, but not caspase-8. Correspondingly, the levels of reactive oxygen species in Eca-109 cells demonstrated notable changes. These results indicated that CTPG-W induced apoptosis of Eca-109 cells through a mitochondrial-dependent pathway.
Collapse
Affiliation(s)
- Changshuang Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Jinyu Li
- College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang 830054, P.R. China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Yi Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Qiuyan Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Jie Lv
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Xinhui Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| |
Collapse
|
21
|
Optimization of Fermentation Condition for Echinacoside Yield Improvement with Penicillium sp. H1, an Endophytic Fungus Isolated from Ligustrum lucidum Ait Using Response Surface Methodology. Molecules 2018; 23:molecules23102586. [PMID: 30308945 PMCID: PMC6222407 DOI: 10.3390/molecules23102586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Application of echinacoside has become increasingly important for its significant biological activities. However, there are many disadvantages in existing synthesis methods such as contaminating the environment, harsh reaction conditions and so on. Therefore, it is urgent to invent a novel alternative method that can increase the yield of echinacoside. (2) Methods: In this study, we isolated and purified an endophyte from the leaves of Ligustrum lucidum Ait. Then, we improved the yield of echinacoside by optimizing the fermentation condition with an endophytic fungus. Penicillium sp. H1 was isolated from Ligustrum lucidum Ait. In addition, response surface methodology was used to optimize the fermentation condition. (3) Results: The results indicate that the maximal yield of echinacoside (37.16 mg/L) was obtained when inoculation rate, temperature and days were 13.98%, 27.85 °C and 26.06 days, respectively. The yield of echinacoside was 150.47 times higher under the optimal conditions than under the control conditions. The results indicate that the yield of echinacoside could be improved with endophytic fermentation by optimizing the fermentation condition. We provide an alternative method for echinacoside production by endophytic fermentation in this paper. It may have a profound effect on the application of echinacoside.
Collapse
|
22
|
Liu J, Yang L, Dong Y, Zhang B, Ma X. Echinacoside, an Inestimable Natural Product in Treatment of Neurological and other Disorders. Molecules 2018; 23:E1213. [PMID: 29783690 PMCID: PMC6100060 DOI: 10.3390/molecules23051213] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/19/2023] Open
Abstract
Echinacoside (ECH), a natural phenylethanoid glycoside, was first isolated from Echinacea angustifolia DC. (Compositae) sixty years ago. It was found to possess numerous pharmacologically beneficial activities for human health, especially the neuroprotective and cardiovascular effects. Although ECH showed promising potential for treatment of Parkinson's and Alzheimer's diseases, some important issues arose. These included the identification of active metabolites as having poor bioavailability in prototype form, the definite molecular signal pathways or targets of ECH with the above effects, and limited reliable clinical trials. Thus, it remains unresolved as to whether scientific research can reasonably make use of this natural compound. A systematic summary and knowledge of future prospects are necessary to facilitate further studies for this natural product. The present review generalizes and analyzes the current knowledge on ECH, including its broad distribution, different preparation technologies, poor pharmacokinetics and kinds of therapeutic uses, and the future perspectives of its potential application.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Yanhong Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Bo Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| |
Collapse
|
23
|
Elmazoglu Z, Ergin V, Sahin E, Kayhan H, Karasu C. Oleuropein and rutin protect against 6-OHDA-induced neurotoxicity in PC12 cells through modulation of mitochondrial function and unfolded protein response. Interdiscip Toxicol 2018; 10:129-141. [PMID: 30147420 PMCID: PMC6102676 DOI: 10.1515/intox-2017-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a highly prevalent neurodegenerative disorder, often associated with oxidative stress-induced transcriptional changes in dopaminergic neurons. Phenolic antioxidants, oleuropein (OLE) and rutin (RUT) have attracted a great interest due to their potential to counteract oxidative protein aggregation and toxicity. This study aimed at examining the effects of OLE and RUT against 6-OHDA-induced stress response in rat pheochromocytoma cells. When differentiated PC12 cells were exposed to oxidative stress composer 6-OHDA (100 μM, 8 h), a decreased mitochondrial membrane potential (ΔΨm) was observed along with a significant loss of cell viability and apoptotic nuclear changes. Exposure to 6-OHDA resulted in unfolded protein response (UPR) in differentiated PC12 cells as evidenced by an increased level of endoplasmic reticulum (ER)-localized transmembrane signal transducer IRE1α, adaptive response proteins ATF-4 and proapoptotic transcription factor CHOP. OLE or RUT pretreatment (24 h) at low doses (1–50 μM) protected the differentiated PC12 cells from 6-OHDA-induced cytotoxicity as assessed by increased viability, improved ΔΨm and inhibited apoptosis, whereas relatively high doses of OLE or RUT (>50 μM) inhibited cell growth and proliferation, indicating a typical hormetic effect. In hormetic doses, OLE and RUT up-regulated 6-OHDA-induced increase in IRE1α, ATF-4 and inhibited CHOP, PERK, BIP and PDI. 6-OHDA-activated XBP1 splicing was also inhibited by OLE or RUT. The presented results suggest that neuroprotection against 6-OHDA-induced oxidative toxicity may be attributable to neurohormetic effects of OLE or RUT at low doses through regulating mitochondrial functions, controlling persistent protein misfolding, activating and/or amplificating the adaptive response-related signaling pathways, leading to UPR prosurvival output.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Volkan Ergin
- Department of Medical Biology, Erzincan University, Faculty of Medicine, Erzincan, Turkey
| | - Ergin Sahin
- Department of Biology, Ankara University, Faculty of Science, Ankara, Turkey
| | - Handan Kayhan
- Department of Hematology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Gazi University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
24
|
Wang N, Ji S, Zhang H, Mei S, Qiao L, Jin X. Herba Cistanches: Anti-aging. Aging Dis 2017; 8:740-759. [PMID: 29344414 PMCID: PMC5758349 DOI: 10.14336/ad.2017.0720] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
The Cistanche species ("Rou Cong Rong" in Chinese) is an endangered wild species growing in arid or semi-arid areas. The dried fleshy stem of Cistanches has been used as a tonic in China for many years. Modern pharmacological studies have since demonstrated that Herba Cistanches possesses broad medicinal functions, especially for use in anti-senescence, anti-oxidation, neuroprotection, anti-inflammation, hepatoprotection, immunomodulation, anti-neoplastic, anti-osteoporosis and the promotion of bone formation. This review summarizes the up-to-date and comprehensive information on Herba Cistanches covering the aspects of the botany, traditional uses, phytochemistry and pharmacology, to lay ground for fully elucidating the potential mechanisms of Herba Cistanches' anti-aging effect and promote its clinical application as an anti-aging herbal medicine.
Collapse
Affiliation(s)
- Ningqun Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shaozhen Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Hao Zhang
- Department of Radiology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lumin Qiao
- Department of Emergency, Traditional Chinese Medicine Hospital of Yinchuan, Ningxia Hui Nationality Autonomous Region 750001, China.
| | - Xianglan Jin
- Department of Neurology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
25
|
Zhang Y, Long H, Zhou F, Zhu W, Ruan J, Zhao Y, Lu Y. Echinacoside's nigrostriatal dopaminergic protection against 6-OHDA-Induced endoplasmic reticulum stress through reducing the accumulation of Seipin. J Cell Mol Med 2017; 21:3761-3775. [PMID: 28767194 PMCID: PMC5706584 DOI: 10.1111/jcmm.13285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that echinacoside (ECH), a phenylethanoid glycoside found in Cistanche deserticola, has a protective effect against the development of PD. However, the detailed mechanisms of how ECH suppresses neuronal death have not been fully elucidated. In this study, we confirmed that ECH protects nigrostriatal neurons against 6‐hydroxydopamine (6‐OHDA)‐induced endoplasmic reticulum stress (ERS) in vivo and in vitro. ECH rescued cell viability in damaged cells and decreased 6‐OHDA‐induced reactive oxygen species accumulation in vitro. It also rescued tyrosine hydroxylase and dopamine transporter expression in the striatum, and decreased α‐synuclein aggregation following 6‐OHDA treatment in vivo. The validated mechanism of ECH activity was the reduction in the 6‐OHDA‐induced accumulation of seipin (Berardinelli–Seip congenital lipodystrophy 2). Seipin has been shown to be a key molecule related to motor neuron disease and was tightly associated with ERS in a series of in vivo studies. ECH attenuated seipinopathy by promoting seipin degradation via ubiquitination. ERS was relieved by ECH through the Grp94/Bip‐ATF4‐CHOP signal pathway.
Collapse
Affiliation(s)
- Yajie Zhang
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongyan Long
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Pediatrics, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fuqiong Zhou
- Institute of T.C.M., The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weina Zhu
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Ruan
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Zhao
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lu
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
The Antidepressant and Cognitive Improvement Activities of the Traditional Chinese Herb Cistanche. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3925903. [PMID: 28744316 PMCID: PMC5506466 DOI: 10.1155/2017/3925903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 05/28/2017] [Indexed: 12/23/2022]
Abstract
More than ten percent of people suffer from at least one episode of depression and related mental disorders in a lifetime, and depression and related mental disorders are one of the world's greatest public health problems. A multiple system theory holds that dysregulation of the multiple systems underlies the pathogenesis of depression and related mental disorders, and new therapies based on the multiple system dysregulation theory are urgently needed. In this study, the antidepressant effect of decoction from herb Cistanche deserticola Y.C.Ma and Cistanche tubulosa was examined. Herb Cistanche decoction reduced the immobility period significantly in the mouse tail suspension test. Mice treated with herb decoction showed an improved ability of spatial learning and memory in the Morris water maze test. Groups treated herb decoction displayed a downregulated monoamine oxidase (MAO) activity; the dopamine (DA) concentration in the brain was upregulated, indicating herb Cistanche decoction improved the nerve excitability; the serum concentration of corticosterone (CORT) was downregulated, showing that mice benefited from a reduced stress level. Hence, the antidepressant efficacy and mechanism of traditional Chinese herb Cistanche were explored in this study. Herb Cistanche showed a potential to be developed as a complementary and alternative therapy for depression.
Collapse
|
27
|
Fu A, Shi X, Zhang H, Fu B. Mitotherapy for Fatty Liver by Intravenous Administration of Exogenous Mitochondria in Male Mice. Front Pharmacol 2017; 8:241. [PMID: 28536524 PMCID: PMC5422541 DOI: 10.3389/fphar.2017.00241] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/18/2017] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial dysfunction is a major and common mechanism in developing non-alcoholic fatty liver disease (NAFLD). Replacement of dysfunctional mitochondria by functional exogenous mitochondria may attenuate intrahepatic excessive lipid and recover hepatocyte function. However, no data shows that mitochondria can be systemically administrated to animals to date. Here we suggest that mitochondria isolated from hepatoma cells are used as a mitotherapy agent to treat mouse fatty liver induced by high-fat diets. When the mitochondria were intravenously injected into the mice, serum aminotransferase activity and cholesterol level decreased in a dose-dependent manner. Also, the mitotherapy reduced lipid accumulation and oxidation injury of the fatty liver mice, improved energy production, and consequently restored hepatocyte function. The mitotherapy strategy offers a new potential therapeutic approach for treating NAFLD.
Collapse
Affiliation(s)
- Ailing Fu
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| | - Xianxun Shi
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| | - Huajing Zhang
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| | - Bin Fu
- School of Pharmaceutical Sciences, Southwest UniversityChongqing, China
| |
Collapse
|
28
|
Zhang J, Zhang Z, Xiang J, Cai M, Yu Z, Li X, Wu T, Cai D. Neuroprotective Effects of Echinacoside on Regulating the Stress-Active p38MAPK and NF-κB p52 Signals in the Mice Model of Parkinson's Disease. Neurochem Res 2016; 42:975-985. [PMID: 27981472 DOI: 10.1007/s11064-016-2130-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
Abstract
Herbal medicines have long been used to treat Parkinson's disease (PD). To systematically analyze the anti-parkinsonian activity of echinacoside (ECH) in a neurotoxic model of PD and provide a future basis for basic and clinical investigations, male C57BL/6 mice were randomized into blank control, PD model and ECH-administration groups. ECH significantly suppressed the dopaminergic neuron loss (P < 0.01) caused by MPTP and maintained dopamine content (P < 0.01) and dopamine metabolite content (P < 0.05) compared with that measured in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage. Additionally, ECH inhibited the activation of microglia and astrocytes in the substantia nigra, which suggested the involvement of neuroinflammation. The relevant cytokines were detected with a Proteome Profiler Array, which confirmed that ECH participated in the regulation of seven cytokines. Given that p38 mitogen-activated protein kinase (p38MAPK) and NF-kappaB (NF-κB) signals are considered to be closely related to neuroninflammation, the gene expression levels of p38MAPK and six NF-κB DNA-binding subunits were assessed. Western blotting analysis showed that both p38MAPK and the NF-κB p52 subunit were upregulated in the MPTP group and that ECH downregulated their expressions. Minocycline was administered as the positive control to inhibit neuroinflammation, and no differences were detected between the minocycline- and ECH-mediated inhibition of the p38MAPK and NF-κB p52 signals. In conclusion, echinacoside is a potential novel orally active compound for regulating neuroinflammation and related signals in Parkinson's disease and may provide a new prospect for clinical treatment.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhennian Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhonghai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ting Wu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Gu C, Yang X, Huang L. Cistanches Herba: A Neuropharmacology Review. Front Pharmacol 2016; 7:289. [PMID: 27703431 PMCID: PMC5028387 DOI: 10.3389/fphar.2016.00289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cistanches Herba (family Orobanchaceae), commonly known as “desert ginseng” or Rou Cong Rong, is a global genus and commonly used for its neuroprotective, immunomodulatory, anti-oxidative, kidney impotence, laxative, anti-inflammatory, hepatoprotective, anti-bacterial, anti-viral, and anti-tumor effects in traditional herbal formulations in North Africa, Arabic, and Asian countries. The major bioactive compound present in this plant is phenylethanoid glycosides. In recent years, there has been great important in scientific investigation of the neuropharmacological effects of the bioactive compounds. The in vitro and in vivo studies suggests these compounds demonstrate neuropharmacological activities against a wide range of complex nervous system diseases which occurs through different mechanisms include improving immunity function and kidney aging, anti-lipid peroxidation, scavenging free radical, inducing the activation of caspase-3 and caspase-8. This review aims to summaries the various neuropharmacological effects and mechanisms of Cistanches Herba extracts and related compounds, including its efficacy as a cure for Alzheimer’s disease and Parkinson’s disease with reference to the published literature. Which provides guidance for further research on the clinical application of Cistanches Herba.
Collapse
Affiliation(s)
- Caimei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Xianying Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
30
|
Li J, Li J, Aipire A, Gao L, Huo S, Luo J, Zhang F. Phenylethanoid Glycosides from Cistanche tubulosa Inhibits the Growth of B16-F10 Cells both in Vitro and in Vivo by Induction of Apoptosis via Mitochondria-dependent Pathway. J Cancer 2016; 7:1877-1887. [PMID: 27698928 PMCID: PMC5039372 DOI: 10.7150/jca.15512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/24/2016] [Indexed: 01/06/2023] Open
Abstract
Cistanche tubulosa phenylethanoid glycosides (CTPG) have been shown various biological activities including anti-allergy, hepatoprotective activity and bone regeneration. However, the anti-tumor activity of CTPG needs to be investigated. CTPG was used to treat B16-F10 cells both in vitro and in vivo. We found that CTPG dramatically changed the morphology of B16-F10 cells, and significantly reduced the viability of B16-F10 cells in a dose-dependent and time-dependent manner, which might be mediated by CTPG-induced apoptosis and cell cycle arrest. After CTPG treatment, the expressions of BAX and BCL-2 were up-regulated and down-regulated, respectively. Moreover, mitochondrial membrane potential was reduced and ROS generation was increased. Consequently, the levels of cytochrome c and cleaved-caspase-3 and -9 were up-regulated by CTPG treatment but not for cleaved-caspase-8. We further observed that CTPG significantly inhibited the tumor growth in vivo and improved the survival rate of tumor mice. We also observed that CTPG promoted the proliferation of splenocytes and increased the proportions of CD4+ and CD8+ T cells in spleens of tumor mice. The results showed that CTPG induced the apoptosis of B16-F10 cells through mitochondria-dependent pathway, suggesting that CTPG could be a potential candidate for treatment of cancer.
Collapse
Affiliation(s)
- Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Li Gao
- Xinjiang Laboratory of Uyghur Medical Prescription, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, Xinjiang, China
| | - Shixia Huo
- Xinjiang Laboratory of Uyghur Medical Prescription, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, Xinjiang, China
| | - Jiaojiao Luo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
31
|
Echinacoside Protects Against MPP(+)-Induced Neuronal Apoptosis via ROS/ATF3/CHOP Pathway Regulation. Neurosci Bull 2016; 32:349-62. [PMID: 27432061 DOI: 10.1007/s12264-016-0047-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/24/2016] [Indexed: 01/04/2023] Open
Abstract
Echinacoside (ECH) is protective in a mouse model of Parkinson's disease (PD) induced by 1-methyl-4-phenylpyridinium ion (MPP(+)). To investigate the mechanisms involved, SH-SY5Y neuroblastoma cells were treated with MPP(+) or a combination of MPP(+) and ECH, and the expression of ATF3 (activating transcription factor 3), CHOP (C/EBP-homologous protein), SCNA (synuclein alpha), and GDNF (glial cell line-derived neurotrophic factor) was assessed. The results showed that ECH significantly improved cell survival by inhibiting the generation of MPP(+)-induced reactive oxygen species (ROS). In addition, ECH suppressed the ROS and MPP(+)-induced expression of apoptotic genes (ATF3, CHOP, and SCNA). ECH markedly decreased the MPP(+)-induced caspase-3 activity in a dose-dependent manner. ATF3-knockdown also decreased the CHOP and cleaved caspase-3 levels and inhibited the apoptosis induced by MPP(+). Interestingly, ECH partially restored the GDNF expression that was down-regulated by MPP(+). ECH also improved dopaminergic neuron survival during MPP(+) treatment and protected these neurons against the apoptosis induced by MPTP. Taken together, these data suggest that the ROS/ATF3/CHOP pathway plays a critical role in mechanisms by which ECH protects against MPP(+)-induced apoptosis in PD.
Collapse
|
32
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 861] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
33
|
Lu CW, Lin TY, Huang SK, Wang SJ. Echinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca(2+) Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals. Int J Mol Sci 2016; 17:ijms17071006. [PMID: 27347934 PMCID: PMC4964382 DOI: 10.3390/ijms17071006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023] Open
Abstract
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb HerbaCistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca2+-dependent, but not Ca2+-independent, 4-aminopyridine-evoked glutamate release in a concentration-dependent manner. Echinacoside also reduced the 4-aminopyridine-evoked increase in cytoplasmic free Ca2+ concentration but did not alter the synaptosomal membrane potential. The inhibitory effect of echinacoside on 4-aminopyridine-evoked glutamate release was prevented by ω-conotoxin MVIIC, a wide-spectrum blocker of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but was insensitive to the intracellular Ca2+ release-inhibitors dantrolene and 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157). Furthermore, echinacoside decreased the 4-aminopyridine-induced phosphorylation of protein kinase C, and protein kinase C inhibitors abolished the effect of echinacoside on glutamate release. According to these results, we suggest that the inhibitory effect of echinacoside on evoked glutamate release is associated with reduced voltage-dependent Ca2+ entry and subsequent suppression of protein kinase C activity.
Collapse
Affiliation(s)
- Cheng Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan.
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei 24205, Taiwan.
| |
Collapse
|
34
|
Zeng XS, Jia JJ, Ma LF. Gensenoside Rb1 protects rat PC12 cells from oxidative stress-induced endoplasmic reticulum stress: the involvement of thioredoxin-1. Mol Cell Biochem 2015; 410:239-246. [PMID: 26346161 DOI: 10.1007/s11010-015-2557-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Oxidative stress plays an important role in many diseases and hydrogen peroxide (H2O2) plays a central role in the stress. Gensenoside Rb1 is the one of active ingredients in the traditional Chinese medicine Panax notoginseng. It has been reported that gensenoside Rb1 possesses various pharmacological activities. Here we report that gensenoside Rb1 exhibits potent protective effects against oxidative injury induced by H2O2 through inhibiting endoplasmic reticulum stress in PC12 cells. Cell viability assay demonstrated that incubation with H2O2 for 24 h led to a significant loss of cultured rat PC12 cells, and the cell viability was pronouncedly increased by pretreatment of gensenoside Rb1 for 24 h. H2O2-induced endoplasmic reticulum stress pathway was also suppressed after gensenoside Rb1 pretreatment, which was related with thioredoxin-1 (Trx-1) induction. Trx-1 siRNA abolished the protective effects of gensenoside Rb1. Our results of the present study demonstrate that gensenoside Rb1 shows a potent anti-oxidative effect on cultured PC12 cells by inducing Trx-1 expression.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jin-Jing Jia
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Li-Fang Ma
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
35
|
Zeng XS, Jia JJ, Ma LF. Gensenoside Rb1 protects rat PC12 cells from oxidative stress-induced endoplasmic reticulum stress: the involvement of thioredoxin-1. Mol Cell Biochem 2015; 410:239-246. [PMID: 26346161 DOI: 10.1007/s11010-015-2557-1if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/03/2015] [Indexed: 11/16/2024]
Abstract
Oxidative stress plays an important role in many diseases and hydrogen peroxide (H2O2) plays a central role in the stress. Gensenoside Rb1 is the one of active ingredients in the traditional Chinese medicine Panax notoginseng. It has been reported that gensenoside Rb1 possesses various pharmacological activities. Here we report that gensenoside Rb1 exhibits potent protective effects against oxidative injury induced by H2O2 through inhibiting endoplasmic reticulum stress in PC12 cells. Cell viability assay demonstrated that incubation with H2O2 for 24 h led to a significant loss of cultured rat PC12 cells, and the cell viability was pronouncedly increased by pretreatment of gensenoside Rb1 for 24 h. H2O2-induced endoplasmic reticulum stress pathway was also suppressed after gensenoside Rb1 pretreatment, which was related with thioredoxin-1 (Trx-1) induction. Trx-1 siRNA abolished the protective effects of gensenoside Rb1. Our results of the present study demonstrate that gensenoside Rb1 shows a potent anti-oxidative effect on cultured PC12 cells by inducing Trx-1 expression.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jin-Jing Jia
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Li-Fang Ma
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|