1
|
Diao B, Cai Y, Song D, Hu Y, Xie B, Kan Y, Hu X. A potential therapeutic molecule target: lncRNA AK023507 inhibits the metastasis of breast cancer by regulating the WNT/DOCK4/β-catenin axis. Breast Cancer Res Treat 2025; 211:727-741. [PMID: 40205246 DOI: 10.1007/s10549-025-07695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/23/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE Breast cancer (BC) has become the most common malignant tumor in women worldwide. This study was carried out to find and validate a novel molecular therapeutic target for BC. METHODS Long non-coding RNA (lncRNA) AK023507 was selected as the study objects through microarray analysis. The function of lncRNA AK023507 was verified by various cell function experiments in vitro, subcutaneous tumorigenesis experiments, and lung metastasis model experiments in vivo. The RNA pull-down experiment and Western blot experiment were used to confirm the mechanism regulation pathway and the recovery experiment was used to verify it. TCGA datasets were used for clinical and immune function prediction analysis. RESULTS In vitro cell function tests and in vivo experiments suggested that overexpression of lncRNA AK023507 inhibited the proliferation and metastasis of BC cells. The RNA pull-down experiment and Western blot analysis validated that lncRNA AK023507 interacted with the dedicator of cytokinesis 4 (DOCK4) protein. Analysis of public databases predicted that DOCK4 is a potential prognostic risk factor associated with epithelial-mesenchymal transition (EMT) and central memory T cell (TCM) cellular immune infiltration. CONCLUSIONS LncRNA AK023507 inhibits the proliferation and metastasis of BC by regulating the DOCK4/β-catenin axis. This discovery will provide new potential therapeutic targets for BC.
Collapse
Affiliation(s)
- Biyu Diao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, No. 96, Fuxue Lane, Lucheng District, Wenzhou, 325000, China
| | - Yangjun Cai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, No. 96, Fuxue Lane, Lucheng District, Wenzhou, 325000, China
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, China
| | - Dandan Song
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, No. 96, Fuxue Lane, Lucheng District, Wenzhou, 325000, China
| | - Yingying Hu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, No. 96, Fuxue Lane, Lucheng District, Wenzhou, 325000, China
| | - Bojian Xie
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, China
| | - Yang Kan
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, China
| | - Xiaoqu Hu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, No. 96, Fuxue Lane, Lucheng District, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Cheng X, Cao Y, Liu X, Li Y, Li Q, Gao D, Yu Q. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med 2024; 14:e70036. [PMID: 39350478 PMCID: PMC11442492 DOI: 10.1002/ctm2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuke Cao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiangyi Liu
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuanheng Li
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Li
- Department of Oncologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Dian Gao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
3
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Liao X, Ozcan M, Shi M, Kim W, Jin H, Li X, Turkez H, Achour A, Uhlén M, Mardinoglu A, Zhang C. Open MoA: revealing the mechanism of action (MoA) based on network topology and hierarchy. Bioinformatics 2023; 39:btad666. [PMID: 37930015 PMCID: PMC10637856 DOI: 10.1093/bioinformatics/btad666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
MOTIVATION Many approaches in systems biology have been applied in drug repositioning due to the increased availability of the omics data and computational biology tools. Using a multi-omics integrated network, which contains information of various biological interactions, could offer a more comprehensive inspective and interpretation for the drug mechanism of action (MoA). RESULTS We developed a computational pipeline for dissecting the hidden MoAs of drugs (Open MoA). Our pipeline computes confidence scores to edges that represent connections between genes/proteins in the integrated network. The interactions showing the highest confidence score could indicate potential drug targets and infer the underlying molecular MoAs. Open MoA was also validated by testing some well-established targets. Additionally, we applied Open MoA to reveal the MoA of a repositioned drug (JNK-IN-5A) that modulates the PKLR expression in HepG2 cells and found STAT1 is the key transcription factor. Overall, Open MoA represents a first-generation tool that could be utilized for predicting the potential MoA of repurposed drugs and dissecting de novo targets for developing effective treatments. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/XinmengLiao/Open_MoA.
Collapse
Affiliation(s)
- Xinmeng Liao
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Mehmet Ozcan
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, 67630 Zonguldak, Turkey
| | - Mengnan Shi
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Woonghee Kim
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Han Jin
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Xiangyu Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Adil Mardinoglu
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, United Kingdom
| | - Cheng Zhang
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden
| |
Collapse
|
5
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
6
|
Morotti A, Gentile F, Lopez G, Passignani G, Valenti L, Locatelli M, Caroli M, Fanizzi C, Ferrero S, Vaira V. Epigenetic Rewiring of Metastatic Cancer to the Brain: Focus on Lung and Colon Cancers. Cancers (Basel) 2023; 15:cancers15072145. [PMID: 37046805 PMCID: PMC10093491 DOI: 10.3390/cancers15072145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Distant metastasis occurs when cancer cells adapt to a tissue microenvironment that is different from the primary organ. This process requires genetic and epigenetic changes in cancer cells and the concomitant modification of the tumor stroma to facilitate invasion by metastatic cells. In this study, we analyzed differences in the epigenome of brain metastasis from the colon (n = 4) and lung (n = 14) cancer and we compared these signatures with those found in primary tumors. Results show that CRC tumors showed a high degree of genome-wide methylation compared to lung cancers. Further, brain metastasis from lung cancer deeply activates neural signatures able to modify the brain microenvironment favoring tumor cells adaptation. At the protein level, brain metastases from lung cancer show expression of the neural/glial marker Nestin. On the other hand, colon brain metastases show activation of metabolic signaling. These signatures are specific for metastatic tumors since primary cancers did not show such epigenetic derangements. In conclusion, our data shed light on the epi/molecular mechanisms that colon and lung cancers adopt to thrive in the brain environment.
Collapse
Affiliation(s)
- Annamaria Morotti
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Francesco Gentile
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giulia Passignani
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Division of Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Manuela Caroli
- Division of Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Claudia Fanizzi
- Division of Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
7
|
Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins L, Guerrero C, Xia H, Henke CA, Lin J. SFPQ Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol 2022; 12:862250. [PMID: 35707369 PMCID: PMC9190464 DOI: 10.3389/fonc.2022.862250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minneapolis, Minneapolis, MN, United States.,The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - LeeAnn Higgins
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Candace Guerrero
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.,The Immunotherapy Research Laboratory, Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Sun M, Zhou D, Wu J, Zhou J, Xu J. Sdy-1 Executes Antitumor Activity in HepG2 and HeLa Cancer Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Mar Drugs 2022; 20:md20020125. [PMID: 35200654 PMCID: PMC8877534 DOI: 10.3390/md20020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
Demethylincisterol A3 (Sdy-1), a highly degraded sterol that we previously isolated from Chinese mangrove Rhizophora mucronata endophytic Pestalotiopsis sp. HQD-6, exhibits potent antitumor activity towards a variety of cancer cells. In this study, we further verified that Sdy-1 effectively inhibited the proliferation and migration of human liver (HepG2) and cervical cancer (HeLa) cells in vitro and it can induce cell apoptosis and arrest the cell cycle in the G1-phase. Mechanistically, we demonstrated that Sdy-1 executes its function via inhibition of the Wnt/β-catenin signaling pathway. Sdy-1 may not inhibit the Wnt signaling pathway through the cascade reaction from upstream to downstream, but directly acts on β-catenin to reduce its transcription level, thereby reducing the level of β-catenin protein and further reducing the expression of downstream related proteins. The possible interaction between Sdy-1 and β-catenin protein was further confirmed by molecular docking studies. In the nude mouse xenograft model, Sdy-1 can also significantly inhibit tumor growth. These results indicated that Sdy-1 is an efficient inhibitor of the Wnt signaling pathway and is a promising antitumor candidate for therapeutic applications.
Collapse
Affiliation(s)
- Mengyu Sun
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China; (M.S.); (D.Z.); (J.W.)
| | - Dongdong Zhou
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China; (M.S.); (D.Z.); (J.W.)
| | - Jingwan Wu
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China; (M.S.); (D.Z.); (J.W.)
| | - Jing Zhou
- Hainan Provincial Fine Chemical Engineering Research Center, School of Life Sciences, Hainan University, Haikou 570228, China;
| | - Jing Xu
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China; (M.S.); (D.Z.); (J.W.)
- Correspondence:
| |
Collapse
|
9
|
Tan S, Chen J. Small interfering-high mobility group A2 attenuates epithelial-mesenchymal transition in thymic cancer cells via the Wnt/β-catenin pathway. Oncol Lett 2021; 22:586. [PMID: 34122637 PMCID: PMC8190778 DOI: 10.3892/ol.2021.12847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
Thymus carcinoma is one of the thymic epithelial neoplasms with high metastasis, which does not have any good treatment at present. High mobility group A2 (HMGA2) is highly expressed in a variety of malignant tumors, such as lung cancer, colon cancer and ovarian cancer and is closely related to tumor invasion and metastasis. The present study aimed to investigate the effect and mechanism of HMGA2 on epithelial-mesenchymal transition (EMT) in thymic cancer cells. IU-TAB-1, A549, HCT-116 and 293T cells were screened by testing the protein expression level of HMGA2 though western blotting and subjected to HMGA2 interference [small interfering (si)-HMGA2]. Cell proliferation was evaluated using the Cell Counting Kit-8 assay. Cell migration and invasion were detected using the Transwell assay. Cell apoptosis was examined using flow cytometry and β-catenin expression was observed by immunofluorescence. The levels of E-cadherin, vimentin, Wnt3a, Wnt5a and β-catenin proteins were determined by western blotting. Among the four cell lines tested, IU-TAB-1 cells demonstrated the highest expression of HMGA2 (P<0.05) and were hence selected for subsequent experiments. Compared with the control group (untransfected cells), si-HMGA2 resulted in significantly decreased proliferation, migration and invasion of IU-TAB-1 cells, whereas apoptosis was increased (P<0.05). The protein expression of vimentin, Wnt3a, Wnt5a and β-catenin was significantly decreased by si-HMGA2 compared with the control group (P<0.05), whereas E-cadherin expression was increased (P<0.05). After treatment with si-HMGA2 in combination with Wnt/β-catenin agonists (SKL2001) or inhibitors (XAV-939), EMT was respectively enhanced or inhibited in IU-TAB-1 cells. Overall, si-HMGA2 may attenuate EMT in thymic cancer cells and the mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sheng Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jili Chen
- Department of Ophthalmology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
10
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
11
|
Ancel J, Dewolf M, Deslée G, Nawrocky-Raby B, Dalstein V, Gilles C, Polette M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs 2020; 211:91-109. [PMID: 32750701 DOI: 10.1159/000510103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Maxime Dewolf
- Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Béatrice Nawrocky-Raby
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium,
| | - Myriam Polette
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| |
Collapse
|
12
|
Liu Y, Zhang Y, Zhang T. Long Non-Coding RNA MACC1-AS1 Is Involved in Distant Recurrence of Hepatocellular Carcinoma After Surgical Resection. Med Sci Monit 2020; 26:e921175. [PMID: 32267834 PMCID: PMC7165246 DOI: 10.12659/msm.921175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background We explored the role of MACC1-AS1 in hepatocellular carcinoma (HCC). Material/Methods Measurement of preoperative plasma levels of MACC1-AS1 was performed by qPCR, and the comparison between the HCC and Control group was performed by unpaired t test. The overexpression of TGF-β1 in SNU-182 and SNU-398 cells was confirmed by qPCR. Results MACC1-AS1 was overexpressed in HCC patients. In comparison to pretreatment level, distant recurrence (DR) was accompanied by increased levels of MACC1-AS1 in plasma, but this phenomenon was not observed in cases of local recurrence (LR) or non-recurrence (NR). In HCC cells, MACC1-AS1 positively regulated the expression of TGF-β1. MACC1-AS1 overexpression resulted in increased invasion and migration rates of HCC cells, while siRNA silencing resulted in reduced rates. Moreover, TGF-β1 overexpression reduced the effects of MACC1-AS1 siRNA silencing. Conclusions MACC1-AS1 is involved in the distant recurrence of HCC, and its actions are possibly mediated by TGF-β1.
Collapse
Affiliation(s)
- Yujuan Liu
- Green Medical Pavilion, Qingdao Sixth People's Hospital of Shandong Province, Qingdao, Shandong, China (mainland)
| | - Yuan Zhang
- Department of Infectious Disease, Qingdao Sixth People's Hospital of Shandong Province, Qingdao, Shandong, China (mainland)
| | - Tianjin Zhang
- Green Medical Pavilion, Qingdao Sixth People's Hospital of Shandong Province, Qingdao, Shandong, China (mainland)
| |
Collapse
|
13
|
Tumor-Derived Exosomes Mediate the Instability of Cadherins and Promote Tumor Progression. Int J Mol Sci 2019; 20:ijms20153652. [PMID: 31357383 PMCID: PMC6696460 DOI: 10.3390/ijms20153652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherins, including E-cadherin, N-cadherin, VE-cadherin, etc., are important adhesion molecules mediating intercellular junctions. The abnormal expression of cadherins is often associated with tumor development and progression. Epithelial–mesenchymal transition (EMT) is the most important step in the metastasis cascade and is accompanied by altered expression of cadherins. Recent studies reveal that as a cargo for intercellular communication, exosomes—one type of extracellular vesicles that can be secreted by tumor cells—are involved in a variety of physiological and pathological processes, especially in tumor metastasis. Tumor-derived exosomes play a crucial role in mediating the cadherin instability in recipient cells by transferring bioactive molecules (oncogenic microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), EMT-related proteins, and others), modulating their local and distant microenvironment, and facilitating cancer metastasis. In turn, aberrant expression of cadherins in carcinoma cells can also affect the biogenesis and release of exosomes. Therefore, we summarize the current research on the crosstalk between tumor-derived exosomes and aberrant cadherin signals to reveal the unique role of exosomes in cancer progression.
Collapse
|
14
|
Yang W, Shi J, Zhou Y, Liu T, Zhan F, Zhang K, Liu N. Integrating proteomics and transcriptomics for the identification of potential targets in early colorectal cancer. Int J Oncol 2019; 55:439-450. [PMID: 31268166 PMCID: PMC6615923 DOI: 10.3892/ijo.2019.4833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. At present, CRC can often be treated upon diagnosis at stage I or II, or when dysplasia is detected; however, 60-70% of cases are not diagnosed until they have developed into late stages of the disease or until the malignancy is identified. Diagnosis of CRC at an early stage remains a challenge due to the absence of early-stage-specific biomarkers. To identify potential targets of early stage CRC, label-free proteomics analysis was applied to paired tumor-benign tissue samples from patients with stage II CRC (n=21). A total of 2,968 proteins were identified; corresponding RNA-Sequencing data were retrieved from The Cancer Genome Atlas-colon adenocarcinoma. Numerous bioinformatics methods, including differential expression analysis, weighted correlation network analysis, Gene Ontology and protein-protein interaction analyses, were applied to the proteomics and transcriptomics data. A total of 111 key proteins, which appeared as both differentially expressed proteins and mRNAs in the hub module, were identified as key candidates. Among these, three potential targets [protein-arginine deiminase type-2 (PADI2), Fc fragment of IgG binding protein (FCGBP) and phosphoserine aminotransferase 1] were identified from the pathological data. Furthermore, the survival analysis indicated that PADI2 and FCGBP were associated with the prognosis of CRC. The findings of the present study suggested potential targets for the identification of early stage CRC, and may improve understanding of the mechanism underlying the occurrence of CRC.
Collapse
Affiliation(s)
- Wang Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jian Shi
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Shandong 250000, P.R. China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Fangling Zhan
- Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
15
|
Yifei Tongluo, a Chinese Herbal Formula, Suppresses Tumor Growth and Metastasis and Exerts Immunomodulatory Effect in Lewis Lung Carcinoma Mice. Molecules 2019; 24:molecules24040731. [PMID: 30781674 PMCID: PMC6412651 DOI: 10.3390/molecules24040731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
This study was aimed to investigate the anti-tumor, anti-metastasis and immunomodulatory effects of Yifei Tongluo (YFTL), a Chinese herbal formula, in Lewis lung carcinoma mice and to explore the underlying mechanisms. LLC cells were inoculated subcutaneously in C57BL/6 mice to establish the Lewis lung carcinoma model. We observed that YFTL effectively inhibited tumor growth and prolonged the overall survival of tumor-bearing mice. Additionally, YFTL treatment resulted in a significantly decreased number of surface lung metastatic lesions compared with the model control group. Meanwhile, TUNEL staining confirmed that the tumors from YFTL-treated mice exhibited a markedly higher apoptotic index. The results suggest that Akt and mitogen-activated protein kinase (MAPKs) pathways may be involved in YFTL-induced apoptosis. The results show that YFTL also inhibited the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, MMP-9, N-cadherin, and Vimentin expression, but increased E-cadherin expression. Mechanistic studies indicated that YFTL could suppress the angiogenesis and the epithelial-mesenchymal transition (EMT) of the tumor through Akt/ERK1/2 and TGFβ1/Smad2 pathways. In addition, YFTL also showed immunomodulatory activities in improving the immunosuppressive state of tumor-bearing mice. Therefore, our findings could support the development of YFTL as a potential antineoplastic agent and a potentially useful anti-metastatic agent for lung carcinoma therapy.
Collapse
|
16
|
Zerumbone inhibits migration in ESCC via promoting Rac1 ubiquitination. Biomed Pharmacother 2019; 109:2447-2455. [DOI: 10.1016/j.biopha.2018.11.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
|
17
|
Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett 2018; 17:2131-2140. [PMID: 30675279 PMCID: PMC6341642 DOI: 10.3892/ol.2018.9862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/17/2018] [Indexed: 01/19/2023] Open
Abstract
Underexpression of microRNA-455-5p (miR-455-5p) in medullary thyroid carcinoma, melanoma, gastric cancer and additional cancer types has been reported, which may be associated with carcinoma development. The present study aimed to evaluate the expression profile and biological role of miR-455-5p in colorectal carcinoma. Carcinoma tissues and adjacent tissue specimens from 40 patients with colorectal cancer were randomly collected. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was conducted to detect the expression levels of miR-455-5p in colorectal carcinoma and adjacent normal tissues. The biological effects of miR-455-5p on selected colorectal cancer cells were assessed using bromodeoxyuridine assays, wound healing migration assays and flow cytometry. Bioinformatics analysis was implemented to predict the potential target genes of miR-455-5p in colorectal cancer. The expression levels of target genes were further validated by RT-qPCR and western blot analysis of the mRNA and protein levels. The results of the experiments demonstrated that miR-455-5p expression was downregulated in colorectal cancer tissues compared with adjacent normal tissues. In colorectal cancer cells (SW-480, HT-29 and HCT-116), miR-455-5p was observed to inhibit cell proliferation and migration while promoting cell apoptosis. Bioinformatics analysis predicted that the oncogene phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was one of the top ranked target genes of miR-455-5p in colorectal cancer cells. This association was validated by RT-qPCR and western blotting. In vivo studies revealed that the expression level of miR-455-5p was significantly downregulated in human colorectal cancer. Further in vitro studies suggested that miR-455-5p may prevent the development of colorectal cancer by downregulating the oncogene PIK3R1. It was concluded that miR-455-5p may target and downregulate PIK3R1 in colorectal cancer.
Collapse
Affiliation(s)
- Jinqiu Wang
- Department of Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yang Lu
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yiyong Zeng
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Leming Zhang
- Department of Proctology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Kongliang Ke
- Department of Proctology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yu Guo
- Department of Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
18
|
Aryankalayil MJ, Chopra S, Makinde A, Eke I, Levin J, Shankavaram U, MacMillan L, Vanpouille-Box C, Demaria S, Coleman CN. Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model. Biomarkers 2018; 23:689-703. [PMID: 29799276 PMCID: PMC6982201 DOI: 10.1080/1354750x.2018.1479771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals. OBJECTIVE To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice. METHODS Mice were whole body irradiated with X-rays (2 Gy-15 Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs. unirradiated controls were identified; feature extraction and classification models were applied to predict dose-differentiating miRNA signature. RESULTS We observed a time and dose responsive alteration in the expression levels of miRNAs. Maximum number of miRNAs were altered at 24-h and 48-h time-points post-irradiation. A 23-miRNA signature was identified using feature selection algorithms and classifier models. An inverse correlation in the expression level changes of miR-17 members, and their targets were observed in whole body irradiated mice and non-human primates. CONCLUSION Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- a Radiation Oncology Branch, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
| | - Sunita Chopra
- a Radiation Oncology Branch, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
| | - Adeola Makinde
- a Radiation Oncology Branch, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
| | - Iris Eke
- a Radiation Oncology Branch, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
| | - Joel Levin
- a Radiation Oncology Branch, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
| | - Uma Shankavaram
- a Radiation Oncology Branch, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
| | | | | | - Sandra Demaria
- c Department of Radiation Oncology , Weill Cornell Medicine , New York , NY , USA
| | - C Norman Coleman
- a Radiation Oncology Branch, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
- d Radiation Research Program, National Cancer Institute , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
19
|
Modeling of mesenchymal hybrid epithelial state and phenotypic transitions in EMT and MET processes of cancer cells. Sci Rep 2018; 8:14323. [PMID: 30254295 PMCID: PMC6156327 DOI: 10.1038/s41598-018-32737-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Based on the transcriptional regulatory mechanisms between microRNA-200 and transcription factor ZEB in an individual cancer cell, a minimal dynamic model is proposed to study the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) processes of cancer cells. It is shown that each cancer cell can exit in any of three phenotypic states: the epithelial (E) state, the mesenchymal (M) state, and the epithelial/mesenchymal (E/M) hybrid state, and the state of cancer cell can interconvert between different states. The phase diagram shows that there are monostable, bistable, and tristable phenotypic states regions in a parameters plane. It is found that different pathway in the phase diagram can correspond to the EMT or the MET process of cancer cells, and there are two possible EMT processes. It is important that the experimental phenomenon of E/M hybrid state appearing in the EMT process but rather in the MET process can be understood through different pathways in the phase diagram. Our numerical simulations show that the effects of noise are opposite to these of time delay on the expression of transcription factor ZEB, and there is competition between noise and time delay in phenotypic transitions process of cancer cells.
Collapse
|
20
|
Canu V, Sacconi A, Lorenzon L, Biagioni F, Lo Sardo F, Diodoro MG, Muti P, Garofalo A, Strano S, D'Errico A, Grazi GL, Cioce M, Blandino G. MiR-204 down-regulation elicited perturbation of a gene target signature common to human cholangiocarcinoma and gastric cancer. Oncotarget 2018; 8:29540-29557. [PMID: 28199974 PMCID: PMC5444686 DOI: 10.18632/oncotarget.15290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
Background & Aims There is high need of novel diagnostic and prognostic tools for tumors of the digestive system, such as gastric cancer and cholangiocarcinoma. We recently found that miR-204 was deeply downregulated in gastric cancer tissues. Here we investigated whether this was common to other tumors of the digestive system and whether this elicited a miR-204-dependent gene target signature, diagnostically and therapeutically relevant. Finally, we assessed the contribution of the identified target genes to the cell cycle progression and clonogenicity of gastric cancer and cholangiocarcinoma cell lines. Methods We employed quantitative PCR and Affymetrix profiling for gene expression studies. In silico analysis aided us to identifying a miR-204 target signature in publicly available databases (TGCA). We employed transient transfection experiments, clonogenic assays and cell cycle profiling to evaluate the biological consequences of miR-204 perturbation. Results We identified a novel miR-204 gene target signature perturbed in gastric cancer and in cholangiocarcinoma specimens. We validated its prognostic relevance and mechanistically addressed its biological relevance in GC and CC cell lines. Conclusions We suggest that restoring the physiological levels of miR-204 in some gastrointestinal cancers might be exploited therapeutically.
Collapse
Affiliation(s)
- Valeria Canu
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Laura Lorenzon
- Faculty of Medicine and Psychology, Surgical and Medical Department of Clinical Sciences, Biomedical Technologies and Translational Medicine, University of Rome 'La Sapienza', Sant'Andrea Hospital, Rome, Italy
| | - Francesca Biagioni
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Maria Grazia Diodoro
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Alfredo Garofalo
- HepatoBiliary Pancreatic Surgery, 'Regina Elena' National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, Ontario, Canada.,Molecular Chemoprevention Group, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Antonietta D'Errico
- Department of Medical and Surgical Sciences, Pathology Unit, S. Orsola-Malpighi Hospital, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gian Luca Grazi
- HepatoBiliary Pancreatic Surgery, 'Regina Elena' National Cancer Institute, Rome, Italy
| | - Mario Cioce
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.,Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Prognostic implication of NOTCH1 in early stage oral squamous cell cancer with occult metastases. Clin Oral Investig 2017; 22:1131-1138. [PMID: 28866747 DOI: 10.1007/s00784-017-2197-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/24/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The objective of this study was to explore the prognostic value of cancer stem cell markers, namely CD133, NANOG, and NOTCH1, in early stage oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS One hundred forty-four patients with early stage (cT1T2N0) OSCC were identified from a pre-existing database of patients with oral cancer. We examined the impact of the immunohistochemical expression of CD133, NANOG, and NOTCH1 in OSCC. Overall survival (OS) curves were calculated using the Kaplan-Meier method. Predictors of outcome were identified using multivariate analysis. RESULTS We found that CD133, NANOG, and NOTCH1 were significantly associated with lymph node metastasis, and NOTCH1 was also significantly associated with depth of invasion and locoregional recurrence. CONCLUSIONS NOTCH1 was identified as an independent prognostic factor for OS. CLINICAL RELEVANCE NOTCH1 might prove to be a useful indicator for high-risk patients with occult metastases from early stage OSCC.
Collapse
|
22
|
Yiqi Huayu Jiedu Decoction Inhibits the Invasion and Metastasis of Gastric Cancer Cells through TGF- β/Smad Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1871298. [PMID: 28539961 PMCID: PMC5429934 DOI: 10.1155/2017/1871298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022]
Abstract
Background. Yiqi Huayu Jiedu Decoction (YHJD) can obviously improve the quality of life of those patients with gastric cancer and prolong their survival. Methods. In vitro experiments, we observe YHJD's effect on the cells' proliferation by MTT assay. Cell adhesion assay, wound-healing assay, and Transwell invasion assay serve to detect its influence on cells' adhesion, migration, and invasion, respectively. Inhibitor (10 μM/L of SB431542) and activator (10 ng/mL of TGF-β) of TGF-β/Smad pathway were used to estimate whether YHJD's impact on the biological behavior of gastric cancer cells was related to TGF-β/Smad pathway. In in vivo studies, YHJD was administered to the nude mice transplanted with gastric cancer to observe its effect on the tumor. Western blotting and immunohistochemical assay were used to test relevant cytokines of TGF-β/Smad pathway and epithelial-mesenchymal transition (EMT) in MGC-803 cells and the tumor bearing nude mice. Results. YHJD inhibited proliferation, adhesion, migration, and invasion of MGC-803 gastric cancer cells in vitro. In in vivo studies, YHJD reduced the volume of the transplanted tumors. It also enhanced the expression of E-cadherin and decreased the levels of N-cadherin, TGF-β, Snail, and Slug in both MGC-803 cells and the transplanted tumor by western blot assay. The immunohistochemical assay revealed that YHJD raised E-cadherin in the tumors of the mice; on the contrary, the expression of N-cadherin, Twist, vimentin, TGF-βR I, p-Smad2, p-Smad3, Snail, and Slug reduced. Conclusion. YHJD can effectively inhibit the invasion and metastasis of gastric cancer cells. The mechanism may be related to TGF-β/Smad pathway.
Collapse
|
23
|
Hu CE, Gan J. TRIM37 promotes epithelial‑mesenchymal transition in colorectal cancer. Mol Med Rep 2017; 15:1057-1062. [PMID: 28098873 PMCID: PMC5367363 DOI: 10.3892/mmr.2017.6125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
There is substantial research on the oncogenic role of tripartite motif containing 37 (TRIM37); however, its importance in colorectal cancer (CRC) remains to be elucidated. The present study used reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting to detect the expression level of TRIM37 in CRC. The importance of TRIM37 in cell proliferation, invasion and metastasis of CRC were investigated through overexpressing or knocking-down of TRIM37 in CRC cell lines, to observe its function. The present study revealed that TRIM37 was overexpressed in human CRC tissues. High TRIM37 expression resulted in increased CRC proliferation, migration and invasion. Mechanistically, it was confirmed that TRIM37 enhanced invasion and metastasis of CRC via the epithelial-mesenchymal transition pathway. In conclusion, the present study suggested that TRIM3 may contribute to CRC and act as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Cheng-En Hu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jun Gan
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
24
|
Ahmad G, Amiji MM. Cancer stem cell-targeted therapeutics and delivery strategies. Expert Opin Drug Deliv 2016; 14:997-1008. [DOI: 10.1080/17425247.2017.1263615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gulzar Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Wang C, Zhang W, Zhang L, Chen X, Liu F, Zhang J, Guan S, Sun Y, Chen P, Wang D, Un Nesa E, Cheng Y, Yousef GM. miR-146a-5p mediates epithelial-mesenchymal transition of oesophageal squamous cell carcinoma via targeting Notch2. Br J Cancer 2016; 115:1548-1554. [PMID: 27832663 PMCID: PMC5155362 DOI: 10.1038/bjc.2016.367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/27/2016] [Accepted: 10/08/2016] [Indexed: 02/08/2023] Open
Abstract
Background: Our previous study found that dysregulated microRNA-146a-5p (miR-146a-5p) is involved in oesophageal squamous cell cancer (ESCC) proliferation. This article aimed to evaluate its detailed mechanisms in ESCC epithelial–mesenchymal transition (EMT) progression. Methods: Invasion assay, qRT-PCR and western blotting were used to validate the roles of miR-146a-5p and Notch2 in EMT progression. miRNA target gene prediction databases and dual-luciferase reporter assay were used to validate the target gene. Results: miR-146a-5p inhibitor led to increase of invaded ESCC cells, while miR-146a-5p mimics inhibited invasion ability of ESCC cells. Protein level of E-cadherin decreased, whereas those of Snail and Vimentin increased in the anti-miR-146a-5p group, which demonstrated that miR-146a-5p inhibits EMT progression of ESCC cells. miRNA target gene prediction databases indicated the potential of Notch2 as a direct target gene of miR-146a-5p and dual-luciferase reporter assay validated it. Importantly, shRNA-Notch2 restrained EMT and partially abrogated the inhibiting effects of miR-146a-5p on EMT progression of ESCC cells. Conclusions: miR-146a-5p functions as a tumour-suppressive miRNA targeting Notch2 and inhibits the EMT progression of ESCC.
Collapse
Affiliation(s)
- Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenxue Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, Shandong, China
| | - Jing Zhang
- Department of Medical Genetics, National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences-School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Sun
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ding Wang
- Department of Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - George M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
26
|
Chen Y, Liu W, Wang P, Hou H, Liu N, Gong L, Wang Y, Ji K, Zhao L, Wang P. Halofuginone inhibits radiotherapy-induced epithelial-mesenchymal transition in lung cancer. Oncotarget 2016; 7:71341-71352. [PMID: 27533085 PMCID: PMC5342082 DOI: 10.18632/oncotarget.11217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is used to treat many different human tumors. Paradoxically, radiation can activate TGF-β1 signaling and induce the epithelial-mesenchymal transition (EMT), which is associated with enhanced tumor progression. This study investigated the inhibitory effects of halofuginone, a plant-derived alkaloid that has been shown to inhibit TGF-β1 signaling, on radiation-induced EMT and explored the underlying mechanisms using a Lewis lung carcinoma (LLC) xenograft model. The cells and animals were divided into five treatment groups: Normal Control (NC), Halofuginone alone (HF), Radiotherapy alone (RT), Radiotherapy combined with Halofuginone (RT+HF), and Radiotherapy combined with the TGF-β1 inhibitor SB431542 (RT+SB). Radiation induced EMT in lung cancer cells and xenografts, as evidenced by increased expression of the mesenchymal markers N-cadherin and Vimentin, and reduced expression of the epithelial markers E-cadherin and Cytokeratin. Further, radiotherapy treatment increased the migration and invasion of LLC cells. Halofuginone reversed the EMT induced by radiotherapy in vitro and in vivo, and inhibited the migration and invasion of LLC cells. In addition, TGF-β1/Smad signaling was activated by radiotherapy and the mRNA expression of Twist and Snail was elevated; this effect was reversed by halofuginone or the TGF-β1 inhibitor SB431542. Our results demonstrate that halofuginone inhibits radiation-induced EMT, and suggest that suppression of TGF-β1 signaling may be responsible for this effect.
Collapse
Affiliation(s)
- Yang Chen
- Department of Radiation Oncology, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Weishuai Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Peng Wang
- Department of Radiation Oncology, Peking University International Hospital, Beijing 102206, China
| | - Hailing Hou
- Department of Radiation Oncology, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ningbo Liu
- Department of Radiation Oncology, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Linlin Gong
- Department of Radiation Oncology, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Youyou Wang
- Department of Radiation Oncology, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Kai Ji
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Lujun Zhao
- Department of Radiation Oncology, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
27
|
Singh J, Boopathi E, Addya S, Phillips B, Rigoutsos I, Penn RB, Rattan S. Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a. Am J Physiol Gastrointest Liver Physiol 2016; 311:G964-G973. [PMID: 27634012 PMCID: PMC5130548 DOI: 10.1152/ajpgi.00290.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/13/2016] [Indexed: 01/31/2023]
Abstract
A comprehensive genomic and proteomic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of internal anal sphincter (IAS) smooth muscle contractile phenotype and basal tone. miRNA profiling, genome-wide expression, validation, and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a, and rno-miR-206, were found to be upregulated in aging IAS. qPCR confirmed the upregulated expression of these miRNAs and downregulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, Srf, Smad1, Smad2, Rhoa/Rock2, Fn1, Tagln v2, Klf4, and Acta2) involved in regulation of smooth muscle contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF, and SM22α protein expression, RhoA-signaling, and a decrease in basal and agonist [U-46619 (thromboxane A2 analog)]-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Last, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone and suggests that miR-133a is a feasible therapeutic target in aging-associated rectoanal incontinence.
Collapse
Affiliation(s)
- Jagmohan Singh
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Ettickan Boopathi
- 2Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Sankar Addya
- 3Kimmel Cancer Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Benjamin Phillips
- 4Department of Surgery, Division of Colorectal Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Isidore Rigoutsos
- 5Computational Medicine Center, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B. Penn
- 2Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Satish Rattan
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| |
Collapse
|
28
|
MicroRNA-124 inhibits proliferation, invasion, migration and epithelial-mesenchymal transition of cervical carcinoma cells by targeting astrocyte-elevated gene-1. Oncol Rep 2016; 36:2321-8. [DOI: 10.3892/or.2016.5025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
|
29
|
Carnero A, Lleonart M. The hypoxic microenvironment: A determinant of cancer stem cell evolution. Bioessays 2016; 38 Suppl 1:S65-74. [DOI: 10.1002/bies.201670911] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Amancio Carnero
- Oncohematology and Genetic Department, Molecular Biology of Cancer Group; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla); Seville Spain
| | - Matilde Lleonart
- Pathology Department, Oncology and Pathology Group; Institut de Recerca Hospital Vall d'Hebron; Barcelona Spain
| |
Collapse
|
30
|
Zoni E, van der Pluijm G. The role of microRNAs in bone metastasis. J Bone Oncol 2016; 5:104-108. [PMID: 27761367 PMCID: PMC5063223 DOI: 10.1016/j.jbo.2016.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 01/07/2023] Open
Abstract
The skeleton represents a common site of metastases for osteotropic cancers such as prostate and breast tumors and novel therapeutic targets and new markers for the monitoring of bone lesions are urgently needed. The formation of bone metastases is a complex process that starts at the level of the confined tumor and that is characterized by a dynamic crosstalk between the primary cancer and the future metastatic site, the bone. Factors released by the primary tumor contribute to prepare a fertile “soil”, where a “pre-metastatic niche” is established prior to future colonization by cancer cells. When the primary cancer progress from the confined disease to its invasive phase, tumor cells will acquire an invasive phenotype, enter into the circulation and colonize the previously prepared site where they will establish a “metastatic niche”. Among the variety of molecules that participate in the metastatic cascade, microRNAs are a class of small non-coding RNA that play an important role in the development of metastatic bone lesions. Many studies have addressed the role of small non-coding RNAs (miRs) in metastasis in osteotropic cancers and have highlighted the role of miRs as oncogenes (oncomiRs) or tumor suppressor miRs. In this review we present describe the role of miRs in the processing of the supportive bone microenvironment prior and after the bone colonization by cancer cells. Finally, future therapeutic strategies and perspectives are also discussed.
Collapse
Affiliation(s)
- Eugenio Zoni
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
31
|
Satelli A, Batth IS, Brownlee Z, Rojas C, Meng QH, Kopetz S, Li S. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci Rep 2016; 6:28910. [PMID: 27363678 PMCID: PMC4929464 DOI: 10.1038/srep28910] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/13/2016] [Indexed: 12/29/2022] Open
Abstract
Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Izhar Singh Batth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zachary Brownlee
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christina Rojas
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing H. Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Departments of Surgical Oncology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
32
|
Huang M, Lou D, Wang YP, Cai Q, Li HH. Paraquat inhibited differentiation in human neural progenitor cells (hNPCs) and down regulated miR-200a expression by targeting CTNNB1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:205-211. [PMID: 26878281 DOI: 10.1016/j.etap.2016.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Paraquat (PQ) exposure influences central nervous system and results in serious neurotoxicity in vitro and in vivo. However, the role of PQ exposure in the development of CNS remains unclear. In present study, we investigated microRNAs (miRNAs) expression profiling and cell differential status following PQ treatment in human neural progenitor cells (hNPCs) as well as involved mechanism. Microarray profiling of miRNAs expression of PQ treated cell line and their corresponding control was determined. Differentially expression miRNAs were confirmed by quantitative real time PCR. Neural cell differentiation was performed with immunocytochemical analysis. Predicated target of miRNA was identified with luciferase reports and quantitatively analyzed using western blotting. Our results found PQ dramatically suppressed neural cell differentiation ability. 43 differentially expressed miRNAs were identified in PQ treated cells. The expression levels were over expressed in 25 miRNAs, whereas 18 miRNAs were suppressed. More importantly, we observed that miR-200a expression level to be lower in PQ treated cells. Luciferase assay and protein expression results confirmed the direct binding effect between CTNNB1 and miR-200a following PQ exposure. Collectively, our data suggested that down regulation of miR-200a in the PQ treated neural stem cell significantly participated in the differentiation processes and subsequently resulting in decreased cell viability, increased epithelial-mesenchymal transition process and the inhibited differential through CTNNB1 pathway.
Collapse
Affiliation(s)
- Min Huang
- The Department of Occupational and Environment Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan 750004, People's Republic of China.
| | - Dan Lou
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, People's Republic of China
| | - Ya-Peng Wang
- The Department of Occupational and Environment Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan 750004, People's Republic of China
| | - Qian Cai
- The Department of Occupational and Environment Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan 750004, People's Republic of China
| | - Hong-hui Li
- The Department of Occupational and Environment Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan 750004, People's Republic of China
| |
Collapse
|
33
|
Zhao N, Sun BC, Zhao XL, Wang Y, Sun HZ, Dong XY, Meng J, Gu Q. Changes in microRNAs associated with Twist-1 and Bcl-2 overexpression identify signaling pathways. Exp Mol Pathol 2015; 99:524-32. [DOI: 10.1016/j.yexmp.2015.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/20/2015] [Indexed: 01/27/2023]
|
34
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
35
|
Roles of NOTCH1 as a Therapeutic Target and a Biomarker for Lung Cancer: Controversies and Perspectives. DISEASE MARKERS 2015; 2015:520590. [PMID: 26491213 PMCID: PMC4600509 DOI: 10.1155/2015/520590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 02/08/2023]
Abstract
Lung cancer is one of the most common types of human malignancies and the leading cause of cancer-related death. Patients with surgically resectable early stage lung cancer are more likely curable, but currently only a small population of patients can be diagnosed at such a stage, partly due to our incomplete understanding of the biology of lung cancer and the lack of diagnostic and prognostic biomarkers. Recent studies have shown that NOTCH1 is a critical regulator of human carcinogenesis and has been implicated in multiple steps of cancer development and progression. Herein, we review recent findings about the role of NOTCH1 in lung cancer and discuss its potential usefulness as both a therapeutic target and a biomarker for lung cancer.
Collapse
|
36
|
Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett 2015; 380:205-15. [PMID: 26272180 DOI: 10.1016/j.canlet.2015.07.044] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/19/2022]
Abstract
Innate resistance to various therapeutic interventions is a hallmark of cancer. In recent years, however, acquired resistance has emerged as a daunting challenge to anticancer treatments including chemotherapy, radiation and targeted therapy, which abolishes the efficacy of otherwise successful regimens. Cancer cells gain resistance through a variety of mechanisms in both primary and metastatic sites, involving cell intrinsic and extrinsic factors, but the latter often remains overlooked. Mounting evidence suggests critical roles played by the tumor microenvironment (TME) in multiple aspects of cancer progression particularly therapeutic resistance. The TME decreases drug penetration, confers proliferative and antiapoptotic advantages to surviving cells, facilitates resistance without causing genetic mutations and epigenetic changes, collectively modifying disease modality and distorting clinical indices. Recent studies have set the baseline for future investigation on the intricate relationship between cancer resistance and the TME in pathological backgrounds. This review provides an updated outline of research advances in TME biology and highlights the prospect of targeting the TME as an essential strategy to overcome cancer resistance and improve therapeutic outcomes through precise intervention. In the long run, continued inputs into translational medicine remain highly desired to achieve durable responses in the current era of personalized clinical oncology.
Collapse
Affiliation(s)
- Yu Sun
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai 200031, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China; VA Seattle Medical Center, Seattle, WA 98108, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|