1
|
Palasz E, Gasiorowska-Bien A, Drapich P, Niewiadomski W, Niewiadomska G. Steady Moderate Exercise Confers Resilience Against Neurodegeneration and Neuroinflammation in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2025; 26:1146. [PMID: 39940916 PMCID: PMC11818830 DOI: 10.3390/ijms26031146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Intensive aerobic exercise slows the progression of movement disorders in Parkinson's disease (PD) and is therefore recommended as an important component of treatment for PD patients. Studies in animal models of PD have shown that vigorous exercise has neuroprotective effects, and emerging evidence suggests that it may be a disease-modifying treatment in humans. However, many people with PD may not be able to participate in vigorous exercise because of multiple medical conditions that severely limit their physical activity. In this study, we have shown that chronic MPTP treatment in sedentary mice resulted in loss of dopaminergic neurons in the SNpc, decreased levels of neurotrophins, BDNF and GDNF, and increased levels of inflammatory markers and pro-inflammatory changes in immunocompetent cells. Moderate exercise, initiated both before and after chronic MPTP treatment, significantly attenuated the loss of dopaminergic neurons and increased BDNF and GDNF levels even above those in sedentary control mice. No signs of inflammation were observed in MPTP-treated mice, either when training began before or after MPTP treatment. Training induced beneficial changes in the dopaminergic system, increased levels of neurotrophins and suppression of inflammation were similar for both steady moderate (present data) and intense training (our previously published data). This suggests that there is a kind of saturation when the percentage of rescued dopaminergic neurons reaches the highest possible value, and therefore further increases in exercise intensity do not enhance neuroprotection. In conclusion, our present results compared with the previous data show that increasing exercise intensity beyond the level used in this study does not increase the neuroprotective effect of aerobic training in a mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Ewelina Palasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Anna Gasiorowska-Bien
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
| | - Patrycja Drapich
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
| | - Wiktor Niewiadomski
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
| | - Grazyna Niewiadomska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.G.-B.); (P.D.); (W.N.)
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Ishaq S, Shah IA, Lee SD, Wu BT. Effects of exercise training on nigrostriatal neuroprotection in Parkinson's disease: a systematic review. Front Neurosci 2025; 18:1464168. [PMID: 39844853 PMCID: PMC11752748 DOI: 10.3389/fnins.2024.1464168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Parkinson's disease (PD) is characterized by progressive neurodegeneration within the nigrostriatum, leading to motor dysfunction. This systematic review aimed to summarize the effects of various exercise training regimens on protein or gene expression within the nigrostriatum and their role in neuroprotection and motor function improvement in animal models of Parkinson's disease (PD). Methods PubMed, EMBASE, and Web of Science were searched up to June 2024 and included sixteen studies that adhere to PRISMA guidelines and CAMARADES checklist scores ranging from 4 to 6 out of 10. Various exercise training regimens, administered 5 days per week for 6.5 weeks, were applied to MPTP, 6-OHDA, and PFF-α-synuclein-induced PD animal models. Results Exercise training was found to downregulate the inflammatory pathway by attenuating α-synuclein aggregation, inhibiting the TLR/MyD88/IκBα signaling cascade and NF-κB phosphorylation, and decreasing pro-inflammatory cytokines IL-1β and TNF-α while increasing anti-inflammatory cytokines IL-10 and TGF-β within the nigrostriatum. It also inhibited the ASC and NLRP3 inflammasome complex and reduced the BAX/ Bcl-2 ratio and caspase-1/3 proteins, thereby decreasing neuronal apoptosis in the nigrostriatum. Exercise training elevated the expression of Pro-BDNF, BDNF, GDNF, TrkB, and Erk1/2, providing neurotrophic support to dopaminergic neurons. Furthermore, it upregulated the dopaminergic signaling pathway by increasing the expression of TH, DAT, PSD-95, and synaptophysin in the nigrostriatum. Discussion The findings suggested that exercise training downregulated inflammatory and apoptotic pathways while upregulated BDNF/GDNF pathways and dopaminergic signaling within the nigrostriatum. These molecular changes contributed to neuroprotection, reduced dopaminergic neuron loss, and improved motor function in PD animal models. Systematic review registration CRD42024484537 https://www.crd.york.ac.uk/prospero/#recordDetails.
Collapse
Affiliation(s)
- Shahid Ishaq
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Iqbal Ali Shah
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Pinho RA, Muller AP, Marqueze LF, Radak Z, Arida RM. Physical exercise-mediated neuroprotective mechanisms in Parkinson's disease, Alzheimer's disease, and epilepsy. Braz J Med Biol Res 2024; 57:e14094. [PMID: 39607205 DOI: 10.1590/1414-431x2024e14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Research suggests that physical exercise is associated with prevention and management of chronic diseases. The influence of physical exercise on brain function and metabolism and the mechanisms involved are well documented in the literature. This review provides a comprehensive overview of the potential implications of physical exercise and the molecular benefits of exercise in Parkinson's disease, Alzheimer's disease, and epilepsy. Here, we present an overview of the effects of exercise on various aspects of metabolism and brain function. To this end, we conducted an extensive literature search of the PubMed, Web of Science, and Google Scholar databases to identify articles published in the past two decades. This review delves into key aspects including the modulation of neuroinflammation, neurotrophic factors, and synaptic plasticity. Moreover, we explored the potential role of exercise in advancing therapeutic strategies for these chronic diseases. In conclusion, the review highlights the importance of regular physical exercise as a complementary non-pharmacological treatment for individuals with neurological disorders such as Alzheimer's, Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- R A Pinho
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
- Rede Nacional de Neurociência e Atividade Física, Brasil
| | - A P Muller
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - L F Marqueze
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
| | - Z Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - R M Arida
- Rede Nacional de Neurociência e Atividade Física, Brasil
- Departamento de Fisiologia, Universidade Federal de São Paulo, Botucatu, SP, Brasil
| |
Collapse
|
4
|
Hu YC, Kusters CDJ, Paul KC, Folle AD, Zhang K, Shih IF, Keener AM, Bronstein JM, Ritz BR. Lifetime physical activity influences Parkinson's disease progression. Parkinsonism Relat Disord 2024; 128:107122. [PMID: 39241506 DOI: 10.1016/j.parkreldis.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
INTRODUCTION Past studies suggested that Parkinson's disease (PD) patients who engage in physical activity (PA) after diagnosis have slower motor progression. Here, we examine the influence of lifetime PA prior to PD onset on motor, cognitive, and overall functional decline among PD patients. METHODS For 495 participants in the Parkinson's Environment and Gene (PEG) studies, we collected PA-related measures through interviews and quantified these using metabolic equivalents (MET) scores. PD progression was defined as time to a Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) conversion to ≥ 35 points, Hoehn and Yahr (H&Y) ≥ 3, and a 4-point decline in Mini-Mental State Examination (MMSE). We used Cox frailty models to estimate hazard ratios and inverse probability weights to account for heterogeneity by enrollment wave and censoring. RESULTS For PD patients reporting the highest lifetime strenuous MET-h/wk (highest quartile), we estimated a lower HR for time-to-UPDRS-III-conversion (Q4 vs. Q1: HR = 0.56, 95 % CI = [0.36, 0.87]). Additionally, having engaged in any competitive sport also reduced the risk of reaching a UPDRS-III ≥ 35 points (low vs. none: HR = 0.61, 95 % CI = [0.44, 0.86]; high vs. none: HR = 0.63; 95 % CI = [0.44,0.86]); high levels of sports activities also affected progression on the H&Y scale (high vs. none: HR = 0.73; 95 % CI = [0.46,1.00]). Lifetime PA measures did not affect time-to-MMSE decline. CONCLUSION Our study suggests that PD patients who engaged in higher levels of lifetime strenuous PA and competitive sports prior to PD diagnosis experience slower motor and overall functional decline, suggesting that lifetime PA may contribute to a physical reserve advantageous for PD patients.
Collapse
Affiliation(s)
- Yang Cheng Hu
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Cynthia D J Kusters
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - I-Fan Shih
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Parkinson's Disease Research, Education, and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Langeskov-Christensen M, Franzén E, Grøndahl Hvid L, Dalgas U. Exercise as medicine in Parkinson's disease. J Neurol Neurosurg Psychiatry 2024; 95:1077-1088. [PMID: 38418216 DOI: 10.1136/jnnp-2023-332974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Parkinson's disease (PD) is an incurable and progressive neurological disorder leading to deleterious motor and non-motor consequences. Presently, no pharmacological agents can prevent PD evolution or progression, while pharmacological symptomatic treatments have limited effects in certain domains and cause side effects. Identification of interventions that prevent, slow, halt or mitigate the disease is therefore pivotal. Exercise is safe and represents a cornerstone in PD rehabilitation, but exercise may have even more fundamental benefits that could change clinical practice. In PD, the existing knowledge base supports exercise as (1) a protective lifestyle factor preventing the disease (ie, primary prevention), (2) a potential disease-modifying therapy (ie, secondary prevention) and (3) an effective symptomatic treatment (ie, tertiary prevention). Based on current evidence, a paradigm shift is proposed, stating that exercise should be individually prescribed as medicine to persons with PD at an early disease stage, alongside conventional medical treatment.
Collapse
Affiliation(s)
- Martin Langeskov-Christensen
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Neurology, Viborg Regional Hospital, Viborg, Denmark
| | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden
- Department of Physical Therapy, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Grøndahl Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
- The Danish MS Hospitals, Ry and Haslev, Denmark
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Wang K, Cheng H, Yang B, Liu D, Maria M, Wu Q, Qiao J. Assessment of cardiorespiratory fitness in Chinese patients with early to mid-stage Parkinson's disease. Int J Neurosci 2024:1-10. [PMID: 38963402 DOI: 10.1080/00207454.2024.2377140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE To evaluate cardiorespiratory fitness in patients with early to mid-stage Parkinson's disease by cardiopulmonary exercise test (CPET) on a stationary cycle ergometer. METHODS To compare the differences in each index of the cardiopulmonary exercise test between the two groups of subjects; general data such as disease duration, medication use and exercise habits were also collected. RESULTS (1) Finally, 36 Parkinson's disease patients and 12 healthy controls successfully completed the cardiopulmonary exercise test without any adverse events. (2) The V'O2peak, Metspeak, RERpeak, MVVpeak, Wpeak, HRpeak, HRpeak/pre, percentage of HRR-1 min decay > 12 bpm, SBPpeak in the Parkinson's disease group were lower than those in the control group (p < .05, each). Detailed data: V'O2peak (15.7 ± 4.5vs21.5 ± 3.6 ml/kg/min, p < .01), Metspeak (4.5 ± 1.3 vs 6.1 ± 1.0, p < .01), RERpeak (1.04 ± 0.10 vs 1.15 ± 0.10, p = .001), MVVpeak (37.22 ± 11.58 vs 53.00 ± 16.85L/min, p = .009), Wpeak (49.17 ± 29.72 vs 49.17 ± 29.72W, p < .01), HRpeak (111.08 ± 16.67 vs 111.08 ± 16.67bpm, p < .01), HRpeak/pre (71.19 ± 10.06 vs 96.00 ± 21.13, p = .002), percentage of HRR-1min decay > 12bpm (33.3% vs 100%, p < .01), systolic blood pressure (155.81 ± 31.83 vs 175.83 ± 17.84 mmHg, p = .01). (3) Divided Parkinson's disease patients into high V'O2peak group (V'O2peak ≥ 15 mL/kg/min) and low V'O2peak group (V'O2peak < 15 mL/kg/min). The age of patients, Hoehn-Yahr grade and incidence of symptom fluctuation in high V'O2peak group were lower (p < .05, respectively), percentage of males and percentage of HRR-1 min decay > 12 bpm were higher (p < .05, respectively); p < .05 is considered a statistically significant difference. Detailed data: age of patients(61.05 ± 6.93 vs 68.57 ± 7.99 years, p = .005), Hoehn-Yahr grade(1.75 ± 0.48 vs 2.18 ± 0.64, p = .028), incidence of symptom fluctuation (59.1 vs 92.9%, p = .03), percentage of males (77.7 vs 42.9%, p = .041), percentage of HRR-1 min decay > 12 bpm (50 vs 7.1%, p = .008). CONCLUSIONS Cardiopulmonary exercise test was safe to perform and the cardiorespiratory fitness is significantly reduced in patients with early and middle stage Parkinson's disease. Patients with Parkinson's disease presented blunted heart rate and systolic blood pressure responses to exercise test. Females, older age, fluctuating symptoms, high H-Y staging and higher activities of daily living may be associated with lower oxygen uptake.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Hao Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Bo Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Dan Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Maria Maria
- Department of Rehabilitation Medicine and Physiotherapy, School of Clinical Medicine, Xi'an Jiaotong University, Shaanxi, China
| | - Qiong Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jin Qiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
7
|
Zheng Q, Liu H, Gao Y, Cao G, Wang Y, Li Z. Ameliorating Mitochondrial Dysfunction for the Therapy of Parkinson's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311571. [PMID: 38385823 DOI: 10.1002/smll.202311571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) is currently the second most incurable central neurodegenerative disease resulting from various pathogenesis. As the "energy factory" of cells, mitochondria play an extremely important role in supporting neuronal signal transmission and other physiological activities. Mitochondrial dysfunction can cause and accelerate the occurrence and progression of PD. How to effectively prevent and suppress mitochondrial disorders is a key strategy for the treatment of PD from the root. Therefore, the emerging mitochondria-targeted therapy has attracted considerable interest. Herein, the relationship between mitochondrial dysfunction and PD, the causes and results of mitochondrial dysfunction, and major strategies for ameliorating mitochondrial dysfunction to treat PD are systematically reviewed. The study also prospects the main challenges for the treatment of PD.
Collapse
Affiliation(s)
- Qing Zheng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Hubei Key Laboratory of Natural Products Research and Development and College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Guozhi Cao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yusong Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
8
|
Thirupathi A, Marqueze LF, Outeiro TF, Radak Z, Pinho RA. Physical Exercise-Induced Activation of NRF2 and BDNF as a Promising Strategy for Ferroptosis Regulation in Parkinson's Disease. Neurochem Res 2024; 49:1643-1654. [PMID: 38782838 DOI: 10.1007/s11064-024-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.
Collapse
Affiliation(s)
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo A Pinho
- Faculty of Sports Science, Ningbo University, Ningbo, China.
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
9
|
Zhang X, Zhao Y, Guo D, Luo M, Zhang Q, Zhang L, Zhang D. Exercise Improves Heart Function after Myocardial Infarction: The Merits of AMPK. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07564-2. [PMID: 38436878 DOI: 10.1007/s10557-024-07564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND AMPK is considered an important protein signaling pathway that has been shown to exert prominent cardioprotective effects on the pathophysiological mechanisms of numerous diseases. Following myocardial infarction, severe impairment of cardiac function occurs, leading to complications such as heart failure and arrhythmia. Therefore, protecting the heart and improving cardiac function are important therapeutic goals after myocardial infarction. Currently, there is substantial ongoing research on exercise-centered rehabilitation training, positioning exercise training as a significant nonpharmacological approach for preventing and treating numerous cardiovascular diseases. OBJECTIVE Previous studies have reported that exercise can activate AMPK phosphorylation and upregulate the AMPK signaling pathway to play a cardioprotective role in coronary artery disease, but the specific mechanism involved remains to be elucidated. CONCLUSION This review discusses the role and mechanism of the exercise-mediated AMPK pathway in improving postinfarction cardiac function through existing studies and describes the mechanism of exercise-induced myocardial repair of AMPK from multiple perspectives to formulate a reasonable and optimal exercise rehabilitation program for the prevention and treatment of myocardial infarction patients in the clinic.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yi Zhao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Dafen Guo
- Outpatient Department Office, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Mingxian Luo
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qing Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Li Zhang
- Discipline Inspection and Supervision Office of Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
10
|
Morella I, Negro M, Dossena M, Brambilla R, D'Antona G. Gut-muscle-brain axis: Molecular mechanisms in neurodegenerative disorders and potential therapeutic efficacy of probiotic supplementation coupled with exercise. Neuropharmacology 2023; 240:109718. [PMID: 37774944 DOI: 10.1016/j.neuropharm.2023.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Increased longevity is often associated with age-related conditions. The most common neurodegenerative disorders in the older population are Alzheimer's disease (AD) and Parkinson's disease (PD), associated with progressive neuronal loss leading to functional and cognitive impairments. Although symptomatic treatments are available, there is currently no cure for these conditions. Gut dysbiosis has been involved in the pathogenesis of AD and PD, thus interventions targeting the "gut-brain axis" could potentially prevent or delay these pathologies. Recent evidence suggests that the skeletal muscle and the gut microbiota can affect each other via the "gut-muscle axis". Importantly, cognitive functions in AD and PD patients significantly benefit from physical activity. In this review, we aim to provide a comprehensive picture of the crosstalk between the brain, the skeletal muscle and the gut microbiota, introducing the concept of "gut-muscle-brain axis". Moreover, we discuss human and animal studies exploring the modulatory role of exercise and probiotics on cognition in AD and PD. Collectively, the findings presented here support the potential benefits of physical activity and probiotic supplementation in AD and PD. Further studies will be needed to develop targeted and multimodal strategies, including lifestyle changes, to prevent or delay the course of these pathologies.
Collapse
Affiliation(s)
- Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Qiu X, Lu P, Zeng X, Jin S, Chen X. Study on the Mechanism for SIRT1 during the Process of Exercise Improving Depression. Brain Sci 2023; 13:brainsci13050719. [PMID: 37239191 DOI: 10.3390/brainsci13050719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The mechanism behind the onset of depression has been the focus of current research in the neuroscience field. Silent information regulator 1 (SIRT1) is a key player in regulating energy metabolism, and it can regulate depression by mediating the inflammatory response (e.g., nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β)), gene expression in the nucleus accumben (NAc) and CA1 region of the hippocampus (e.g., nescient helix-loop-helix2 (NHLH2), monoamine oxidase (MAO-A), and 5-Hydroxyindole-3-acetic acid (5-HIAA)), and neuronal regeneration in the CA3 region of the hippocampus. Exercise is an important means to improve energy metabolism and depression, but it remains to be established how SIRT1 acts during exercise and improves depression. By induction and analysis, SIRT1 can be activated by exercise and then improve the function of the hypothalamic-pituitary-adrenal (HPA) axis by upregulating brain-derived neurotrophic factors (BDNF), inhibit the inflammatory response (suppression of the NF-κB and TNF-α/indoleamine 2,3-dioxygenase (IDO)/5-Hydroxytryptamine (5-HT) pathways), and promote neurogenesis (activation of the insulin-like growth factor1 (IGF-1) and growth-associated protein-43 (GAP-43) pathways, etc.), thereby improving depression. The present review gives a summary and an outlook based on this finding and makes an analysis, which will provide a new rationale and insight for the mechanism by which exercise improves depression.
Collapse
Affiliation(s)
- Xiao Qiu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Xinyu Zeng
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Shengjie Jin
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
12
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Blood Biomarkers in Patients with Parkinson's Disease: A Review in Context of Anesthetic Care. Diagnostics (Basel) 2023; 13:diagnostics13040693. [PMID: 36832181 PMCID: PMC9955162 DOI: 10.3390/diagnostics13040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia. Preclinical and epidemiological data strongly suggest that chronic neuroinflammation slowly induces neuronal dysfunction. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may promote blood-brain barrier (BBB) permeabilization. CD4+ T cells comprise proinflammatory cells such as T helper (Th) 1 and Th17 cells, as well as anti-inflammatory cells such as Th2 and T regulatory cells (Tregs). Th1 and Th17 cells can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 cells in PD patients are not uniform. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial. Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines, which may exacerbate the neuroinflammatory response in PD patients. Here we review studies on blood inflammatory biomarkers in PD patients and discuss the roles of surgery and anesthesia in PD progression.
Collapse
|
14
|
Almikhlafi MA. The role of exercise in Parkinson's Disease. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2023; 28:4-12. [PMID: 36617448 PMCID: PMC9987629 DOI: 10.17712/nsj.2023.1.20220105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is a progressive widespread neurodegenerative disorder affecting the brain. It is characterized by dopaminergic neuron degeneration in the substantia nigra pars compacta (SNpc). Current therapeutic options ease the symptoms of PD; however, they have multiple undesirable effects and do not slow the disease progression. Exercise by itself has many positive impacts on general health. In this review, the positive impact of different forms of exercise were found to improve motor and non-motor symptoms in PD. Exercise effects is mediate by multiple mechanisms, including the upregulation of brain-derived neurotrophic factor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, and autophagy regulating proteins; and downregulates proinflammatory cytokines. In this review, the significance of exercise in PD, as well as in the prevention and maintenance of the disease was discussed. Many questions are left unanswered in this manuscript, including potential genetic factors underlying response to exercise. Therefore, further high-quality studies on humans are needed.
Collapse
Affiliation(s)
- Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, Taibah University, Madinah Al-Munawarah, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Liao Q, He J, Huang K. Physical activities and risk of neurodegenerative diseases: A two-sample Mendelian randomization study. Front Aging Neurosci 2022; 14:991140. [PMID: 36212040 PMCID: PMC9541335 DOI: 10.3389/fnagi.2022.991140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Physical activity (PA) is considered beneficial in slowing the progression and improving the neurodegenerative disease prognosis. However, the association between PA and neurodegenerative diseases remains unknown. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to estimate the causal association between PA phenotypes and neurodegenerative diseases. Materials and methods Genetic variants robustly associated with PA phenotypes, used as instrumental variables, were extracted from public genome-wide association study (GWAS) summary statistics. Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), were considered outcomes. GWAS information was also obtained from the most recent large population study of individuals with European ancestry. Multiple MR methods, pleiotropy tests and sensitivity analyses were performed to obtain a robust and valid estimation. Results We found a positive association between moderate-to-vigorous physical activities and ALS based on the inverse variance weighted MR analysis method (OR: 2.507, 95% CI: 1.218-5.160, p = 0.013). The pleiotropy test and sensitivity analysis confirmed the robustness and validity of these MR results. No causal effects of PA phenotypes were found on PD and AD. Conclusion Our study indicates a causal effect of PA on the risk of neurodegenerative diseases. Genetically predicted increases in self-reported moderate-to-vigorous PA participation could increase the risk of ALS in individuals of European ancestry. Precise and individualized prescriptions of physical activity should be provided to the elderly population.
Collapse
Affiliation(s)
- Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian He
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
de Almeida EJR, Ibrahim HJ, Chitolina Schetinger MR, de Andrade CM, Cardoso AM. Modulation of Inflammatory Mediators and Microglial Activation Through Physical Exercise in Alzheimer's and Parkinson's Diseases. Neurochem Res 2022; 47:3221-3240. [PMID: 35962936 DOI: 10.1007/s11064-022-03713-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is an inflammatory process in the central nervous system (CNS), in addition to being one of the main features of Alzheimer's disease (AD) and Parkinson's disease (PD). Microglia are known for their immune functions and have multiple reactive phenotypes related to the types of stages involving neurodegenerative diseases. Depending on the state of activation of microglia in the CNS, it can be neuroprotective or neurotoxic. In this context, AD is a neurodegenerative and neuroinflammatory disease characterized by the deposition of beta-amyloid plaques, formation of fibrillar tangles of tau protein, and loss of neurons due to neurotoxic activation of microglia. However, PD is characterized by the loss of dopaminergic neurons in the substantia nigra and accumulation of alpha-synuclein in the cortical regions, spinal cord, and brain stem, which occurs by microglial activation, contributing to the neuroinflammatory process. In this aspect, the activation of microglia in both pathologies triggers high levels of inflammatory markers, such as interleukins, and causes the neuroinflammatory process of the diseases. Thus, physical exercise is pointed out as neuroprotective, as it can act to strengthen neurogenesis and reduce the inflammatory process. Therefore, the present review addresses the neuroprotective effect of microglia after different types of physical exercise protocols and evaluates the activity and effects of inflammatory and anti-inflammatory parameters and mechanisms of AD and PD. This review will discuss the anti-inflammatory effects of physical exercise through microglia activation with neuroprotective activity and the role of pro-and anti-inflammatory cytokines in AD and PD.
Collapse
Affiliation(s)
| | | | | | - Cinthia Melazzo de Andrade
- Department of Small Animal Clinic, Center of Rural Sciences, Federal University of Santa Maria-RS, Room 121, Veterinary Hospital Building, Avenue Roraima No. 1000, Santa Maria, RS, 97105-900, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Physical Education From Federal University of Santa Maria, Santa Maria, RS, Brazil. .,Graduate Program in Biomedical Sciences From Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, SC, 89815-899, Brazil.
| |
Collapse
|
17
|
Rezaee Z, Marandi SM, Alaei H. Molecular Mechanisms of Exercise in Brain Disorders: a Focus on the Function of Brain-Derived Neurotrophic Factor-a Narrative Review. Neurotox Res 2022; 40:1115-1124. [PMID: 35655062 DOI: 10.1007/s12640-022-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The natural aging process as well as many age-related diseases is associated with impaired metabolic adaptation and declined ability to cope with stress. As major causes of disability and morbidity during the aging process, brain disorders, including psychiatric and neurodegenerative disorders, are likely to increase across the globe in the future decades. This narrative review investigates the link among exercise and brain disorders, aging, and inflammatory biomarkers, along with the function of brain-derived neurotrophic factor. For this study, related manuscript from all databases, Google scholar, Scopus, PubMed, and ISI were assessed. Also, in the search process, the keywords of exercise, neurodegeneration, neurotrophin, mitochondrial dysfunction, and aging were used. Mitochondrial abnormality increases neuronal abnormality and brain disease during the aging process. Stress and inflammatory factors caused by lifestyle and aging also increase brain disorders. Evidences suggest that exercise, as a noninvasive treatment strategy, has antioxidant effects and can reduce neuronal lesions. Brain-derived neurotrophic factor expression following the exercise can reduce brain symptoms; however, careful consideration should be given to a number of factors affecting the results.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Faculty of Physical Education & Sport Sciences, Department of Sport Physiology, University of Isfahan, Azadi Sq, HezarJerib Ave, P.O. Box, Isfahan, 81799-54359, Iran.
| | - Sayed Mohammad Marandi
- Faculty of Physical Education & Sport Sciences, Department of Sport Physiology, University of Isfahan, Azadi Sq, HezarJerib Ave, P.O. Box, Isfahan, 81799-54359, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, University of Isfahan Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Costa AK, Marqueze LFB, Gattiboni BB, Pedroso GS, Vasconcellos FF, Cunha EBB, Justa HC, Baldissera AB, Nagashima S, de Noronha L, Radak Z, Fernandes LC, Pinho RA. Physical Training Protects Against Brain Toxicity in Mice Exposed to an Experimental Model of Glioblastoma. Neurochem Res 2022; 47:3344-3354. [PMID: 35904698 DOI: 10.1007/s11064-022-03685-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Glioma 261 (Gl261) cell-mediated neurotoxicity has been reported in previous studies examining glioblastoma (GBM), and the effects of physical exercise (PE) on this neurotoxicity have been poorly investigated. This study aimed to evaluate the effects of a PE program in animals with experimental GBM. Male C57BL/6J mice were randomized into sham or GBM groups and subjected to a PE program for four weeks. Gl261 cells were administered into the intraventricular region at 48 h after the last exercise session. Body weight, water and feed consumption, and behavior were all evaluated for 21 days followed by euthanasia. The right parietal lobe was removed for the analysis of glial fibrillary acidic protein (GFAP), epidermal growth factor receptor (EGFR), vimentin, C-myc, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), hydrogen peroxide, the glutathione system, and oxidative damage to proteins. The results revealed changes in the behavioral patterns of the trained animals, and no anatomopathological changes were observed in response to PE training. In contrast, animals with GBM subjected to PE exhibited lower immunoexpression of c-MYC, vimentin, and GFAP. Although experimental GBM altered the redox profile and inflammatory mediators, no significant alterations were observed after PE. In conclusion, our data provide consistent evidence of the relationship between PE and the improvement of tumorigenic parameters against the neurotoxicity of GL261 cells.
Collapse
Affiliation(s)
- Amanda K Costa
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Luis F B Marqueze
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Bruna B Gattiboni
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Giulia S Pedroso
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Franciane F Vasconcellos
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Eduardo B B Cunha
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Hanna C Justa
- Department of Cell Biology, Federal University of Parana, Curitiba, Brazil
| | | | - Seigo Nagashima
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Lucia de Noronha
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Luiz C Fernandes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo A Pinho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Tech Park - Block 4, Laboratory 3. Imaculada Conceição Street, 1155, Prado Velho, Curitiba, PE, 80215-901, Brazil.
| |
Collapse
|
19
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
20
|
Giustina AD, Rodrigues JF, Bagio E, Bonfante S, Joaquim L, Zarbato G, Stork S, Machado RS, de Souza Goldim MP, Danielski LG, Mathias K, Dacoregio C, Cardoso T, Predroso GS, Venturini LM, Zaccaron RP, Silveira PCL, Pinho RA, Petronilho F. Lung-Brain Crosstalk in Sepsis: Protective Effect of Prophylactic Physical Exercise Against Inflammation and Oxidative Stress in Rats. Mol Neurobiol 2022; 59:3860-3872. [DOI: 10.1007/s12035-022-02823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
|
21
|
Song Y, Wu Z, Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev Neurosci 2021; 33:427-438. [PMID: 34757706 DOI: 10.1515/revneuro-2021-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022]
Abstract
Sirt1, a member of the sirtuins family, is a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase. It can be involved in the regulation of several processes including inflammatory response, apoptosis, oxidative stress, energy metabolism, and autophagy by exerting deacetylation. Nuclear factor-κB (NF-κB), a crucial nuclear transcription factor with specific DNA binding sequences, exists in almost all cells and plays a vital role in several biological processes involving inflammatory response, immune response, and apoptosis. As the hub of multiple intracellular signaling pathways, the activity of NF-κB is regulated by multiple factors. Sirt1 can both directly deacetylate NF-κB and indirectly through other molecules to inhibit its activity. We would like to emphasize that Sirt1/NF-κB is a signaling pathway that is closely related to neuroinflammation. Many recent studies have demonstrated the neuroprotective effects of Sirt1/NF-κB signaling pathway activation applied to the treatment of neurological related diseases. In this review, we focus on new advances in the neuroprotective effects of the Sirt1/NF-κB pathway. First, we briefly review Sirt1 and NF-κB, two key molecules of cellular metabolism. Next, we discuss the connection between NF-κB and neuroinflammation. In addition, we explore how Sirt1 regulates NF-κB in nerve cells and relevant evidence. Finally, we analyze the therapeutic effects of the Sirt1/NF-κB pathway in several common neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
22
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
23
|
Nhu NT, Cheng YJ, Lee SD. Effects of Treadmill Exercise on Neural Mitochondrial Functions in Parkinson's Disease: A Systematic Review of Animal Studies. Biomedicines 2021; 9:1011. [PMID: 34440215 PMCID: PMC8394716 DOI: 10.3390/biomedicines9081011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023] Open
Abstract
This systematic review sought to determine the effects of treadmill exercise on the neural mitochondrial respiratory deficiency and neural mitochondrial quality-control dysregulation in Parkinson's disease. PubMed, Web of Science, and EMBASE databases were searched through March 2020. The English-published animal studies that mentioned the effects of treadmill exercise on neural mitochondria in Parkinson's disease were included. The CAMARADES checklist was used to assess the methodological quality of the studies. Ten controlled trials were included (median CAMARADES score = 5.7/10) with various treadmill exercise durations (1-18 weeks). Seven studies analyzed the neural mitochondrial respiration, showing that treadmill training attenuated complex I deficits, cytochrome c release, ATP depletion, and complexes II-V abnormalities in Parkinson's disease. Nine studies analyzed the neural mitochondrial quality-control, reporting that treadmill exercise improved mitochondrial biogenesis, mitochondrial fusion, and mitophagy in Parkinson's disease. The review findings supported the hypothesis that treadmill training could attenuate both neural mitochondrial respiratory deficiency and neural mitochondrial quality-control dysregulation in Parkinson's disease, suggesting that treadmill training might slow down the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho 94117, Vietnam;
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 41354, Taiwan;
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 41354, Taiwan;
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 41354, Taiwan;
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
24
|
Treadmill exercise alleviates neuronal damage by suppressing NLRP3 inflammasome and microglial activation in the MPTP mouse model of Parkinson's disease. Brain Res Bull 2021; 174:349-358. [PMID: 34224819 DOI: 10.1016/j.brainresbull.2021.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Treadmill exercise has been recognized as an effectively therapeutic strategy for Parkinson's disease (PD). However, its exact molecular mechanism of promoting PD remain unclear. Recently, the NLRP3 inflammasome is considered to play a critical role in the pathogenesis of PD. In this study, we investigated whether NLRP3 inflammasome was involved in treadmill exercise-induced neuroprotection and anti-inflammation effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. 8-week-old male mice (C57BL/6 strain) were divided into four groups: Control, MPTP, MPTP + EX and EX. MPTP was intraperitoneally injected into mice to establish chronic PD model. The open-field test and pole test were used to assess motor function. The results showed that treadmill exercise significantly alleviated motor dysfunction and dopaminergic neuron degeneration induced by MPTP. In addition, we also found that treadmill exercise suppressed MPTP-triggered microglia activation and the co-localization of NLRP3+/Iba-1+ cells in the substantia nigra. These effects were associated with suppression NLRP3 inflammasome via down-regulation of TLR4/MyD88/NF-κB pathway. Overall, our study demonstrated that treadmill exercise could effectively alleviates neuronal damage via inhibition of NLRP3 inflammasome and microglial activation in MPTP-induced PD mouse model.
Collapse
|
25
|
The impact of sesamol and exercise on striatal TNF-α level, motor behavior, aversive memory and oxidative stress status in 6-hydroxydopamine-lesioned rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Li X, Feng Y, Wang XX, Truong D, Wu YC. The Critical Role of SIRT1 in Parkinson's Disease: Mechanism and Therapeutic Considerations. Aging Dis 2020; 11:1608-1622. [PMID: 33269110 PMCID: PMC7673849 DOI: 10.14336/ad.2020.0216] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Silence information regulator 1 (SIRT1), a member of the sirtuin family, targets histones and many non-histone proteins and participates in various physiological functions. The enzymatic activity of SIRT1 is decreased in patients with Parkinson’s disease (PD), which may reduce their ability to resist neuronal damage caused by various neurotoxins. As far as we know, SIRT1 can induce autophagy by regulating autophagy related proteins such as AMP-activated protein kinase, light chain 3, mammalian target of rapamycin, and forkhead transcription factor 1. Furthermore, SIRT1 can regulate mitochondrial function and inhibit oxidative stress mainly by maintaining peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in a deacetylated state and thus maintaining a constant level of PGC-1α. Other studies have demonstrated that SIRT1 may play a role in the pathophysiology of PD by regulating neuroinflammation. SIRT1 deacetylases nuclear factor-kappa B and thus reduces its transcriptional activity, inhibits inducible nitric oxide synthase expression, and decreases tumor necrosis factor-alpha and interleukin-6 levels. SIRT1 can also upregulate heat shock protein 70 by deacetylating heat shock factor 1 to increase the degradation of α-synuclein oligomers. Few studies have focused on the relationship between SIRT1 single nucleotide polymorphisms and PD risk, so this topic requires further research. Based on the neuroprotective effects of SIRT1 on PD, many in vitro and in vivo experiments have demonstrated that some SIRT1 activators, notably resveratrol, have potential neuroprotective effects against dopaminergic neuronal damage caused by various neurotoxins. Thus, SIRT1 plays a critical role in PD development and might be a potential target for PD therapy.
Collapse
Affiliation(s)
- Xuan Li
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ya Feng
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xi-Xi Wang
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daniel Truong
- 2The Truong Neurosciences Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA.,3Department of Neurosciences and Psychiatry, University of California, Riverside, CA, USA
| | - Yun-Cheng Wu
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
27
|
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21:E7777. [PMID: 33096634 PMCID: PMC7589016 DOI: 10.3390/ijms21207777] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most distributed and extensively studied neurotrophins in the mammalian brain. BDNF signals through the tropomycin receptor kinase B (TrkB) and the low affinity p75 neurotrophin receptor (p75NTR). BDNF plays an important role in proper growth, development, and plasticity of glutamatergic and GABAergic synapses and through modulation of neuronal differentiation, it influences serotonergic and dopaminergic neurotransmission. BDNF acts as paracrine and autocrine factor, on both pre-synaptic and post-synaptic target sites. It is crucial in the transformation of synaptic activity into long-term synaptic memories. BDNF is considered an instructive mediator of functional and structural plasticity in the central nervous system (CNS), influencing dendritic spines and, at least in the hippocampus, the adult neurogenesis. Changes in the rate of adult neurogenesis and in spine density can influence several forms of learning and memory and can contribute to depression-like behaviors. The possible roles of BDNF in neuronal plasticity highlighted in this review focus on the effect of antidepressant therapies on BDNF-mediated plasticity. Moreover, we will review data that illustrate the role of BDNF as a potent protective factor that is able to confer protection against neurodegeneration, in particular in Alzheimer's disease. Finally, we will give evidence of how the involvement of BDNF in the pathogenesis of brain glioblastoma has emerged, thus opening new avenues for the treatment of this deadly cancer.
Collapse
Affiliation(s)
- Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Luisa Speranza
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
28
|
Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165823. [PMID: 32360589 PMCID: PMC7188661 DOI: 10.1016/j.bbadis.2020.165823] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
A wide array of molecular pathways has been investigated during the past decade in order to understand the mechanisms by which the practice of physical exercise promotes neuroprotection and reduces the risk of developing communicable and non-communicable chronic diseases. While a single session of physical exercise may represent a challenge for cell homeostasis, repeated physical exercise sessions will improve immunosurveillance and immunocompetence. Additionally, immune cells from the central nervous system will acquire an anti-inflammatory phenotype, protecting central functions from age-induced cognitive decline. This review highlights the exercise-induced anti-inflammatory effect on the prevention or treatment of common chronic clinical and experimental settings. It also suggests the use of pterins in biological fluids as sensitive biomarkers to follow the anti-inflammatory effect of physical exercise.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
29
|
Zhu Y, Zhu X, Zhou Y, Zhang D. Reduced serum SIRT1 levels in patients with Parkinson's disease: a cross-sectional study in China. Neurol Sci 2020; 42:1835-1841. [PMID: 32909152 DOI: 10.1007/s10072-020-04711-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a movement disorder lacking of validated biomarkers. Experimental studies support the potential value of silent information regulator 1 (SIRT1) in neurodegeneration including PD. We aim to detect the serum levels of SIRT1 in PD patients in order to assess its value as a potential biomarker of PD. METHODS Fifty-eight PD patients and 91 healthy controls were included. Serum SIRT1 was determined by enzyme-linked immunosorbent assay (ELISA) and compared between controls and PD patients. Spearman correlation coefficient was analyzed to study the relationship between serum SIRT1 and clinical parameters in PD patients. Receiver operating characteristic (ROC) analysis was conducted to assess the diagnostic value of serum SIRT1 in PD identification. RESULTS Serum SIRT1 was significantly reduced in PD patients compared with controls. According to the ROC curve, the optimal cut-off point was 0.47 ng/ml with the sensitivity of 71% and specificity of 71%. Serum SIRT1 level was related to age of onset, disease duration, Hoehn-Yahr staging scale (H-Y stage), Unified Parkinson's Disease Rating Scale III (UPDRS III), and Mini-Mental State Examination (MMSE). PD patients with cognitive impairment had lower serum SIRT1 than those with normal cognitive ability. CONCLUSIONS Serum SIRT1 was reduced in PD patients and associated with disease severity and cognitive function. Our results indicate that SIRT1 may be a potential biomarker for PD.
Collapse
Affiliation(s)
- Yuting Zhu
- Department of Neurology, Affiliated Hospital No.2 of Nantong University, Nantong, China
| | - Xiangyang Zhu
- Department of Neurology, Affiliated Hospital No.2 of Nantong University, Nantong, China.
| | - Yong Zhou
- Department of Neurology, Affiliated Hospital No.2 of Nantong University, Nantong, China
| | - Dongmei Zhang
- Clinical Medicine Research Center, Affiliated Hospital No.2 of Nantong University, Nantong, China
| |
Collapse
|
30
|
Exercise-Induced Neuroprotection in the 6-Hydroxydopamine Parkinson's Disease Model. Neurotox Res 2020; 38:850-858. [PMID: 32803628 DOI: 10.1007/s12640-020-00189-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023]
Abstract
Exercise exerts helpful effects in Parkinson's disease. In this study, the 6-hydroxydopamine (6-OHDA) injection was used to investigate the effect of exercise on apomorphine-induced rotation and neurorestoration. Rats (n = 32) were divided into four groups: (1) Saline+Noexercise (Sham); (2) 6-OHDA+Noexercise (6-OHDA); (3) Saline+Exercise (S+EXE), and (4) 6-OHDA+Exercise (6-OHDA+EXE). The rats were administered 8 μg 6-OHDA by injection into the right medial forebrain bundle. After 2 weeks, the exercise group was run (14 consecutive days, 30 min per day). One month after the surgery, following the injection of apomorphine, the 6-OHDA group displayed a significant increase in rotation and the 6-OHDA+EXE group showed a significant reduction of rotational asymmetry (P < 0.001). 6-OHDA injection reduced the mRNA and protein expression of the AMP-activated protein kinase, brain-derived neurotropic factor, and tyrosine hydroxylase in relation to the Sham group and exercise increased these levels. Expression of the silent information regulator 2 homolog 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was unexpectedly enhanced in the 6-OHDA groups in relation to the Sham group. These findings suggest that the 6-OHDA injection increased the neurodegeneration and mitochondrial and behavioral dysfunctions and the treadmill running attenuated these disorders in the ipsilateral striatum of the 6-OHDA+EXE group.
Collapse
|
31
|
Hwang WJ, Joo MA, Joo J. Effects of anesthetic method on inflammatory response in patients with Parkinson's disease: a randomized controlled study. BMC Anesthesiol 2020; 20:187. [PMID: 32738891 PMCID: PMC7395370 DOI: 10.1186/s12871-020-01112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/28/2020] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The pathogenesis of Parkinson's disease (PD) involves degeneration of dopaminergic neurons, which is influenced by innate and adaptive immunity. IL-17 is a characteristic cytokine secreted by Th17 cells, which acts as a powerful stimulator of neutrophil migration and infiltration and promotes the secretion of inflammatory cytokines. General anesthesia and surgical stress induce immune and inflammatory responses that activate the immunosuppressive mechanism in the perioperative period. The present study investigated changes in levels of inflammatory cytokines, such as IL-17, IL-1β, and TNF-α, in patients with PD undergoing general anesthesia with inhalational anesthetics or TIVA. METHODS Adult patients, aged 40-75 years, scheduled for cerebral stimulator implantation were enrolled. Upon arrival at the operating theater, patients were allocated to the inhalational (I) or TIVA (T) group using block randomization. In group I, anesthesia was induced by tracheal intubation 1-2 min after intravenous administration of propofol (1-2 mg/kg) and rocuronium (0.6-1 mg/kg). Thereafter, anesthesia was maintained with 1-2 vol% sevoflurane, 0.01-0.2 μg/kg/min remifentanil, and O2/air (FiO2 0.4). In group T, propofol (3-6 μg/mL), remifentanil (2-6 ng/mL), and rocuronium (0.6-1 mg/kg) were administered using target controlled infusion (TCI) for induction of anesthesia. Blood samples were obtained preoperatively (T0), 2 h after induction of anesthesia (T1), and 24 h after surgery (T2). IL-17, IL-1β, and TNF-α levels were evaluated by ELISA. RESULTS Serum levels of IL-17 were elevated at T2 in group I compared to group T but the difference was not statistically significant. IL-1β tended to be greater in group I compared to group T, but the differences were not significant. TNF-α was slightly higher at all time points in group T and showed a tendency to increase at T2 in both groups, but this was not statistically significant. CONCLUSIONS TIVA may be useful for inhibiting neuroinflammation by inhibiting the increase in serum levels of IL-17 24 h after implantation surgery. Serum IL-17 level may be used as a biomarker for PD progression. TRIAL REGISTRATION Clinical Research Information Service of Korea National Institute of Health (CRIS) Identification number: KCT0002061 . Registered 25 October 2019 - Retrospectively registered, https://cris.nih.go.kr/cris/search/search_result_st01.jsp?seq=15125.
Collapse
Affiliation(s)
- Won Jung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Min A Joo
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Jin Joo
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
32
|
Crotty GF, Schwarzschild MA. Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression? Front Aging Neurosci 2020; 12:186. [PMID: 32636740 PMCID: PMC7318912 DOI: 10.3389/fnagi.2020.00186] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise may be the most commonly offered yet least consistently followed therapeutic advice for people with Parkinson's disease (PD). Epidemiological studies of prospectively followed cohorts have shown a lower risk for later developing PD in healthy people who report moderate to high levels of physical activity, and slower rates of motor and non-motor symptom progression in people with PD who report higher baseline physical activity. In animal models of PD, exercise can reduce inflammation, decrease α-synuclein expression, reduce mitochondrial dysfunction, and increase neurotrophic growth factor expression. Randomized controlled trials of exercise in PD have provided clear evidence for short-term benefits on many PD measurements scales, ranging from disease severity to quality of life. In this review, we present these convergent epidemiological and laboratory data with particular attention to translationally relevant features of exercise (e.g., intensity requirements, gender differences, and associated biomarkers). In the context of these findings we will discuss clinical trial experience, design challenges, and emerging opportunities for determining whether exercise can prevent PD or slow its long-term progression.
Collapse
Affiliation(s)
- Grace F. Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
33
|
Boulghobra D, Coste F, Geny B, Reboul C. Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria? Free Radic Biol Med 2020; 152:395-410. [PMID: 32294509 DOI: 10.1016/j.freeradbiomed.2020.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Ischemic heart disease is one of the main causes of morbidity and mortality worldwide. Physical exercise is an effective lifestyle intervention to reduce the risk factors for cardiovascular disease and also to improve cardiac function and survival in patients with ischemic heart disease. Among the strategies that contribute to reduce heart damages during ischemia and reperfusion, regular physical exercise is efficient both in rodent experimental models and in humans. However, the cellular and molecular mechanisms of the cardioprotective effects of exercise remain unclear. During ischemia and reperfusion, mitochondria are crucial players in cell death, but also in cell survival. Although exercise training can influence mitochondrial function, the consequences on heart sensitivity to ischemic insults remain elusive. In this review, we describe the effects of physical activity on cardiac mitochondria and their potential key role in exercise-induced cardioprotection against ischemia-reperfusion damage. Based on recent scientific data, we discuss the role of different pathways that might help to explain why mitochondria are a key target of exercise-induced cardioprotection.
Collapse
Affiliation(s)
| | - Florence Coste
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France
| | - Bernard Geny
- EA3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», Université de Strasbourg, 67000, Strasbourg, France
| | - Cyril Reboul
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France.
| |
Collapse
|
34
|
Ferreira AFF, Binda KH, Singulani MP, Pereira CPM, Ferrari GD, Alberici LC, Real CC, Britto LR. Physical exercise protects against mitochondria alterations in the 6-hidroxydopamine rat model of Parkinson's disease. Behav Brain Res 2020; 387:112607. [PMID: 32199987 DOI: 10.1016/j.bbr.2020.112607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is typicaly caractherized by loss of dopaminergic neurons, as well as the presence of mitochondrial impairments. Although physical exercise is known to promote many beneficial effects in healthy subjects, such as enhancing mitocondrial biogenesis and function, it is not clear if these effects are evident after exercise in individuals with PD. The aim of this study was to investigate the effects of two different protocol durations on motor behavior (aphomorphine and gait tests), mitochondrial biogenesis signaling (PGC-1α, NRF-1 and TFAM), structure (oxidative phosphorylation system protein levels) and respiratory chain activity (complex I) in a unilateral PD rat model. For this, male Wistar rats were injected with 6-hydroxydopamine unilaterally into the striatum and submitted to an intermitent moderate treadmill exercise for one or four weeks. In the gait test, only stride width data revealed an improvement after one week of exercise. On the other hand, after 4 weeks of the exercise protocol all gait parameters analyzed and the aphomorphine test demonstrated a recovery. Analysis of protein revealed that one week of exercise was able to prevent PGC-1α and NRF-1 expression decrease in PD animals. In addition, after four weeks of physical exercise, besides PGC-1α and NRF-1, reduction in TFAM and complex I protein levels and increased complex I activity were also prevented in PD animals. Thus, our results suggest a neuroprotective and progressive effect of intermittent treadmill exercise, which could be related to its benefits on mitochondrial biogenesis signaling and respiratory chain modulation of the dopaminergic system in PD.
Collapse
Affiliation(s)
- Ana Flávia Fernandes Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil.
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Carolina Parga Martins Pereira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo Duarte Ferrari
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
35
|
What and How Can Physical Activity Prevention Function on Parkinson's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4293071. [PMID: 32215173 PMCID: PMC7042542 DOI: 10.1155/2020/4293071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Aim This study was aimed at investigating the effects and molecular mechanisms of physical activity intervention on Parkinson's disease (PD) and providing theoretical guidance for the prevention and treatment of PD. Methods Four electronic databases up to December 2019 were searched (PubMed, Springer, Elsevier, and Wiley database), 176 articles were selected. Literature data were analyzed by the logic analysis method. Results (1) Risk factors of PD include dairy products, pesticides, traumatic brain injury, and obesity. Protective factors include alcohol, tobacco, coffee, black tea, and physical activity. (2) Physical activity can reduce the risk and improve symptoms of PD and the beneficial forms of physical activity, including running, dancing, traditional Chinese martial arts, yoga, and weight training. (3) Different forms of physical activity alleviate the symptoms of PD through different mechanisms, including reducing the accumulation of α-syn protein, inflammation, and oxidative stress, while enhancing BDNF activity, nerve regeneration, and mitochondrial function. Conclusion Physical activity has a positive impact on the prevention and treatment of PD. Illustrating the molecular mechanism of physical activity-induced protective effect on PD is an urgent need for improving the efficacy of PD therapy regimens in the future.
Collapse
|
36
|
da Costa Daniele TM, de Bruin PFC, de Matos RS, de Bruin GS, Maia Chaves C, de Bruin VMS. Exercise effects on brain and behavior in healthy mice, Alzheimer's disease and Parkinson's disease model-A systematic review and meta-analysis. Behav Brain Res 2020; 383:112488. [PMID: 31991178 DOI: 10.1016/j.bbr.2020.112488] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
This systematic review and meta-analysis examines how exercise modifies brain and behavior in healthy mice, dementia (D) and Parkinson disease (PD) models. A search was performed on the Medline and Scopus electronic databases (2008-2019). Search terms were "mice", "brain", "treadmill", "exercise", "physical exercise". In the total, 430 were found but only 103 were included. Animals n = 1,172; exercised 4-8 weeks (Range 24 h to 32 weeks), 60 min/day (Range 8-120 min per day), and 10/12 m/min (Range 0.2 m/min to 36 m/min). Hippocampus, cerebral cortex, striatum and whole brain were more frequently investigated. Exercise improved learning and memory. Meta-analysis showed that exercise increased: cerebral BDNF in health (n = 150; z = 5.8, CI 3.43-12.05; p < 0.001 I2 = 94.3 %), D (n = 124; z = 4.18, CI = 2.22-9.12; p < 0.001; I2 = 93.7 %) and PD (n = 16 z = 4.26, CI 5.03-48.73 p < 0.001 I2 = 94.8 %). TrkB improved in health (n = 84 z = 5.49, CI 3.8-17.73 p < 0.001, I2 = 0.000) and PD (n = 22; z = 3.1, CI = 2.58-67.3, p < 0.002 I2 = 93.8 %). Neurogenesis increased in health (n = 68; z = 7.08, CI 5.65-21.25 p < 0.001; I2 17.58) and D model (n = 116; z = 4.18, CI 2.22-9.12 p < 0.001 I2 93.7 %). Exercise augmented amyloid clearance (n = 166; z = 7.51 CI = 4.86-14.85, p < 0.001 I2 = 58.72) and reduced amyloid plaques in D models (n = 49; z = 4.65, CI = 3.94-15.3 p < 0.001 I2 = 0.000). In conclusion, exercise improved brain and behavior, neurogenesis in healthy and dementia models, reduced toxicity and cerebral amyloid. Evidence regarding inflammation, oxidative stress and energy metabolism were scarce. Studies examining acute vs chronic exercise, extreme training and the durability of exercise benefit were rare. Vascular or glucose metabolism changes were seldom reported.
Collapse
Affiliation(s)
- Thiago Medeiros da Costa Daniele
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil; Universidade de Fortaleza (UNIFOR).
| | - Pedro Felipe Carvalhedo de Bruin
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| | - Robson Salviano de Matos
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| | - Gabriela Sales de Bruin
- Universidade Federal do Ceará (UFC), Brazil; Department of Neurology, Washington University in St Louis, United States.
| | - Cauby Maia Chaves
- Universidade Federal do Ceará (UFC), Brazil; Departamento de Clínica Odontológica, UFC, Brazil.
| | - Veralice Meireles Sales de Bruin
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| |
Collapse
|
37
|
Feng YS, Yang SD, Tan ZX, Wang MM, Xing Y, Dong F, Zhang F. The benefits and mechanisms of exercise training for Parkinson's disease. Life Sci 2020; 245:117345. [PMID: 31981631 DOI: 10.1016/j.lfs.2020.117345] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a significantly progressive neurodegenerative disease characterised by both motor and nonmotor disorders. The main pathological characteristics of PD consist of the loss of dopaminergic neurons and the formation of alpha-synuclein-containing Lewy bodies in the substantia nigra. Currently, the main therapeutic method for PD is anti-Parkinson medications, including levodopa, madopar, sirelin, and so on. However, the effect of pharmacological treatment has its own limitations, the most significant of which is that the therapeutic effect of dopaminergic treatments gradually diminishes with time. Exercise training, as an adjunctive treatment and complementary therapy, can improve the plasticity of cortical striatum and increase the release of dopamine. Exercise training has been proven to effectively improve motor disorders (including balance, gait, risk of falls and physical function) and nonmotor disorders (such as sleep impairments, cognitive function and quality of life) in PD patients. In recent years, various types of exercise training have been used to treat PD. In this review, we summarise the exercise therapy mechanisms and the protective effects of different types of exercise training on PD patients.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Si-Dong Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia; Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
38
|
Zhai L, Liu Y, Zhao W, Chen Q, Guo T, Wei W, Luo Z, Huang Y, Ma C, Huang F, Dai X. Aerobic and resistance training enhances endothelial progenitor cell function via upregulation of caveolin-1 in mice with type 2 diabetes. Stem Cell Res Ther 2020; 11:10. [PMID: 31900223 PMCID: PMC6942272 DOI: 10.1186/s13287-019-1527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Background To explore the effect of aerobic training (AT), resistance training (RT) or a combination of AT and RT (AT+RT) on the function of endothelial progenitor cells (EPCs) in mice with type 2 diabetes and the potential effective mechanisms Methods Eight-week-old db/db male mice were used as type 2 diabetic animal models in this study. Mice were randomly assigned to the control group (n = 5), AT group (n = 5), RT group (n = 5) and AT+RT group (n = 5). Mice in the control group remained sedentary with no specific training requirement. Mice were motivated to perform AT, RT or AT+RT by a gentle pat on their body for 3 or 4 days/week for 14 days. AT was performed by treadmill running, RT was performed by ladder climbing and AT+RT involved both AT and RT. Bone-derived EPCs were isolated after 14 days of the intervention. EPC expression of CD31, CD34, CD133, CD144 and VEGFR2 was detected by immunofluorescence staining. Fluorescence detection was performed on attached mononuclear cells to detect double-positive EPCs. We then explored the effect of caveolin-1 knockdown (lentiviral vector with caveolin-1-siRNA) on the proliferation and adherence of EPCs and the concentration of caveolin-1 and PI3K/AKT via western blot analyses. Results Compared to the mice in the control group, the mice in the AT, RT and AT+RT groups presented significant increases in proliferation and adherence after 14 days of intervention. AT+RT induced an increase in EPC adherence, which was greater than that of the control, RT and AT groups. Caveolin-1 knockdown inhibited the EPC proliferative and adherent abilities. The AT+RT group showed higher levels of caveolin-1 and p-AKT than the control group, but these changes were decreased by caveolin-1-siRNA transfection. Conclusion Combined AT and RT is an effective way to improve EPC function through upregulation of caveolin-1 in mice with type 2 diabetes.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuhua Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wenpiao Zhao
- Department of Nursing, Guangxi JiangBin Hospital, Nanning, 530021, China
| | - Qingyun Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Tao Guo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wei Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhuchun Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanfeng Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Cui Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xia Dai
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
39
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Abstract
Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA, which leads to neuronal death. In this way, DNA damage has been implicated in the pathogenesis of neurological disorders, cancer, and aging. Lifestyle factors, such as physical exercise, are neuroprotective and increase brain function by improving cognition, learning, and memory, in addition to regulating the cellular redox milieu. Several mechanisms are associated with the effects of exercise in the brain, such as reduced production of oxidants, up-regulation of antioxidant capacity, and a consequent decrease in nuclear DNA damage. Furthermore, physical exercise is a potential strategy for further DNA damage repair. However, the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown. In this review, we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain. We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage.
Collapse
Affiliation(s)
- Thais Ceresér Vilela
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
41
|
Long-Term Voluntary Physical Exercise Exerts Neuroprotective Effects and Motor Disturbance Alleviation in a Rat Model of Parkinson's Disease. Behav Neurol 2019; 2019:4829572. [PMID: 31885725 PMCID: PMC6915149 DOI: 10.1155/2019/4829572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder affecting 7–10 million individuals. The pathologic hallmark of PD is nigrostriatal dopaminergic neuron loss, leading to several motor and nonmotor disturbances, such as akinesia, gait disturbance, depression, and anxiety. Recent animal studies have demonstrated that physical exercise improves behavioral and neuropathological deficits in PD. However, the exact underlying mechanism underlying this effect remains unclear. In this study, we investigated whether long-term exercise has neuroprotective effects on dopaminergic nigrostriatal neurons and whether it further alleviates impairment of the gait pattern, locomotor activity, akinesia, and anxiety-like behavior in PD rats. Methods A hemiparkinsonian rat model, generated by unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, was applied to evaluate neuroprotective effects and motor behaviors. Comprehensive spatiotemporal gait analysis, open-field locomotor activity, akinesia, apomorphine-induced rotational analysis, and dopaminergic neuron degeneration level were assessed every week and up to 8 weeks after daily voluntary running wheel exercise. Results Compared with the sham-treated group, we found that 10 weeks of voluntary exercise (i.e., 2-week exercise before PD lesion and 8-week exercise post-PD lesion) significantly reduced 6-OHDA-induced motor deficits in the gait pattern, akinesia, and rotational behavior in the exercise group. Immunohistochemically, a tyrosine hydroxylase-positive neuron in the substantia nigra was significantly preserved in the exercise group. Conclusions Our results demonstrated that long-term exercise training is effective for neuroprotection and further attenuates motor declines induced by 6-OHDA in an experimental model of PD. Our data further highlighted potential therapeutic effects of long-term physical exercise relevant to clinical effects for further potential application on human PD subjects.
Collapse
|
42
|
Rezaee Z, Marandi SM, Alaei H, Esfarjani F. The effect of preventive exercise on the neuroprotection in 6-hydroxydopamine-lesioned rat brain. Appl Physiol Nutr Metab 2019; 44:1267-1275. [PMID: 31691583 DOI: 10.1139/apnm-2018-0545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's disease is characterized by neurodegeneration and learning deficiency. Physical exercise can alleviate these symptoms by increasing the expression of some effective and relevant factors. The preventive effect of 16-week treadmill running in a rat model of Parkinson's disease, before 6-hydroxydopamine (6-OHDA) induction, was assessed. Experimental groups consisted of sedentary (SED), SED+6-OHDA, exercised (EX), and EX+6-OHDA rats. Forty-eight hours after the last session of exercise, 6-OHDA was injected into the medial forebrain bundle (MFB). One week after the injection, behavioral tests, including spatial learning and memory, were assessed through Morris water maze (MWM) and apomorphine-induced rotation. Three weeks after the injection, mRNA expression and protein levels of the transcriptional co-activator peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α), fibronectin type III domain-containing protein 5 (FNDC5), brain-derived neurotrophic factor (BDNF), and tyrosine hydroxylase (TH) were measured in the striatum and the hippocampus of rats by applying real-time PCR and Western blotting. The findings indicate that exposure to 6-OHDA leads to impairments in behavioral and molecular functions. Exercise training prevents and reduces the symptoms caused by dopamine toxins. The results suggest that treadmill running can exert neuroprotective and have preventive effects to reduce Parkinson's disease symptoms. Novelty Parkinson's disease impairs spatial learning and memory. Parkinson's disease reduced levels of PGC-1α, FNDC5, and BDNF and increased neurodegeneration in the striatum and the hippocampus. Treadmill running before disease attenuated 6-OHDA-induced memory deficit and elevated neuroprotection. Exercise has multiple effects on memory and biochemical factors.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Esfarjani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
43
|
Effects of Resistance Exercise on Cerebral Redox Regulation and Cognition: An Interplay Between Muscle and Brain. Antioxidants (Basel) 2019; 8:antiox8110529. [PMID: 31698763 PMCID: PMC6912783 DOI: 10.3390/antiox8110529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
This review highlighted resistance training as an important training type for the brain. Most studies that use physical exercise for the prevention or treatment of neurodegenerative diseases have focused on aerobic physical exercise, revealing different behavioral, biochemical, and molecular effects. However, recent studies have shown that resistance training can also significantly contribute to the prevention of neurodegenerative diseases as well as to the maintenance, development, and recovery of brain activities through specific neurochemical adaptations induced by the training. In this scenario we observed the results of several studies published in different journals in the last 20 years, focusing on the effects of resistance training on three main neurological aspects: Neuroprotective mechanisms, oxidative stress, and cognition. Systematic database searches of PubMed, Web of Science, Scopus, and Medline were performed to identify peer-reviewed studies from the 2000s. Combinations of keywords related to brain disease, aerobic/resistance, or strength physical exercise were used. Other variables were not addressed in this review but should be considered for a complete understanding of the effects of training in the brain.
Collapse
|
44
|
Schenkman M, Moore CG, Kohrt WM, Hall DA, Delitto A, Comella CL, Josbeno DA, Christiansen CL, Berman BD, Kluger BM, Melanson EL, Jain S, Robichaud JA, Poon C, Corcos DM. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol 2019; 75:219-226. [PMID: 29228079 DOI: 10.1001/jamaneurol.2017.3517] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. Objectives To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. Design, Setting, and Participants The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). Interventions High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Main Outcomes and Measures Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. Results A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the moderate-intensity group (P < .001). The mean change in Unified Parkinson's Disease Rating Scale motor score in the high-intensity group was 0.3 (95% CI, -1.7 to 2.3) compared with 3.2 (95% CI, 1.4 to 5.1) in the usual care group (P = .03). The high-intensity group, but not the moderate-intensity group, reached the predefined nonfutility threshold compared with the control group. Anticipated adverse musculoskeletal events were not severe. Conclusions and Relevance High-intensity treadmill exercise may be feasible and prescribed safely for patients with Parkinson disease. An efficacy trial is warranted to determine whether high-intensity treadmill exercise produces meaningful clinical benefits in de novo Parkinson disease. Trial Registration clinicaltrials.gov Identifier: NCT01506479.
Collapse
Affiliation(s)
- Margaret Schenkman
- Physical Therapy Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora
| | - Charity G Moore
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora.,Geriatric Research Education and Clinical Center, Veterans Affairs Eastern Colorado Health Care System, Denver
| | - Deborah A Hall
- Department of Neurology, Rush University Medical Center, Chicago, Illinois
| | - Anthony Delitto
- Office of the Dean, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cynthia L Comella
- Department of Neurology, Rush University Medical Center, Chicago, Illinois
| | - Deborah A Josbeno
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cory L Christiansen
- Physical Therapy Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora.,Geriatric Research Education and Clinical Center, Veterans Affairs Eastern Colorado Health Care System, Denver
| | - Brian D Berman
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical, Campus, Aurora
| | - Benzi M Kluger
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical, Campus, Aurora
| | - Edward L Melanson
- Geriatric Research Education and Clinical Center, Veterans Affairs Eastern Colorado Health Care System, Denver.,Division of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora
| | - Samay Jain
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie A Robichaud
- Department of Rehabilitation Services, University of Illinois Hospital Health Sciences System, Chicago
| | - Cynthia Poon
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| |
Collapse
|
45
|
Zhang J, Xu H, Gong L, Liu L. Retracted
: MicroRNA‐132 protects H9c2 cells against oxygen and glucose deprivation‐evoked injury by targeting FOXO3A. J Cell Physiol 2019; 235:176-184. [DOI: 10.1002/jcp.28956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jingze Zhang
- Department of Neurosurgery The Second Hospital of Jilin University Changchun Jilin China
| | - Haiming Xu
- Department of Cardiology China‐Japan Union Hospital of Jilin University Changchun Jilin China
| | - Licheng Gong
- Department of Cardiology China‐Japan Union Hospital of Jilin University Changchun Jilin China
| | - Long Liu
- Department of Cardiology China‐Japan Union Hospital of Jilin University Changchun Jilin China
| |
Collapse
|
46
|
Effting PS, Brescianini SMS, Sorato HR, Fernandes BB, Fidelis GDSP, Silva PRLD, Silveira PCL, Nesi RT, Ceddia RB, Pinho RA. Resistance Exercise Modulates Oxidative Stress Parameters and TNF-α Content in the Heart of Mice with Diet-Induced Obesity. Arq Bras Cardiol 2019; 112:545-552. [PMID: 31038529 PMCID: PMC6555563 DOI: 10.5935/abc.20190072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/02/2018] [Indexed: 01/13/2023] Open
Abstract
Background Obesity can be characterized by low-grade chronic inflammation and is
associated with an excesso production of reactive oxygen species, factors
that contribute to coronary heart disease and other cardiomyopathies. Objective To verify the effects of resistance exercise training on oxidative stress and
inflammatory parameters on mice with obesity induced by a high-fat diet
(HFD). Methods 24 Swiss mice were divided into 4 groups: standard diet (SD), SD + resistance
exercise (SD + RE), diet-induced obesity (DIO), DIO + RE. The animals were
fed SD or HFD for 26 weeks and performed resistance exercises in the last 8
weeks of the study. The insulin tolerance test (ITT) and body weight
monitoring were performed to assess the clinical parameters. Oxidative
stress and inflammation parameters were evaluated in the cardiac tissue.
Data were expressed by mean and standard deviation (p < 0.05). Results The DIO group had a significant increase in reactive oxygen species levels
and lipid peroxidation with reduction after exercise. Superoxide dismutase
and the glutathione system showed no significant changes in DIO animals,
with an increase in SD + RE. Only catalase activity decreased with both diet
and exercise influence. There was an increase in tumor necrosis factor-alpha
(TNF-α) in the DIO group, characterizing a possible inflammatory
condition, with a decrease when exposed to resistance training (DIO+RE). Conclusion The DIO resulted in a redox imbalance in cardiac tissue, but the RE was able
to modulate these parameters, as well as to control the increase in
TNF-α levels.
Collapse
Affiliation(s)
- Pauline Souza Effting
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Stella M S Brescianini
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Helen R Sorato
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Bruna Barros Fernandes
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Giulia Dos S Pedroso Fidelis
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Paulo Roberto L da Silva
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Paulo César L Silveira
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil.,Laboratório de Fisiopatologia Experimental - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Renata T Nesi
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Rolando B Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Center - York University, Toronto, ON - Canadá
| | - Ricardo A Pinho
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil.,Laboratório de Bioquímica do Exercício em Saúde (BioEx) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR - Brazil
| |
Collapse
|
47
|
Amara AW, Chahine L, Seedorff N, Caspell-Garcia CJ, Coffey C, Simuni T. Self-reported physical activity levels and clinical progression in early Parkinson's disease. Parkinsonism Relat Disord 2019; 61:118-125. [DOI: 10.1016/j.parkreldis.2018.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 01/16/2023]
|
48
|
Shahidani S, Rajaei Z, Alaei H. Pretreatment with crocin along with treadmill exercise ameliorates motor and memory deficits in hemiparkinsonian rats by anti-inflammatory and antioxidant mechanisms. Metab Brain Dis 2019; 34:459-468. [PMID: 30652256 DOI: 10.1007/s11011-018-0379-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
The motor symptoms of Parkinson's disease (PD) are preceded by non-motorized symptoms including memory deficits. Treatment with dopamine replacement medications, such as L-DOPA only control motor symptoms and does not meet the clinical challenges of the disease, such as dyskinesia, non-motor symptoms, and neuroprotection. The purpose of the current study was to examine the neuroprotective potential of crocin and physical exercise in an animal model of PD. Male Wistar rats ran on a horizontal treadmill and/or pretreated with crocin at a dose of 100 mg/kg. Then, 16 μg of the neurotoxin 6-hydroxydopamine (6-OHDA) was microinjected into left medial forebrain bundle. Crocin treatment and/or exercise continued for 6 more weeks. Spatial and aversive memories, rotational behaviour, inflammatory and oxidative stress parameters were assessed at the end of week 6 post surgery. The results showed that pretreatment with crocin alone and in combination with exercise decreased the total number of rotaions as compared with 6-OHDA-lesioned group. Furthermore, treatment of parkinsonian rats with crocin along with exercise training improved aversive and spatial memories. Biochemical analysis showed that crocin and exercise (alone and in combination) reduced tumor necrosis factor- (TNF) α levels in the striatum. Moreover, treatment with crocin at a dose of 100 mg/kg decreased the lipid peroxidation levels in the hippocampus, while exercise training increased the total thiol concentration. In conclusion, our findings indicated that pretreatment with crocin along with treadmill exercise ameliorated motor and memory deficits induced by 6-OHDA, which is considered to be due to their antioxidant and anti-inflammatory activities. The results suggest that combined therapy with crocin and exercise may be protective for motor and memory deficits in PD patients.
Collapse
Affiliation(s)
- Somayeh Shahidani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
49
|
Effects of Preventive Treadmill Exercise on the Recovery of Metabolic and Mitochondrial Factors in the 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Neurotox Res 2019; 35:908-917. [DOI: 10.1007/s12640-019-0004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
|
50
|
Scheffer DDL, Ghisoni K, Aguiar AS, Latini A. Moderate running exercise prevents excessive immune system activation. Physiol Behav 2019; 204:248-255. [PMID: 30794851 DOI: 10.1016/j.physbeh.2019.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/01/2023]
Abstract
Benefits of exercise have been documented for many diseases with a chronic progression, including obesity, diabetes mellitus, cardiovascular diseases, neurodegenerative diseases, certain types of cancers, and overall mortality. Low-grade systemic inflammation is a key component of these pathologies and it has been demonstrated that can be prevented by performing regularly physical exercise. The aim of this study was to examine the effect of lipopolysaccharide (LPS)-induced inflammation on glucose and insulin tolerance, exercise performance, production of urinary neopterin and striatal neurotransmitters levels in adult male C57BL/6 mice. Increased blood glucose clearance and insulin sensitivity were observed after a single administration of glucose (2 g/kg, p.o.) or insulin (0.5 U/kg, i.p.). However, the repeated injection of LPS (0.33 mg/kg/day, i.p.) decreased glucose tolerance and increase urinary neopterin levels, pointing to systemic inflammation. In parallel to the urinary-increased neopterin, it was observed a significant reduction in the striatal dopamine levels and an increase in the serotonin/dopamine ratio. While a single LPS injection (0.33 mg/kg, i.p.) showed impaired performance in the incremental loading test (10 m/min, with 2 m/min increment every 3 min, at 9% grade), a moderate physical exercise protocol (treadmill for three weeks; 5 sessions/week; up to 50 min/day) prevented the exacerbation of immune system activation and preserved mitochondrial activity in skeletal muscle from mice with continuous LPS infusion (infusion pumps: 0.83 mg/kg/day, i.p.). In conclusion, the peripheral-induced inflammation elicited metabolic alterations that provoked impairment in striatal dopamine metabolism. The moderate exercise prevented the increase of urinary neopterin and preserved mitochondrial activity under LPS-induced inflammatory conditions.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Karina Ghisoni
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal Silva Aguiar
- Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Araranguá, Brazil.
| | - Alexandra Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|