1
|
Cao W, Lan J, Zeng Z, Yu W, Lei S. Gastrodin Induces Ferroptosis of Glioma Cells via Upregulation of Homeobox D10. Molecules 2023; 28:8062. [PMID: 38138552 PMCID: PMC10745471 DOI: 10.3390/molecules28248062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrodin, the primary bioactive compound found in Gastrodia elata, has been shown to exhibit neuroprotective properties in a range of neurological disorders. However, the precise mechanisms through which gastrodin influences glioma cells remain unclear, and there is a scarcity of data regarding its specific effects. To ascertain the viability of glioma cell lines LN229, U251, and T98, the CCK-8 assay, a colony formation assay, and a 3D culture model were employed, utilizing varying concentrations of gastrodin (0, 5, 10, and 20 μM). Gastrodin exhibited a notable inhibitory effect on the growth of glioma cells, as evidenced by its ability to suppress colony formation and spheroid formation. Additionally, gastrodin induced ferroptosis in glioma cells, as it can increase the levels of reactive oxygen species (ROS) and peroxidized lipids, and reduced the levels of glutathione. Using a subcutaneous tumor model, gastrodin was found to significantly inhibit the growth of the T98 glioma cell line in vivo. Using high-throughput sequencing, PPI analysis, and RT-qPCR, we successfully identified Homeobox D10 (HOXD10) as the principal target of gastrodin. Gastrodin administration significantly enhanced the expression of HOXD10 in glioma cells. Furthermore, treatment with gastrodin facilitated the transcription of ACSL4 via HOXD10. Notably, the inhibition of HOXD10 expression impeded ferroptosis in the cells, which was subsequently restored upon rescue with gastrodin treatment. Overall, our findings suggest that gastrodin acts as an anti-cancer agent by inducing ferroptosis and inhibiting cell proliferation in HOXD10/ACSL4-dependent pathways. As a prospective treatment for gliomas, gastrodin will hopefully be effective.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- Key Laboratory of Human Brain Bank for Functions and Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Jinzhi Lan
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (J.L.); (Z.Z.)
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (J.L.); (Z.Z.)
| | - Wenfeng Yu
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (J.L.); (Z.Z.)
| |
Collapse
|
2
|
Zeng X, Li J, Chen T, Li Y, Guo S. Global metabolic profile and multiple phytometabolites in the different varieties of Gastrodia elata Blume. FRONTIERS IN PLANT SCIENCE 2023; 14:1249456. [PMID: 37915510 PMCID: PMC10616830 DOI: 10.3389/fpls.2023.1249456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Gastrodia elata Blume (Tianma in Chinese), a myco-heterotrophic orchid, is widely distributed in China. Tubers derived from this orchid are traditionally used as both medicinal and edible materials. At present, five primary varieties of G. elata are recorded in the "Flora of China." Among them, the three main varieties currently in artificial cultivation are G. elata f. elata (GR, red stem), G. elata f. glauca (GB, black stem), and G. elata f. viridis (GG, green stem). In our study, the metabolic profiles and chemical composition of these three varieties were determined via UPLC-MS/MS and HPLC-UV. In total, 11,132 metabolites were detected, from which multiple phytometabolites were identified as aromatic compounds, heteroatomic compounds, furans, carbohydrates, organic acids, and their derivatives. A number of differentially expressed metabolites (DEMs) were annotated as bioactive ingredients. Overall, parishins, vanilloloside, and gastrodin A/B in the GB group were markedly higher, whereas gastrodin, gastrol, and syringic acid were more enriched in the GG or GR groups. Moreover, HPLC fingerprint analysis also found six metabolites used as markers for the identification of Gastrodiae Rhizoma in the Chinese Pharmacopoeia, which were also typical DEMs in metabolomics. Of these, gastrodin, 4-hydroxybenzyl alcohol, citric acid, and adenosine were quantitatively detected, showing a similar result with the metabolomic data. In summary, our findings provide novel insights into the phytochemical ingredients of different G. elata varieties, highlighting diverse biological activities and healthcare value.
Collapse
Affiliation(s)
| | | | | | | | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Duan X, Song N, Ma K, Tong Y, Yang L. The effects of protein-rich extract from Rhizoma Gastrodiae against cerebral ischemia/reperfusion injury via regulating MAPK and PI3K/AKT signaling pathway. Brain Res Bull 2023; 203:110772. [PMID: 37793596 DOI: 10.1016/j.brainresbull.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Rhizoma Gastrodiae is a highly valuable traditional Chinese medicine and functional health food that has been used in China to treat neurological disorders for thousands of years. Rhizoma Gastrodiae contains various of biological activities, such as antioxidative, neuroprotective, learning improvement, anxiolytic, and antidepressant effects. However, no studies have been conducted to explore the effects of the protein components in Rhizoma Gastrodiae (GEPS) and its potential protective effects against ischemic stroke.Our main goal was to investigate the effects of GEPS on ischemia/reperfusion (I/R) injury and its possible mechanisms. METHODS A middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia mouse model and an oxygen-glucose deprivation (OGD/R) injury model in HT22 cells were established. A neurobehavioral test was performed 24 h after MCAO, and brain infarction was measured. A Morris water maze experiment was conducted on Day 14 after reperfusion in mice. Hematoxylin and eosin (HE) and TUNEL staining were performed to assess apoptotic neuronal death. Immunohistochemical analysis was used to detect BDNF and GAP43 expression. The content of SOD, MDA, GSH-PX and ROS were detected. The protein expression was analyzed using Western blotting. Cell viability was determined by MTT assay. Cell apoptosis was examined by flow cytometry. RESULTS GEPS reduced apoptosis, decreased cerebral infarction, improved neurological defects, and ameliorated oxidative stress in the ischemic penumbra. In addition, GEPS increased the expression of BDNF and GA43 in the penumbra. Mechanistically, GEPS counteracted MCAO-induced PI3K/AKT inhibition and activation of MAPK signaling pathways. CONCLUSION GEPS has a clear neuroprotective effect on I/R injury, and its mechanism may be linked to the PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Nali Song
- Yunnan Institute of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Kejian Ma
- Yunnan Institute of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ying Tong
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Li N, Wang D, Wen X, Chu R, Fan J, Chen Y, Luo Y. Effects of polysaccharides from Gastrodia elata on the immunomodulatory activity and gut microbiota regulation in cyclophosphamide-treated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3390-3401. [PMID: 36754603 DOI: 10.1002/jsfa.12491] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cyclophosphamide (CTX) is a widely used chemotherapeutic agent for the treatment of malignant tumors and autoimmune diseases. However, it can cause immunosuppression and damage the intestinal mucosa. The development of new agents to counteract these side effects is becoming increasingly important. Previous studies have shown that the polysaccharides from Gastrodia elata (GEPs) have strong immune-enhancing effects; however, their functions regarding the intestines and the underlying mechanism are still unclear. In this study, the effects of GEPs on immunomodulatory activity, intestinal barrier function, and gut microbiota regulation were investigated in a mouse model of CTX-induced immunosuppression. RESULTS Gastrodia elata polysaccharides attenuated the CTX-induced decrease in organ indices of the thymus and spleen, and promoted the secretion of immune-related cytokines and immunoglobulins in the serum. They also improved the intestinal pathology and restored the intestinal barrier function by elevating the expression of intestinal tight junction proteins, occludin and ZO-1. Moreover, GEPs restored the composition and abundance of the gut microbiota and increased the short-chain fatty acid (SCFA) content in the colon. The abundance of SCFA-producing bacteria (Muribaculaceae, Prevotellaceae, and Bacteroidaceae) also increased. CONCLUSIONS Gastrodia elata polysaccharides can effectively alleviate immunosuppression and regulate the intestinal barrier integrity and the structure of gut microbiota in CTX-treated mice. They may be used as ingredients to develop functional foods for intestinal health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Li
- College of Bioengineering, Chongqing University, Chongqing, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Dan Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xingjian Wen
- College of Bioengineering, Chongqing University, Chongqing, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rui Chu
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jiuyu Fan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yilong Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yanfeng Luo
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Song M, Ying Z, Ying X, Jia L, Yang G. Two new natural products from Portulaca oleracea L . and their bioactivities. Z NATURFORSCH C 2023; 78:253-259. [PMID: 36762738 DOI: 10.1515/znc-2022-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Two new natural products, belonging to alkaloids, identified as ((2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl acetate (1) and (5-hydroxypyridin-2-yl)methyl acetate (2), were isolated from Portulaca oleracea L. The structures were identified by spectroscopic methods, including 1D, 2D NMR, and UHPLC-ESI-QTOF/MS methods. Meanwhile, the anti-inflammatory and anticholinesterase bioactivities were found in these two compounds.
Collapse
Affiliation(s)
- Mingyang Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
6
|
Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Gastrodia elata Blume in the treatment of ischemic stroke. Exp Ther Med 2022; 24:742. [PMID: 36569043 PMCID: PMC9764286 DOI: 10.3892/etm.2022.11678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrodia elata Blume (GEB) is widely used to treat cardio-cerebrovascular disease in China and in traditional Chinese medicine it is considered to be a dispelling wind and dredging collateral. However, the mechanism and active components of the plant in treating ischemic stroke (IS) remain unclear. The present study aimed to identify the active components and mechanism of GEB in treating IS using network pharmacology and molecular docking technology. Network analysis predicted 752 potential targets from 14 compounds in GEB, sharing 32 key targets with IS-associated targets. Gene Ontology analysis of key targets showed that 'oxidative stress', 'immune response' and 'regulation of blood circulation' were significantly enriched. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the key targets regulated 11 representative pathways including 'arachidonic acid metabolism', 'lipid and galactose metabolism'. In the protein-protein interaction network, five core targets, including toll-like receptor agonist, STAT3, myeloperoxidase (MPO), prostaglandin-endoperoxide synthase and matrix metalloproteinase (MMP)9, were identified and successfully docked with four active components: Palmitic acid, alexandrin, para-hydroxybenzaldehyde and gastrodin. Alexandrin, para-hydroxybenzaldehyde, and gastrodin are closely related to brain ischemia/reperfusion damage and repair. Therefore, to further verify the mechanism of action of three active components in the second part, we established the HT22 oxygen-glucose deprivation-reperfusion (OGD/R) model. Cell Counting Kit-8 assay and western blot analysis demonstrated that these three active components of GEB regulated core targets of molecular docking, such as STAT3, MPO and MMP9. In vitro experiments showed that OGD/R decreased cell survival, while this effect was reversed by the three active components of GEB. In addition, western blot analysis indicated that alexandrin upregulated expression of phosphorylated-STAT3, para-hydroxybenzaldehyde downregulated MPO and gastrodin downregulated MMP9. Therefore, the present study showed that GEB may prevent and treat IS via interaction between the active components and the main targets, which is key for investigating the efficacy of traditional Chinese medicine.
Collapse
|
7
|
Zhang T, Huang S, Qiu J, Wu X, Yuan H, Park S. Beneficial Effect of Gastrodia elata Blume and Poria cocos Wolf Administration on Acute UVB Irradiation by Alleviating Inflammation through Promoting the Gut-Skin Axis. Int J Mol Sci 2022; 23:10833. [PMID: 36142744 PMCID: PMC9504230 DOI: 10.3390/ijms231810833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Bioactive compounds in some herbs can, directly and indirectly, protect against photoaging. We evaluated the effects of Gastrodia elata Blume (GE) and Poria cocos Wolf (PC) water extracts on ultraviolet (UV) B-induced skin lesions by acute UVB exposure in ICR mice and explored their mechanism of action. After removing the hair on the back of the mice, UVB (280-310 nm) was exposed to the back for 30 min to induce skin damage. Four UVB exposure groups were divided into the following according to the local application (1,3-butanediol extract) on the dorsal skin and oral intake (0.3 g water extract/kg body weight/day): 1,3-butanediol and cellulose(control; UV-Con), retinoic acid (positive-control; UV-Positive), PC extracts (UV-PC), and GE extracts (UV-GE). The fifth group had no UVB exposure with the same treatment as the UV-Con (Normal-control). The erythema, burns, erosion, and wounds of the UV-PC and UV-PC groups were alleviated, and the most significant improvements occurred in the UV-PC group. PC and GE reduced the thickness of the dorsal skin tissue, the penetration of mast cells, and malondialdehyde contents. The mRNA expression of TNF-α, IL-13, and IL-4, inflammatory factors, were also reduced significantly in the dorsal skin of the UV-PC and UV-GE groups. UV-PC, UV-GE, and UV-Positive showed improvements in UV-induced intestinal tissue inflammation. UV-Con deteriorated the intestinal morphology, and PC and GE alleviated it. The α-diversity of the fecal microbiota decreased in the UV-control, and UV-PC and UV-GE prevented the decrease. Fecal metagenome analysis revealed increased propionate biosynthesis in the UV-PC group but decreased lipopolysaccharide biosynthesis in the UV-PC and UV-GE groups compared to UV-Con. In conclusion, the local application and intake of PC and GE had significant therapeutic effects on acute UV-induced skin damage by reducing oxidative stress and proinflammatory cytokines, potentially promoting the gut-microbiota-gut-skin axis.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea
| | - Shaokai Huang
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea
| | - Jingyi Qiu
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea
| | - Xuangao Wu
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea
| | - Heng Yuan
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea
| | - Sunmin Park
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| |
Collapse
|
8
|
Fasina OB, Wang J, Mo J, Osada H, Ohno H, Pan W, Xiang L, Qi J. Gastrodin From Gastrodia elata Enhances Cognitive Function and Neuroprotection of AD Mice via the Regulation of Gut Microbiota Composition and Inhibition of Neuron Inflammation. Front Pharmacol 2022; 13:814271. [PMID: 35721206 PMCID: PMC9201506 DOI: 10.3389/fphar.2022.814271] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrodin (Gas) is known to exhibit neuroprotective effects in Alzheimer’s disease (AD). However, the detailed mechanism of action is still unclear. In the present study, we focused on the microbiome–gut–brain axis to investigate the mechanism of action of Gas using a D-galactose (Dgal)–induced AD model. Gas reversed the memory dysfunction of Dgal-administered mice. Neurons in the cerebral cortex and hippocampus were reduced in the Dgal-administered group, and the decrease of neurons was suppressed in 90 and 210 mg/kg Gas treatment groups. 16S rRNA sequence analysis was carried out to explore the composition of gut microbiota in fecal samples of mice. Gas treatment had a positive correlation with Firmicutes and had a negative correlation with Cyanobacteria, Proteobacteria, and Deferribaceters. Importantly, the LPS and proinflammatory cytokines in the brain increased in Dgal-administered mice, but these parameters recovered to normal levels after oral administration of Gas. To determine whether the microbiota–gut–brain axis is involved in the neuroprotective effect of Gas, the mice were given antibiotic cocktail before and during the trial period to decrease the gut microbiota of mice. The antibiotic cocktail partially eliminated the neuroprotective effect of Gas by changing the gut microbiome composition. These results indicated that Gas improves the memory of the AD mouse model via partly targeting the microbiota–gut–brain axis and mitigating neuron inflammation.
Collapse
Affiliation(s)
- Opeyemi B Fasina
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Jianyu Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Jianxia Mo
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Intestinal Ecosystem, Yokohama, Japan
| | - Wensheng Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lan Xiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Jianhua Qi
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Para-Hydroxybenzyl Alcohol Delays the Progression of Neurodegenerative Diseases in Models of Caenorhabditis elegans through Activating Multiple Cellular Protective Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8986287. [PMID: 35401930 PMCID: PMC8989581 DOI: 10.1155/2022/8986287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
The traditional Chinese medicine Gastrodia elata (commonly called “Tianma” in Chinese) has been widely used in the treatment of rheumatism, epilepsy, paralysis, headache, and dizziness. Phenolic compounds, such as gastrodin, para-hydroxybenzyl alcohol (HBA), p-hydroxybenzaldehyde, and vanillin are the main bioactive components isolated from Gastrodia elata. These compounds not only are structurally related but also share similar pharmacological activities, such as antioxidative and anti-inflammatory activities, and effects on the treatment of aging-related diseases. Here, we investigated the effect of para-hydroxybenzyl alcohol (HBA) on neurodegenerative diseases and aging in models of Caenorhabditis elegans (C. elegans). Our results showed that HBA effectively delayed the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease in models of C. elegans. In addition, HBA could increase the average lifespan of N2 worms by more than 25% and significantly improve the age-related physiological functions of worms. Moreover, HBA improved the survival rate of worms under stresses of oxidation, heat, and pathogenic bacteria. Further mechanistic investigation revealed that HBA could activate FOXO/DAF-16 and SKN-1 to regulate antioxidative and xenobiotic metabolism pathway. HBA could also activate HSF-1 to regulate proteostasis maintenance pathway, mitochondrial unfolded stress response, endoplasmic stress response and autophagy pathways. The above results suggest that HBA activated multiple cellular protective pathways to increase stress resistance and protect against aging and aging-related diseases. Overall, our study indicates that HBA is a potential candidate for future development of antiaging pharmaceutical application.
Collapse
|
10
|
Lai Y, Wang R, Li W, Zhu H, Fei S, Shi H, Lu N, Ung COL, Hu H, Han S. Clinical and economic analysis of Gastrodin injection for dizziness or vertigo: a retrospective cohort study based on electronic health records in China. Chin Med 2022; 17:6. [PMID: 34983603 PMCID: PMC8725493 DOI: 10.1186/s13020-021-00561-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Dizziness and vertigo are common clinical symptoms. Gastrodin injection has shown clinical effects on dizziness or vertigo. However, little is known about the effectiveness and costs of combining Gastrodin injection with conventional treatment on dizziness or vertigo in daily practice. This study aimed to analyze the clinical and economic effects of Gastrodin injection for patients with dizziness or vertigo in comparison to Extract of Ginkgo Biloba Leaves injection in real-world practice. Methods Data was collected from the Hospital Information System of 131 hospitals across China from January to December 2018. Patients whose primary discharge diagnosis was dizziness or vertigo according to ICD-10 diagnostic coding were included and divided into two samples: sample of dizziness or vertigo; sample of dizziness or vertigo, with the complication of cerebral infarction. Comparative analysis of the medical cost per hospitalization, hospitalization duration, effective rates, and cure rates between the group of Gastrodin injection and the group of Extract of Ginkgo Biloba Leaves injection was conducted. Propensity Score Matching was used to control potential confounding factors. Results In the sample of dizziness or vertigo, although there was no significant differences on hospitalization duration (P = 0.080), the group of Gastrodin injection was significantly better than the group of Extract of Ginkgo Biloba Leaves injection (P < 0.001) in terms of treatment effect and the per capita hospitalization cost. In the sample of dizziness or vertigo, with the complication of cerebral infarction, there was no significant difference (P = 0.371) in terms of hospitalization duration, but the group of Gastrodin injection was significantly better than the group of Extract of Ginkgo Biloba Leaves injection (P = 0.009) in terms of treatment effect, and significant difference regarding the per capita hospitalization cost (P < 0.001). Conclusions Gastrodin injection showed advantages for inpatients with dizziness or vertigo compared with Extract of Ginkgo Biloba Leaves injection. Future studies using prospective pragmatic controlled trials can test and explore more about the effects of Gastrodin injections on dizziness or vertigo. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00561-9.
Collapse
Affiliation(s)
- Yunfeng Lai
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ruoning Wang
- Department of Continuing Medical Education, Peking University Health Science Center, Beijing, China
| | - Wei Li
- Department of Real-World Evidence and Pharmacoeconomics, International Research Center for Medicinal Administration, Peking University, Beijing, China
| | - He Zhu
- Department of Real-World Evidence and Pharmacoeconomics, International Research Center for Medicinal Administration, Peking University, Beijing, China
| | - Shuyang Fei
- Department of Vasculocardiology, AnZhen Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Honghao Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Nan Lu
- Inchuan Medlinker Internet Hospital, Yinchuan, NingXia Hui Autonomous Region, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China.
| | - Sheng Han
- Department of Real-World Evidence and Pharmacoeconomics, International Research Center for Medicinal Administration, Peking University, Beijing, China.
| |
Collapse
|
11
|
Huang H, Jiang N, Zhang YW, Lv JW, Wang HX, Lu C, Liu XM, Lu GH. Gastrodia elata blume ameliorates circadian rhythm disorder-induced mice memory impairment. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:51-58. [PMID: 34689950 DOI: 10.1016/j.lssr.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Circadian rhythm disorder (CRD) in space flight can lead to memory impairment, performance decrements and adverse health outcomes, the main manifestations of which are circadian desynchronization, sleep loss and insomnia. Sleep deprivation (SD) provide the means to evaluate these effects and the risks associated with CRD on ground. Gastrodia elata Blume (GEB) has beneficial effects on the treatment of sleep disturbances and memory loss. Fresh GEB (FG), an unprocessed raw tuber of GEB, has been used as functional health food in Asian countries for a long time. However, the research report of FG to ameliorate memory impairment caused by insomnia or lack of sleep is meager. In this study, ICR male mice were sleep-deprived continuously and water extract of FG (WFG) was orally administrated (3 and 9 g/kg/d, i.g) during the SD process lasted for 25 days, except control and model groups gavage administration with water, positive control group with modafinil (MOD, 0.1 g/kg/d, i.g). We studied the effect of WFG on CRD-induced learning and memory impairment using a set of behavioral analyses including the object location recognition test (OLRT), novel object recognition test (NORT), and the passive avoidance test (PAT). In addition, oxidative stress parameters were assessed by measuring the malondialdehyde (MDA) and superoxide dismutase (SOD) reactivity in serum and hippocampus. Our results revealed that SD decreased discrimination index (DI) in OLRT and NORT, with shorter latency into the dark chamber in PAT. Both WFG and MOD treatment can reverse these changes (P < 0.05). We concluded that WFG treatment improve CRD-induced learning and memory impairment and oxidative stress damage which makes FG a promising candidate as herbal health product of memory decline in CRD.
Collapse
Affiliation(s)
- Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yi Wen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jing Wei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai Xia Wang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xin Min Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Guang Hua Lu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Yang CS, Chiu SC, Liu PY, Wu SN, Lai MC, Huang CW. Gastrodin alleviates seizure severity and neuronal excitotoxicities in the rat lithium-pilocarpine model of temporal lobe epilepsy via enhancing GABAergic transmission. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113751. [PMID: 33359863 DOI: 10.1016/j.jep.2020.113751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Temporal lobe epilepsy remains one of the most drug-resistant focal epilepsy, leading to enormous healthcare burden. Among traditional herb medicine, some ingredients have the potential to treat seizure and alleviate the neuronal excitoxicity. The dried rhizome of Gastrodia elata Blume has been used to treat convulsive disorder, dizziness, dementia and migraine in eastern Asia. AIM OF THE STUDY To determine whether gastrodin, an active ingredient of Gastrodia elata Blume, can reduce lithium-pilocarpine induced seizure severity and neuronal excitotoxicity and explore the underlying mechanism. MATERIALS AND METHODS We divided the Sprague-Dawley rats into an experimental group (gastrodin group) and a control group (Dimethyl sulfoxide, vehicle group) and performed the behavioral analysis and electroencephalography to determine the effect of gastrodin on the seizure severity induced by lithium-pilocarpine injection. Nissl-stained histopathology elucidated the degree of rat hippocampal neuronal damage as markers of acute and subacute neuronal excitotoxicity. Besides, the Western blotting of dissected hippocampus was carried out to demonstrate the protein expression involving GABAergic transmission and metabolic pathway. RESULTS Gastrodin reduced the acute seizure severity in lithium-pilocarpine-induced seizure model. In electroencephalography recording, gastrodin exerted inhibitory action on epileptiform discharge. Compared with control group, gastrodin exhibited neuroprotective effect against seizure related hippocampal neuronal damage at acute and subacute stages. The Western blotting showed that gastrodin reversed the degradation of GABAA receptor after pilocarpine-induced seizures. CONCLUSIONS In the experimental seizure model, gastrodin showed anti-seizure and neuroprotective abilities. Enhancing the expression of GABAA receptor plays an important role in its antiepileptic mechanism. The results offer a new insight of developing new antiepileptic drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, 42743, Taiwan.
| | - Sheng-Chun Chiu
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, 42743, Taiwan.
| | - Ping-Yen Liu
- Department of Cardiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, 70101, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City, 70101, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 40402, Taiwan.
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City, 70101, Taiwan.
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
13
|
Karin KN, Poklis JL, Peace MR. Evaluation of extraction methods for pharmacologically active compounds from anticonvulsant traditional Chinese medicines: Gou Teng, Tian Ma, Jiang Can using DART-TOF-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:884-893. [PMID: 33459310 PMCID: PMC8323813 DOI: 10.1039/d0ay02015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Chinese herbal medicines (CHMs) are classified as dietary supplements. Interactions with western medications, the presence of contaminants or adulterants, or a mis-labeled or mis-used CHM may lead to toxicological emergencies that can be undetected in death investigations. Laboratories must be able to efficiently analyze cases in which CHMs are suspected. Five extractions were evaluated for their ability to extract pharmacologically active compounds from herbal matrices: water, ethanol, microwave-assisted (MAE), ethanol : chloroform, and acid-wash. Anticonvulsive and other pharmacologically active compounds in Gou Teng, Tian Ma, and Jiang Can purchased from Beijing, China and New York were compared in the powder and the extracts using Direct Analysis in Real Time-Mass Spectrometry (DART-MS). Approximately 0.25 g of macerated herb was used per extraction. The water and ethanol extractions were simple liquid extractions. For the MAE, powdered herb was soaked in 65% ethanol, microwaved, and concentrated. The ethanol : chloroform extraction involved soaking in 1 : 1 ethanol : chloroform, sonication, and concentration. In the acid-wash extraction, powdered herb was soaked in acetic acid, followed by addition of sodium hydroxide, hexane extraction, and reconstitution in ethyl acetate. The powdered herbs and extracts were analyzed using a Jeol JMS T100LC AccuTOF DART-MS in positive and negative mode. Of the evaluated methods, no single extraction worked for all active compounds from the three CHMs. The MAE extract contained the most pharmacologically active compounds, while the acid-wash contained the least for the three products. Gou Teng purchased from different sources did exhibit a difference in pharmacologically active compounds, potentially from different species.
Collapse
Affiliation(s)
- Kimberly N. Karin
- Department of Forensic Science, Virginia Commonwealth University RichmondVAUSA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University RichmondVAUSA
| | - Michelle R. Peace
- Department of Forensic Science, Virginia Commonwealth University RichmondVAUSA
| |
Collapse
|
14
|
Wang Y, Zhang M, Zhou X, Xu C, Zhu C, Yuan Y, Chen N, Yang Y, Guo Q, Shi J. Insight into Medicinal Chemistry Behind Traditional Chinese Medicines: p-Hydroxybenzyl Alcohol-Derived Dimers and Trimers from Gastrodia elata. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:31-50. [PMID: 32761444 PMCID: PMC7933327 DOI: 10.1007/s13659-020-00258-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
From an aqueous extract of "tian ma" (the steamed and dried rhizomes of Gastrodia elata), ten new compounds gastrodibenzins A-D (1-4) and gastrotribenzins A-F (5-10), along with known analogues (11-20), having structure features coupling between two and three p-hydroxybenzyl-derived units via carbon- and/or ether-bonds, were isolated and characterized by spectroscopic data analysis. Meanwhile, the new compounds 5a, 6a, 8a, 22, and 23, as well as the known derivatives 13a, 14a, 15, 17-21, 24, 25, and p-hydroxybenzyl aldehyde were isolated and identified from a refluxed aqueous solution of p-hydroxybenzyl alcohol. Methylation of 5a and 6a in methanol and ethylation of 6a, 8a, 13a, and 14a in ethanol produced 5 and 6 and 7, 8, 13, and 14, respectively. using ultra-performance liquid chromatography high-resolution electrospray ionization mass spectrometry (UPLC-HRESIMS) analysis of the refluxed solutions of p-hydroxybenzyl alcohol and the refluxed extracts of the fresh G. elata rhizome and "tian ma" extracts indicated consistent production and variation of the dimeric and trimeric derivatives of p-hydroxybenzyl alcohol upon extracting solvents and refluxing time. In various assays, the dimeric and trimeric derivatives showed more potent activities than p-hydroxybenzyl alcohol itself and gastrodin, which are the main known active constituents of "tian ma". These results revealed for the first time that the more effective dimers and trimers can be produced through condensation of the co-occurring p-hydroxybenzyl alcohol during processing and decocting of the G. elata rhizomes, demonstrating insights into medicinal chemistry behind application protocols of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Min Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Xue Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Yongchun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
15
|
Lin YE, Lin CH, Ho EP, Ke YC, Petridi S, Elliott CJH, Sheen LY, Chien CT. Glial Nrf2 signaling mediates the neuroprotection exerted by Gastrodia elata Blume in Lrrk2-G2019S Parkinson's disease. eLife 2021; 10:73753. [PMID: 34779396 PMCID: PMC8660019 DOI: 10.7554/elife.73753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The most frequent missense mutations in familial Parkinson's disease (PD) occur in the highly conserved LRRK2/PARK8 gene with G2019S mutation. We previously established a fly model of PD carrying the LRRK2-G2019S mutation that exhibited the parkinsonism-like phenotypes. An herbal medicine, Gastrodia elata Blume (GE), has been reported to have neuroprotective effects in toxin-induced PD models. However, the underpinning molecular mechanisms of GE beneficiary to G2019S-induced PD remain unclear. Here, we show that these G2019S flies treated with water extracts of GE (WGE) and its bioactive compounds, gastrodin and 4-HBA, displayed locomotion improvement and dopaminergic neuron protection. WGE suppressed the accumulation and hyperactivation of G2019S proteins in dopaminergic neurons and activated the antioxidation and detoxification factor Nrf2 mostly in the astrocyte-like and ensheathing glia. Glial activation of Nrf2 antagonizes G2019S-induced Mad/Smad signaling. Moreover, we treated LRRK2-G2019S transgenic mice with WGE and found that the locomotion declines, the loss of dopaminergic neurons, and the number of hyperactive microglia were restored. WGE also suppressed the hyperactivation of G2019S proteins and regulated the Smad2/3 pathways in the mice brains. We conclude that WGE prevents locomotion defects and the neuronal loss induced by G2019S mutation via glial Nrf2/Mad signaling, unveiling a potential therapeutic avenue for PD.
Collapse
Affiliation(s)
- Yu-En Lin
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan,Institute of Food Science and Technology, National Taiwan UniversityTaipeiTaiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University HospitalTaipeiTaiwan
| | - En-Peng Ho
- Department of Neurology, National Taiwan University HospitalTaipeiTaiwan
| | - Yi-Ci Ke
- Department of Neurology, National Taiwan University HospitalTaipeiTaiwan
| | - Stavroula Petridi
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of CambridgeCambridgeUnited Kingdom,Department of Biology and York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Christopher JH Elliott
- Department of Biology and York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan UniversityTaipeiTaiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan,Neuroscience Program of Academia Sinica, Academia SinicaTaipeiTaiwan
| |
Collapse
|
16
|
Kim HM, Kwon J, Lee K, Lee JW, Jang DS, Kwon HC. Constituents of Gastrodia elata and Their Neuroprotective Effects in HT22 Hippocampal Neuronal, R28 Retinal Cells, and BV2 Microglial Cells. PLANTS 2020; 9:plants9081051. [PMID: 32824809 PMCID: PMC7465223 DOI: 10.3390/plants9081051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
Abstract
Gastrodia elata is widely used in traditional medicine and contains various types of metabolites with pharmacological activity. In the course of searching for neuroprotective molecules associated with the potential of G. elata in the treatment of neurodegenerative disorders, two new phenolic compounds (1 and 2) and a new tripeptide (3), together with 16 known compounds (4–19), were isolated from the rhizomes of G. elata. The structures of the compounds were determined by the interpretation of spectroscopic data, including nuclear magnetic resonance and mass spectrometry data. All obtained compounds were assessed for their ability to protect neuronal cells against neurotoxicity and neuroinflammation. Of these, 4 and 5 were found to possess moderate activities in HT22 hippocampal neuronal cells, whereas 2, 6, and 7 showed weak activities in R28 retinal cells. Additionally, compound 9 showed moderate inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglial cells.
Collapse
Affiliation(s)
- Hye Mi Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (J.K.); (K.L.); (J.W.L.)
| | - Kyerim Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (J.K.); (K.L.); (J.W.L.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Jae Wook Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (J.K.); (K.L.); (J.W.L.)
| | - Dae Sik Jang
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (D.S.J.); (H.C.K.)
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (J.K.); (K.L.); (J.W.L.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (D.S.J.); (H.C.K.)
| |
Collapse
|
17
|
Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv Ther 2020; 37:113-139. [PMID: 31782132 PMCID: PMC6979458 DOI: 10.1007/s12325-019-01148-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Introduction Neurodegeneration is the term describing the death of neurons both in the central nervous system and periphery. When affecting the central nervous system, it is responsible for diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disorders, amyotrophic lateral sclerosis, and other less frequent pathologies. There are several common pathophysiological elements that are shared in the neurodegenerative diseases. The common denominators are oxidative stress (OS) and inflammatory responses. Unluckily, these conditions are difficult to treat. Because of the burden caused by the progression of these diseases and the simultaneous lack of efficacious treatment, therapeutic approaches that could target the interception of development of the neurodegeneration are being widely investigated. This review aims to highlight the most recent proposed novelties, as most of the previous approaches have failed. Therefore, older approaches may currently be used by healthcare professionals and are not being presented. Methods This review was based on an electronic search of existing literature, using PubMed as primary source for important review articles, and important randomized clinical trials, published in the last 5 years. Reference lists from the most recent reviews, as well as additional sources of primary literature and references cited by relevant articles, were used. Results Eighteen natural pharmaceutical substances and 24 extracted or recombinant products, and artificial agents that can be used against OS, inflammation, and neurodegeneration were identified. After presenting the most common neurodegenerative diseases and mentioning some of the basic mechanisms that lead to neuronal loss, this paper presents up to date information that could encourage the development of better therapeutic strategies. Conclusions This review shares the new potential pharmaceutical and not pharmaceutical options that have been recently introduced regarding OS and inflammatory responses in neurodegenerative diseases.
Collapse
|
18
|
Yang CS, Lai MC, Liu PY, Lo YC, Huang CW, Wu SN. Characterization of the Inhibitory Effect of Gastrodigenin and Gastrodin on M-type K + Currents in Pituitary Cells and Hippocampal Neurons. Int J Mol Sci 2019; 21:117. [PMID: 31877994 PMCID: PMC6982048 DOI: 10.3390/ijms21010117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Gastrodigenin (HBA) and gastrodin (GAS) are phenolic ingredients found in Gastrodia elata Blume (GEB), a traditional Chinese herbal medicine. These compounds have been previously used to treat cognitive dysfunction, convulsion, and dizziness. However, at present, there is no available information regarding their potential ionic effects in electrically excitable cells. In the current study, the possible effects of HBA and GAS on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were investigated using the patch-clamp technique. The addition of HBA or GAS resulted in the differential inhibition of the M-type K+ current (IK(M)) density in a concentration-dependent manner in GH3 cells. HBA resulted in a slowing of the activation time course of IK(M), while GAS elevated it. HBA also mildly suppressed the density of erg-mediated or the delayed-rectifier K+ current in GH3 cells. Neither GAS nor HBA (10 µM) modified the voltage-gated Na+ current density, although they suppressed the L-type Ca2+ current density at the same concentration. In hippocampal mHippoE-14 neurons, HBA was effective at inhibiting IK(M) density as well as slowing the activation time course. Taken together, the present study provided the first evidence that HBA or GAS could act on cellular mechanisms, and could therefore potentially have a functional influence in various neurologic disorders.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan;
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Ping-Yen Liu
- Department of Cardiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
19
|
Yu B, Li Z, Wu J, Ying J, Tang Y, Wu B, Tang C, Xu J. Quality Control of Gastrodia elata by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC–FLD) and Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1674867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bocheng Yu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Zhen Li
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jinyi Wu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jiamin Ying
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Bingchu Wu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jinyan Xu
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Wang Y, Shahid MQ, Ghouri F, Ercişli S, Baloch FS. Development of EST-based SSR and SNP markers in Gastrodia elata (herbal medicine) by sequencing, de novo assembly and annotation of the transcriptome. 3 Biotech 2019; 9:292. [PMID: 31321198 DOI: 10.1007/s13205-019-1823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/23/2019] [Indexed: 01/28/2023] Open
Abstract
Tianma (Gastrodia elata Blume) has unique biological characteristics and high medicinal value. The wild resource of G. elata is being overutilized and should be conserved as it is already included in the list of endangered species in China. The population size of cultivated G. elata is small because of domestication bottleneck. Therefore, it is of utmost importance to evolve high-quality varieties and conserve wild resources of G. elata. In this study, we sequenced tuber transcriptomes of three major cultivated sub-species of Gastrodia elata, namely G. elata BI. f. elata, G. elata Bl. f. glauca S. Chow, and G. elata Bl. f. Viridis, and obtained about 7.8G clean data. The assembled high-quality reads of three sub-species were clustered into 56,884 unigenes. Of these, 31,224 (54.89%), 25,733 (45.24%), 22,629 (39.78%), and 11,856 (20.84%) unigenes were annotated by Nr, Swiss-Port, Eukaryotic Ortholog Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. Here, a total of 3766 EST-SSRs and 128,921 SNPs were identified from the unigenes. The results not only offer huge number of genes that were responsible for the growth, development, and metabolism of bioactive components, but also a large number of molecular markers were detected for future studies on the conservation genetics and molecular breeding of G. elata.
Collapse
|
21
|
Qi YH, Zhu R, Wang Q, Li Q, Liu YD, Qian ZY, Yang ZH, Mu ZH, Liu XJ, Zhang MY, Wang X, Liao XY, Wan Q, Lu D, Zou YY. Early intervention with gastrodin reduces striatal neurotoxicity in adult rats with experimentally‑induced diabetes mellitus. Mol Med Rep 2019; 19:3114-3122. [PMID: 30816461 PMCID: PMC6423552 DOI: 10.3892/mmr.2019.9954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity in the striatum has an important role in neurodegenerative diseases. It has been reported that diabetes mellitus (DM) induces excitotoxicity in striatal neurons, although the underlying mechanism remains to be fully elucidated. The present study aimed to investigate the effect of gastrodin on DM-induced excitotoxicity in the striatal neurons of diabetic rats. Adult Sprague-Dawley rats were divided into control, diabetic, and gastrodin intervention groups. Diabetes in the rats was induced with a single intraperitoneal injection of streptozotocin (65 mg/kg). In the gastrodin groups, the rats were gavaged with 60 or 120 mg/kg/day gastrodin for 6 weeks, 3 weeks following the induction of diabetes. Pathological alterations in the striatum were assessed using hematoxylin and eosin (H&E) staining. The protein expression levels of phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, p-mitogen-activated protein kinase kinase (MEK)1/2, tyrosine receptor kinase B (TrKB) and brain-derived neurotrophic factor (BDNF) in the striatal neurons were evaluated by western blotting and double immunofluorescence. Additionally, the extracellular levels of glutamate were measured by microanalysis followed by high-pressure-liquid-chromatography. In diabetic rats, striatal neuronal degeneration was evident following H&E staining, which revealed the common occurrence of pyknotic nuclei. This was coupled with an increase in glutamate levels in the striatal tissues. The protein expression levels of p-ERK1/2, p-MEK1/2, TrKB and BDNF in the striatal tissues were significantly increased in the diabetic rats compared with those in the normal rats. In the gastrodin groups, degeneration of the striatal neurons was ameliorated. Furthermore, the expression levels of glutamate, p-ERK1/2, p-MEK1/2, TrKB and BDNF in the striatal neurons were decreased. From these findings, it was concluded that reduced neurotoxicity in striatal neurons following treatment with gastrodin may be attributed to its suppressive effects on the expression of p-ERK1/2, p-MEK1/2, BDNF and TrKB.
Collapse
Affiliation(s)
- Yu-Han Qi
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Rui Zhu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qing Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yi-Dan Liu
- Institute of Drug Discovery and Development, Kunming Pharmaceutical Corporation, Kunming, Yunnan 650500, P.R. China
| | - Zhong-Yi Qian
- Department of Morphological Laboratory, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Hong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Hao Mu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xin-Jie Liu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Mei-Yan Zhang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xin-Yu Liao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Neurosurgery of The Affiliated Hospital, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Di Lu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
22
|
Liu B, Gao JM, Li F, Gong QH, Shi JS. Gastrodin Attenuates Bilateral Common Carotid Artery Occlusion-Induced Cognitive Deficits via Regulating Aβ-Related Proteins and Reducing Autophagy and Apoptosis in Rats. Front Pharmacol 2018; 9:405. [PMID: 29755351 PMCID: PMC5932202 DOI: 10.3389/fphar.2018.00405] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Gastrodin (GAS), an active constituent extracted from Gastrodia elata Blume, is used to treat ischemic stroke, epilepsy, dizziness, and dementia for centuries in China. This study examined its effects on vascular dementia (VD) and the underlying molecular mechanisms. VD was established by ligation of bilateral common carotid artery occlusion (BCCAO). A total of 7 days after BCCAO surgery, GAS (15, 30, and 60 mg/kg) was orally administered for 28 consecutive days to evaluate therapeutic effects. Cognitive function was tested by the Morris water maze. The neuronal morphological changes were examined via Hematoxylin-Eosin staining. Flow cytometry was used for evaluating apoptosis in the hippocampi. The target protein expression was examined by Western blot. The results showed that BCCAO induced cognitive impairment, hippocampus CA1 and CA3 pyramidal neuron damage, beta-amyloid (Aβ) deposition, excessive autophagy, and apoptosis. GAS treatment significantly improved BCCAO-induced cognitive deficits and hippocampus neuron damage. Molecular analysis revealed that GAS exerted the protective effect via reducing the levels of Aβ1-40/42, APP, and β-site APP-cleaving enzyme 1 expression, and increasing Aβ-related protein, a disintegrin and metalloprotease 10, and insulin degrading enzyme expression. Meanwhile, GAS inhibited excessive autophagy via decreasing Beclin-1, LC3-II, and p62 levels. Furthermore, GAS inhibited apoptosis through the downregulation of Bax and upregulation of Bcl-2. Moreover, P38 MAPK signaling pathway was involved in the process. Our findings demonstrate that GAS was effective in the treatment of BCCAO-induced VD via targeting Aβ-related protein formation and inhibiting autophagy and apoptosis of hippocampus neurons.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
23
|
Luo L, Kim SW, Lee HK, Kim ID, Lee H, Lee JK. Anti-Zn 2+-Toxicity of 4-Hydroxybenzyl Alcohol in Astrocytes and Neurons Contribute to a Robust Neuroprotective Effects in the Postischemic Brain. Cell Mol Neurobiol 2018; 38:615-626. [PMID: 28608001 PMCID: PMC11481900 DOI: 10.1007/s10571-017-0508-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
4-Hydroxybenzyl alcohol (4-HBA) is an important phenolic constituent of Gastrodia elata (GE) Blume, which is used as a traditional herbal medicine in East Asia. Many activities have been reported to underlie the beneficial effects of 4-HBA in brain, such as, anti-oxidative, anti-inflammatory, anti-excitotoxic, and anti-apoptotic effects in neurons and microglia. Here, the authors demonstrate the robust neuroprotective effects of 4-HBA in rat middle cerebral artery occlusion (MCAO) model of stroke, and showed anti-Zn2+ toxicity in neurons and astrocytes as a molecular mechanism contributing to these effects. Intraperitoneal administration of 4-HBA (20 mg/kg) in Sprague-Dawley rats 1 h after MCAO reduced infarct volumes to 27.1 ± 9.2% of that of MCAO controls and significantly ameliorated motor impairments and neurological deficits. Significant suppressions of Zn2+-induced cell death, ROS generation, and PARP-1 induction by 4-HBA were observed in primary cortical cultures. 4-HBA also protected astrocytes from Zn2+-induced toxicity and suppressing ROS generation by employing slightly different molecular mechanisms, i.e., suppressing PARP-1 induction and NAD depletion under acute Zn2+-treatment and suppressing p67 NADPH oxidase subunit induction under chronic Zn2+-treatment. Results indicate that the protective effects of 4-HBA against Zn2+-toxicity in neurons and astrocytes contribute to its robust neuroprotective effects in the postischemic brain. Considering the pleiotropic effects of 4-HBA, which have been reported in previous reports and added in the present study, it has therapeutic potential for the amelioration of ischemic brain damage.
Collapse
Affiliation(s)
- Lidan Luo
- Department of Anatomy, Inha University School of Medicine, Nam-Gu Inharo 100, Inchon, 22212, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Nam-Gu Inharo 100, Inchon, 22212, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Nam-Gu Inharo 100, Inchon, 22212, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Nam-Gu Inharo 100, Inchon, 22212, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Nam-Gu Inharo 100, Inchon, 22212, Republic of Korea.
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea.
| |
Collapse
|
24
|
Suarez-Bertoa R, Astorga C. Impact of cold temperature on Euro 6 passenger car emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:318-329. [PMID: 29190540 PMCID: PMC5817001 DOI: 10.1016/j.envpol.2017.10.096] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/25/2017] [Accepted: 10/25/2017] [Indexed: 05/19/2023]
Abstract
Hydrocarbons, CO, NOx, NH3, N2O, CO2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 1011 # km-1) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation.
Collapse
Affiliation(s)
- Ricardo Suarez-Bertoa
- European Commission Joint Research Centre, Directorate for Energy, Transport and Climate, Sustainable Transport Unit, 21027 Ispra, VA, Italy.
| | - Covadonga Astorga
- European Commission Joint Research Centre, Directorate for Energy, Transport and Climate, Sustainable Transport Unit, 21027 Ispra, VA, Italy.
| |
Collapse
|
25
|
Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, Xu Y, Zhao Q, Si G. A Review on Central Nervous System Effects of Gastrodin. Front Pharmacol 2018; 9:24. [PMID: 29456504 PMCID: PMC5801292 DOI: 10.3389/fphar.2018.00024] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
Rhizoma Gastrodiae (also known as Tian ma), the dried rhizome of Gastrodia elata Blume, is a famous Chinese herb that has been traditionally used for the treatment of headache, dizziness, spasm, epilepsy, stoke, amnesia and other disorders for centuries. Gastrodin, a phenolic glycoside, is the main bioactive constituent of Rhizoma Gastrodiae. Since identified in 1978, gastrodin has been extensively investigated on its pharmacological properties. In this article, we reviewed the central nervous system (CNS) effects of gastrodin in preclinical models of CNS disorders including epilepsy, Alzheimer's disease, Parkinson's disease, affective disorders, cerebral ischemia/reperfusion, cognitive impairment as well as the underlying mechanisms involved and, where possible, clinical data that support the pharmacological activities. The sources and pharmacokinetics of gastrodin were also reviewed here. As a result, gastrodin possesses a broad range of beneficial effects on the above-mentioned CNS diseases, and the mechanisms of actions include modulating neurotransmitters, antioxidative, anti-inflammatory, suppressing microglial activation, regulating mitochondrial cascades, up-regulating neurotrophins, etc. However, more detailed clinical trials are still in need for positioning it in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongyan Meng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongbo Ma
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qiong Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
26
|
Analytical Techniques and Pharmacokinetics of Gastrodia elata Blume and Its Constituents. Molecules 2017; 22:molecules22071137. [PMID: 28698450 PMCID: PMC6152015 DOI: 10.3390/molecules22071137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022] Open
Abstract
Gastrodia elata Blume (G. elata), commonly called Tianma in Chinese, is an important and notable traditional Chinese medicine (TCM), which has been used in China as an anticonvulsant, analgesic, sedative, anti-asthma, anti-immune drug since ancient times. The aim of this review is to provide an overview of the abundant efforts of scientists in developing analytical techniques and performing pharmacokinetic studies of G. elata and its constituents, including sample pretreatment methods, analytical techniques, absorption, distribution, metabolism, excretion (ADME) and influence factors to its pharmacokinetics. Based on the reported pharmacokinetic property data of G. elata and its constituents, it is hoped that more studies will focus on the development of rapid and sensitive analytical techniques, discovering new therapeutic uses and understanding the specific in vivo mechanisms of action of G. elata and its constituents from the pharmacokinetic viewpoint in the near future. The present review discusses analytical techniques and pharmacokinetics of G. elata and its constituents reported from 1985 onwards.
Collapse
|
27
|
Gastrodia elata Blume Rhizome Aqueous Extract Improves Arterial Thrombosis, Dyslipidemia, and Insulin Response in Testosterone-Deficient Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2848570. [PMID: 28607572 PMCID: PMC5457754 DOI: 10.1155/2017/2848570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/19/2017] [Indexed: 02/02/2023]
Abstract
Testosterone deficiency deteriorates glucose and lipid metabolism with reducing muscle mass. We investigated whether the consumption of water extracts of Gastrodia elata Blume rhizome (GEB) rich in gastrodin would reduce the symptoms of testosterone deficiency and improve blood flow in orchidectomized (ORX) rats. ORX rats were given high-fat diets supplemented with either 1% cellulose (ORX-control), 0.3% GEB (GEB-L), or 1% GEB (GEB-H) for 8 weeks. Sham-operated rats were fed the same diet as OVX-control rats (normal-control). ORX-control rats had reduced serum testosterone levels by one-fifth, compared to normal-control rats. ORX-control rats exhibited decreased lean body mass, attenuated blood flow, and impaired cholesterol metabolism and glucose control due to decreased insulin secretory response. GEB increased serum insulin levels dose-dependently and GEB-H mostly enhanced dyslipidemia in ORX rats. GEB completely normalized arterial thrombosis time and blood flow in ORX rats. Interestingly, ORX-control rats showed attenuated hepatic insulin signaling but greater AMPK and CREB activities, which reduced triglyceride accumulation, compared to normal-control. GEB-H improved hepatic insulin signaling but maintained the AMPK and CREB activities in ORX rats. In conclusions, GEB ameliorated the impairment of cholesterol and glucose metabolism and blood flow in ORX rats. GEB may be a potential preventive measure for reducing the risk of cardiovascular diseases associated with testosterone deficiency.
Collapse
|
28
|
Liu Y, Huang G. The Chemical Composition, Pharmacological Effects, Clinical Applications and Market Analysis of Gastrodia Elata. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1584-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Panchal K, Tiwari AK. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother 2017; 89:1331-1345. [PMID: 28320100 DOI: 10.1016/j.biopha.2017.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| |
Collapse
|
30
|
Shim E, Song E, Choi KS, Choi HJ, Hwang J. Inhibitory effect of Gastrodia elata Blume extract on alpha-melanocyte stimulating hormone-induced melanogenesis in murine B16F10 melanoma. Nutr Res Pract 2017; 11:173-179. [PMID: 28584573 PMCID: PMC5449373 DOI: 10.4162/nrp.2017.11.3.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/05/2016] [Accepted: 02/27/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/OBJECTIVES Gastrodia elata Blume (GEB), a traditional herbal medicine, has been used to treat a wide range of neurological disorders (e.g., paralysis and stroke) and skin problems (e.g., atopic dermatitis and eczema) in oriental medicine. This study was designed to investigate whether GEB extract inhibits melanogenesis activity in murine B16F10 melanoma. MATERIALS/METHOD Murine B16F10 cells were treated with 0-5 mg/mL of GEB extract or 400 µg/mL arbutin (a positive control) for 72 h after treatment with/without 200 nM alpha-melanocyte stimulating hormone (α-MSH) for 24 h. Melanin concentration, tyrosinase activity, mRNA levels, and protein expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (Trp)1, and Trp2 were analyzed in α-MSH-untreated and α-MSH-treated B16F10 cells. RESULTS Treatment with 200 nM α-MSH induced almost 2-fold melanin synthesis and tyrosinase activity along with increased mRNA levels and protein expression of MITF, tyrosinase, Trp1 and Trp2. Irrespective of α-MSH stimulation, GEB extract at doses of 0.5-5 mg/mL inhibited all these markers for skin whitening in a dose-dependent manner. While lower doses (0.5-1 mg/mL) of GEB extract generally had a tendency to decrease melanogenesis, tyrosinase activity, and mRNA levels and protein expression of MITF, tyrosinase, Trp1, and Trp2, higher doses (2-5 mg/mL) significantly inhibited all these markers in α-MSH-treated B16F10 cells in a dose-dependent manner. These inhibitory effects of the GEB extract at higher concentrations were similar to those of 400 µg/mL arbutin, a well-known depigmenting agent. CONCLUSIONS These results suggest that GEB displays dose-dependent inhibition of melanin synthesis through the suppression of tyrosinase activity as well as molecular levels of MITF, tyrosinase, Trp1, and Trp2 in murine B16F10 melanoma. Therefore, GEB may be an effective and natural skin-whitening agent for application in the cosmetic industry.
Collapse
Affiliation(s)
- Eugene Shim
- Department of Food and Nutrition, Soongeui Women's College, Seoul 04628, Korea
| | - Eunju Song
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Korea
| | | | | | - Jinah Hwang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Korea
| |
Collapse
|
31
|
Effect of Chinese Herbal Medicine on Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:29-56. [DOI: 10.1016/bs.irn.2017.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Song E, Chung H, Shim E, Jeong JK, Han BK, Choi HJ, Hwang J. Gastrodia elata Blume Extract Modulates Antioxidant Activity and Ultraviolet A-Irradiated Skin Aging in Human Dermal Fibroblast Cells. J Med Food 2016; 19:1057-1064. [PMID: 27845865 DOI: 10.1089/jmf.2016.3722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastrodia elata Blume (GEB), a traditional herbal medicine, has been used to treat a wide range of neurological disorders (e.g., paralysis and stroke) and skin problems (e.g., atopic dermatitis and eczema) in oriental medicine. This study was designed to investigate the antioxidant ability of GEB and its antiaging effect on human dermal fibroblast cells (HDF). The total phenolic and flavonoid contents of GEB were 21.8 and 0.43 mg/g dry weight (DW), respectively. The ergothioneine content of GEB was 0.41 mg/mL DW. The DPPH and ABTS radical scavenging activities of GEB at 5 and 10 mg/mL approximately ranged between 31% and 44%. The superoxide dismutase activity of GEB at 10 and 25 mg/mL was 57% and 76%, respectively. GEB increased procollagen type 1 (PC1) production and inhibited matrix metalloproteinase-1 (MMP-1) production and elastase-1 activity in UVA-irradiated HDF. PC1 messenger RNA (mRNA) levels decreased upon UVA irradiation, but recovered in response to high doses of GEB in HDF. On the contrary, GEB significantly decreased MMP-1 and elastase-1 mRNA levels, which were markedly induced in UVA-irradiated HDF. Collectively, these results suggest that GEB has sufficient antioxidant ability to prevent the signs of skin aging in UVA-irradiated human skin cells, suggesting its potential as a natural antiaging product.
Collapse
Affiliation(s)
- Eunju Song
- 1 Department of Food and Nutrition, College of Natural Sciences, Myongji University , Yongin, Korea
| | - Haeyon Chung
- 2 Department of Food and Nutrition, College of Natural Sciences, Soongeui Women's College , Seoul, Korea
| | - Eugene Shim
- 2 Department of Food and Nutrition, College of Natural Sciences, Soongeui Women's College , Seoul, Korea
| | | | | | | | - Jinah Hwang
- 1 Department of Food and Nutrition, College of Natural Sciences, Myongji University , Yongin, Korea
| |
Collapse
|
33
|
Matias M, Silvestre S, Falcão A, Alves G. Gastrodia elata and epilepsy: Rationale and therapeutic potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1511-1526. [PMID: 27765372 DOI: 10.1016/j.phymed.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/29/2016] [Accepted: 09/03/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Gastrodia elata Blume (G. elata) is a traditional Chinese herb used for centuries in folk medicine. Due to the claimed anticonvulsant properties of G. elata, it is expected that this herb continues to be a target of research, aiming to deepen the available knowledge on its biological activity and safety. PURPOSE The current review aims to discuss the most recent advances on the elucidation of the phytochemical composition and anticonvulsant potential of G. elata. METHODS Available literature was reviewed from PubMed, ISI Web of Knowledge and Science Direct, using combinations of the following keywords: Gastrodia elata, tianma, epilepsy, anticonvulsant and pharmacokinetics. Abstracts and full texts were evaluated for their clarity and scientific merit. RESULTS G. elata rhizome, as well as specific phenolic compounds isolated from this herb, have demonstrated anticonvulsant potential in a variety of in vitro and in vivo models. The pharmacological mechanisms potentially involved in the anticonvulsant activity have been extensively studied, being similar to the known mechanisms claimed for the available antiepileptic drugs. In addition, the pharmacokinetics of the main bioactive component of G. elata (gastrodin) has also been studied. CONCLUSION Due to its recognised therapeutic properties, G. elata has gained an increasing interest within the scientific community and, therefore, new medicinal preparations containing G. elata rhizome itself or its bioactive components are expected to be developed in the coming years. Moreover, specific phytochemical constituents isolated from G. elata may also be considered to integrate programs of discovery and development of new anticonvulsant drug candidates.
Collapse
Affiliation(s)
- Mariana Matias
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Samuel Silvestre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Amílcar Falcão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
34
|
Huan T, Xian JW, Leung WN, Li L, Chan CW. Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia. ACTA ACUST UNITED AC 2016; 20:670-680. [DOI: 10.1089/omi.2016.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tao Huan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jia Wen Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wing Nang Leung
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chun Wai Chan
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
35
|
Lee S, Kang S, Kim J, Yoon S, Kim SH, Moon C. Enhanced expression of immediate-early genes in mouse hippocampus after trimethyltin treatment. Acta Histochem 2016; 118:679-684. [PMID: 27614947 DOI: 10.1016/j.acthis.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022]
Abstract
Immediate-early genes (IEGs) are transiently and rapidly activated in response to various cellular stimuli. IEGs mediate diverse functions during pathophysiologic events by regulating cellular signal transduction. We investigated the temporal expression of several IEGs, including c-fos, early growth response protein-1 (Egr-1), and activity-regulated cytoskeleton-associated protein (Arc), in trimethyltin (TMT)-induced hippocampal neurodegeneration. Mice (7 weeks old, C57BL/6) administered TMT (2.6mg/kg intraperitoneally) presented severe neurodegenerative lesions in the dentate gyrus (DG) and showed behavioral seizure activity on days 1-4 post-treatment, after which the lesions and behavior recovered spontaneously over time. c-fos, Egr-1, and Arc mRNA and protein levels significantly increased in the mouse hippocampus after TMT treatment. Immunohistochemical analysis showed that nuclear c-fos expression increased mainly in the DG, whereas nuclear Egr-1 expression was increased extensively in cornu ammonis (CA) 1, CA3, and the DG after TMT treatment. Increased Arc levels were detected in the cellular somata/dendrites of the hippocampal subregions after TMT treatment. Therefore, we suggest that increased IEGs are associated with TMT-induced pathological events in mouse hippocampus.
Collapse
Affiliation(s)
- Sueun Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Juhwan Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Seongwook Yoon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
36
|
Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, Jung C, Shin T, Kim SH, Moon C. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull 2016; 125:187-99. [PMID: 27450702 DOI: 10.1016/j.brainresbull.2016.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Trimethyltin (TMT), a toxic organotin compound, induces neurodegeneration selectively involving the limbic system and especially prominent in the hippocampus. Neurodegeneration-associated behavioral abnormalities, such as hyperactivity, aggression, cognitive deficits, and epileptic seizures, occur in both exposed humans and experimental animal models. Previously, TMT had been used generally in industry and agriculture, but the use of TMT has been limited because of its dangers to people. TMT has also been used to make a promising in vivo rodent model of neurodegeneration because of its region-specific characteristics. Several studies have demonstrated that TMT-treated animal models of epileptic seizures can be used as tools for researching hippocampus-specific neurotoxicity as well as the molecular mechanisms leading to hippocampal neurodegeneration. This review summarizes the in vivo and in vitro underlying mechanisms of TMT-induced hippocampal neurodegeneration (oxidative stress, inflammatory responses, and neuronal death/survival). Thus, the present review may be helpful to provide general insights into TMT-induced neurodegeneration and approaches to therapeutic interventions for neurodegenerative diseases, including temporal lobe epilepsy.
Collapse
Affiliation(s)
- Sueun Lee
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Jeonbuk 54538, South Korea
| | - Jinwook Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Juhwan Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
37
|
Gastrodin Protects Neural Progenitor Cells Against Amyloid β (1-42)-Induced Neurotoxicity and Improves Hippocampal Neurogenesis in Amyloid β (1-42)-Injected Mice. J Mol Neurosci 2016; 60:21-32. [PMID: 27112440 DOI: 10.1007/s12031-016-0758-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the neuroprotective effects of gastrodin (GAS), one of the major bioactive components of Gastrodia elata Blume (Tian Ma), against amyloid β (Aβ) (1-42)-induced neurotoxicity in primary neural progenitor cells (NPCs). We found that pretreatment with GAS not only prevents a loss in cell viability following treatment with Aβ (1-42) but also counteracts Aβ (1-42)-triggered release of pro-inflammatory cytokines and nitric oxide (NO) in a dose-dependent manner. Additionally, GAS was able to attenuate Aβ (1-42)-induced apoptosis in NPCs, evidenced by the decreased percentage of apoptotic cells and altered expression of apoptosis-related proteins in response to GAS pretreatment prior to Aβ (1-42) exposure. Furthermore, in Aβ (1-42)-injected C57BL/6 mice, we found that systemic administration of GAS could improve hippocampal neurogenesis, manifested by the increased number of SOX-2 and doublecortin (DCX)-positive cells in the DG area. Mechanistic studies revealed that in NPCs, GAS could reverse the Aβ (1-42)-induced increase in phosphorylation of MEK-1/2, extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinase (JNK). When combining GAS with the MEK inhibitor U0126 or the JNK inhibitor SP600125, we observed a synergistic effect against Aβ (1-42)-induced reduction in cell viability of NPCs. Taken together, these results show the efficacy and underlying mechanism of GAS against amyloid β (1-42)-induced neurotoxicity and provide substantial insight into the potential merits of GAS for its clinical application in the treatment of Alzheimer's disease.
Collapse
|
38
|
Zhang JS, Zhou SF, Wang Q, Guo JN, Liang HM, Deng JB, He WY. Gastrodin suppresses BACE1 expression under oxidative stress condition via inhibition of the PKR/eIF2α pathway in Alzheimer's disease. Neuroscience 2016; 325:1-9. [PMID: 26987953 DOI: 10.1016/j.neuroscience.2016.03.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
The expression of β-site APP-cleaving enzyme 1 (BACE1) is increased in the brain of late-onset sporadic Alzheimer's disease (AD) and oxidative stress may be the potential cause of this event. The phenolic glucoside gastrodin (Gas), a main component of a Chinese herbal medicine Gastrodia elata Blume, has been demonstrated to display antioxidant activity and suppresses BACE1 expression. However, the mechanisms by which Gas suppresses BACE1 expression are not clear. Morris water maze test was performed to assess the effect of Gas treatment on memory impairments in Tg2576 mice. The level of oxidative stress in the brain of Tg2576 mice was determined by measuring the superoxide dismutase (SOD) activity, catalase (CAT) activity, and the levels of malondialdehyde (MDA) and ROS. In vivo and in vitro, we detected the expression levels of BACE1, pPKRThr446, PKR, pPERKThr981, PERK, peIF2αSer51, and eIF2α using western blot analysis. We found that Gas improved learning and memory abilities of Tg2576 transgenic mice and attenuated intracellular oxidative stress in hippocampi of Tg2576 mice. We discovered that the expression levels of BACE1, activated PKR (pPKRThr446) and activated eIF2α (peIF2αSer51) were elevated in the brains of Tg2576 mice and hydrogen peroxide (H2O2)-stimulated SH-SY5Y cells. Moreover, peptide PKR inhibitor (PRI) and Gas down-regulated BACE1 expression in Tg2576 mice and H2O2-stimulated SH-SY5Y cells by inhibiting activation of PKR and eIF2α. Gas alleviates memory deficits in mice and suppresses BACE1 expression by inhibiting the protein kinase/Eukaryotic initiation factor-2α (PKR/eIF2α) pathway. The research suggested that Gas may develop as an drug candidate in neurodegenerative diseases.
Collapse
Affiliation(s)
- J-S Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - S-F Zhou
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Q Wang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - J-N Guo
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - H-M Liang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - J-B Deng
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China; Department of Neurobiology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - W-Y He
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|