1
|
Wattanalaorsomboon S, Mansalai P, Payaka A, Baiya S, Sansenya S. The inhibition effect of oleamide for acetylcholinesterase and α-glucosidase from edible wild mushroom by in vitro, in silico and fluorescence analysis. Int J Biol Macromol 2025; 308:142681. [PMID: 40169058 DOI: 10.1016/j.ijbiomac.2025.142681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Lipid compounds from edible wild mushrooms have been reported for their biological activities related to Alzheimer's disease (AD) and diabetes mellitus (DM) treatment. This research investigated purified oleamide (PEWM) from edible wide mushroom and determined its antioxidant activity and inhibition potential against acetylcholinesterase (AChE) and α-glucosidase. The PEWM was purified by preparative thin-layer chromatography (PTLC) with methanol: chloroform: water (6:6:1 v/v). The antioxidant activity against ABTS·+ and DPPH· radical of crude extracts (CEWM) had higher potent than PEWM. On the other hand, the inhibition potential of PEWM against AChE and α-glucosidase had higher potency than CEWM. Moreover, the inhibition potency of PEWM and oleamide against AChE was higher than α-glucosidase. The inhibition mode of CEWM, PEWM and oleamide exhibited mixed-type inhibition on AChE and α-glucosidase. Inhibition constant (Ki) also supported that CEWM, PEWM and oleamide have the highest potent on AChE. CEWM, PEWM and oleamide showed fluorescence quenching by increasing the inhibitors' concentration against AChE and α-glucosidase. Docking analysis revealed that oleamide was located in peripheral anionic sites of AChE. The results suggest that edible wild mushrooms as the source of lipids related to AChE and α-glucosidase inhibitory activity might be applied for AD and DM management.
Collapse
Affiliation(s)
- Sukrit Wattanalaorsomboon
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Preecha Mansalai
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Supaporn Baiya
- Department of Resource and Environment, Faculty of Science at Sriracha, Kasetsart University at Sriracha Campus, Chonburi, Thailand
| | - Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.
| |
Collapse
|
2
|
Okumuş E, Canbolat F, Acar İ. Evaluation of antioxidant activity, anti-lipid peroxidation effect and elemental impurity risk of some wild Agaricus species mushrooms. BMC PLANT BIOLOGY 2025; 25:476. [PMID: 40234754 PMCID: PMC11998388 DOI: 10.1186/s12870-025-06520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Mushrooms are natural antioxidant sources that have been consumed as food from past to present and have a nutraceutical effect thanks to the bioactive components they contain. The aim of this study is to comparatively evaluate the antioxidant activity, total phenolic content (TPC) and lipid peroxidation (LPO) inhibition effect of three mushroom species (A. bernardii, A. bresadolanus and A. cupreobrunneus) belonging to the Agaricus genus and to perform the carcinogenic and noncarcinogenic risk assessment of toxic elements such as cadmium (Cd), lead (Pb), arsenic (As) and mercury (Hg) in mushrooms. RESULTS The highest antioxidant activity (12.85 mg/mL), TPC (993.04 mg GAE/100 g), and LPO inhibition effect (2.50 mg/mL) were detected in A. bresadolanus mushroom. The lowest content of bioactive compounds was measured in A. cupreobrunneus mushroom. The range of Cd, Pb, As, and Hg levels detected in the three mushroom species were 1775.54-7521.61 µg/kg, 1176.87-2377.37 µg/kg, 15201.26-3092.53 µg/kg and 147.86-576.53 µg/kg, respectively. The THQ value of As in A. bresadolanus was found to be higher than 1. The HI values of A. bernardii, A. cupreobrunneus and A. bresadolanu were 1.29, 0.98 and 5.57, respectively. The CR values of Cd, As, and Hg were found to be around 10- 4 in A. bernardii, A. cupreobrunneus, and A. bresadolanus. Meanwhile, the CR levels of Pb were found to be around 10- 6 in the three mushrooms. The HI value for non-carcinogenic risk assessment was higher than 1, and the CR for carcinogenic effect was around 10- 4, indicating that consumption of these mushrooms poses a risk to human health. CONCLUSIONS It is thought that the elemental impurity levels in the analysed edible mushroom species were found to be at a risk potential level, and despite their antioxidant properties, uncontrolled consumption of wild edible mushrooms may cause serious risks. In order to minimize these risks, metal risk assessment studies should be continued in addition to the antioxidant effects and health-beneficial properties of mushrooms.
Collapse
Affiliation(s)
- Emine Okumuş
- Department of Food Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Zeve Campus, Tuşba, Van, 65080, Turkey
| | - Fadime Canbolat
- Department of Pharmacy Services, Vocational School of Health Services, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - İsmail Acar
- Department of Organic Agriculture, Başkale Vocational High School, Van Yuzuncu Yil University, Van, Turkey.
| |
Collapse
|
3
|
Wang Q, Yang X, Zhu J. Nutritional and Therapeutic Potential of Stropharia rugosoannulata and Macrolepiota procera: From Composition to Health-Promoting Effect. J Fungi (Basel) 2025; 11:259. [PMID: 40278080 PMCID: PMC12028555 DOI: 10.3390/jof11040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Stropharia rugosoannulata and Macrolepiota procera have garnered considerable attention due to their distinctive flavor profile, culinary versatility, and potential nutritional and therapeutic benefits. They are a rich source of high-quality protein, dietary fiber, vitamins, and minerals, contributing to daily nutritional requirements and promoting overall well-being. Furthermore, they contain a diverse array of bioactive compounds, including polyphenols, flavonoids, and triterpenoids, which have demonstrated antioxidant, anti-inflammatory, and antitumor properties in previous studies. However, comprehensive reviews focusing on these two species remain limited. Therefore, this review summarizes the types of nutrients and bioactive compounds found in Stropharia rugosoannulata and Macrolepiota procera, along with their respective extraction methods. Moreover, the bioactivities of these compounds were discussed, aiming to provide a theoretical framework for the development of novel functional foods and nutraceuticals derived from Stropharia rugosoannulata and Macrolepiota procera.
Collapse
Affiliation(s)
- Qian Wang
- College of Biomedicine and Health, Anhui Science and Technology University, Fengyang 233100, China;
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Fernández-López J, Viuda-Martos M, Botella-Martínez C, Muñoz-Bas C, Bermúdez-Gómez P, Lucas-González R, Pérez-Álvarez JÁ. The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products. Foods 2025; 14:977. [PMID: 40232024 PMCID: PMC11941134 DOI: 10.3390/foods14060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
This study reviews the feasibility of using cultivated mushrooms in the development of salt-reduced meat products. For this purpose, it is important to know the role of salt in meat products in order to develop viable strategies for its substitution. In addition, mushroom types and properties (composition, nutritional value, umami content, etc.) and examples of successful application as salt substitutes in meat products are addressed. Salt has important roles in meat product processing, mainly affecting its technological, antimicrobial, and sensory properties. Therefore, the different strategies that have been studied (meat product reformulation and technological advances) with the aim of reducing its content have to address these effects. The application of mushrooms as a salt substitute shows several advantages mainly related to the fact that mushrooms are a natural ingredient with a very healthy nutritional composition (rich in protein and dietary fiber but low in fat and sodium) and, from an economic and sustainable cultivation perspective, aligns well with current trends in food production and consumption. Salt substitutions of 50% have been achieved, mainly in fresh meat products (hamburgers) and heat-treated meat products (sausages, pâté, roast meat, etc.), with minimal physicochemical and sensory modifications of the final product. The meat industry could benefit from incorporating cultivated mushrooms as a salt-reducing ingredient, especially in the development of reduced salt meat products with a quality comparable to or superior to traditional products. The optimization of processes for their integration in the formulation of meat products should be the trend to ensure their viability.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Clara Muñoz-Bas
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Patricia Bermúdez-Gómez
- Mushroom Technological Research Center of La Rioja (CTICH), Carretera Calahorra, km 4, 26560 Autol, La Rioja, Spain;
| | - Raquel Lucas-González
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| |
Collapse
|
5
|
Rijia A, Krishnamoorthi R, Mahalingam PU, Kaviyadharshini M, Rajeswari M, Kumar KKS, Rasmi M, Chung YK, Fang JY. Unveiling the anticancer potential and toxicity of Ganoderma applanatum wild mushroom derived bioactive compounds: An in vitro, in vivo and in silico evaluation. Bioorg Chem 2025; 156:108233. [PMID: 39908734 DOI: 10.1016/j.bioorg.2025.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
This study explores the anticancer potential of methanolic extract from Ganoderma applanatum, focusing on its cytotoxicity across various cancer cell lines and its safety and efficacy in an in vivo hepatocellular carcinoma (HCC) model, along with molecular docking analysis of its bioactive compounds targeting B-cell lymphoma 2 (Bcl-2) protein. The MTT assay revealed significant cytotoxicity of the extract against epidermoid carcinoma (A431), human alveolar carcinoma (A549), and hepatocellular carcinoma (HepG2) cell lines, with the extract exhibiting the highest potency (IC50 of 95.65 µg/ml) against HepG2 cells. Apoptosis induction and DNA degradation in HepG2 cells were confirmed through mitochondrial membrane potential analysis, ethidium bromide/acridine orange staining, and DNA fragmentation assays. In vivo studies on Wistar albino rats showed that administration of the extract up to 1000 mg/ml did not significantly affect body weight or hematological parameters, suggesting a favorable safety profile. Histopathological examination revealed normal liver architecture at most doses, with mild inflammation observed at the highest dose (1000 mg/ml). The G. applanatum extract were showed reducing liver weight and improving body weight in a Diethylnitrosamine (DEN)-induced HCC model was comparable to cyclophosphamide, indicating its potential as a less toxic alternative or adjunct to conventional chemotherapy. Additionally, the extract reduced elevated serum liver enzymes, demonstrating hepatoprotective effects. Molecular docking of nine bioactive compounds from G. applanatum identified 2h-3,11c-(epoxymethano)phenanthro[10,1-bc]pyran as a promising candidate for further investigation. These findings suggest G. applanatum as a novel anticancer agent with the potential for natural, effective cancer therapy.
Collapse
Affiliation(s)
- Akbar Rijia
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Raman Krishnamoorthi
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India.
| | | | - Murugan Rajeswari
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Konda Kannan Satheesh Kumar
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Madhusoodhanan Rasmi
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| |
Collapse
|
6
|
Elnunu IS, Redmond JN, Dentinger BTM, Naleway SE. Material and mechanical behavior of bracket fungi context as a mechanically versatile structural layer. J Mech Behav Biomed Mater 2025; 163:106841. [PMID: 39689439 DOI: 10.1016/j.jmbbm.2024.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Bracket fungi sporocarps present promising environmentally friendly alternatives to harmful and wasteful structural applications with their high strength-to-weight ratio mechanical properties. Kingdom Fungi is estimated to have over three million species, yet only 4% of the species have been described by mycologists, and their mechanical behavior has been under-explored. This work aims to characterize the material behavior and mechanical properties of bracket fungi as a whole through micro-mechanical tensile testing combined with microstructural imaging and analysis of two representative species. The context layer from three distinctive fresh bracket sporocarps is used in this study. At the microstructure level, the bracket fungi have a preferred alignment in the hyphal network, which correlates to the radial direction. The bracket fungi exhibit an anisotropic mechanical behavior with higher ultimate tensile strength and elastic modulus in the radial direction, while the strain to failure is higher in the transverse direction. However, the bracket fungi exhibit an isotropic energy absorption, or toughness, behavior, with no statistically significant difference between the radial and transverse directions. The characterization of anisotropic mechanical properties and isotropic energy absorption will inspire the exploration of bracket fungi as a viable alternative to applications in various industries, such as aerospace and agriculture.
Collapse
Affiliation(s)
- Ihsan S Elnunu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jessica N Redmond
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Bryn T M Dentinger
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Steven E Naleway
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Nabhan S, Haidar Ahmad S, El Sebaaly Z, Nedelin T, Sassine YN. A first trial to supplement local hardwood sawdust at the first soaking for the cultivation of Shiitake ( Lentinula edodes). PeerJ 2025; 13:e18622. [PMID: 40017649 PMCID: PMC11867041 DOI: 10.7717/peerj.18622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 03/01/2025] Open
Abstract
Supplementation of the growing substrate has been reported to enhance the production of cultivated mushrooms; however, supplementation using nano-sized additives is not yet investigated on Shiitake (Lentinula edodes). The study investigated the potential of a nano-supplement (Lithovit®-Amino25) containing an admixture of 25% L-amino acids on shiitake cultivated on sawdust from locally available oak, maple, and apple trees (oak sawdust: OS, maple sawdust: MS, and apple sawdust: AS). Initially, sawdusts were enriched equally with wheat bran (WB) and at the first soaking, Lithovit®-Amino25 was applied at 5 g/L. Treatments were: T1: OS-WB (control), T2: OS-WB+ nano-amino, T3: MS-WB, T4: MS-WB+ nano-amino, T5: AS-WB, and T6: AS-WB+ nano-amino. Among non-supplemented substrates, complete mycelia run, fruiting, and harvest dates were faster in T1 than in T3 and T5. Complete mycelial development was delayed by 7, 5, 9, and 6 d in T3, T4, T5, and T6 compared to T1. The harvest date was delayed by 7.7-8.3 d on maple sawdust and by 10.5-12.7 d on apple sawdust compared to oak sawdust. However, nano-supplementation hastened fruiting and harvest dates (by 9.3 d) in T4 compared to T3. The biological yield of the second harvest was higher on supplemented than on non-supplemented maple and apple sawdusts. Only T1 and T2 showed consistency in production over two consecutive harvests. Nano-supplementation improved the total biological yield in T2, T4, and T6 by 9.8, 21.0, and 22.5%, respectively. Nevertheless, all treatments, except T4, had lower biological efficiencies compared with T1. In T4, results of stepwise regression showed a strong positive correlation (R2 = 0.96) between the total biological yield and mushroom weight at the second harvest. Supplementation caused a slight or significant improvement in pileus diameter and mushroom firmness and a significant improvement in mushroom's crude protein (by 2.9-8.2% compared to T1) and fiber contents (by 1-2.3% compared to T1). In conclusion, supplemented maple sawdust would alternate oak sawdust for shiitake production, though other timings of supplementation might be further investigated to optimize production on this substrate.
Collapse
Affiliation(s)
- Stephanie Nabhan
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon
- Department of Agronomy, Faculty of Agronomy, The University of Forestry, Sofia, Bulgaria
| | - Soukayna Haidar Ahmad
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon
| | - Zeina El Sebaaly
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon
| | - Teodor Nedelin
- Department of Forestry, Faculty of Forestry, The University of Forestry, Sofia, Bulgaria
| | - Youssef Najib Sassine
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, Lebanon
| |
Collapse
|
8
|
Mussa NJ, Chaijan M, Thongkam P, Wongnen C, Kitpipit W, Çavdar HK, Kim SR, Panpipat W. Rheological and Gelling Properties of Chicken-Mushroom Hybrid Gel for Flexitarian-Friendly Functional Food Applications. Foods 2025; 14:645. [PMID: 40002089 PMCID: PMC11853852 DOI: 10.3390/foods14040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Hybrid gels combining chicken and mushroom offer innovative functional food choices, catering to the growing demand for flexitarian-friendly products. These gels reduce meat content while enhancing dietary fiber, bioactive compounds, and sustainability. This study examined the effects of split gill mushroom (Schizophyllum commune) powder (SGM) substitution (0%, 25%, 50%, and 75%, w/w) for Ligor chicken meat in hybrid gels, focusing on rheological and gelling properties. The 25% SGM gel demonstrated optimal performance in terms of rheology, texture, microstructure, pH, water-holding capacity, and color. At this level, hybrid gels exhibited superior gelation properties, demonstrating elasticity dominance, as indicated by a higher storage modulus (G') than loss modulus (G″), along with stable cohesiveness and unaffected springiness (p > 0.05). However, hardness, gumminess, and chewiness were significantly lower than the control (p < 0.05). Higher SGM levels (50-75%) markedly weakened the gels, reducing viscoelasticity, increasing porosity and water release, and causing discoloration. These findings highlight 25% SGM as an optimal level for hybrid meat gels, maintaining product quality while promoting sustainability in the meat industry.
Collapse
Affiliation(s)
- Ngassa Julius Mussa
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Porntip Thongkam
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Chantira Wongnen
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| | - Warangkana Kitpipit
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Hasene Keskin Çavdar
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, TR-27310 Gaziantep, Turkey;
| | - Siriporn Riebroy Kim
- Food and Nutrition Program, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.J.M.); (M.C.); (P.T.); (C.W.); (W.K.)
| |
Collapse
|
9
|
Aditya, Neeraj, Bhatia J, Yadav AN. A comprehensive review on multifunctional bioactive properties of elm oyster mushroom Hypsizygus ulmarius (Bull.) Redhead (Agaricomycetes): Current research, challenges and future trends. Heliyon 2025; 11:e41418. [PMID: 39897838 PMCID: PMC11782987 DOI: 10.1016/j.heliyon.2024.e41418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Mushrooms have evolved as a nutritional powerhouse, harnessing a diverse spectrum of bioactive molecules to fortify human health. Hypsizygus ulmarius represents a pioneering species within the oyster mushrooms distinguished by its unique characteristics and potential abilities. It is characterized by its large fruiting bodies, which have a meaty flavor and excellent taste. Additionally, this mushroom has a high yield and biological efficiency. This mushroom also holds significant importance globally and is cultivated in China, Japan and other Asian nations due to its favorable growth conditions, exceptional nutritional value, and medicinal attributes. This review focuses on the nutrition and bioactive molecules present in this mushroom species and their further implications in medicine, agriculture, biotechnology for the development of new anti-bacterial agents and their potential industrial uses for human health. This review aims to provide more recent information on the above aspects. Hypsizygus ulmarius shows great potential as a valuable source of several nutrients and bioactive chemicals that may have therapeutic qualities. The immunomodulatory, anti-oxidant, anti-inflammatory and potential anti-cancer properties of this mushroom provide opportunities for further future research in the creation of beneficial functional foods, dietary supplements and pharmaceutical interventions to enhance human health.
Collapse
Affiliation(s)
- Aditya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli-131028 (An Institute of National Importance of India, NIFTEM-K), Sonipat, Haryana, India
| | - Neeraj
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli-131028 (An Institute of National Importance of India, NIFTEM-K), Sonipat, Haryana, India
| | - J.N. Bhatia
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004 (CCS HAU), Haryana, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| |
Collapse
|
10
|
Németh Z, Paulinné Bukovics M, Sümegi LD, Sturm G, Takács I, Simon-Szabó L. The Importance of Edible Medicinal Mushrooms and Their Potential Use as Therapeutic Agents Against Insulin Resistance. Int J Mol Sci 2025; 26:827. [PMID: 39859540 PMCID: PMC11765957 DOI: 10.3390/ijms26020827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In addition to conventional treatments, there is growing interest in preventive and complementary therapies. Proper nutrition can prevent the manifestation of several chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer, and can attenuate the severity of these diseases. Edible mushrooms have been used as nutrition and medicine for thousands of years. The spectrum and quantity of their medicinal compounds made them a widely investigated target both in basic research and clinical trials. The most abundant and medically important components are polysaccharides, terpenoids, phenols, and heterocyclic amines, but bioactive proteins, vitamins, including vitamin D, polyunsaturated fatty acids, and essential minerals are also important ingredients with noteworthy health benefits. Mushroom extracts have anti-diabetic, anti-hyperlipidemic, anti-inflammatory, antioxidant, cardioprotective, anti-osteoporotic, and anti-tumor effects and are well tolerated, even by cancer patients. In our previous review we detailed the molecular aspects of the development of type 2 diabetes, discussing the role of physical activity and diet, but we did not detail the role of medicinal mushrooms as part of nutrition. In this review, we aimed to summarize the most important medical mushrooms, along with their natural habitats, growing conditions, and components, that are presumably sufficient for the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | | | - Liza Dalma Sümegi
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői Út 78/b, 1082 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37–47, 1094 Budapest, Hungary;
| |
Collapse
|
11
|
Stępniewska S, Salamon A, Cacak-Pietrzak G, Piecyk M, Kowalska H. The Impact of Oyster Mushrooms ( Pleurotus ostreatus) on the Baking Quality of Rye Flour and Nutrition Composition and Antioxidant Potential of Rye Bread. Foods 2025; 14:199. [PMID: 39856866 PMCID: PMC11764506 DOI: 10.3390/foods14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This study aimed to evaluate the use of oyster mushroom (Pleurotus ostreatus) powder (OMP) for producing rye bread. The raw materials were low-extract rye flour and OMP, which were analyzed in terms of their nutritional and health-promoting qualities. Mixtures of rye flour with OMP were prepared, replacing 5, 7.5, and 10% rye flour with OMP. The baking quality of the tested flour samples was assessed based on their water absorption, falling number, and amylograph and swelling curve tests. The laboratory baking test was carried out using the sourdough method, prepared based on LV2 starter cultures, and the bread samples were assessed in terms of their technological, sensory, and nutritional characteristics, as well as the antioxidant potential. The OMP was characterized by a high content of basic nutrition components and a higher antioxidant potential. The addition of OMP increased the nutritional value of the rye flour and its water absorption, significantly prolonged the starch gelatinization time, and increased the xylolytic activity of the flour. The OMP enhanced the bread's dietary fiber, minerals, protein, and phenolic compounds, and boosted its antioxidant potential. Also, the starch present in the bread with OMP was characterized by a higher pro-health value due to a higher share of slowly digestible starch. Incorporating 7.5% OMP into the rye bread formula positively affected the bread's sensory profile in contrast to the bread with a 10% addition of OMP.
Collapse
Affiliation(s)
- Sylwia Stępniewska
- Department of Food Technology and Assessment, Division of Fruit, Vegetable and Cereal Technology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-787 Warsaw, Poland;
| | - Agnieszka Salamon
- Department of Grain Processing and Bakery, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Division of Fruit, Vegetable and Cereal Technology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-787 Warsaw, Poland;
| | - Małgorzata Piecyk
- Department of Food Technology and Assessment, Division of Food Quality Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
12
|
Krivošija S, Nastić N, Karadžić Banjac M, Kovačević S, Podunavac-Kuzmanović S, Vidović S. Supercritical Extraction and Compound Profiling of Diverse Edible Mushroom Species. Foods 2025; 14:107. [PMID: 39796397 PMCID: PMC11720195 DOI: 10.3390/foods14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Mushrooms are a raw material rich in many nutritional compounds, and that is why a number of them are widely known as functional food. They contain fatty acids, carbohydrates, lycopene, sterols, lovastatin, trace elements, and other valuable compounds that show a wide range of properties, such as hepatoprotective, anticancer, antiviral, etc. For more efficient utilisation of mushrooms' biologically active substances, widespread supercritical carbon dioxide extraction (Sc-CO2) was used as an efficient way to isolate the high-value phytoconstituents from this type of raw material. Using Sc-CO2, the extracts of five types of edible mushrooms-Lycoperdon saccatum, Pleurotus ostreatus, Craterellus cornucopioides, Russula Cyanoxantha and Cantharellus cibarius-were obtained. During the Sc-CO2 process, the extraction time was reduced to 4 h compared to the prolonged process time applied in the typical traditional techniques (6-24 h). The extraction pressure (30 MPa) and temperature (40 °C) were constant. Fatty acids and the compounds of steroid structures were determined in the obtained extracts using GC-MS and GC-FID methods of analysis. The dominant compounds identified in the lipid extracts were fatty acids (linoleic, oleic, palmitic and stearic) and sterols (ergosterol, 7,22-ergostadienone and 7,22-ergostadienol). For complete insight into the process and to obtain the value of the extracts, chemometric analysis is provided. Principal component analysis (PCA) and hierarchical cluster analysis (HCA), as well as k-means clustering, showed that Craterellus cornucopioides was distinguished based on the extraction yield results.
Collapse
Affiliation(s)
| | | | | | | | | | - Senka Vidović
- Faculty of Technology Novi Sad, University of Novi Sad, Boulevard cara Lazara 1, 21000 Novi Sad, Serbia; (S.K.); (N.N.); (M.K.B.); (S.K.); (S.P.-K.)
| |
Collapse
|
13
|
Fallea A, Venturella G. Health Foods Made from Medicinal Mushrooms: Innovative Recipes Created by an Italian Chef. Int J Med Mushrooms 2025; 27:81-91. [PMID: 40100233 DOI: 10.1615/intjmedmushrooms.2025058296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
An innovative menu based on the use of fresh and dried medicinal mushrooms, which is energetic, healthy, easy to make, and adaptable to any type of diet, is presented. Three edible mushrooms (Lentinula edodes, Grifola frondosa, and Pleurotus ostreatus), which are known for their nutritional and medicinal properties, are paired with typical Sicilian products and used for the preparation of a menu consisting of an appetizer, a first and second course, pre-dessert, and dessert. The proposed menu meets all our criteria.
Collapse
Affiliation(s)
- Angela Fallea
- Department of Agricultural, Food and Forest Sciences, University of Palermo, I-90128 Palermo, Italy
| | - Giuseppe Venturella
- Italian Society of Medicinal Mushrooms, Pisa, Italy; Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
14
|
Kumar A, Devi R, Dhalaria R, Tapwal A, Verma R, Rashid S, Elossaily GM, Khan KA, Chen K, Verma T. Nutritional, Nutraceutical, and Medicinal Potential of Cantharellus cibarius Fr.: A Comprehensive Review. Food Sci Nutr 2025; 13:e4641. [PMID: 39803245 PMCID: PMC11717058 DOI: 10.1002/fsn3.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025] Open
Abstract
Mushrooms are considered as nutraceutical foods that can effectively prevent diseases such as cancer and other serious life-threatening conditions include neurodegeneration, hypertension, diabetes, and hypercholesterolemia. The Cantharellus cibarius, also known as the "Golden chanterelle" or "Golden girolle," is a significant wild edible ectomycorrhizal mushroom. It is renowned for its delicious, apricot-like aroma and is highly valued in various culinary traditions worldwide. It is well known for its nutritional, nutraceutical, and therapeutic properties. The high nutritional value of C. cibarius is attributed to its abundant carbohydrates, proteins, β-glucans, dietary fiber, and low-fat content. It also contains medicinal polysaccharides (β-glucans), proteins (lectins and selenoproteins), important fatty acids (linoleic and omega-6), vitamins, and minerals (N, P, K, Ca, Zn, Ag, Se, etc.). The sporocarp of C. cibarius contains a diverse array of bioactive metabolites, including flavonoids, phenolics, sterols, fatty acids, organic acids, indole groups, carbohydrates, vitamins (tocopherols), amino acids, enzymes, bioelements, carotenoids, and 5'-nucleotides. C. cibarius has a wide array of biological properties, such as antioxidant, anticancer, anti-inflammatory, antifungal, antibacterial, anthelmintic, insecticidal, antihypoxia, antihyperglycemic, wound-healing, cytotoxic, and iron-chelating activity. Thus, the present review gives an overview of C. cibarius, covering its chemical composition, ecological significance, postharvest preservation strategies, and potential applications in dietary supplements, nutraceuticals, and pharmaceuticals. It also dives into the etymology, taxonomy, and global distribution of the renowned "Golden Chanterelle." Furthermore, there is a need to valorize waste materials created during production and processing, as well as to acquire a thorough understanding of the mechanisms of action of bioactive compounds in mushrooms.
Collapse
Affiliation(s)
| | - Reema Devi
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | - Rajni Dhalaria
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | | | - Rachna Verma
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of MedicineAlMaarefa UniversityRiyadhSaudi Arabia
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey ProductionKing Khalid UniversityAbhaSaudi Arabia
| | - Kow‐Tong Chen
- Department of Occupational MedicineTainan Municipal Hospital (Managed by ShowChwan Medical Care Corporation)TainanTaiwan
- Department of Public Health, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Tarun Verma
- Department of Dairy Science and Food Technology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
15
|
Zhang J, Yang S, Fan S, Xiong M, Yang X, Wang LA, Li Z, Lv J. Amino and Fatty Acids Composition, Volatile Compounds and Antioxidant Activity of Medicinal Mushroom Pholiota limonella (Agaricomycetes) from China. Int J Med Mushrooms 2025; 27:39-46. [PMID: 40096534 DOI: 10.1615/intjmedmushrooms.2024056906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Fruiting bodies of mushrooms represent an important functional food owing to various beneficial health enhancing effects. The edible mushroom Pholiota limonella (Strophariaceae, Agaricomycetes) has been found to contain various bioactive components. In this study, the proximate amino and fatty acids, as well as volatile compounds of P. limonella were analyzed to assess its nutritional and aromatic profiles. The in vitro antioxidant activity of P. limonella extract was evaluated using DPPH, ABTS, and hydroxyl radical-scavenging assays. The results showed that P. limonella possesses antioxidant activity and provided a good research basis for the comprehensive development of P. limonella as functional food product.
Collapse
Affiliation(s)
- Jinxiu Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Shengxuan Yang
- Shijiazhuang No. 4 Pharmaceutical Co. Ltd., Shijiazhuang 050035, People's Republic of China
| | - Shuting Fan
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Miaomiao Xiong
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Xiaomin Yang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Li-An Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Zhuang Li
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Jianhua Lv
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| |
Collapse
|
16
|
Singh V, Bains A, Goksen G, Capozzi V, Arjun AD, Ali N, Iqbal M, Chawla P. Comparative analysis of multifaceted properties of Agaricus bisporus and Ganoderma lucidum macro-fungi powder: Techno-functional and structural characterization, mineral uptake, and photocatalytic activity. Food Chem X 2024; 24:101937. [PMID: 39582658 PMCID: PMC11585834 DOI: 10.1016/j.fochx.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Macro-fungi are recognized for food, medicinal, and environmental applications, therefore, the study focuses on multifaceted nutritional, techno-functional, and bioremediation-related uses of Agaricus bisporus and Ganoderma lucidum powders. Herein, A. bisporus exhibited 11.43 % significantly higher protein content, whereas, G. lucidum exhibited 63.55 % higher fiber content. For both mushrooms, spherical porous and fibrous interconnected structural morphology was observed, which led to distinguishing crystallinity and techno-functional properties. G. lucidum demonstrated 75.89 % higher iron, and 19.22 % higher zinc bioavailability while A. bisporus displayed 45.36 % higher calcium bioavailability. G. lucidum absorbed significantly higher zinc and calcium during cellular uptake, while A. bisporus revealed higher iron uptake. Both macro-fungi enhanced iron storage, with G. lucidum achieving 28.68 ± 0.61 ng ferritin/mg cell protein. A. bisporus degraded 88.69 ± 0.12 % Malachite Green while G. lucidum degraded 90.51 ± 0.19 %, maintaining efficiency in both sunlight and UV light. The research indicates that these matrices may serve as valuable nutritional sources and potential substitutes for additives.
Collapse
Affiliation(s)
- Vaishali Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
17
|
Stöckert P, Rusch S, Schlosser-Hupf S, Mehrl A, Zimmermann K, Pavel V, Mester P, Brosig AM, Schilling T, Müller M, Schmid S. Increasing incidence of mycotoxicosis in South-Eastern Germany: a comprehensive analysis of mushroom poisonings at a University Medical Center. BMC Gastroenterol 2024; 24:450. [PMID: 39690424 DOI: 10.1186/s12876-024-03550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Mushrooms, an integral component of human diets, range from esteemed delicacies to potentially lethal toxins. The risk of severe poisoning from misidentified species, poses a significant challenge. For clinicians, recognizing mushroom poisoning amidst nonspecific symptoms and determining the specific mushroom ingested are critical yet complex tasks. Additionally, climate change affects the distribution and proliferation of mushroom species, potentially heightening the risk of exposure to toxic varieties. The identification of mushroom intoxication is critical for appropriate treatment. Poisoning with highly toxic species, such as Amanita phalloides (death cap), can result in acute liver and kidney failure. Considering the limited therapeutic options currently available for acute liver failure, we investigated the application of plasmapheresis, a procedure involving the replacement of the patient's plasma with donor plasma, as a potential intervention to improve clinical outcomes in severe cases of mushroom poisoning. METHODS This study aimed to assess the trends and treatment outcomes of mushroom poisoning cases from 2005 to 2022, with a particular focus on the number of incidents and the potential impacts of climate change. We undertook a retrospective monocentric cohort study, evaluating 43 patients with mushroom poisoning. The study focused on identifying the variety of mushrooms involved, including psychotropic, spoiled, inedible, or toxic species, and closely examined patients with elevated transaminases indicative for liver damage. To assess clinical outcomes, we evaluated several aspects, including hepatic encephalopathy and other symptoms. Additionally, we monitored blood analysis results through serial measurements, including transaminases, bilirubin, INR, and creatinine levels. Furthermore, we explored the impact of climate changes on the incidence of mushroom poisoning. RESULTS While the incidence of mushroom poisonings remained relatively stable during the first eight years of the study period, it nearly doubled over the past nine years. Nine distinct mushroom types were documented. The study showed no change in season patterns of mushroom poisonings. In cases of severe liver damage accompanied by coagulopathy, plasmapheresis was utilized to replace deficient clotting factors and mitigate the inflammatory response. This intervention proved effective in stabilizing coagulation parameters, such as the international normalized ratio (INR) Plasmapheresis was performed until the INR reached stable levels, preventing the occurrence of severe bleeding complications. In instances where liver failure was deemed irreversible, plasmapheresis functioned as a bridging therapy to manage bleeding risks and to stabilize the patient while awaiting liver transplantation. CONCLUSION The findings underscore the need for heightened awareness among healthcare professionals regarding mushroom poisoning and emphasize the importance of considering climate change as a factor that may alter mushroom distribution and toxicity. Additionally, this study highlights the potential of plasmapheresis in managing severe cases.
Collapse
Affiliation(s)
- Petra Stöckert
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Sophia Rusch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Sophie Schlosser-Hupf
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Alexander Mehrl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Katharina Zimmermann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Andreas M Brosig
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Schilling
- Department of Interdisciplinary Acute, Emergency and Intensive Care Medicine (DIANI), Klinikum Stuttgart, Stuttgart, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
18
|
Khan A, Murad W, Salahuddin, Ali S, Shah SS, Halim SA, Khalid A, Kashtoh H, Khan A, Al-Harrasi A. Contribution of mushroom farming to mitigating food scarcity: Current status, challenges and potential future prospects in Pakistan. Heliyon 2024; 10:e40362. [PMID: 39660206 PMCID: PMC11629274 DOI: 10.1016/j.heliyon.2024.e40362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Food insecurity, pollution, and malnutrition are some critical issues tackled by the modern world in the recent era. However, edible mushrooms are nutritionally, economically, and biotechnologically valuable groups of macro fungi. Besides being an essential source of edible food, it is also exploited in pharmacological industries as a potential source of anticancer, antioxidant and immunomodulating agents. Mushrooms are not only a rich nutritional source of functional food all over the world, but also have highly significant bioactive compounds that are considered nutraceuticals, cosmeceuticals, and mycotherapeutics across the globe. However, their cultivation is very low compared to their demand. Its cultivation consents the sustainable management of agro-industrial waste and generates decent income using low inputs. Additionally, the mushroom could also be used for the recirculation of forest waste by acting as a natural decomposer that in turn creates great opportunities for the development of economically miserable developing countries, like Pakistan. Mushroom farming is one of the promising approaches to explore such unwanted agro-waste materials from the environment and ensure food security. Mushroom farming is one of the cheapest sources to overcome the deficiency caused by malnutrition. Interestingly, it supports the local economy by offering more and more livelihood opportunities and significant income sources for local and national trade. The current review article emphasizes the prompt mushroom farming industries in Pakistan that can save lives by providing cheaper nutritional food and rich income sources.
Collapse
Affiliation(s)
- Asif Khan
- Department of Technology, Universidade Estadual de Maringá, Umuarama, PR87501-390, Brazil
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salahuddin
- Agricultural Research Station, Charsadda, 24520, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Syed Sikandar Shah
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Polytechnic School of University of São Paulo, São Paulo, Brazil
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Asaad Khalid
- Health Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| |
Collapse
|
19
|
Gebru H, Belete T, Faye G. Growth and Yield Performance of Pleurotus ostreatus Cultivated on Agricultural Residues. MYCOBIOLOGY 2024; 52:388-397. [PMID: 39845174 PMCID: PMC11749117 DOI: 10.1080/12298093.2024.2399353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Food insecurity and malnutrition are among the major problems in most developing nations recently. Mushroom cultivation is one of the promising strategies to overcome these challenges. The growth and productivity of mushrooms differ because of their wide range of cultivation substrates. Cultivating Pleurotus ostreatus on suitable substrates is one of the key factors affecting its growth and productivity. This study was, therefore, conducted to investigate the effect of cultivation substrates, namely straws of tef (Trt1), barley (Trt2), and wheat (Trt3), husks of faba bean (Trt4) and field pea (Trt5), and sawdust (Trt6) alone, and their mixture (1:1, w/w) (Trt7) on the growth and yield of P. ostreatus. Mycelial colonization, primordial formation, and days to first harvest were faster (13.00, 19.67, and 22.67 days) for the P. ostreatus cultivated on Trt7 whereas those grown on Trt6 were delayed (18.00, 27.00, and 29.67 days), respectively. Trt7 gave a higher (67.33) fruiting body/bunch and total yield (2001.70 g/bag). Biological efficiency was also significantly (p < 0.05) higher for Trt7 (238.64%). Strong relationships between cap diameter and mushroom yield (r = 0.84***), number of bunches (r = 0.76***), number of fruiting bodies (r = 0.80***), stipe length (r = 0.83***), and total yield (r = 0.84***) were among significant positive correlations observed. In conclusion, cultivating P. ostreatus on the Trt7 (mixed substrate) is recommended rather than using either of the residues alone.
Collapse
Affiliation(s)
- Hailu Gebru
- Department of Horticulture, College of Agriculture and Natural Resources, Salale University, Fiche, Ethiopia
| | - Tolosa Belete
- Department of Biology, College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Gezahegn Faye
- Department of Chemistry, College of Natural Sciences, Salale University, Fiche, Ethiopia
| |
Collapse
|
20
|
Ung AT, Chen H. Biological Properties, Health Benefits and Semisynthetic Derivatives of Edible Astraeus Mushrooms (Diplocystidiaceae): A Comprehensive Review. Chem Biodivers 2024; 21:e202401295. [PMID: 39177069 PMCID: PMC11644123 DOI: 10.1002/cbdv.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Edible Astraeus mushrooms are known for their nutritional and culinary benefits and potential therapeutic properties. However, more investigation and discussion are still needed to understand their mechanisms of action regarding observed biological activities and thorough chemical analysis of bioactive compounds. This review provides a comprehensive summary and discussion of the bioactive properties and mode of action of Astraeus extracts and their isolated compounds. It covers their reported antioxidant, anti-inflammatory, antidiabetic, anticancer, anti-tuberculosis, antimalarial, antiviral and antileishmanial activities, as well as their potential benefits on metabolic and cardiovascular health and immune function. The review highlights the significance of the biological potential of isolated compounds, such as sugar alcohols, polysaccharides, steroids, and lanostane triterpenoids. Moreover, the review identifies under-researched areas, such as the chemical analysis of Astraeus species, which holds immense research potential. Ultimately, the review aims to inspire further research on the nutraceuticals or therapeutics of these mushrooms.
Collapse
Affiliation(s)
- Alison T. Ung
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNSW 2007Australia
| | - Hui Chen
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNSW 2007Australia
| |
Collapse
|
21
|
Schäfer L, Herrero-Encinas J, Rühl M, Zorn H, Most E, Eder K, Ringseis R. Research note: Effect of a biotechnologically produced Pleurotus sapidus mycelium on expression of genes involved in protein synthesis and degradation in breast muscle of broilers. Poult Sci 2024; 103:104450. [PMID: 39504827 PMCID: PMC11570723 DOI: 10.1016/j.psj.2024.104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Recently, feeding a fungal mycelium from Pleurotus sapidus was found to reduce relative breast muscle weight of broilers. The present study tested the hypothesis that dietary inclusion of P. sapidus mycelium modulates the expression of genes involved in protein anabolic and protein catabolic pathways in breast muscle of broilers. The study included 72 male, 1-day-old Cobb 500 broilers which were randomly assigned to three groups fed three different diets containing either 0 (PSA-0), 25 (PSA-25) and 50 (PSA-50) g/kg diet P. sapidus mycelium in a three-phase feeding system for 35 days. Within the somatropic axis, the mRNA level of GHR was higher and that of IGF1R was lower in group PSA-25 than in group PSA-0 (P < 0.05). Within the mTOR signaling pathway, the mRNA level of S6K1 was higher in group PSA-25 than in group PSA-0 (P < 0.05). Within muscle growth-related genes, the mRNA level of MYOG was lower in groups PSA-25 and PSA-50 than in group PSA-0 (P < 0.05). The relative phosphorylation of proteins involved in protein anabolic pathways (S6K1, RPS6, eIF2a, AKT) did not differ across the three groups. The mRNA of most genes involved in molecular pathways of protein degradation and inhibition of protein synthesis, such as the GCN/eIF2a pathway, the ubiquitin-proteasome pathway, and the autophagy-lysosomal pathway, showed no differences across the three groups. Only the mRNA level of ATG9A was higher in group PSA-25 compared to group PSA-0 (P < 0.05). These observations suggest that a modulation of these signaling pathways is unlikely to explain the reduced relative breast muscle weight in broilers. Nevertheless, future studies are necessary to exclude an effect of feeding P. sapidus mycelium on other less prominent pathways affecting skeletal muscle mass.
Collapse
Affiliation(s)
- Lea Schäfer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Javier Herrero-Encinas
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; ETS Ingenieria Agronómica, Alimentaria y de Biosistemas, Departamento de Pruducción Agraria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
22
|
Wong XK, Alasalvar C, Ng WJ, Ee KY, Lam MQ, Chang SK. Tiger Milk Mushroom: A Comprehensive Review of Nutritional Composition, Phytochemicals, Health Benefits, and Scientific Advancements with Emphasis on Chemometrics and Multi-Omics. Food Chem 2024; 459:140340. [PMID: 38986197 DOI: 10.1016/j.foodchem.2024.140340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
This article presents a comprehensive overview of tiger milk mushroom (TMM), covering its nutritional composition, phytochemicals, health benefits, and related scientific advancements. It describes various potential positive health benefits of TMM, including anticancer, anti-inflammatory, respiratory function enhancement, antioxidant, anti-aging, neuroprotective, photoprotective, antidiabetic, wound-healing, and anti-HIV, among others. This article also underlines the importance of further research into the phytochemicals present in TMM for additional discoveries. It underscores the importance of further research into phytochemicals content of TMM for additional discoveries and emphasizes the potential applications of TMM in nutrition, health, and well-being. Sophisticated techniques, such as chemometrics and multi-omics technologies revealed latest scientific advancements of TMM. This comprehensive overview provides a foundation for future research and development in harnessing TMM's potential for human health.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | | | - Wen Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kah Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ming Quan Lam
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| |
Collapse
|
23
|
Pashaei KHA, Irankhah K, Namkhah Z, Sobhani SR. Edible mushrooms as an alternative to animal proteins for having a more sustainable diet: a review. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:205. [PMID: 39616410 PMCID: PMC11608470 DOI: 10.1186/s41043-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND High protein sources especially animal protein is being used widely in people's diet. Ensuring a healthy and sustainable diet should be a global priority. Compared to diets rich in animal products, plant-based diets are more sustainable because they have less environmental impact. Aim of this article is to review mushroom's sustainability. MAIN BODY Using meat analogues like mushrooms seems to be a good option because their taste and texture are alike meat and they are sustainable healthy foods as they are good environmental choice due to their less water and land footprint but they are not a cost-benefit food. CONCLUSION Mushroom is a good nutritional and environmental meat substitute as it has less water and land footprint but not as a cost-benefit meat alternative. Therefore, the governments should make policies to use mushroom as an economical meat alternative and a source of protein for all consumers.
Collapse
Affiliation(s)
- Kimia Haji Ali Pashaei
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiyavash Irankhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Malsawmtluanga CD, Lalbiaknunga J, Lalawmpuia, Laldinkima C. Detection and quantification of Amatoxin in wild mushrooms from North-East India using HPLC-PDA method for food safety purposes. Toxicon 2024; 251:108134. [PMID: 39442569 DOI: 10.1016/j.toxicon.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Misidentification and ingestion of poisonous mushrooms pose significant threats to food safety, particularly in Mizoram, India, where over ten fatalities due to mushroom poisoning have been reported in the past decade (2013-2023). This study aimed to address this critical issue by identifying and quantifying the cause of death due to consumption of wild mushroom from Champhai district, Mizoram, India and to test the reliability of HPLC-PDA for detection and quantification of amatoxins. HPLC-PDA confirmed the presence of α-amanitin in Amanita virosa and Amanita bisporigera in the samples. α-amanitin is a water-soluble, heat-stable, and highly toxic cyclic octapeptide present in the genus Amanita, which includes Amanita phalloides, Amanita verna, and Amanita virosa. Amanitin cytotoxicity arises from the inhibition of RNA polymerases, namely RNA polymerase II, which obstructs mRNA production in kidney and liver cells. Validation of the method demonstrated good precision and accuracy, with LOD and LOQ values of 88 ng g-1 and 210 ng g-1, respectively. The method was successfully applied to quantify α-amanitin in ten wild mushroom samples, revealing its presence only in Amanita virosa (1.17 mg g-1) and Amanita bisporigera (1.91 mg g-1) species. These findings underscore the importance of accurate α-amanitin detection methods in ensuring food safety and public health, particularly in regions prone to mushroom poisoning incidents. It is noteworthy that this study marks the initial exploration for detection and quantification of α-amanitin from poisonous mushrooms found in the wild regions of Champhai district in Mizoram, representing the first report of such in the area.
Collapse
Affiliation(s)
| | - J Lalbiaknunga
- Department of Botany, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India.
| | - Lalawmpuia
- Department of Botany, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India.
| | - C Laldinkima
- Department of Botany, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
25
|
Ali S, Yousaf N, Usman M, Javed MA, Nawaz M, Ali B, Azam M, Ercisli S, Tirasci S, Ahmed AE. Volvariella volvacea (paddy straw mushroom): A mushroom with exceptional medicinal and nutritional properties. Heliyon 2024; 10:e39747. [PMID: 39524889 PMCID: PMC11550669 DOI: 10.1016/j.heliyon.2024.e39747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Volvariella volvacea, commonly referred to as paddy straw mushroom, is renowned for its remarkable medicinal and nutritional properties. This mushroom, part of the family Pluteaceae, thrives in tropical and subtropical regions and is highly esteemed for its distinctive flavor and substantial health benefits. The fruiting body of V. volvacea is a rich source of bioactive compounds, including antioxidant enzymes, terpenes, polypeptides, sugars, phenolics, and flavonoids. These compounds exhibit an extensive range of therapeutic activities such as anti-tumor, anti-microbial, antioxidant, anti-malarial, anti-cancer, anti-inflammatory, and anti-allergic effects. Nutritionally, V. volvacea is an excellent source of carbohydrates, proteins, fibers, ascorbic acid, and essential minerals. It also boasts a comprehensive profile of amino acids, including valine, arginine, glutamine, serine, aspartic acid, leucine, isoleucine, tyrosine, asparagine, lysine, cystine, proline, glycine, tryptophan, methionine, phenylalanine, threonine, and histidine. This review emphasizes the significant medicinal and nutritional potential of V. volvacea, advocating its inclusion as a functional food to enhance human health and well-being. By highlighting its diverse bioactive compounds and therapeutic benefits, this review aims to foster greater recognition and utilization of paddy straw mushroom in both dietary and medicinal applications.
Collapse
Affiliation(s)
- Sadaqat Ali
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | - Nousheen Yousaf
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, PR China
| | - Muhammad Ammar Javed
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore 54000, Pakistan
| | - Maryam Nawaz
- Department of Botany, Government College University, Lahore, 54000, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, PR China
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Serpil Tirasci
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
26
|
Sun H, Du J, Yan X, Chen X, Zhao L. Dynamic changes in aromas and precursors of edible fungi juice: mixed lactic acid bacteria fermentation enhances flavor characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8541-8552. [PMID: 39392670 DOI: 10.1002/jsfa.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Lactic acid bacteria (LAB) fermentation technology has been increasingly used in the deep processing of edible fungi. However, the flavor profiles of edible fungi products after mixed LAB fermentation have received less attention and how aromas changes during the mixed LAB fermentation are still open questions. In the present study, fermented Hericium erinaceus and Tremella fuciformis compound juice (FHTJ) was prepared by mixed LAB strains. We aimed to systematically monitor the dynamic changes of aromas and precursors throughout the fermentation process and a data-driven association network analysis was used to tentatively illustrate the mechanisms of formation between aromas and their precursors. RESULTS Mixed LAB fermentation could enrich the aroma profile of FHTJ, reducing the unpleasant flavors such as nonanal and 1-octen-3-ol, as well as increasing the floral flavors such as ethyl acetate and α-pinene. Partial least squares-discriminant analysis and relative odor activity values revealed that 11 volatile chemicals were recognized as aroma-active markers. Volcano plot analysis showed that 3-octen-2-one (green flavor) was the key aroma-active marker in each stage, which was down-regulated in fermentation stages I, II and IV, whereas it was up-regulated in stage III. 3-Octen-2-one was significantly negatively correlated with organic acids, particularly pyruvate (r2 = -0.89). Ethyl caprylate (floral flavor) was up-regulated in the late fermentation stage, and showed a negative correlation with sugar alcohols and a positive correlation with organic acids, especially tartaric acid (r2 = 0.96). CONCLUSION The present study demonstrates the beneficial effect of mixed LAB fermentation on flavor characteristics, providing guidance for fermented edible fungi juice flavor quality monitoring and control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailan Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxin Du
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xingyue Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Li JH, Gu FT, Yang Y, Zhao ZC, Huang LX, Zhu YY, Chen S, Wu JY. Simulated human digestion and fermentation of a high-molecular weight polysaccharide from Lentinula edodes mushroom and protective effects on intestinal barrier. Carbohydr Polym 2024; 343:122478. [PMID: 39174101 DOI: 10.1016/j.carbpol.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024]
Abstract
Lentinula edodes (Shiitake) is an important edible mushroom and polysaccharides are its major constituents with proven health benefits. The study was to investigate the gut bacterial fermentation and subsequent effects on gut barrier function of a glucan-rich polysaccharide, LePS40 precipitated from the mushroom water extract with 40 % (v/v) ethanol. LePS40 consisted of a β-(1→3)-glucan main chain with substitution in the C-6 position with side chains mainly composed of (1 → 6)-linked β-Glcp residues, (1 → 6)-linked α-Galp residues and terminal residues of β-Glcp. LePS40 was found highly resistant to digestive enzymes and gastric acid in simulated human gastrointestinal tract, but highly fermentable during in vitro human fecal fermentation. The fecal fermentation degradation of LePS40 appeared to selectively break the glucoside linkage in view of the dramatic decrease in the glucose molar ratio (12.68 to 1.07). Compared with the prebiotic reference FOS, LePS40 led to much higher levels of butyric, and propionic acid and a lower level of acetic acid. Moreover, LePS40 enhanced the abundance of some beneficial bacterial populations, but decreased the bacteria possibly linked with fatty-liver disease and colorectal cancer. Furthermore, the fecal fermentation products of LePS40 showed a potential protective effect on intestinal barrier function against inflammatory damage in Caco-2/Raw264.7 co-culture model. These findings suggest the potential of LePS40 for improvement of gut health through modulation of gut microbiota.
Collapse
Affiliation(s)
- Jun Hui Li
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Zhejiang University Shandong (Linyi) Institute of Modern Agriculture, Linyi, China
| | - Fang Ting Gu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ye Yang
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zi Chen Zhao
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lin Xi Huang
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yan Yu Zhu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shiguo Chen
- Zhejiang University Shandong (Linyi) Institute of Modern Agriculture, Linyi, China.
| | - Jian Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
28
|
Zhao ZC, Gu FT, Li JH, Zhu YY, Huang LX, Wu JY. Fractionation, characterization, and assessment of nutritional and immunostimulatory protein-rich polysaccharide-protein complexes isolated from Lentinula edodes mushroom. Int J Biol Macromol 2024; 280:136082. [PMID: 39353516 DOI: 10.1016/j.ijbiomac.2024.136082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
This study aimed to fractionate and characterize the protein-rich polysaccharide-protein (PSP) complexes from a well-known edible mushroom, Lentinula edodes, and assess their nutritional and immunostimulatory properties. Crude PSP isolated from the mushroom water extract was purified by anion exchange chromatography, yielding fractions PSP-F1 and PSP-F2 containing 66.1 % and 74.0 % protein, respectively. Both fractions exhibited primarily β-sheet and random-coil protein structures, though the crude PSP fraction exhibited an additional α-helix structure. On SDS-PAGE, PSP-F1 showed two molecular weight bands, one below 10 kDa and another at 34 kDa, and PSP-F2 showed several bands, one below 10 kDa and others between 34 and 95 kDa. The nutritional value of essential and non-essential amino acid profiles was in the order of PSP-F2 > PSP-F1 > crude PSP; the amino acid ratio coefficient values of the crude PSP, PSP-F1, and PSP-F2 were 63 %, 67 %, and 72 %, respectively. The combination of PS and PSP fractions exhibited stronger immunoactivity than PSP-F1 or PSP-F2 alone. PSP-F2 showed a higher immunostimulatory activity than PSP-F1 in RAW264.7 cell culture. PSP-F2 was also more abundant of easily absorbed high-quality proteins. The results provide useful references for dietary and medicinal uses of PSP fractions in L. edodes and other edible mushrooms.
Collapse
Affiliation(s)
- Zi Chen Zhao
- Research Institute for Future Food, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Fang Ting Gu
- Research Institute for Future Food, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jun Hui Li
- Research Institute for Future Food, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yan Yu Zhu
- Research Institute for Future Food, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lin Xi Huang
- Research Institute for Future Food, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jian Yong Wu
- Research Institute for Future Food, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
29
|
Barua RC, Coniglio RO, Molina MA, Díaz GV, Fonseca MI. Fungi as biotechnological allies: Exploring contributions of edible and medicinal mushrooms. J Food Sci 2024; 89:6888-6915. [PMID: 39349976 DOI: 10.1111/1750-3841.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 11/13/2024]
Abstract
Edible and medicinal mushrooms possess excellent nutritional properties due to their incredible versatility in growing on different substrates and producing extracellular enzymes with a wide range of specificity. These features make them excellent candidates for various biotechnological applications. In this context, biotechnological applications using edible and medicinal mushrooms can focus on the bioprocessing of agro-industrial wastes, an economical and environmentally friendly strategy. This review, based on recent original research and scientific reviews, highlights the versatility and potential of mushrooms in terms of sustainability and efficiency. We emphasized the biotechnological applications of edible and medicinal mushrooms and their enzymes including food production with high nutraceutical value by enhancing the quality and flavor of food industry products. Other biotechnological applications addressed in this review were cosmeceutical and biomedical development using mushroom extracts with bioactive compounds; wood pulp pretreatment processes in the pulp and paper industry; bioethanol production; and bioremediation for decontaminating soils and polluted effluents. These applications explain how edible and medicinal mushrooms have gained significance in biotechnology over the years, opening new avenues for innovation. The current tendency to study edible and medicinal mushrooms has gained the attention of researchers because these are still less known organisms becoming an attractive and natural source of novel bioactive compounds that could be integrated into a circular model production.
Collapse
Affiliation(s)
- R Celeste Barua
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Romina O Coniglio
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Melisa A Molina
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Gabriela V Díaz
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Maria I Fonseca
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
30
|
Moutia I, Lakatos E, Kovács AJ. Impact of Dehydration Techniques on the Nutritional and Microbial Profiles of Dried Mushrooms. Foods 2024; 13:3245. [PMID: 39456307 PMCID: PMC11507520 DOI: 10.3390/foods13203245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The global consumption of dried mushrooms has increased worldwide because of their rich nutritional value and culinary versatility. Dehydration methods such as sun drying, hot air drying, freeze drying, and microwave drying are employed to prolong the shelf life of a food product. These methods can also affect the food product's nutritional value and the final product's microbial profile. Each technique affects the retention of essential nutrients like vitamins, minerals, and bioactive compounds differently. Additionally, these techniques vary in their effectiveness at reducing microbial load, impacting the dried mushrooms' safety and shelf life. This review addresses the gap in understanding how different dehydration methods influence dried mushrooms' nutritional quality and microbial safety, which is crucial for optimizing their processing and consumption. It targets researchers, food processors, and consumers seeking to improve the quality and safety of dried mushrooms. This review comprehensively examines the impact of major dehydration techniques, including sun drying, hot air drying, microwave drying, and freeze drying, on the nutritional and microbial profiles of dried mushrooms. Each method is evaluated for its effectiveness in preserving essential nutrients and reducing microbial load. Current research indicates that freeze drying is particularly effective in preserving nutritional quality, while hot air and microwave drying significantly reduce microbial load. However, more well-designed studies are needed to fully understand the implications of these methods for safety and nutritional benefits. These findings are valuable for optimizing dehydration methods for high-quality dried mushrooms that are suited for culinary and medicinal use.
Collapse
Affiliation(s)
- Imane Moutia
- Department of Biosystems Engineering and Precision Technology, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Vár tér 2, H-9200 Mosonmagyaróvár, Hungary;
| | - Erika Lakatos
- Department of Food Science, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Lucsony utca 15-17, H-9200 Mosonmagyaróvár, Hungary;
| | - Attila József Kovács
- Department of Biosystems Engineering and Precision Technology, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Vár tér 2, H-9200 Mosonmagyaróvár, Hungary;
| |
Collapse
|
31
|
Camele I, Mohamed AA, Ibrahim AA, Elshafie HS. Biochemical Characterization and Disease Control Efficacy of Pleurotus eryngii-Derived Chitosan-An In Vivo Study against Monilinia laxa, the Causal Agent of Plum Brown Rot. PLANTS (BASEL, SWITZERLAND) 2024; 13:2598. [PMID: 39339573 PMCID: PMC11435330 DOI: 10.3390/plants13182598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Chitin (Ct) is a crucial biopolymer present in fungi, algae, arthropods, and is usually obtained from crustacean shells. Chitosan (Cs) is a derivative from Ct deacetylation, and possesses numerous uses in various agro-industrial fields. Research on fungal-derived Ct and Cs is mostly focused on pharmaceutical uses, however their uses for plant disease control remain less explored. The main objective of the current study is to evaluate the possibility of using chitosan obtained from mushroom Pleurotus eryngii (Cs-Pe) for controlling some phytopathogens compared to commercial chitosan (C.Cs). This study is focused on the following key areas: (i) extracting Ct from P. eryngii mycelium and converting it to Cs through deacetylation, using both bleaching and non-bleaching methods; (ii) conducting a physico-chemical characterization and in vitro evaluation of the antimicrobial activity of the obtained Cs; (iii) performing an in vivo assessment of the phytotoxic and cytotoxic effects of Cs; and (iv) investigating in vivo the impact of the studied chitosan on fruit quality and its biocontrol efficacy against Monilinia laxa infections in plum fruits. Results showed that Cs-Pe, especially the unbleached one, displayed promising in vitro antimicrobial activity against the majority of tested pathogens. Regarding the cytotoxicity, the highest significant increase in cell abnormality percentage was observed in the case of C.Cs compared to Cs-Pe. In the in vivo study, Cs-Pe acted as a protective barrier, lowering and/or preventing moisture loss and firmness of treated plums. The studied Cs-Pe demonstrated notable efficacy against M. laxa which decreased the fruits' percentage decline. These results strongly suggest that Cs derived from P. eryngii is a potential candidate for increasing plums' shelf-life. This research shed light on the promising applications of P. eryngii-derived Cs in the agri-food field.
Collapse
Affiliation(s)
- Ippolito Camele
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| | - Amira A Mohamed
- Department of Basic Science, Zagazig Higher Institute of Engineering and Technology, Zagazig 44519, Egypt
| | - Amira A Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| | - Hazem S Elshafie
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
32
|
Dey B, Ador MAH, Haque MMU, Ferdous J, Halim MA, Uddin MB, Ahmed R. Strategic insights for sustainable growth of mushroom farming industry in Bangladesh: A comprehensive evaluation using SWOT-AHP and TOPSIS frameworks. Heliyon 2024; 10:e36956. [PMID: 39286225 PMCID: PMC11402923 DOI: 10.1016/j.heliyon.2024.e36956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Mushroom farming using agri-waste as substrates can offer a sustainable solution to the food security challenges of inadequate and imbalanced diets. Developing strategies to exploit the potential of the mushroom industry fully is yet to be explored in Bangladesh. We, thus, conducted this study to investigate the challenges and opportunities associated with mushroom farming, as well as the characteristics of farms and employees engaged in this industry. A directional stepwise multiple regression analysis showed self-motivation, spawn cost, farm size, and training are the key influencing factors driving profitability. Farm surveys identified SWOT factors with 24 sub-factors cross-validated with expert consultations. The sub-factors were categorized as beneficial (strength and opportunities) and cost (weakness and threats) to formulate the SWOT strategies using the Grey-TOPSIS method. Results indicate a favorable scenario exists for the industry in Bangladesh, with significant opportunities (group weight 0.53) and minimal threats (group weight 0.09). We proposed 12 strategic alternatives for the sustainable growth of this industry. This top-ranking strategy is not only to secure funding (relative closeness,C + = 0.87) but also to provide more accessible loan options envisioning a strategic expansion of business operations in Bangladesh. The evaluation highlighted the significance of collaboration with other mushroom farmers to maximize the gain in marketing that will substantially expand the local demand (C + = 0.697). Besides, product diversification is also underscored as an important strategy for the growth of the industry. These prioritized SWOT strategies lay the groundwork for policy development, aiding decision-makers in steering the mushroom industry towards sustainable growth for developing countries like Bangladesh. Promoting such an eco-friendly industry will generate ample opportunities for women's employment and appreciable profit while contributing to environmental improvement through recycling agri-waste.
Collapse
Affiliation(s)
- Biplob Dey
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Informatics and Modelling, Center for Research in Environment, IGen and Livelihoods (CREGL), Sylhet, Bangladesh
| | - Md Ahosan Habib Ador
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammed Masum Ul Haque
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jannatul Ferdous
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Abdul Halim
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Belal Uddin
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Romel Ahmed
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Livelihood and Environment, Center for Research in Environment, IGen and Livelihoods (CREGL), Sylhet, Bangladesh
| |
Collapse
|
33
|
Sharma E, Bairwa R, Lal P, Pattanayak S, Chakrapani K, Poorvasandhya R, Kumar A, Altaf MA, Tiwari RK, Lal MK, Kumar R. Edible mushrooms trending in food: Nutrigenomics, bibliometric, from bench to valuable applications. Heliyon 2024; 10:e36963. [PMID: 39281488 PMCID: PMC11399639 DOI: 10.1016/j.heliyon.2024.e36963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The worldwide consumption, health-promoting and nutritional properties of mushrooms have been extensively researched over a decade. Although, wide range of edible mushrooms is still unexplored, which can be a valuable source of bioactive compounds in dietary supplements and biopharma industry. Mushrooms represent as dynamic source of nutrients lacking in food from plant or animal origin thus, considered as vital functional food utilized for prevention of numerous diseases. The unique bioactive compounds in mushroom and their anti-inflammatory, anti-tumour and other health attributes have been discussed. The preventive action of mushroom on maintaining the gut health and their property to act as pro, pre or symbiotic is also elucidated. The direct prebiotic activity of mushroom affects gut haemostasis and enhances the gut microbiota. Recent reports on role in improving the brain health and neurological impact by mushroom are mentioned. The role of bioactive components in mushroom with relation to nutrigenomics have been explored. The nutrigenomics has become a crucial tool to assess individuals' diet according its genetic make-up and thus, cure of several diseases. Undeniably, mushroom in present time is regarded as next-generation wonder food, playing crucial role in sustaining health, thus, an active ingredient of food and nutraceutical industries.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rakesh Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | | | - Kota Chakrapani
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Rajendra Poorvasandhya
- Department of Plant Pathology, Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia District, West Bengal, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Crop Protection, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002, India
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
- ICAR-Central Potato Research Institute, Shimla, 171001, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
34
|
Schäfer L, Grundmann SM, Rühl M, Zorn H, Seel W, Simon MC, Schuchardt S, Most E, Ringseis R, Eder K. Effects of a biotechnologically produced Pleurotus sapidus mycelium on gut microbiome, liver transcriptome and plasma metabolome of broilers. Poult Sci 2024; 103:103975. [PMID: 38945001 PMCID: PMC11261454 DOI: 10.1016/j.psj.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024] Open
Abstract
Submerged cultivation using low-value agro-industrial side streams allows large-scale and efficient production of fungal mycelia, which has a high nutritional value. As the dietary properties of fungal mycelia in poultry are largely unknown, the present study aimed to investigate the effect of feeding a Pleurotus sapidus (PSA) mycelium as a feed supplement on growth performance, composition of the cecal microbiota and several physiological traits including gut integrity, nutrient digestibility, liver lipids, liver transcriptome and plasma metabolome in broilers. 72 males, 1-day-old Cobb 500 broilers were randomly assigned to 3 different groups and fed 3 different adequate diets containing either 0% (PSA-0), 2.5% (PSA-2.5) and 5% (PSA-5.0) P. sapidus mycelium in a 3-phase feeding system for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. Body weight gain, feed intake and feed:gain ratio and apparent ileal digestibility of crude protein, ether extract and amino acids were not different between groups. Metagenomic analysis of the cecal microbiota revealed no differences between groups, except that one α-diversity metric (Shannon index) and the abundance of 2 low-abundance bacterial taxa (Clostridia UCG 014, Eubacteriales) differed between groups (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta and concentrations of plasma lipopolysaccharide and mRNA levels of proinflammatory genes, tight-junction proteins, and mucins in the cecum mucosa did not differ between groups. None of the plasma metabolites analyzed using targeted-metabolomics differed across the groups. Hepatic transcript profiling revealed a total of 144 transcripts to be differentially expressed between group PSA-5.0 and group PSA-0 but none of these genes was regulated greater 2-fold. Considering either the lack of effects or the very weak effects of feeding the P. sapidus mycelium in the broilers it can be concluded that inclusion of a sustainably produced fungal mycelium in broiler diets at the expense of other feed components has no negative consequences on broilers´ performance and metabolism.
Collapse
Affiliation(s)
- Lea Schäfer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Waldemar Seel
- University of Bonn, Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Bonn, Germany
| | - Marie-Christine Simon
- University of Bonn, Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Bonn, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
35
|
De Padua JC, Tanaka T, Ueno K, Dela Cruz TEE, Ishihara A. Isolation of 2,2'-azoxybisbenzyl alcohol from Agaricus subrutilescens and its inhibitory activity against bacterial biofilm formation. Biosci Biotechnol Biochem 2024; 88:983-991. [PMID: 38925646 DOI: 10.1093/bbb/zbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Virulence pathways in pathogenic bacteria are regulated by quorum sensing mechanisms, particularly biofilm formation through autoinducer (AI) production and sensing. In this study, the culture filtrate extracted from an edible mushroom, Agaricus subrutilescens, was fractionated to isolate a compound that inhibits biofilm formation. Four gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Enterobacter cloacae) and two gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) were used for the bioassay. The bioassay-guided chromatographic separations of the culture filtrate extract resulted in the isolation of the compound. Further, spectroscopic analyses revealed the identity of the compound as 2,2'-azoxybisbenzyl alcohol (ABA). The minimum inhibitory and sub-inhibitory concentrations of the compound were also determined. Azoxybisbenzyl alcohol was significantly effective in inhibiting biofilm formation in all tested bacteria, with half-maximal inhibitory concentrations of 3-11 µg/mL. Additionally, the bioactivity of ABA was confirmed through the bioassays for the inhibition of exopolysaccharide matrixes and AI activities.
Collapse
Affiliation(s)
- Jewel C De Padua
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Tomoya Tanaka
- Graduate School of Sustainability Sciences, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Thomas Edison E Dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Atsushi Ishihara
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori, Japan
| |
Collapse
|
36
|
Moussa AY, Alanzi AR, Riaz M, Fayez S. Could Mushrooms' Secondary Metabolites Ameliorate Alzheimer Disease? A Computational Flexible Docking Investigation. J Med Food 2024; 27:775-796. [PMID: 39121021 DOI: 10.1089/jmf.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Herein, we highlight the significance of molecular modeling approaches prior to in vitro and in vivo studies; particularly, in diseases with no recognized treatments such as neurological abnormalities. Alzheimer disease is a neurodegenerative disorder that causes irreversible cognitive decline. Toxicity and ADMET studies were conducted using the Qikprop platform in Maestro software and Discovery Studio 2.0, respectively, to select the promising skeletons from more than 45 reviewed compounds isolated from mushrooms in the last decade. Using rigid and flexible molecular docking approaches such as induced fit docking (IFD) in the binding sites of β-secretase (BACE1) and acetylcholine esterase (ACHE), promising structures were screened through high precision molecular docking compared with standard drugs donepezil and (2E)-2-imino-3-methyl-5,5-diphenylimidazolidin-4-one (OKK) using Maestro and Cresset Flare platforms. Molecular interactions, binding distances, and RMSD values were measured to reveal key interactions at the binding sites of the two neurodegenerative enzymes. Analysis of IFD results revealed consistent bindings of dictyoquinazol A and gensetin I in the pocket of 4ey7 while inonophenol A, ganomycin, and fornicin fit quite well in 4dju demonstrating binding poses very close to native ligands at ACHE and BACE1. Respective key amino acid contacts manifested the least steric problems according to their Gibbs free binding energies, Glide XP scores, RMSD values, and molecular orientation respect to the key amino acids. Molecular dynamics simulations further confirmed our findings and prospected these compounds to show significant in vitro results in their future pharmacological studies.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Liufang Y, Wu Y, Zhou H, Qu H, Yang H. Recent Advances in the Application of Natural Products for Postharvest Edible Mushroom Quality Preservation. Foods 2024; 13:2378. [PMID: 39123569 PMCID: PMC11312085 DOI: 10.3390/foods13152378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Edible mushrooms are favored by consumers for their excellent nutritional value and pharmacological properties. However, fresh mushrooms are highly perishable and undergo rapid quality deterioration induced by a series of intrinsic and extrinsic factors during postharvest storage. In recent years, the application of natural products derived from plants, animals, microorganisms, and other sources in mushroom quality preservation has drawn increasing attention. Compared to chemical preservatives, natural products show similar or higher biological activity and have few side effects on human health. This review summarizes the recent advances in the application of natural products used for quality maintenance of postharvest mushrooms. These natural substances mainly include essential oils, polyphenols, polysaccharides, bacteriocins, and other extracts. They have the potential to inhibit mushroom weight loss, softening, and browning, reduce the count of pathogenic microorganisms, and retain nutrients and flavor, effectively improving the quality of mushrooms and extending their shelf-life. The preservation techniques for natural products and their preservation mechanisms are also discussed here. Overall, this review provides current knowledge about natural products in edible mushroom preservation and aims to inspire more in-depth theoretical research and promote further practical application.
Collapse
Affiliation(s)
- Yuxin Liufang
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| | - Yi Wu
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| | - Huabin Zhou
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| | - Hang Qu
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Hailong Yang
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| |
Collapse
|
38
|
Tiwari P, Park KI. Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? J Fungi (Basel) 2024; 10:506. [PMID: 39057391 PMCID: PMC11278089 DOI: 10.3390/jof10070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The present era has witnessed an unprecedented scenario with extreme climate changes, depleting natural resources and rising global food demands and its widespread societal impact. From providing bio-based resources to fulfilling socio-economic necessities, tackling environmental challenges, and ecosystem restoration, microbes exist as integral members of the ecosystem and influence human lives. Microbes demonstrate remarkable potential to adapt and thrive in climatic variations and extreme niches and promote environmental sustainability. It is important to mention that advances in fungal biotechnologies have opened new avenues and significantly contributed to improving human lives through addressing socio-economic challenges. Microbe-based sustainable innovations would likely contribute to the United Nations sustainable development goals (SDGs) by providing affordable energy (use of agro-industrial waste by microbial conversions), reducing economic burdens/affordable living conditions (new opportunities by the creation of bio-based industries for a sustainable living), tackling climatic changes (use of sustainable alternative fuels for reducing carbon footprints), conserving marine life (production of microbe-based bioplastics for safer marine life) and poverty reduction (microbial products), among other microbe-mediated approaches. The article highlights the emerging trends and future directions into how fungal biotechnologies can provide feasible and sustainable solutions to achieve SDGs and address global issues.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | |
Collapse
|
39
|
Gebru H, Faye G, Belete T. Antioxidant capacity of Pleurotus ostreatus (Jacq.) P. Kumm influenced by growth substrates. AMB Express 2024; 14:73. [PMID: 38878132 PMCID: PMC11180080 DOI: 10.1186/s13568-024-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
Functional constituents are the main concern in food production and consumption. Because foods rich in functional constituents have antioxidant capacity and are important in keeping consumers healthy. Pleurotus ostreatus is among foods rich in functional constituents. However, its functional constituents are affected by various factors. This study compared the antioxidant capacity of P. ostreatus grown on different substrates: straws of tef (Trt1), barley (Trt2), and wheat (Trt3), husks of faba bean (Trt4), and field pea (Trt5), sawdust (Trt6), and the mixture of the above with 1:1 w/w (Trt7). Trt7 had significantly higher radical scavenging activity (RSA) (73.27%), vitamin C (10.61 mg/100 g), and vitamin D (4.92 mg/100 g) compared to other treatments. Whereas the lowest values of RSA (44.24%), vitamin C (5.39 mg/100 g), and vitamin D (1.21 mg/100 g) were found in Trt2. The results indicated that mixed substrate may be a good growth substrate for functionally beneficial P. ostreatus and could be a promising source of natural antioxidants.
Collapse
Affiliation(s)
- Hailu Gebru
- Department of Horticulture, College of Agriculture and Natural Resources, Salale University, P.O. Box 245, Fiche, Ethiopia.
| | - Gezahegn Faye
- Department of Chemistry, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| | - Tolosa Belete
- Department of Biology, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| |
Collapse
|
40
|
Srivastava M, Kumari M, Karn SK, Bhambri A, Mahale VG, Mahale S. Submerged cultivation and phytochemical analysis of medicinal mushrooms ( Trametes sp.). FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1414349. [PMID: 38919599 PMCID: PMC11196847 DOI: 10.3389/ffunb.2024.1414349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Mushrooms are widely available around the world and have various nutritional as well as therapeutic values. Many Asian cultures believe that medicinal mushrooms can prolong life and improve vitality. This study aims to characterize the phytochemical and polysaccharide content, mainly β-glucan content, of mycelial biomass and fruiting bodies collected from the Himalayan region, particularly Uttarakhand. Through molecular analysis of the LSU F/R-rDNA fragment sequence and phylogenetic analysis, the strain was identified as Trametes sp. We performed screening of phytochemicals and polysaccharides in mushroom and biomass extracts using high-performance liquid chromatography (HPLC) and a PC-based UV-Vis spectrophotometer. The macrofungal biomass was found to be high in saponin, anthraquinone, total phenolic, flavonoid, and β-glucan content. In biomass extract, we observed a high level of saponin (70.6µg/mL), anthraquinone (14.5µg/mL), total phenolic (12.45 µg/mL), and flavonoid (9.500 µg/mL) content. Furthermore, we examined the contents of alkaloids, tannins, terpenoids, and sterols in the biomass and mushroom extracts; the concentration of these compounds in the ethanol extract tested was minimal. We also looked for antioxidant activity, which is determined in terms of the IC50 value. Trametes sp. mushroom extract exhibits higher DPPH radical scavenging activity (62.9% at 0.5 mg/mL) than biomass extract (59.19% at 0.5 mg/mL). We also analyzed β-glucan in Trametes sp. from both mushroom and biomass extracts. The biomass extract showed a higher β-glucan content of 1.713 mg/mL than the mushroom extract, which is 1.671 mg/mL. Furthermore, β-glucan analysis was confirmed by the Megazyme β-glucan assay kit from both biomass and mushroom extract of Trametes sp. β-glucans have a promising future in cancer treatment as adjuncts to conventional medicines. Producing pure β-glucans for the market is challenging because 90-95% of β glucan sold nowadays is thought to be manipulated or counterfeit. The present study supports the recommendation of Trametes sp. as rich in β-glucan, protein, phytochemicals, and antioxidant activities that help individuals with cancer, diabetes, obesity, etc.
Collapse
Affiliation(s)
| | - Moni Kumari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Anne Bhambri
- Department of Biotechnology, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | | |
Collapse
|
41
|
Kulshreshtha S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics Antimicrob Proteins 2024; 16:699-712. [PMID: 37776487 DOI: 10.1007/s12602-023-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.
Collapse
Affiliation(s)
- Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
42
|
Ma G, Li X, Tao Q, Ma S, Du H, Hu Q, Xiao H. Impacts of preparation technologies on biological activities of edible mushroom polysaccharides - novel insights for personalized nutrition achievement. Crit Rev Food Sci Nutr 2024; 65:2898-2920. [PMID: 38821105 DOI: 10.1080/10408398.2024.2352796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xinyi Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Qi Tao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Sai Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
43
|
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024; 13:1554. [PMID: 38790854 PMCID: PMC11120273 DOI: 10.3390/foods13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.
Collapse
Affiliation(s)
- Yuping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Kexin Yi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
44
|
Stojek K, Bobrowska-Korczak B, Kusińska B, Czerwonka M, Decruyenaere J, Decock L, Klama J, Mueller S, Ponette Q, Scherer-Lorenzen M, Verheyen K, Jaroszewicz B. Factors affecting composition of fatty acids in wild-growing forest mushrooms. Mycologia 2024; 116:381-391. [PMID: 38573224 DOI: 10.1080/00275514.2024.2325045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
The importance of mushrooms as a food source is continually increasing. To investigate how environmental factors affect the nutritional value of mushrooms, we harvested them in eastern Poland, south-central Germany, and northwestern Belgium in plots with similar environmental conditions but varying in tree species composition and richness. We used gas chromatography-mass spectrometry (GC-MS) to analyze the fatty acid (FA) content of the mushrooms. Fungal species identity explained the largest part (40%) of the total variation in FA concentration and composition. Environmental factors accounted for 1-12% of variation. The concentration of FA, especially saturated fatty acids, decreased with increasing understory cover and increasing nitrogen concentration in the topsoil. The effect of tree species richness or tree species identity was negligible. Our results suggest that the nutritional value of mushrooms depends mainly on the species identity of fungi, but that their FA content is slightly higher in forests with less undergrowth and in nitrogen-poor soils.
Collapse
Affiliation(s)
- Katarzyna Stojek
- Faculty of Biology, University of Warsaw, Białowieża Geobotanical Station, Sportowa 19, Białowieża 17230, Poland
| | | | - Barbara Kusińska
- Faculty of Biology, University of Warsaw, Białowieża Geobotanical Station, Sportowa 19, Białowieża 17230, Poland
| | - Małgorzata Czerwonka
- Faculty of Pharmacy, Medical University of Warsaw, Stefana Banacha 1, Warszawa 02097, Poland
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, Warsaw 01043, Poland
| | - Julien Decruyenaere
- Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2 box L7.05.24, Louvain-la-Neuve 1348, Belgium
| | - Lucas Decock
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, Melle Gontrode 9090, Belgium
| | - Johanna Klama
- Faculty of Biology, University of Freiburg, Geobotany. Schänzelstr. 1, Freiburg 79104, Germany
| | - Sandra Mueller
- Faculty of Biology, University of Freiburg, Geobotany. Schänzelstr. 1, Freiburg 79104, Germany
| | - Quentin Ponette
- Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2 box L7.05.24, Louvain-la-Neuve 1348, Belgium
| | | | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, Melle Gontrode 9090, Belgium
| | - Bogdan Jaroszewicz
- Faculty of Biology, University of Warsaw, Białowieża Geobotanical Station, Sportowa 19, Białowieża 17230, Poland
| |
Collapse
|
45
|
Zeb U, Aziz T, Azizullah A, Zan XY, Khan AA, Bacha SAS, Cui FJ. Complete mitochondrial genomes of edible mushrooms: features, evolution, and phylogeny. PHYSIOLOGIA PLANTARUM 2024; 176:e14363. [PMID: 38837786 DOI: 10.1111/ppl.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 06/07/2024]
Abstract
Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.
Collapse
Affiliation(s)
- Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, PR China
| | - Azizullah Azizullah
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Asif Ali Khan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Syed Asim Shah Bacha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
46
|
Chen S, Guo Q, Zhou T, Liu L. Levels and Health Risk Assessment of Inorganic Arsenic, Methylmercury, and Heavy Metals in Edible Mushrooms Collected from Online Supermarket in China. Biol Trace Elem Res 2024; 202:1802-1815. [PMID: 37526876 DOI: 10.1007/s12011-023-03779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Chromium (Cr), total arsenic (As), inorganic arsenic (iAs), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and lead (Pb) were analyzed in in Agaricus blazei, Tricholoma matsutake, Pholiota nameko, agrocybe aegirit, Boletus edulis, Auricularia auricula, and Lentinus edodes collected from online supermarket in China from 2015 to 2017. The order of mean concentrations for the five heavy metals in edible mushrooms was As > Cd > Cr > Pb > Hg. No positive correlation was found between total As and iAs, nor between total Hg and MeHg. The contents of iAs were at a low level except for A. blazei samples. The contents of MeHg were at a low level in all test mushroom samples. And Cr, Cd, and Pb pollution were common problems in the test mushroom samples. The comprehensive factor pollution index was between 0.569 (A. auricula) and 3.056 (B. edulis). The THQ values for the five heavy metals from P. nameko, A. auricula, A. aegirit, and L. edodes samples were less than 1. The hazard index (HI) values of A. blazei, T. matsutake, and B. edulis samples for adults and children were greater than 1, indicating significant health hazard to the adults and children consumers. The cancer risk (CR) values for iAs ranged from 3.82 × 10- 6 (T. matsutake) to 8.61 × 10- 5 (A. blazei), indicating no potential carcinogenic risk to the consumers. The order for carcinogenic risk of each edible mushroom species was A. blazei > L. edodes > P. nameko > A. aegirit > A. auricula > B. edulis > T. matsutake.
Collapse
Affiliation(s)
- Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Tianhui Zhou
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
- School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
47
|
Asdullah HU, Chen F, Hassan MA, Abbas A, Sajad S, Rafiq M, Raza MA, Tahir A, Wang D, Chen Y. Recent advances and role of melatonin in post-harvest quality preservation of shiitake ( Lentinula edodes). Front Nutr 2024; 11:1348235. [PMID: 38571753 PMCID: PMC10987784 DOI: 10.3389/fnut.2024.1348235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Shiitake mushrooms are renowned for their popularity and robust nutritional value, are susceptible to spoilage due to their inherent biodegradability. Nevertheless, because of their lack of protection, these mushrooms have a short shelf life. Throughout the post-harvest phase, mushrooms experience a persistent decline in quality. This is evidenced by changes such as discoloration, reduced moisture content, texture changes, an increase in microbial count, and the depletion of nutrients and flavor. Ensuring postharvest quality preservation and prolonging mushroom shelf life necessitates the utilization of post-harvest preservation techniques, including physical, chemical, and thermal processes. This review provides a comprehensive overview of the deterioration processes affecting mushroom quality, covering elements such as moisture loss, discoloration, texture alterations, increased microbial count, and the depletion of nutrients and flavor. It also explores the key factors influencing these processes, such as temperature, relative humidity, water activity, and respiration rate. Furthermore, the review delves into recent progress in preserving mushrooms through techniques such as drying, cooling, packaging, irradiation, washing, and coating.
Collapse
Affiliation(s)
- Hafiz Umair Asdullah
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Feng Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | | | - Asad Abbas
- School of Science, Western Sydney University Hawkesbury, Sydney, NSW, Australia
| | - Shoukat Sajad
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Muhammad Rafiq
- Lushan Botanical Garden of Chinese Academy of Science, Jiujiang, China
| | | | - Arslan Tahir
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Dongliang Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Yougen Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| |
Collapse
|
48
|
Ejaz U, Afzal M, Naveed M, Amin ZS, Atta A, Aziz T, Kainat G, Mehmood N, Alharbi M, Alasmari AF. Pharmacological evaluation and phytochemical profiling of butanol extract of L. edodes with in- silico virtual screening. Sci Rep 2024; 14:5751. [PMID: 38459108 PMCID: PMC10923892 DOI: 10.1038/s41598-024-56421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
L. edodes (L. edodes) is the most consumed mushroom in the world and has been well known for its therapeutic potential as an edible and medicinal candidate, it contains dietary fibers, vitamins, proteins, minerals, and carbohydrates. In the current study butanolic extract of mushroom was used to form semisolid butanol extract. The current study aimed to explore biometabolites that might have biological activities in n-butanol extract of L. edodes using FT-IR and GC-MS and LC-MS. The synergistic properties of bioactive compounds were futher assessed by performing different biological assays such as antioxidant, anti-inflammatory and antidiabetic. FTIR spectra showed different functional groups including amide N-H group, Alkane (C-H stretching), and (C = C stretching) groups at different spectrum peaks in the range of 500 cm-1 to 5000 cm-1 respectively. GC-MS profiling of n-butanol extract depicted 34 potent biomolecules among those dimethyl; Morphine, 2TMS derivative; Benzoic acid, methyl ester 1-(2-methoxy-1-methylethoxy)-2-propanol were spotted at highest range. Results indicate that L. edodes n-butanol extract showed a maximum anti-inflammatory potential 91.4% at 300 mg/mL. Antioxidant activity was observed by measuring free radical scavenging activity which is 64.6% at optimized concentration along with good antidiabetic activity. In-silico study executed the biopotential of active ingredient morphine which proved the best docking score (- 7.0 kJ/mol) against aldose reductase. The in-silico drug design analysis was performed on biometabolites detected through GC-MS that might be a potential target for sulfatase-2 to treat ruminated arthritis. Morphine binds more strongly (- 7.9 kJ/mol) than other bioactive constituents indicated. QSAR and ADMET analysis shown that morphine is a good candidates against ruminated arthritis. The current study showed that L. edodes might be used as potent drug molecules to cure multiple ailments. As mushrooms have high bioactivity, they can be used against different diseases and to develop antibacterial drugs based on the current situation in the world in which drug resistance is going to increase due to misuse of antibiotics so new and noval biological active compounds are needed to overcome the situation.
Collapse
Affiliation(s)
- Umer Ejaz
- Department of Biochemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Afzal
- Department of Biochemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zeemal Seemab Amin
- School of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, 54590, Pakistan.
| | - Asia Atta
- Department of Biochemistry, Nur international university, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, 47132, Arta, Greece.
| | - Gul Kainat
- Department of Microbiology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Noshaba Mehmood
- School of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, 54590, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Abdelmoaty MM, Kadry R, Mosley RL, Gendelman HE. Neuroprotective Mushrooms. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:129-137. [PMID: 40370689 PMCID: PMC12077610 DOI: 10.1515/nipt-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Alternative medicines commonly supplement or, at times, replace standard medical treatment. One area of increasing attention is disease-modifying medicines for neurodegenerative diseases. However, few such alternatives have been investigated thoroughly with an eye toward understanding mechanisms of action for clinical use. Medicinal mushrooms have important health benefits and pharmacological activities with anti-inflammatory, antioxidant, antibacterial, antiviral, immunomodulatory, digestive, cytoprotective, homeostatic, and neuroprotective activities. Edible mushrooms are known to play roles in preventing age-related diseases. Several studies have revealed that polysaccharides, terpenes, and phenolic compounds are chemical components derived from mushrooms with pharmacological activities. Due to limited effective protocols for mushroom protein extraction for proteomic studies, information about these medicinally related proteins and their biological functions remains enigmatic. Herein, we have performed proteomic studies of two mushroom species Laricifomes officinalis (agarikon) and Grifola frondosa (maitake). These studies serve to uncover a foundation for putative proteome-associated neuroprotective processes. The recovered proteins from both species show multiple cell-specific signaling pathways including unfolded protein response, and mitochondrial protein import as well as those linked to BAG2, ubiquitination, apoptosis, microautophagy, glycolysis, SNARE, and immunogenic cell signaling pathways. This study uncovered mushroom proteome-associated proteins which serve to better understand the structural and functional properties of mushrooms used as alternative medicines for broad potential health benefits.
Collapse
Affiliation(s)
- Mai M. Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Rana Kadry
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE 68198, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
50
|
Deshmukh N, Bhaskaran L. Optimization of cultural and nutritional conditions to enhance mycelial biomass of Cordyceps militaris using statistical approach. Braz J Microbiol 2024; 55:235-244. [PMID: 38150151 PMCID: PMC10920581 DOI: 10.1007/s42770-023-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
Cordyceps militaris is a fungus with numerous therapeutic properties that has gained worldwide popularity due to its potential health benefits. The fruiting body of this mushroom is highly expensive and takes a longer time to produce, making mycelial a sustainable and cost-effective alternative. The study investigates and optimizes cultural and nutritional conditions to maximize mycelial biomass. The initial optimization was done by the conventional single-factor approach, followed by Plackett-Burman design to screen the most significant variables, with yeast extract, temperature, and glucose being the most significant, contributing 11.58%, 49.74%, and 27.98%, respectively, in mycelial biomass production. These variables were then optimized using response surface methodology (RSM) based on central composite design (CCD). The study observed that temperature and glucose had the highest impact on mycelial biomass, with p-values of 0.0128 and 0.0191, respectively. Under the optimized conditions, temperature 20 °C, glucose 2.5% (w/v), and yeast extract 0.8% (w/v), the maximal yield of mycelial biomass reached 547 ± 2.09 mg/100 mL, which was 1.95-fold higher than the yield in the basal medium. These findings suggest that optimizing the cultural and nutritional conditions can enhance mycelial biomass production of Cordyceps militaris, offering a sustainable and cost-effective source of this valuable fungus.
Collapse
Affiliation(s)
- Niketan Deshmukh
- L J School of Applied Sciences, L J University, Ahmedabad, 382210, India.
| | - Lakshmi Bhaskaran
- L J School of Applied Sciences, L J University, Ahmedabad, 382210, India
| |
Collapse
|