1
|
Laghari AA, Ahmad A, Memon S, Musavi SAM, Ali A, Kumar A, Guo Q. Genetic diversity in F3 segregating populations of rice ( Oryza sativa L.) genotypes under salt stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1568859. [PMID: 40303859 PMCID: PMC12039761 DOI: 10.3389/fpls.2025.1568859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Rice is an important cereal crop rich in starch and carbohydrates grown around the globe. Despite its significance, rice exhibits substantial genetic variation, particularly under environmental stresses such as salinity. This study investigates the genetic diversity of F3 segregating populations of rice under normal and salt stress. Various segregating genotypes were evaluated, demonstrating statistically significant differences (p<0.01 and p<0.05, ANOVA) in morphological and physiological parameters. The genotypes Kharagnjia and L-12 performed well in normal soils, while Shua-92 and L-20 showed better performance in tiller plant-1 and panicle length. The cluster analysis grouped rice genotypes into four major clusters based on genetic similarity. Principal Component Analysis (PCA) identified tillers per plant, panicle length, grain yield per plant, and leaf area as key contributors to genetic variation. The highest variability was observed in PC-XII (100%) and PC-XI (98.3%). These findings provide valuable insights for breeding programs aimed at enhancing salt tolerance in rice.
Collapse
Affiliation(s)
- Azhar Ali Laghari
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shabana Memon
- Department of Plant Breeding and Genetics, Sindh Agriculture University, Hyderabad, Pakistan
| | | | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Akash Kumar
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Qingxia Guo
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
2
|
Arbizu CI, Bazo-Soto I, Flores J, Ortiz R, Blas R, García-Mendoza PJ, Sevilla R, Crossa J, Grobman A. Genotyping by sequencing reveals the genetic diversity and population structure of Peruvian highland maize races. FRONTIERS IN PLANT SCIENCE 2025; 16:1526670. [PMID: 40070707 PMCID: PMC11893605 DOI: 10.3389/fpls.2025.1526670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025]
Abstract
Peruvian maize exhibits abundant morphological diversity, with landraces cultivated from sea level (sl) up to 3,500 m above sl. Previous research based on morphological descriptors, defined at least 52 Peruvian maize races, but its genetic diversity and population structure remains largely unknown. Here, we used genotyping-by-sequencing (GBS) to obtain single nucleotide polymorphisms (SNPs) that allow inferring the genetic structure and diversity of 423 maize accessions from the genebank of Universidad Nacional Agraria la Molina (UNALM) and Universidad Nacional Autónoma de Tayacaja (UNAT). These accessions represent nine races and one sub-race, along with 15 open-pollinated lines (purple corn) and two yellow maize hybrids. It was possible to obtain 14,235 high-quality SNPs distributed along the 10 maize chromosomes of maize. Gene diversity ranged from 0.33 (sub-race Pachia) to 0.362 (race Ancashino), with race Cusco showing the lowest inbreeding coefficient (0.205) and Ancashino the highest (0.274) for the landraces. Population divergence (FST) was very low (mean = 0.017), thus depicting extensive interbreeding among Peruvian maize. A cluster containing maize landraces from Ancash, Apurímac, and Ayacucho exhibited the highest genetic variability. Population structure analysis indicated that these 423 distinct genotypes can be included in 10 groups, with some maize races clustering together. Peruvian maize races failed to be recovered as monophyletic; instead, our phylogenetic tree identified two clades corresponding to the groups of the classification of the races of Peruvian maize based on their chronological origin, that is, anciently derived or primary races and lately derived or secondary races. Additionally, these two clades are also congruent with the geographic origin of these maize races, reflecting their mixed evolutionary backgrounds and constant evolution. Peruvian maize germplasm needs further investigation with modern technologies to better use them massively in breeding programs that favor agriculture mainly in the South American highlands. We also expect this work will pave a path for establishing more accurate conservation strategies for this precious crop genetic resource.
Collapse
Affiliation(s)
- Carlos I. Arbizu
- Centro de Investigación en Germoplasma Vegetal y Mejoramiento Genético de Plantas (CIGEMP), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru
- Facultad de Ingenierías y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru
| | - Isamar Bazo-Soto
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - Joel Flores
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Raul Blas
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - Pedro J. García-Mendoza
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja (UNAT), Huancavelica, Peru
| | - Ricardo Sevilla
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Alexander Grobman
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| |
Collapse
|
3
|
Hilukwa R, Franke AC, Labuschagne M, Wanga MA, Hukununa RMK, Hangula MN, Hasheela EBS, Zorrilla C, Sarsu F. Radio-sensitivity of selected namibian landrace groundnut (Arachis hypogaea L.) genotypes to gamma radiation. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2025; 282:107618. [PMID: 39842275 DOI: 10.1016/j.jenvrad.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Groundnut (Arachis hypogaea L.) is a popular nutritious food crop in the world. In Namibia, groundnut varieties are limited and characterized by low yields of 0.4 t/ha. Its production is challenged by biotic and abiotic stresses and low genetic variability in the agroecological zones of Namibia. Gamma-irradiation mutagenesis is a technique applied to generate genetic variation based on the genotype's sensitivity to the mutagenic agent for the selection of traits of economic importance that fulfill the user's requirements. This study aimed to determine the optimal lethal doses (LD50) of mutagens producing maximum mutations with minimum damage for mass gamma-irradiation on Namibian landraces of groundnut in preparation for mutation breeding programs. Seeds of three groundnut varieties ('NAM 4433', 'NAM 888/2', 'NAM 1747/1') were subjected to six gamma radiation doses [0, 50, 75, 100, 125, and 150 Gy (Gy)]. The radiation source was Cobalt-60, with an irradiation rate of 28.81 Gy/min. Irradiated and non-irradiated (control) seeds were sown in plastic pots, using a factorial experiment with a randomized complete block design. Data were collected on parameters relating to seed germination, seedling growth, and plant survival of the varieties. A linear regression model was developed to determine the mean lethal dose (LD50) and reduction dose (RD50) of the varieties. Combined analysis of variance showed significant responses (p < 0.001) to seedling emergence, shoot, and root traits. Genotype NAM 4433 was most sensitive to gamma radiation doses ranging from 106 to 150 Gy. The doses could be used in mutation breeding programs to select mutants with desirable agronomic and nutritional traits for farmers and consumers. Genotypes NAM 1747/1 and NAM 888/2 did not respond to the doses applied. Further research using high radiation doses for NAM 1747/1 and NAM 888/2 is recommended.
Collapse
Affiliation(s)
- Remmie Hilukwa
- Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa; Directorate of Agricultural Research and Development, Ministry of Agriculture, Water and Land Reform, Private Bag, 13184, Windhoek, Namibia.
| | - Angelinus C Franke
- Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Maryke Labuschagne
- Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Maliata Athon Wanga
- School of Agriculture and Natural Resource Sciences, Namibia University of Science and Technology, Private Bag, 13388, Windhoek, Namibia
| | - Rose-Mary Kavemuine Hukununa
- Directorate of Agricultural Research and Development, Ministry of Agriculture, Water and Land Reform, Private Bag, 13184, Windhoek, Namibia
| | - Magdalena Ndafapawa Hangula
- Directorate of Agricultural Research and Development, Ministry of Agriculture, Water and Land Reform, Private Bag, 13184, Windhoek, Namibia
| | - Eddie B S Hasheela
- Directorate of Agricultural Research and Development, Ministry of Agriculture, Water and Land Reform, Private Bag, 13184, Windhoek, Namibia
| | - Cinthya Zorrilla
- Plant Breeding and Genetics Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Fatma Sarsu
- Plant Breeding and Genetics Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| |
Collapse
|
4
|
Chipeta MM, Kafwambira J, Yohane E. Cowpea genetic diversity, population structure and genome-wide association studies in Malawi: insights for breeding programs. FRONTIERS IN PLANT SCIENCE 2025; 15:1461631. [PMID: 39902206 PMCID: PMC11788394 DOI: 10.3389/fpls.2024.1461631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025]
Abstract
Introduction This study focuses on cowpea, a vital crop for smallholder farmers in sub-Saharan Africa, particularly in Malawi. The research aimed to understand the genetic diversity and population structure of cowpea and to perform genome-wide association studies (GWAS) to identify marker-trait associations (MTAs) for yield and related traits. These insights are intended to support varietal development and address agricultural challenges in Malawi. Methods A total of 306 cowpea genotypes were characterized using single nucleotide polymorphism (SNP) markers and morphological traits. The study assessed the effects of genotype, location, and their interactions on morphological traits. The Fixed and Random Model Circulating Probability Unification (FarmCPU) algorithm was used to identify significant MTAs. Results The morphological traits showed significant genotype, location, and interaction effects. Genotypes MWcp24, MWcp47, MWcp2232, and TVu-3524 yielded the highest values. Grain yield was positively correlated with peduncle length, seeds per pod, and pods per plant. Three distinct clusters were identified based on morphological traits. Genetic diversity analysis revealed an average minor allele frequency of 0.31, observed heterozygosity of 0.06, and gene diversity of 0.33. The average inbreeding coefficient was 0.82, indicating a high level of inbreeding. Most of the genetic variation (73.1%) was found among genotypes within populations. Nine groups and ancestral populations were identified, which did not entirely overlap with geographic origins. Sixteen significant MTAs were linked to six morphological traits. Discussion The validation of these identified MTAs, along with the observed genetic diversity, offers valuable opportunities for cowpea improvement through marker-assisted selection, to addresses the challenges faced by Malawian farmers. The identification of thirty cowpea lines as key founder lines for breeding programs in Malawi, Mozambique, and Tanzania is a significant outcome. These efforts aim to develop more productive cowpea lines for the region, enhancing food security and agricultural sustainability.
Collapse
Affiliation(s)
- Michael M. Chipeta
- Department of Crop and Soil Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - John Kafwambira
- Department of Crop and Soil Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Esnart Yohane
- Department of Agricultural Research Services, Chitedze Research Station, Lilongwe, Malawi
| |
Collapse
|
5
|
Etterson JR, Fliehr P, Pizza R, Gross BL. Domestication During Restoration: Unintentional Selection During Eight Generations of Wild Seed Propagation Reduces Herkogamy, Dichogamy and Heterozygosity in Clarkia pulchella. Mol Ecol 2025:e17655. [PMID: 39810715 DOI: 10.1111/mec.17655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Seed production on native seed farms has increased to meet the rising demand for plant material for restoration. Although these propagation efforts are necessary for restoration, cultivating wild populations may also result in unintentional selection and elicit evolutionary changes that mimic crop domestication, essentially turning these efforts into artificial domestication experiments. Here, we investigated whether phenotypic and genomic changes associated with domestication occurred in the wildflower Clarkia pulchella Pursh (Onagraceae) by comparing the wild source populations to the farmed population after eight generations of cultivation. At the phenotypic level, the farmed population shifted towards a floral morphology associated with self-pollination, with a significant decrease in both dichogamy and herkogamy. At the genomic level, > 6500 SNPs revealed that mean expected heterozygosity of the farmed population was significantly lower than the wild populations, despite the fact that the farmed population originated from a pool of multiple wild populations. Both the shift towards a selfing phenotype and the loss of diversity are expected consequences of domestication, although the phenotypic shifts in particular occurred much more rapidly than has been observed for other domestication traits. We discuss these results in the context of plant domestication and the implications for retaining the genetic integrity of wild populations during the process of seed production for restoration.
Collapse
Affiliation(s)
- Julie R Etterson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Paige Fliehr
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Riley Pizza
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Briana L Gross
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
6
|
Ebrahimi A, Chenar HM, Rashidi-Monfared S, Kahrizi D. Enhancing Food Security via selecting Superior Camelina (Camelina sativa L.) parents: a positive approach incorporating pheno-morphological traits, fatty acids composition, and Tocopherols Content. BMC PLANT BIOLOGY 2025; 25:53. [PMID: 39810105 PMCID: PMC11731151 DOI: 10.1186/s12870-024-06022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina. RESULTS The number of sub-branches, siliques number of main-branch and sub-branch, and seeds number in siliques of the main-branch displayed notable coefficients of variation with values of 33.19%, 30.32%, 29.23%, and 23.81% respectively. Within the current investigation, the measurements of height, sub-branch number, and thousand seed weight varied from 53.50 to 86.50 cm, 3.50 to 14, and 0.73 to 1.52 g, respectively. The analysis unveiled that the average content of omega-3, omega-6, and omega-9 fatty acids in the examined lines was approximately 33%, 20%, and 17%, respectively. The total tocopherol content varied between 675 and 877 ppm, predominantly consisting of gamma-tocopherol, which accounted for over 95% of the total content. The fatty acid C18:2 displayed a markedly strong positive correlation with alpha-tocopherol (0.99**), while C18:3 exhibited positive correlations with gamma-tocopherol (0.98**) and total tocopherol (0.98**). Furthermore, a positive correlation was evident between C20:1 and delta-tocopherol (0.98**). The scrutinized lines, specifically lines 35, 72, 94, and 126 demonstrated notable attributes regarding yield and yield components. Conversely, in the realm of biochemical traits, lines 35, 66, 47, 30, 65, 135, 83, 27, 4, 77, 62, 81, and 93 stood out for their elevated potential. The gene expression analysis related to the tocopherol biosynthesis pathway revealed distinct expression patterns. Specifically, the VTE1 gene exhibited the highest level of expression. In contrast, the VTE3 gene displayed the lowest level of expression compared to other genes. CONCLUSIONS The study's findings hold great potential for improving food security by enabling the selection of superior camelina parent plants based on specific traits. This approach can drive the development of high-yielding varieties with enhanced nutritional value and better-quality camelina oil.
Collapse
Affiliation(s)
- Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Hamzeh Minaei Chenar
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Thran, Iran
| | - Sajad Rashidi-Monfared
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Thran, Iran.
| | - Danial Kahrizi
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Medina CA, Zhao D, Lin M, Sapkota M, Sandercock AM, Beil CT, Sheehan MJ, Irish BM, Yu LX, Poudel H, Claessens A, Moore V, Crawford J, Hansen J, Viands D, Peel MD, Tilhou N, Riday H, Brummer EC, Xu Z. Pre-breeding in alfalfa germplasm develops highly differentiated populations, as revealed by genome-wide microhaplotype markers. Sci Rep 2025; 15:1253. [PMID: 39779777 PMCID: PMC11711157 DOI: 10.1038/s41598-024-84262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Plant genebanks contain large numbers of germplasm accessions that likely harbor useful alleles or genes absent in commercial plant breeding programs. Broadening the genetic base of commercial alfalfa germplasm with these valuable genetic variations can be achieved by screening the extensive genetic diversity in germplasm collections and enabling maximal recombination among selected genotypes. In this study, we assessed the genetic diversity and differentiation of germplasm pools selected in northern U.S. latitudes (USDA Plant Hardiness Zone 7 or below) originating from Eurasian germplasm. The germplasm evaluated included four BASE populations (C0) from different geographical origins (Central Asia, Northeastern Europe, Balkans-Turkey-Black Sea, and Siberia/Mongolia), 20 cycle-one populations (C1) derived from each of the four BASE populations selected across five locations in the U.S. and Canada, and four commercial cultivars. Using a panel of 3,000 Diversity Array Technologies (DArTag) marker loci, we retrieved 2,994 target SNPs and approximately 12,000 microhaplotypes. Microhaplotypes exhibited higher genetic diversity values than target SNPs. Principal component analysis and discriminant analysis of principal components revealed significant population structure among the alfalfa populations based on geographical origin, while the check cultivars formed a central cluster. Inbreeding coefficients (FIS) ranged from - 0.1 to 0.006, with 27 out of 28 populations showing negative FIS values, indicating an excess of heterozygotes. Interpopulation genetic distances were calculated using Rho pairwise distances (FST adapted for autotetraploid species) and analysis of molecular variance (AMOVA) parameters. All BASE populations showed lower Rho values compared to C1 populations and check cultivars. AMOVA revealed that most of the genetic diversity was among individuals within populations, especially in BASE populations (92.7%). This study demonstrates that individual plants in BASE populations possess high genetic diversity, low interpopulation distances, and minimal inbreeding, characteristics that are essential for base-broadening selection. The populations developed in this project serve as valuable sources of novel alleles for North American alfalfa breeding programs, offering breeders access to diverse, regionally adapted pools for improving various alfalfa traits.
Collapse
Affiliation(s)
- Cesar A Medina
- Plant Science Research Unit, USDA-ARS, St. Paul, MN, USA
| | - Dongyan Zhao
- Breeding Insight, Cornell University, Ithaca, NY, USA
| | - Meng Lin
- Breeding Insight, Cornell University, Ithaca, NY, USA
| | - Manoj Sapkota
- Breeding Insight, Cornell University, Ithaca, NY, USA
| | | | - Craig T Beil
- Breeding Insight, Cornell University, Ithaca, NY, USA
| | | | - Brian M Irish
- Plant Germplasm Introduction and Testing Research Unit, USDA-ARS, Prosser, WA, USA
| | - Long-Xi Yu
- Plant Germplasm Introduction and Testing Research Unit, USDA-ARS, Prosser, WA, USA
| | - Hari Poudel
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Annie Claessens
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Virginia Moore
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, USA
| | - Jamie Crawford
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, USA
| | - Julie Hansen
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, USA
| | - Donald Viands
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, USA
| | - Michael D Peel
- Forage and Range Research Unit, USDA-ARS, Logan, UT, USA
| | - Neal Tilhou
- Dairy Forage Research Center, USDA-ARS, Madison, WI, US, USA
| | | | - E Charles Brummer
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Zhanyou Xu
- Plant Science Research Unit, USDA-ARS, St. Paul, MN, USA.
| |
Collapse
|
8
|
Agustina T, Chasani AR, Daryono BS, Rifqi MS. Genetic Diversity of Sangihe Nutmeg ( Myristica fragrans Houtt.) Based on Morphological and ISSR Markers. SCIENTIFICA 2024; 2024:5568104. [PMID: 39758703 PMCID: PMC11699992 DOI: 10.1155/sci5/5568104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/17/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025]
Abstract
Sangihe nutmeg is an important crop because of its usefulness in the pharmacology, spices and cosmetics industries. Sangihe is the oldest active subduction zone island in the Indonesia-Philippines region, where frequent tectonic earthquakes and the geographic and reproductive isolation of Sangihe nutmeg occur. This isolation results in adaptation and speciation because of increasing variability. Using morphological and molecular approaches, we aimed to assess the genetic variety of Sangihe nutmeg based on morphological and intersimple sequence repeat (ISSR) markers. In total, 31 morphological characteristics were examined, and molecular data of ISSR markers using five primers were analysed based on numerical taxonomy using the unweighted pair group method with arithmetic mean (UPGMA) and principal component analysis (PCA) methods. Results showed five major groups of Sangihe nutmeg based on seed variation, that is, thick round, thin round, thick oval, thin oval, and twin seeds, whereas the presence of variation in molecular characters was indicated by DNA polymorphisms between 0% and 33.33%. The phenetic relationships within Sangihe nutmeg, based on morphological and ISSR markers, exhibit two groups with different member compositions. The major morphological characteristics influencing the phenetic relationship pattern were tree shape, leaf shape, fruit shape, number of fractions when ripe, fruit size index, number of fruit indentations, indentation, aryl density, seed shell, and number of seeds.
Collapse
Affiliation(s)
- Tanti Agustina
- Laboratory of Plant Systematics, Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Sekip Utara Street, Sleman, Yogyakarta 55281, Indonesia
| | - Abdul Razaq Chasani
- Laboratory of Plant Systematics, Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Sekip Utara Street, Sleman, Yogyakarta 55281, Indonesia
| | - Budi Setiadi Daryono
- Laboratory Genetics and Breeding, Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Sekip Utara Street, Sleman, Yogyakarta 55281, Indonesia
| | - Muhammad Said Rifqi
- Laboratory of Plant Systematics, Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Sekip Utara Street, Sleman, Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
Peng J, Xie J, Gu Y, Guo H, Zhang S, Huang X, Luo X, Qian J, Liu M, Wan X, Chen L, Huang X, Zhang F, He F, Zhu P, Zhong Y, Yang H. Assessing population genetic structure and diversity and their driving factors in Phoebe zhennan populations. BMC PLANT BIOLOGY 2024; 24:1091. [PMID: 39551749 PMCID: PMC11572363 DOI: 10.1186/s12870-024-05810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Phoebe zhennan, commonly known as "golden-thread nanmu," is one of the most valuable and protected tree species in China. An accurate understanding of the population genetic structure and its environmental factors is of significance for the protection and selection of new P. zhennan varieties. RESULTS Sixteen nSSR and six cpSSR markers were used to determine the genetic diversity and population structure of P. zhennan and the effect of environmental factors on the genetic structure. The nSSR markers identified a total of 451 number of alleles (Na), while cpSSR markers detected 20 Na. A relative high level of genetic diversity was observed in the P. zhennan population evidenced by high Shannon's information index (I) of 0.671 and 2.294 based on cpSSR and nSSR datasets. The low value of fixation index (F) observed from the nSSR dataset indicated low breeding within the population. The genetic differentiation was mainly detected within populations (only 28% and 13% of the variance being between populations according to the nSSR and cpSSR datasets). Among them, the HNSZX (H = 0.469) and SCSZZ (I = 1.943) populations exhibited the highest level of genetic diversity, while the HNXXT (H = 0.041) and SCLJS (I = 0.943) populations exhibited the lowest level of genetic diversity. The average genetic differentiation coefficient (Fst) and gene flow (Nm) were 0.022-0.128 and 1.698-11.373, respectively, which indicated a moderate level of genetic differentiation and a high level of gene flow. STRUCTURE, neighbor-joining clustering, and principal coordinate analysis divided 543 individuals into two or three categories based on the nSSR or cpSSR datasets. Four temperature, three precipitation, five chemical, five physical, and one soil texture variable showed significant effects on the genetic structure and distribution of P. zhennan populations. Compared to nSSR, the genetic differentiation among populations based on cpSSR datasets conformed to the geographic isolation model, suggesting that geographic and genetic distances should be considered for further genetic conservation and breeding utilization. The importance of in situ conservation units, such as populations with a high level of genetic diversity, more private alleles, and haplotypes (e.g., population SCGTS, SCYFS, and YNYJX), should be emphasized. Additionally, breeding, along with artificially assisted population regeneration and restoration, should also be carefully planned, taking into account climate and soil properties at the same time. CONCLUSIONS In conclusion, this study provided genetic background information for the genetic conservation, management, and utilization of P. zhennan.
Collapse
Affiliation(s)
- Jian Peng
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Jiaxin Xie
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yunjie Gu
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China.
| | - Hongying Guo
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Shuaiying Zhang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xin Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiandan Luo
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jianghong Qian
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Minhao Liu
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Xueqin Wan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiong Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fang He
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Peng Zhu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhong
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hanbo Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
10
|
Tiruneh AA, Geletu KT, Yao NK, Weldegiorgis KD. The genetic diversity and population structure of wild and cultivated Avena species in Ethiopia using a SSR markers. Heliyon 2024; 10:e38942. [PMID: 39524734 PMCID: PMC11547890 DOI: 10.1016/j.heliyon.2024.e38942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Oats are grains that can be consumed by both animals and humans. They have thrived in Ethiopia, where certain oat species are considered native to the region. This work represents the first investigation of the population structure and genetic diversity of Ethiopian and other country oats. This led the scientists to explore the genetic diversity and population structure of wild and cultivated Ethiopian oats (Avena) species as well as oat cultivated in USA, the Netherlands and Austria. This study's main objective looks to be to investigate the variation in genetic makeup of cultivated and wild oat species. Studying the population structure of the oat species in the germplasm of Ethiopia, USA, the Netherlands and Austria. We used nineteen fluorescent SSR (simple sequence repeat) markers since previous research had indicated that these markers had high PIC (polymorphism information content) values. Five species of Avena were studied among the 176 oat accessions: A. sativa (cultivated oats) and four wild oats, such as A. abyssinica, A. vaviloviana, A. fatua, and A. sterilis. The AMOVA investigation revealed significant genetic distinctions among populations, individuals, and within individuals, explaining 18 % of the variance within populations, 4 % among populations, and 78 % within individuals. The AMOVA analysis of Avena species demonstrated extensive variance, with 33 % variation among species and 67 % within each species, underscoring robust species differentiation. The study also discovered gene interchange between wild oat and cultivated populations, defining two Avena species: domesticated oats and wild oats. Using the STRUCTURE software at K = 2, PCoA, and UPGMA, a distinct genetic structure was displayed in the dataset. Despite variations in ploidy levels and genomes, A. sterilis and A. vaviloviana were determined to be more closely linked, whereas A. abyssinica and A. fatua demonstrated a close association. This research delivers valuable insights for scientists and can be employed in oat breeding programs to improve future oat yield and productivity.
Collapse
Affiliation(s)
- Ashenafi Alemu Tiruneh
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Kassahun Tesfaye Geletu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Life Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | | | - Kifle Dagne Weldegiorgis
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Life Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Iftikhar MS, Naseer Cheema HM, Khan AA, DeLacy IH, Basford KE. Genetic diversity assessment of cucumber landraces using molecular signatures. BMC Genomics 2024; 25:1046. [PMID: 39506650 PMCID: PMC11539674 DOI: 10.1186/s12864-024-10958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Genetic profiling of the biodiversity in cultivated crop plants is necessary to preserve important genes and utilize them in a breeding program. Cucumber is used as a model plant to study various characteristics of Cucurbitaceae. Its adaptation to a wide range of climatic conditions suggested analyzing the landraces. The present study was conducted to evaluate the differences, at the genetic level, among landraces spanning five continents. DNA extracted from fifty-six landraces selected from USDA germplasm bank to cover a global representative sample of world cucumber landraces was used for polymerase chain reaction using twenty-eight polymorphic expressed sequence tags simple sequence repeat (EST-SSR) markers. Twenty-eight EST-SSR markers covering all seven chromosomes yielded 98 bands with an average of 3.42 bands per marker. Polymorphic information content ranged from 0.00 (EC35) to 0.74 (EC17) with an average of 0.34. Six clusters provided an appropriate summary of the variation among the landraces, with the two largest groups including 32 (Asiatic) and 17 (European and American) landraces, respectively. Four small groups, three with two members, and one with one member (PI 525155-Egypt) were dissimilar to the two main groups. Landraces from the same region were often clustered together. Genetic similarity of the landraces was revealed by marker banding patterns. The locations of genetic diversity for cucumber landraces can be identified from this study.
Collapse
Affiliation(s)
- Muhammad Sarmad Iftikhar
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, Australia.
| | | | - Asif Ali Khan
- Department of Plant Breeding and Genetics, Muhammad Nawaz Sharif University of Agriculture Multan, Multan, 60000, Pakistan
| | - Ian Henson DeLacy
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, Australia
| | - Kaye Enid Basford
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
12
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
13
|
Abdel-Sattar M, Zayed EM, Abou-Shlell MK, Rihan HZ, Helal AA, Mekhaile NE, El-Badan GE. Assessment of genetic diversity by phenological traits, field performance, and Start Codon Targeted (SCoT) polymorphism marker of seventeen soybean genotypes ( Glycine max L.). PeerJ 2024; 12:e17868. [PMID: 39399436 PMCID: PMC11470765 DOI: 10.7717/peerj.17868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024] Open
Abstract
The Egyptian-farmed soybeans have a wide range of genetic diversity which is most important in plant improvement programs in order to develop new higher yielding soybean genotypes. The present study is designed to determine the genetic variability among seventeen genotypes of cultivated soybean (Glycine max L.) by examining the phenotypic level at the seedling stage, field performance over two years 2022/2023 and genetically using Start Codon Targeted (SCoT) markers. Results indicated that the SCoT markers, 100 seed weight, and tip angle (TA) traits were positively correlated with H2L12, DR 101, H15L5, and H117 genotypes. In addition, the number of branches per plant and plant height were associated with H113, H32, Crowford, H129, and D7512035. Furthermore, the length of the first internode (LFI), root width (RW), root length (RL), and shoot length (SL) were more associated with Giza 111, NC105, and Hutcheson. The hierarchical cluster analysis (HCA) and its associated heatmap explored the differences among the genotypes. It showed that all examined parameters were clustered into four distinct clusters. The obtained results showed that genotypes NC105, H30, D75_12035, and H2L12 have promising phenological and morphological traits besides tracking the inheritance of nearby genes surrounding the ATG translation start codon since they are in a monoclades. The obtained results will help the breeder plan appropriate selection strategies for improving seed yield in soybeans through hybridization from divergent clusters.
Collapse
Affiliation(s)
- Mahmoud Abdel-Sattar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ehab M. Zayed
- Cell Study Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed K. Abou-Shlell
- Department of Agricultural Botany (General Botany), Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Hail Z. Rihan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Ahmed A. Helal
- Genetic Resources Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Nabil E.G. Mekhaile
- Central Laboratory for Design & Statistical Analysis Research, Agricultural Research Center, Giza, Egypt
| | - Ghada E. El-Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Liu C, Du S, Wei A, Cheng Z, Meng H, Han Y. Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:2790. [PMID: 39409660 PMCID: PMC11479247 DOI: 10.3390/plants13192790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
In the context of rapidly increasing population and diversified market demands, the steady improvement of yield and quality in horticultural crops has become an urgent challenge that modern breeding efforts must tackle. Heterosis, a pivotal theoretical foundation for plant breeding, facilitates the creation of superior hybrids through crossbreeding and selection among a variety of parents. However, the vast number of potential hybrids presents a significant challenge for breeders in efficiently predicting and selecting the most promising candidates. The development and refinement of effective hybrid prediction methods have long been central to research in this field. This article systematically reviews the advancements in hybrid prediction for horticultural crops, including the roles of marker-assisted breeding and genomic prediction in phenotypic forecasting. It also underscores the limitations of some predictors, like genetic distance, which do not consistently offer reliable hybrid predictions. Looking ahead, it explores the integration of phenomics with genomic prediction technologies as a means to elevate prediction accuracy within actual breeding programs.
Collapse
Affiliation(s)
- Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Shengli Du
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| |
Collapse
|
15
|
Herrera-González MP, Zamora-Jerez A, Cifuentes-Velasquez R, Arévalo-Rodríguez LA, Pereira-Lorenzo S. Comprehensive Evaluation and Selection of Cardamom ( Elettaria cardamomum (L.) Maton) Germplasm Using Morphological Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2786. [PMID: 39409656 PMCID: PMC11479022 DOI: 10.3390/plants13192786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Cardamom (Elettaria cardamomum (L.) Maton) plays a crucial role in Guatemala's agriculture, supporting local families and covering 169,429.29 ha (making it the world's leading producer). Since its introduction to Guatemala in 1910, limited research has focused on unraveling the diversity and defining morphological traits critical for selecting excellent accessions. In this study, we examined 17 morphological traits across 288 accessions to identify key features associated with the germplasm. The comprehensive analysis employed principal component analysis, a morphological composite value (F-value), linear regression, and hierarchical clustering. The Shannon-Wiener diversity index ranged from 0.10 to 2.02, indicating the variation in diversity among traits. Principal component analysis and hierarchical clustering revealed six distinct germplasm groups. The comprehensive analysis facilitated the selection of 14 excellent accessions, and the regression equation incorporating criteria such as plant height, capsule color, panicle number per plant, panicle length, rhizome color, cluster number per panicle, cluster node length, and capsule number per cluster to identify cardamom germplasm. To develop a conservation strategy for the two putative foreign varieties ('Malabar' and 'Mysore'/'Vazhukka') introduced in Guatemala based on plant height, another 12 accessions were selected with a second comprehensive evaluation. This information offers insights into cardamom diversity for informed selection enhancing national utilization, productivity, and conservation.
Collapse
Affiliation(s)
- Martha Patricia Herrera-González
- Center for Agricultural and Food Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala (L.A.A.-R.)
- Programa de Doctorado en Agricultura y Medio Ambiente para el Desarrollo, Universidade de Santiago de Compostela, 27001 Lugo, Spain
| | - Alejandra Zamora-Jerez
- Center for Biotechnology Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Rolando Cifuentes-Velasquez
- Center for Agricultural and Food Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala (L.A.A.-R.)
| | - Luis Andrés Arévalo-Rodríguez
- Center for Agricultural and Food Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala (L.A.A.-R.)
| | - Santiago Pereira-Lorenzo
- Departamento de Producción Vegetal y Proyectos de Ingeniería, Escola Politécnica Superior de Enxeñaría Campus Terra, Universidade de Santiago de Compostela, Lugo 27001, Spain;
| |
Collapse
|
16
|
Bui XTT, Vu DD. Population genetics analysis of Diospyrosmun A.Chev. ex Lecomte (Ebenaceae) based on EST-SSR markers derived from a novel transcriptome. Biodivers Data J 2024; 12:e130385. [PMID: 39329056 PMCID: PMC11424986 DOI: 10.3897/bdj.12.e130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Diospyrosmun A.Chev. ex Lecomte (Ebenaceae), a native evergreen tree in Vietnam, has important economic and ecological values. The absence of effective and reliable molecular markers has hampered the study of D.mun's genetic diversity and population structure, even though it is an endemic and endangered species. Therefore, significant enrichment of genomic resources is urgently needed to uncover and better understand the genetic architecture of D.mun. This study aims to demonstrate an efficient and reliable tool to explore the polymorphism within D.mun germplasm. It provides a valuable platform for the breeding and conservation of this species and other endangered species worldwide. The Illumina HiSeq™ 4000 sequencing technology was applied for the transcriptomic analysis, genetic differentiation and population structure of D.mun in Vietnam. In this study, the transcriptomes of D.mun were analysed using the Illumina HiSeqTM 4000 sequencing system and a total of 5,588,615,700 base pairs were generated. De novo assembly indicated that 91,134 unigenes were generated (average length = 645.55 bp, N50 = 957 bp, Q20 = 98.08% and Q30 = 94.51%). A total of 92,798 and 21,134 unigenes had significant similarities amongst Nr and Swiss-Prot, respectively. In the GO database, 19,929 unigenes were annotated and these genes were divided into three major categories and 50 subcategories. In the KOG analysis, 18,499 unigenes were annotated and divided into 25 gene function categories. In the KEGG analysis, 12,017 unigenes were annotated. According to the related pathways involved, they could be classified into 56 subclasses. In this study, we have identified a total of 9,391 EST-SSR markers. Ten microsatellite loci were employed to assess the genetic diversity and structure of 82 adult D.mun trees across three populations in Vietnam. The results indicated moderate levels of genetic diversity with PIC = 0.77, NA = 3.9, NE = 2.8, Ho = 0.56 and HE = 0.58 and the fixation index value was recorded as positive for three populations (NS, NH and CP). Genetic differentiation among populations was low (FST = 0.045), suggesting limited gene flow (Nm = 5.34). This result indicates gene exchange between the populations of ancient D.mun from different geographical areas and regions. The analysis of molecular variance (AMOVA) showed that high genetic variation existed within individuals (91%) compared to amongst populations (4%). Genetic structure analysis, DAPC and the NJ tree indicated that the three populations were divided into three main clusters. With this study, we provide a molecular resoureces for the breeding and conservation of D.mun.
Collapse
Affiliation(s)
- Xuan Thi Tuyet Bui
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, VietnamInstitute of Ecology and Biological Resources, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Duy Dinh Vu
- Join Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, VietnamJoin Vietnam–Russia Tropical Science and Technology Research CenterHanoiVietnam
| |
Collapse
|
17
|
Sivabharathi RC, Rajagopalan VR, Suresh R, Sudha M, Karthikeyan G, Jayakanthan M, Raveendran M. Haplotype-based breeding: A new insight in crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112129. [PMID: 38763472 DOI: 10.1016/j.plantsci.2024.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Haplotype-based breeding (HBB) is one of the cutting-edge technologies in the realm of crop improvement due to the increasing availability of Single Nucleotide Polymorphisms identified by Next Generation Sequencing technologies. The complexity of the data can be decreased with fewer statistical tests and a lower probability of spurious associations by combining thousands of SNPs into a few hundred haplotype blocks. The presence of strong genomic regions in breeding lines of most crop species facilitates the use of haplotypes to improve the efficiency of genomic and marker-assisted selection. Haplotype-based breeding as a Genomic Assisted Breeding (GAB) approach harnesses the genome sequence data to pinpoint the allelic variation used to hasten the breeding cycle and circumvent the challenges associated with linkage drag. This review article demonstrates ways to identify candidate genes, superior haplotype identification, haplo-pheno analysis, and haplotype-based marker-assisted selection. The crop improvement strategies that utilize superior haplotypes will hasten the breeding progress to safeguard global food security.
Collapse
Affiliation(s)
- R C Sivabharathi
- Department of Genetics and Plant breeding, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - R Suresh
- Department of Rice, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Sudha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - G Karthikeyan
- Department of Plant Pathology, CPPS, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Raveendran
- Directorate of research, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
18
|
Tripathi L, Ntui VO, Tripathi JN. Application of CRISPR/Cas-based gene-editing for developing better banana. Front Bioeng Biotechnol 2024; 12:1395772. [PMID: 39219618 PMCID: PMC11362101 DOI: 10.3389/fbioe.2024.1395772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Banana (Musa spp.), including plantain, is one of the major staple food and cash crops grown in over 140 countries in the subtropics and tropics, with around 153 million tons annual global production, feeding about 400 million people. Despite its widespread cultivation and adaptability to diverse environments, banana production faces significant challenges from pathogens and pests that often coexist within agricultural landscapes. Recent advancements in CRISPR/Cas-based gene editing offer transformative solutions to enhance banana resilience and productivity. Researchers at IITA, Kenya, have successfully employed gene editing to confer resistance to diseases such as banana Xanthomonas wilt (BXW) by targeting susceptibility genes and banana streak virus (BSV) by disrupting viral sequences. Other breakthroughs include the development of semi-dwarf plants, and increased β-carotene content. Additionally, non-browning banana have been developed to reduce food waste, with regulatory approval in the Philippines. The future prospects of gene editing in banana looks promising with CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi) techniques offering potential for improved disease resistance. The Cas-CLOVER system provides a precise alternative to CRISPR/Cas9, demonstrating success in generating gene-edited banana mutants. Integration of precision genetics with traditional breeding, and adopting transgene-free editing strategies, will be pivotal in harnessing the full potential of gene-edited banana. The future of crop gene editing holds exciting prospects for producing banana that thrives across diverse agroecological zones and offers superior nutritional value, ultimately benefiting farmers and consumers. This article highlights the pivotal role of CRISPR/Cas technology in advancing banana resilience, yield and nutritional quality, with significant implications for global food security.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | | |
Collapse
|
19
|
Amombo E, Gbibar M, Ashilenje DS, Hirich A, Kouisni L, Oukarroum A, Ghoulam C, El Gharous M, Nilahyane A. Screening for genetic variability in photosynthetic regulation provides insights into salt performance traits in forage sorghum under salt stress. BMC PLANT BIOLOGY 2024; 24:690. [PMID: 39030485 PMCID: PMC11264756 DOI: 10.1186/s12870-024-05406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is a promising opportunity crop for arid regions of Africa due to its high tolerance to drought and heat stresses. Screening for genetic variability in photosynthetic regulation under salt stress can help to identify target trait combinations essential for sorghum genetic improvement. The primary objective of this study was to identify reliable indicators of photosynthetic performance under salt stress for forage yield within a panel of 18 sorghum varieties from stage 1 (leaf 3) to stage 7 (late flowering to early silage maturity). We dissected the genetic diversity and variability in five stress-sensitive photosynthetic parameters: nonphotochemical chlorophyll fluorescence quenching (NPQ), the electron transport rate (ETR), the maximum potential quantum efficiency of photosystem II (FV/FM), the CO2 assimilation rate (A), and the photosynthetic performance based on absorption (PIABS). Further, we investigated potential genes for target phenotypes using a combined approach of bioinformatics, transcriptional analysis, and homologous overexpression. RESULTS The panel revealed polymorphism, two admixed subpopulations, and significant molecular variability between and within population. During the investigated development stages, the PIABS varied dramatically and consistently amongst varieties. Under higher saline conditions, PIABS also showed a significant positive connection with A and dry matter gain. Because PIABS is a measure of plants' overall photosynthetic performance, it was applied to predict the salinity performance index (SPI). The SPI correlated positively with dry matter gain, demonstrating that PIABS could be used as a reliable salt stress performance marker for forage sorghum. Eight rubisco large subunit genes were identified in-silico and validated using qPCR with variable expression across the varieties under saline conditions. Overexpression of Rubisco Large Subunit 8 increased PIABS, altered the OJIP, and growth with an insignificant effect on A. CONCLUSIONS These findings provide insights into strategies for enhancing the photosynthetic performance of sorghum under saline conditions for improved photosynthetic performance and potential dry matter yield. The integration of molecular approaches, guided by the identified genetic variability, holds promise for genetically breeding sorghum tailored to thrive in arid and saline environments, contributing to sustainable agricultural practices.
Collapse
Affiliation(s)
- Erick Amombo
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Maryam Gbibar
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Dennis S Ashilenje
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdallah Oukarroum
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Cherki Ghoulam
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Center of Agrobiotechnology and Bioengineering, Labeled Research Unit CNRST, Cadi Ayyad University (UCA), Marrakech, Morocco
| | - Mohamed El Gharous
- Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelaziz Nilahyane
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco.
| |
Collapse
|
20
|
Elshafei AA, Ibrahim EI, Abdellatif KF, Salem AEAK, Moustafa KA, Al-Doss AA, Migdadi HM, Hussien AM, Soufan W, Abd El Rahman T, Eldemery SM. Molecular and agro-morphological characterization of new barley genotypes in arid environments. BMC Biotechnol 2024; 24:41. [PMID: 38862994 PMCID: PMC11167802 DOI: 10.1186/s12896-024-00861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions. RESULTS Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods. CONCLUSIONS The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.
Collapse
Affiliation(s)
- Adel A Elshafei
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Institute, National Research Center, Dokki, Giza, 12622, Egypt.
| | - Eid I Ibrahim
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Kamal F Abdellatif
- Plant Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Abd El-Azeem K Salem
- Field Crops Research Department, Agricultural and Biological Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | - Khaled A Moustafa
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Abdullah A Al-Doss
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Hussein M Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Amal M Hussien
- Genetic Resources Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Taha Abd El Rahman
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Samah M Eldemery
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| |
Collapse
|
21
|
Asfaw A, Agre P, Matsumoto R, Olatunji AA, Edemodu A, Olusola T, Odom-Kolombia OL, Adesokan M, Alamu OE, Adebola P, Asiedu R, Maziya-Dixon B. Genome-wide dissection of the genetic factors underlying food quality in boiled and pounded white Guinea yam. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4880-4894. [PMID: 37386916 DOI: 10.1002/jsfa.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Food quality traits related to the genetics of yam influence the acceptability for its consumption. This study aimed at identifying genetic factors underlying sensory and textural quality attributes of boiled and pounded yam, the two dominant food products from white Guinea yam. RESULTS A genome-wide association study (GWAS) of a panel of 184 genotypes derived from five multi-parent crosses population was conducted. The panel was phenotyped for the qualities of boiled and pounded yam using sensory quality and instrument-based textural profile assays. The genotypes displayed significant variation for most of the attributes. Population differentiation and structure analysis using principal component analysis (PCA) and population structure-based Bayesian information criteria revealed the presence of four well-defined clusters. The GWAS results from a multi-random mixed linear model with kinship and PCA used as covariate identified 13 single-nucleotide polymorphic (SNP) markers significantly associated with the boiled and pounded yam food qualities. The associated SNP markers explained 7.51-13.04% of the total phenotypic variance with a limit of detection exceeding 4. CONCLUSION Regions on chromosomes 7 and 15 were found to be associated with boiled and pounded yam quality attributes from sensory and instrument-based assays. Gene annotation analysis for the regions of associated SNPs revealed co-localization of several known putative genes involved in glucose export, hydrolysis and glycerol metabolism. Our study is one of the first reports of genetic factors underlying the boiled and pounded yam food quality to pave the way for marker-assisted selection in white Guinea yam. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Asrat Asfaw
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Abuja, Nigeria
| | - Paterne Agre
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Ryo Matsumoto
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Alex Edemodu
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Theresa Olusola
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Michael Adesokan
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Oladeji Emmanuel Alamu
- International Institute of Tropical Agriculture, Southern Africa Research and Administration Hub (SARAH) Campus, Lusaka, Zambia
| | - Patrick Adebola
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Abuja, Nigeria
| | - Robert Asiedu
- Yam Breeding, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Busie Maziya-Dixon
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
22
|
Yang C, Fredua-Agyeman R, Hwang SF, Gorim LY, Strelkov SE. Genome-wide association studies of root system architecture traits in a broad collection of Brassica genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1389082. [PMID: 38863549 PMCID: PMC11165082 DOI: 10.3389/fpls.2024.1389082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
The root systems of Brassica species are complex. Eight root system architecture (RSA) traits, including total root length, total root surface area, root average diameter, number of tips, total primary root length, total lateral root length, total tertiary root length, and basal link length, were phenotyped across 379 accessions representing six Brassica species (B. napus, B. juncea, B. carinata, B. oleracea, B. nigra, and B. rapa) using a semi-hydroponic system and image analysis software. The results suggest that, among the assessed species, B. napus and B. oleracea had the most intricate and largest root systems, while B. nigra exhibited the smallest roots. The two species B. juncea and B. carinata shared comparable root system complexity and had root systems with larger root diameters. In addition, 313 of the Brassica accessions were genotyped using a 19K Brassica single nucleotide polymorphism (SNP) array. After filtering by TASSEL 5.0, 6,213 SNP markers, comprising 5,103 markers on the A-genome (covering 302,504 kb) and 1,110 markers on the C-genome (covering 452,764 kb), were selected for genome-wide association studies (GWAS). Two general linear models were tested to identify the genomic regions and SNPs associated with the RSA traits. GWAS identified 79 significant SNP markers associated with the eight RSA traits investigated. These markers were distributed across the 18 chromosomes of B. napus, except for chromosome C06. Sixty-five markers were located on the A-genome, and 14 on the C-genome. Furthermore, the major marker-trait associations (MTAs)/quantitative trait loci (QTLs) associated with root traits were located on chromosomes A02, A03, and A06. Brassica accessions with distinct RSA traits were identified, which could hold functional, adaptive, evolutionary, environmental, pathological, and breeding significance.
Collapse
Affiliation(s)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Zhao D, Sapkota M, Lin M, Beil C, Sheehan M, Greene S, Irish BM. Genetic diversity, population structure, and taxonomic confirmation in annual medic ( Medicago spp.) collections from Crimea, Ukraine. FRONTIERS IN PLANT SCIENCE 2024; 15:1339298. [PMID: 38633467 PMCID: PMC11021755 DOI: 10.3389/fpls.2024.1339298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Annual medic (Medicago spp.) germplasm was collected from the Crimean Peninsula of Ukraine in 2008 to fill gaps in geographic coverage in the United States department of Agriculture, Agricultural Research Service, National Plant Germplasm System (NPGS) temperate-adapted forage legume collection. A total of 102 accessions across 10 Medicago species were collected. To assess genetic diversity, population structure, and to confirm taxonomic identities, the collections were phenotypically and genetically characterized. Phenotyping included the use of 24 descriptor traits while genetic characterization was accomplished using a 3K Diversity Array Technologies (DArTag) panel developed for alfalfa (Medicago sativa L.). For both field and molecular characterizations, a reference set of 92 geographically diverse and species-representative accessions were obtained from the NPGS collection. Phenotypic descriptors showed consistency among replicated plants within accessions, some variation across accessions within species, and evident distinctions between species. Because the DArTag panel was developed for cultivated alfalfa, the transferability of markers to the species being evaluated was limited, resulting in an average of ~1,500 marker loci detected per species. From these loci, 448 markers were present in 95% of the samples. Principal component and phylogenetic analysis based on a larger set of 2,396 selected markers clustered accessions by species and predicted evolutionary relationships among species. Additionally, the markers aided in the taxonomic identity of a few accessions that were likely mislabeled. The genotyping results also showed that sampling individual plants for these mostly self-pollinating species is sufficient due to high reproducibility between single (n=3) and pooled (n=7) biological replicate leaf samples. The phenotyping and the 2,396 Single Nucleotide Polymorphism (SNP) marker set were useful in estimating population structure in the Crimean and reference accessions, highlighting novel and unique genetic diversity captured in the Crimean accessions. This research not only demonstrated the utility of the DArTag marker panel in evaluating the Crimean germplasm but also highlighted its broader application in assessing genetic resources within the Medicago genus. Furthermore, we anticipate that our findings will underscore the importance of leveraging genetic resources and advanced genotyping tools for sustainable crop improvement and biodiversity conservation in annual medic species.
Collapse
Affiliation(s)
- Dongyan Zhao
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Manoj Sapkota
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Meng Lin
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Craig Beil
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Moira Sheehan
- Breeding Insight, Cornell University, Ithaca, NY, United States
| | - Stephanie Greene
- Agricultural Genetic Resources Preservation Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Prosser, WA, United States
| | - Brian M. Irish
- Plant Germplasm Introduction and Testing Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Prosser, WA, United States
| |
Collapse
|
24
|
Gutierrez N, Pégard M, Solis I, Sokolovic D, Lloyd D, Howarth C, Torres AM. Genome-wide association study for yield-related traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1328690. [PMID: 38545396 PMCID: PMC10965552 DOI: 10.3389/fpls.2024.1328690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 11/11/2024]
Abstract
Yield is the most complex trait to improve crop production, and identifying the genetic determinants for high yield is a major issue in breeding new varieties. In faba bean (Vicia faba L.), quantitative trait loci (QTLs) have previously been detected in studies of biparental mapping populations, but the genes controlling the main trait components remain largely unknown. In this study, we investigated for the first time the genetic control of six faba bean yield-related traits: shattering (SH), pods per plant (PP), seeds per pod (SP), seeds per plant (SPL), 100-seed weight (HSW), and plot yield (PY), using a genome-wide association study (GWAS) on a worldwide collection of 352 homozygous faba bean accessions with the aim of identifying markers associated with them. Phenotyping was carried out in field trials at three locations (Spain, United Kingdom, and Serbia) over 2 years. The faba bean panel was genotyped with the Affymetrix faba bean SNP-chip yielding 22,867 SNP markers. The GWAS analysis identified 112 marker-trait associations (MTAs) in 97 candidate genes, distributed over the six faba bean chromosomes. Eight MTAs were detected in at least two environments, and five were associated with multiple traits. The next step will be to validate these candidates in different genetic backgrounds to provide resources for marker-assisted breeding of faba bean yield.
Collapse
Affiliation(s)
- Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| | - Marie Pégard
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | | | | | - David Lloyd
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Catherine Howarth
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Ana M. Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| |
Collapse
|
25
|
Morimoto T, Narazaki R, Okabe H, Zhang L, Nishimura K, Itai A. Introduction of a diverse genetic background of Pyrus into Malus through intergeneric hybridization. Mol Genet Genomics 2024; 299:21. [PMID: 38429502 DOI: 10.1007/s00438-024-02131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.
Collapse
Affiliation(s)
- Takuya Morimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Ryuya Narazaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hiroaki Okabe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Lumin Zhang
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Institute of Tropical Eco-agriculture, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Kazusa Nishimura
- Graduate School of Environmental, Natural Science and Technology, Okayama University, Life, Okayama, Japan
| | - Akihiro Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
26
|
Majidian P, Ghorbani HR, Farajpour M. Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon 2024; 10:e26389. [PMID: 38404839 PMCID: PMC10884498 DOI: 10.1016/j.heliyon.2024.e26389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
The utilization of soybean as a key oil crop to enhance sustainable agriculture has garnered significant attention from researchers. Its lower water requirements compared to rice, along with its reduced environmental impact, including greenhouse gas emissions, improved water quality, enhanced biodiversity, and efficient resource utilization, make it an attractive option. Unfortunately, Iran, like many other developing countries, heavily relies on soybean imports (over 90%) to meet the demand for oil and protein in human and livestock food rations. The decline in soybean production, coupled with diminishing cultivation areas, yield rates, and increasing import needs, underscores the urgent need to address the challenges faced in Iran. The decline in soybean production in the country can be attributed to various factors, including environmental stresses (both biotic and abiotic), limited variation in soybean cultivars, inadequate mechanization for cultivation, and economic policies. Hence, this review provides a comprehensive overview of the current status of soybean production in Iran and highlights its potential to enhance sustainable agriculture. Additionally, it examines the challenges and constraints associated with soybean cultivation, such as environmental changes and unbalanced marketing, and explores potential solutions and management strategies to bridge the gap between small-scale and large-scale production. Given the increasing global demand for plant-based protein and the significance of the feed industry, studying the limitations faced by countries with slower soybean production growth can shed light on the issues and present opportunities to capitalize on novel soybean advancements in the future. By addressing these challenges and unlocking the potential of soybean cultivation, Iran can contribute to sustainable agricultural practices and attain a more resilient food system.
Collapse
Affiliation(s)
- Parastoo Majidian
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Hamid Reza Ghorbani
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| |
Collapse
|
27
|
Wang C, Lan J, Wang J, He W, Lu W, Lin Y, Luo J. Population structure and genetic diversity in Eucalyptus pellita based on SNP markers. FRONTIERS IN PLANT SCIENCE 2023; 14:1278427. [PMID: 38162312 PMCID: PMC10757378 DOI: 10.3389/fpls.2023.1278427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
Eucalyptus pellita has the characteristics of rapid growth and high resistance. However, there is little research on molecular breeding of E. pellita, which is essential to shortening breeding life and selecting quality varieties. Therefore, a crucial step before selective breeding can be carried out to increase the wood quality of E. pellita is identifying genetic diversity and population structure using single nucleotide polymorphism (SNP) markers. In this study, the genetic diversity of 1st generation 196 E. pellita families from 23 geographically defined was assessed using 1,677,732 SNP markers identified by whole genome resequencing. SNP annotation showed that the ratio of non-synonymous to synonymous coding mutations was 0.83. Principal component analysis (PCA), phylogenetic tree, and population structure analysis permitted the families to be categorized into three groups, one of which (G2) contains most of the Indonesian (IDN) and Papua New Guinea (PNG) families. Genetic relationship analysis showed that IDN was closely related to PNG. Genetic diversity analysis showed that He, PIC, I, and H mean values were 0.2502, 0.2027, 0.3815, and 0.2680, respectively. PCA analysis classified various provenances in QLD into two categories (G1 and G3). The genetic diversity of G3 was higher than that of G2. The results of genetic differentiation (Fst) showed that PNG region was divided into two groups (PNG1 and PNG2), the Fst (0.172) between QLD and PNG2 region was higher than QLD and PNG1, and the Fst (0.024) between IDN and PNG1 is smaller than IDN and PNG2. A Mantel test revealed a positive correlation between the genetic and geographic distance of E. pellita. This study has a certain reference value for genetic identification, germplasm preservation, and breeding of E. pellita. Also, it provides a basis for subsequent association analysis to explore excellent alleles and introduction.
Collapse
Affiliation(s)
- Chubiao Wang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jun Lan
- Forestry Science Research Institute, Guangxi Dongmen Forest Farm, Fusui, China
| | - Jianzhong Wang
- Forestry Science Research Institute, Guangxi Dongmen Forest Farm, Fusui, China
| | - Wenliang He
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wanhong Lu
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yan Lin
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jianzhong Luo
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| |
Collapse
|
28
|
Prem P, Muneshwar KN, Agrawal S, Jaiswal A. The Impact of Increased Homozygosity on Human Fertility: A Comprehensive Review. Cureus 2023; 15:e49000. [PMID: 38111431 PMCID: PMC10726075 DOI: 10.7759/cureus.49000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023] Open
Abstract
This comprehensive review explores the multifaceted relationship between increased homozygosity and human fertility, delving into the genetic, ethical, cultural, and public health dimensions of this complex phenomenon. Homozygosity, characterized by identical alleles at specific gene loci, can result from consanguineous marriages, genetic drift, and population isolation. The review highlights key findings, including the heightened risk of recessive genetic disorders, the implications for immune system diversity, and the influence on complex traits and diseases. It underscores the critical role of genetic counseling in addressing these consequences, considering the ethical implications, and respecting cultural practices. The delicate balance between genetic diversity and cultural norms is emphasized, calling for increased awareness and community engagement. Looking ahead, the review suggests emerging technologies, longitudinal studies, and interdisciplinary research as crucial avenues for further exploration, with the ultimate goal of informing effective public health policies and interventions that safeguard genetic diversity and cultural traditions for future generations.
Collapse
Affiliation(s)
- Pranjal Prem
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arpita Jaiswal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
29
|
Hua M, Yin W, Fernández Gómez J, Tidy A, Xing G, Zong J, Shi S, Wilson ZA. Barley TAPETAL DEVELOPMENT and FUNCTION1 (HvTDF1) gene reveals conserved and unique roles in controlling anther tapetum development in dicot and monocot plants. THE NEW PHYTOLOGIST 2023; 240:173-190. [PMID: 37563927 PMCID: PMC10952600 DOI: 10.1111/nph.19161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
The anther tapetum helps control microspore release and essential components for pollen wall formation. TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is an essential R2R3 MYB tapetum transcription factor in Arabidopsis thaliana; however, little is known about pollen development in the temperate monocot barley. Here, we characterize the barley (Hordeum vulgare L.) TDF1 ortholog using reverse genetics and transcriptomics. Spatial/temporal expression analysis indicates HvTDF1 has tapetum-specific expression during anther stage 7/8. Homozygous barley hvtdf1 mutants exhibit male sterility with retarded tapetum development, delayed tapetum endomitosis and cell wall degeneration, resulting in enlarged, vacuolated tapetum surrounding collapsing microspores. Transient protein expression and dual-luciferase assays show TDF1 is a nuclear-localized, transcription activator, that directly activates osmotin proteins. Comparison of hvtdf1 transcriptome data revealed several pathways were delayed, endorsing the observed retarded anther morphology. Arabidopsis tdf1 mutant fertility was recovered by HvTDF1, supporting a conserved role for TDF1 in monocots and dicots. This indicates that tapetum development shares similarity between monocot and dicots; however, barley HvTDF1 appears to uniquely act as a modifier to activate tapetum gene expression pathways, which are subsequently also induced by other factors. Therefore, the absence of HvTDF1 results in delayed developmental progression rather than pathway failure, although inevitably still results in pollen degeneration.
Collapse
Affiliation(s)
- Miaoyuan Hua
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Wenzhe Yin
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | | | - Alison Tidy
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Guangwei Xing
- Goethe University Frankfurt am MainMax‐von‐Laue Str. 9Frankfurt am Main60438Germany
| | - Jie Zong
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Shuya Shi
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Zoe A. Wilson
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| |
Collapse
|
30
|
Probowati W, Koga S, Harada K, Nagano Y, Nagano AJ, Ishimaru K, Ohshima K, Fukuda S. RAD-Seq analysis of wild Japanese garlic (Allium macrostemon Bunge) growing in Japan revealed that this neglected crop was previously actively utilized. Sci Rep 2023; 13:16354. [PMID: 37773322 PMCID: PMC10541398 DOI: 10.1038/s41598-023-43537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Allium macrostemon Bunge, commonly referred to as "no-biru" in Japan, is a widespread wild onion species found across the country. Despite being deeply entwined in ancient Japanese culture, it remains an underutilized crop in Japan. Determining the origins of its domestic populations and understanding their genetic composition is crucial to highlighting the plant's historical significance in Japan. This study aims to bridge this knowledge gap by examining the genetic diversity of 47 A. macrostemon samples from various regions in Japan using RAD-Seq. Our analyses distinguished unique population structures, dividing the samples into three distinct groups: A, B, and C. Notably, groups A and B showed clear evidence of bulb propagation, while group C did not. Group C formed four subgroups: C1, C2, C3, and C4. Hybridization between subgroup C1 and either group A, B, or both, resulted in the emergence of subgroups C2, C3, and C4. Thus, groups A, B, and C1 are posited as the ancestral populations. Additionally, our morphological observations indicated distinct differences among these three groups. Our findings also suggest that human migration may have influenced the plant's distribution, hinting at active usage in the past that later waned, causing its current underutilized status.
Collapse
Affiliation(s)
- Wiwit Probowati
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Shogo Koga
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Kentaro Harada
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Yukio Nagano
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kanji Ishimaru
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Kazusato Ohshima
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Shinji Fukuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan.
- Faculty of Agriculture, Saga University, Saga, Japan.
| |
Collapse
|
31
|
Wang D, Zhang Y, Chen C, Chen R, Bai X, Qiang Z, Fu J, Qin T. The genetic variation in drought resistance in eighteen perennial ryegrass varieties and the underlying adaptation mechanisms. BMC PLANT BIOLOGY 2023; 23:451. [PMID: 37749497 PMCID: PMC10521523 DOI: 10.1186/s12870-023-04460-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Drought resistance is a complex characteristic closely related to the severity and duration of stress. Perennial ryegrass (Lolium perenne L.) has no distinct drought tolerance but often encounters drought stress seasonally. Although the response of perennial ryegrass to either extreme or moderate drought stress has been investigated, a comprehensive understanding of perennial ryegrass response to both conditions of drought stress is currently lacking. RESULTS In this study, we investigated the genetic variation in drought resistance in 18 perennial ryegrass varieties under both extreme and moderate drought conditions. The performance of these varieties exhibited obvious diversity, and the survival of perennial ryegrass under severe stress was not equal to good growth under moderate drought stress. 'Sopin', with superior performance under both stress conditions, was the best-performing variety. Transcriptome, physiological, and molecular analyses revealed that 'Sopin' adapted to drought stress through multiple sophisticated mechanisms. Under stress conditions, starch and sugar metabolic enzymes were highly expressed, while CslA was expressed at low levels in 'Sopin', promoting starch degradation and soluble sugar accumulation. The expression and activity of superoxide dismutase were significantly higher in 'Sopin', while the activity of peroxidase was lower, allowing for 'Sopin' to maintain a better balance between maintaining ROS signal transduction and alleviating oxidative damage. Furthermore, drought stress-related transcriptional and posttranscriptional regulatory mechanisms, including the upregulation of transcription factors, kinases, and E3 ubiquitin ligases, facilitate abscisic acid and stress signal transduction. CONCLUSION Our study provides insights into the resistance of perennial ryegrass to both extreme and moderate droughts and the underlying mechanisms by which perennial ryegrass adapts to drought conditions.
Collapse
Affiliation(s)
- Dan Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuting Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Chunyan Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ruixin Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Xuechun Bai
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Juanjuan Fu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
32
|
Zhou J, Niu J, Wang X, Yue J, Zhou S, Liu Z. Plastome evolution in the genus Sium (Apiaceae, Oenantheae) inferred from phylogenomic and comparative analyses. BMC PLANT BIOLOGY 2023; 23:368. [PMID: 37488499 PMCID: PMC10367252 DOI: 10.1186/s12870-023-04376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Sium L. (Apiaceae) is a small genus distributed primarily in Eurasia, with one species also occurring in North America. Recently, its circumscription has been revised to include 10 species, however, the phylogenetic relationships within its two inclusive clades were poorly supported or collapsed in previous studies based on nuclear ribosomal DNA ITS or cpDNA sequences. To identify molecular markers suitable for future intraspecific phylogeographic and population genetic studies, and to evaluate the efficacy of plastome in resolving the phylogenetic relationships of the genus, the complete chloroplast (cp) genomes of six Sium species were sequenced. RESULTS The Sium plastomes exhibited typical quadripartite structures of Apiaceae and most other higher plant plastid DNAs, and were relatively conserved in their size (153,029-155,006 bp), gene arrangement and content (with 114 unique genes). A total of 61-67 SSRs, along with 12 highly divergent regions (trnQ, trnG-atpA, trnE-trnT, rps4-trnT, accD-psbI, rpl16, ycf1-ndhF, ndhF-rpl32, rpl32-trnL, ndhE-ndhG, ycf1a and ycf1b) were discovered in the plastomes. No significant IR length variation was detected showing that plastome evolution was conserved within this genus. Phylogenomic analysis based on whole chloroplast genome sequences produced a highly resolved phylogenetic tree, in which the monophyly of Sium, as well as the sister relationship of its two inclusive clades were strongly supported. CONCLUSIONS The plastome sequences could greatly improve phylogenetic resolution, and will provide genomic resources and potential markers useful for future studies of the genus.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Junmei Niu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Xinyue Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Jiarui Yue
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Shilin Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Zhenwen Liu
- Yunnan Academy of Forestry and Grassland, Kunming, China.
- Gaoligong Mountain, Forest Ecosystem, Observation and Research Station of Yunnan Province, Kunming, China.
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming, China.
| |
Collapse
|
33
|
Glick L, Mayrose I. The Effect of Methodological Considerations on the Construction of Gene-Based Plant Pan-genomes. Genome Biol Evol 2023; 15:evad121. [PMID: 37401440 PMCID: PMC10340445 DOI: 10.1093/gbe/evad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Pan-genomics is an emerging approach for studying the genetic diversity within plant populations. In contrast to common resequencing studies that compare whole genome sequencing data with a single reference genome, the construction of a pan-genome (PG) involves the direct comparison of multiple genomes to one another, thereby enabling the detection of genomic sequences and genes not present in the reference, as well as the analysis of gene content diversity. Although multiple studies describing PGs of various plant species have been published in recent years, a better understanding regarding the effect of the computational procedures used for PG construction could guide researchers in making more informed methodological decisions. Here, we examine the effect of several key methodological factors on the obtained gene pool and on gene presence-absence detections by constructing and comparing multiple PGs of Arabidopsis thaliana and cultivated soybean, as well as conducting a meta-analysis on published PGs. These factors include the construction method, the sequencing depth, and the extent of input data used for gene annotation. We observe substantial differences between PGs constructed using three common procedures (de novo assembly and annotation, map-to-pan, and iterative assembly) and that results are dependent on the extent of the input data. Specifically, we report low agreement between the gene content inferred using different procedures and input data. Our results should increase the awareness of the community to the consequences of methodological decisions made during the process of PG construction and emphasize the need for further investigation of commonly applied methodologies.
Collapse
Affiliation(s)
- Lior Glick
- Department of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv, Israel
| | - Itay Mayrose
- Department of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Androsiuk P, Milarska SE, Dulska J, Kellmann-Sopyła W, Szablińska-Piernik J, Lahuta LB. The comparison of polymorphism among Avena species revealed by retrotransposon-based DNA markers and soluble carbohydrates in seeds. J Appl Genet 2023; 64:247-264. [PMID: 36719514 PMCID: PMC10076396 DOI: 10.1007/s13353-023-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Here, we compared the polymorphism among 13 Avena species revealed by the iPBS markers and soluble carbohydrate profiles in seeds. The application of seven iPBS markers generated 83 bands, out of which 20.5% were polymorphic. No species-specific bands were scored. Shannon's information index (I) and expected heterozygosity (He) revealed low genetic diversity, with the highest values observed for A. nuda (I = 0.099; He = 0.068). UPGMA clustering of studied Avena accessions and PCoA results showed that the polyploidy level is the main grouping criterion. High-resolution gas chromatography revealed that the studied Avena accessions share the same composition of soluble carbohydrates, but significant differences in the content of total (5.30-22.38 mg g-1 of dry weight) and particular sugars among studied samples were observed. Sucrose appeared as the most abundant sugar (mean 61.52% of total soluble carbohydrates), followed by raffinose family oligosaccharides (31.23%), myo-inositol and its galactosides (6.16%), and monosaccharides (1.09%). The pattern of interspecific variation in soluble carbohydrates, showed by PCA, was convergent to that revealed by iPBS markers. Thus, both methods appeared as a source of valuable data useful in the characterization of Avena resources or in the discussion on the evolution of this genus.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Sylwia Eryka Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Justyna Dulska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Wioleta Kellmann-Sopyła
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
35
|
Junior EM, Rosado LDS, Costa AC, Caixeta ET, Dos Santos CEM. Full-sib progenies show greater genetic diversity than half-sib progenies in sour passion fruit: an approach by ssr markers. Mol Biol Rep 2023; 50:4133-4144. [PMID: 36877350 DOI: 10.1007/s11033-023-08340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Genetic variability is the most important parameter in plant breeding based on selection. There is a need for morpho-agronomic and molecular characterization of Passiflora species, to exploit their genetic resources more efficiently. No study has yet been carried out to compare half-sib and full-sib families in relation to the magnitude of the genetic variability obtained in them, and then to elucidate the advantages or disadvantages of each one. METHODS AND RESULTS In the present study, SSR markers were used to evaluate the genetic structure and diversity of half-sib and full-sib progenies of sour passion fruit. Two full-sib progenies (PSA and PSB), and a half-sib progeny (PHS), together with their parents, were genotyped with a set of eight pairs of SSR markers. Discriminant Analysis of Principal Components (DAPC) and Structure software were used to study the genetic structure of the progenies. The results indicate that the half-sib progeny has lower genetic variability, although it has higher allele richness. By the AMOVA most of the genetic variability was found within the progenies. Three groups were clearly observed in the DAPC analysis, while two hypothetical groups (k = 2) were observed in the Bayesian approach. The PSB progeny showed a high genetic mixture between the PSA and PHS progenies. CONCLUSION Lower genetic variability is found in half-sib progenies. The results obtained here allow us to suppose that the selection within full-sib progenies will possibly provide better estimates of genetic variance in sour passion fruit breeding programs, since they provide greater genetic diversity.
Collapse
Affiliation(s)
- Edilson Marques Junior
- Department of Agronomy, Federal University of Viçosa, Av. Ph Rolfs, S/N, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | - Ana Claudia Costa
- Department of Agronomy, Federal University of Lavras, 37200-000, Lavras, Minas Gerais, Brazil
| | - Eveline Teixeira Caixeta
- Brazilian Agricultural Research Corporation - Embrapa Café, Federal University of Viçosa, Av. Ph Rolfs S/N, 36570-900, Bioagro, Viçosa, BioCafé, Minas Gerais, Brazil
| | | |
Collapse
|
36
|
Rahimi M, Ranjbaran E. Investigating the geographical, phenotypic and genetic diversity of Sickleweed populations by bioclimatic parameters, morphological traits and SCoT molecular markers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:421-433. [PMID: 37033768 PMCID: PMC10073401 DOI: 10.1007/s12298-023-01296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Sickleweed (Falcaria vulgaris) is important due to its nutritional value and medicinal effects on the human body. The 15 different Sickleweed populations were collected based on an unbalanced nest design with 10 replications and nine morphological traits were measured on them. The diversity was investigated with 15 primers of SCoT marker. The genetic diversity was investigated by ANOVA, cluster analysis and Bayesian statistical model based on morphological traits, bioclimatic and SCoT. Grouping the study areas based on bioclimatic parameters by UPGMA method showed that these areas were divided into two groups and were similar in terms of climatic similarities and bioclimatic information. The results of analysis of variance showed that there was a significant difference between populations at the level of one percent for the studied traits. The cluster analysis based traits by the UPGMA method divided these populations into two groups. The phenotypic diversity of these populations was largely consistent with the geographical diversity. The primers used for SCoT marker produced 137 polymorphic bands on the populations, The UPGMA cluster analysis with molecular data placed the studied populations into three groups and four subgroups. Grouping based on the Bayesian method placed the populations into nine groups, although the populations were not differentiated and were a mixture of all nine groups. High genetic diversity for the studied Sickleweed populations have showed valuable insights into the evolution of this plant and provides basic data for designing appropriate management practices for breeding Sickleweed populations.
Collapse
Affiliation(s)
- Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Elaheh Ranjbaran
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
37
|
Ravi Y, Vethamoni IP, Saxena SN, Velmurugan S, Santanakrishnan VP, Raveendran M, Bariya H, Harsh M. Guesstimate of thymoquinone diversity in Nigella sativa L. genotypes and elite varieties collected from Indian states using HPTLC technique. Open Life Sci 2023; 18:20220536. [PMID: 36816805 PMCID: PMC9922057 DOI: 10.1515/biol-2022-0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 02/10/2023] Open
Abstract
Thymoquinone is a valuable metabolite derived from the Nigella sativa L. seeds and has a variety of therapeutic properties. Thymoquinone was estimated using n-hexane:ethyl acetate (8:2, v/v) green solvent system and computed at a wavelength of 254 nm using the high-performance thin-layer chromatography densitometry method in distinct varieties and genotypes congregated from different geographical regions. Genotype Ajmer Nigella-13 has the paramount thymoquinone content (247.60 µg/100 mg seed) followed by Ajmer Nigella 19 (244.5 µg/100 mg seed), while the lowest amount of thymoquinone was recorded in the genotype Ajmer Nigella-6 (42.88 µg/100 mg seed). The hierarchical cluster analysis found that the collected genotypes and elite varieties were classified into four broad clusters, and the identified chemotypes with elevated thymoquinone proportion were positioned in cluster D. Significant genotypic variation in thymoquinone content is available, that can be used in exploiting pharmaceutical applications of N. sativa L. as well as a breeding programme for specific metabolite improvement perspective.
Collapse
Affiliation(s)
- Y. Ravi
- Department of Spices, Plantation, Medicinal and Aromatic Crops, Horticulture College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India,Division of Crop Improvement, Indian Council of Agricultural Research, National Research Centre on Seed Spices, Ajmer, Rajasthan, 305206, India
| | - Irene P. Vethamoni
- Department of Spices and Plantation crops, Horticulture College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Shailendra N. Saxena
- Division of Crop Improvement, Indian Council of Agricultural Research, National Research Centre on Seed Spices, Ajmer, Rajasthan, 305206, India
| | - S. Velmurugan
- Department of Spices and Plantation crops, Horticulture College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - V. P. Santanakrishnan
- Department of Biochemistry, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M. Raveendran
- Department of Biochemistry, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Himanshu Bariya
- Department of Bio-Technology, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Mistry Harsh
- Department of Bio-Technology, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| |
Collapse
|
38
|
Yan P, Xie Z, Feng K, Qiu X, Zhang L, Zhang H. Genetic diversity analysis and fingerprint construction of Korean pine ( Pinus koraiensis) clonal seed orchard. FRONTIERS IN PLANT SCIENCE 2023; 13:1079571. [PMID: 36726668 PMCID: PMC9886227 DOI: 10.3389/fpls.2022.1079571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Korean pine is a native tree species in Northeast China. In order to meet the needs of germplasm resource evaluation and molecular marker-assisted breeding of Korean pine, we collected Korean pine clones from 7 populations in Northeast China, analyzed the genetic diversity and genetic structure by SSR molecular marker technology and clustered them to revealed the inter- and intrapopulation differentiation characteristics of each clone. The fingerprint profiles of 161 Korean pine clones were also constructed. 77 alleles were detected for 11 markers, and 18 genotypes were identified on average for each marker. The PIC of the different markers ranged from 0.155-0.855, and the combination of PI and PIsibs for the 11 markers was 3.1 × 10-8 and 1.14 × 10-3, respectively. MANOVA showed that genetic variation existed mainly within populations, accounting for 98% of the total variation. The level of genetic differentiation among populations was low, with an average Nm between populations of 11.036. Genetic diversity is lower in the Lushuihe population and higher in the Tieli population. The 161 Korean pine clones were divided into 4 or 7 populations, and the 7 populations were not clearly distinguished from each other, with only the Lushuihe population showing partial differentiation. There is no significant correlation between the genetic distance of Korean pine populations and the geographical distance of their superior tree sources. This result can provide recommendations for future Korean pine breeding programs. The combination of 11 markers could completely distinguish 161 clones and establish the fingerprint. Genetic diversity of Korean pine clones from the 7 populations was abundant, and the genetic distances of individuals and populations were evenly dispersed. The fingerprint map can be used for the identification of Korean pine clones.
Collapse
Affiliation(s)
- Pingyu Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zixiong Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kele Feng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinyu Qiu
- Heilongjiang Academy of Forestry, Harbin, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
39
|
Sayed HA, Mostafa S, Haggag IM, Hassan NA. DNA Barcoding of Prunus Species Collection Conserved in the National Gene Bank of Egypt. Mol Biotechnol 2023; 65:410-418. [PMID: 35962931 PMCID: PMC9935672 DOI: 10.1007/s12033-022-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Two intergenic spacers cpDNA barcoding regions were used to assess the genetic diversity and phylogenetic structure of a collection of 25 Prunus accessions. The trnH-psbA and trnL-trnF intergenic spacers were able to distinguish and identify only four Prunus species. The average aligned length was 316-352 bp and 701-756 bp for trnH-psbA and trnL-trnF, respectively. The overall evolutionary divergence was higher in trnH-psbA than trnL-trnF. The transition/transversion bias (R) recorded as 0.59 in trnL-trnF and 0.89 in trnH-psbA. The number of invariable sites, nucleotide diversity (Pi), and the average number of nucleotide differences (k) was higher in the trnH-psbA region. The trnL-trnF records was above the other region in the number of variable sites, number of singleton variable sites, and the parsimony informative sites. Phylogenetic relationships among the 25 accessions of Prunus species were investigated. Most of the different Prunus species clustered in a homogenized distribution in both regions, except for the plum (P. domestica) accession (African Rose) was assigned with the peach (P. persica) accessions. The two intergenic cpDNA trnH-psbA and trnL-trnF were able to distinguish and identify the four Prunus species accessions.
Collapse
Affiliation(s)
- Hossam A. Sayed
- National Gene Bank, Agricultural Research Center, B.O. 12619, Giza, Egypt
| | - Shimaa Mostafa
- National Gene Bank, Agricultural Research Center, B.O. 12619, Giza, Egypt.
| | - Ibrahim M. Haggag
- National Gene Bank, Agricultural Research Center, B.O. 12619, Giza, Egypt
| | - Neveen A. Hassan
- National Gene Bank, Agricultural Research Center, B.O. 12619, Giza, Egypt
| |
Collapse
|
40
|
Gumede MT, Gerrano AS, Amelework AB, Modi AT. Analysis of Genetic Diversity and Population Structure of Cowpea ( Vigna unguiculata (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243480. [PMID: 36559592 PMCID: PMC9780845 DOI: 10.3390/plants11243480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important legume crop with immense potential for nutritional and food security, income generation, and livestock feed in Sub-Saharan Africa. The crop is highly tolerant to heat and drought stresses which makes it an extremely important crop for improving resilience in crop production in the face of climate change. This study was carried out to assess the genetic diversity and population structure of 90 cowpea accessions using single nucleotide polymorphism (SNP) markers. Out of 11,940 SNPs used, 5864 SNPs were polymorphic and maintained for genome diversity analysis. Polymorphic information content (PIC) values ranged from 0.22 to 0.32 with a mean value of 0.27. The model-based Bayesian STRUCTURE analysis classified 90 cowpea accessions into four subpopulations at K = 4, while the distance-based cluster analysis grouped the accessions into three distinct clusters. The analysis of molecular variance (AMOVA) revealed that 59% and 69% of the total molecular variation was attributed to among individual variation for model-based and distance-based populations, respectively, and 18% was attributed to within individual variations. Furthermore, the low heterozygosity among cowpea accessions and the high inbreeding coefficient observed in this study suggests that the accessions reached an acceptable level of homozygosity. This study would serve as a reference for future selection and breeding programs of cowpea with desirable traits and systematic conservation of these plant genetic resources.
Collapse
Affiliation(s)
- Mbali Thembi Gumede
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plant Institute, Private Bag X293, Pretoria 0001, South Africa
- Correspondence:
| | - Abe Shegro Gerrano
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plant Institute, Private Bag X293, Pretoria 0001, South Africa
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Assefa Beyene Amelework
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plant Institute, Private Bag X293, Pretoria 0001, South Africa
| | - Albert Thembinkosi Modi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
41
|
Amelework AB, Bairu MW, Marx R, Owoeye L, Laing M, Venter SL. On-Farm Multi-Environment Evaluation of Selected Cassava ( Manihot esculenta Crantz) Cultivars in South Africa. PLANTS (BASEL, SWITZERLAND) 2022; 11:3339. [PMID: 36501378 PMCID: PMC9740417 DOI: 10.3390/plants11233339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Cassava is an important starchy root crop grown globally in tropical and subtropical regions. The ability of cassava to withstand difficult growing conditions and long-term storability underground makes it a resilient crop, contributing to food and nutrient security. This study was conducted to evaluate the performance and adaptability of exotic cassava cultivars across different environments in South Africa and to recommend genotypes for cultivation. A total of 11 cassava cultivars were evaluated at six on-farm sites, using a randomized complete block design with three replications. There were highly significant (p < 0.001) variations between genotypes, environments, and their interaction for all yield and yield-related traits studied. This indicates the need to test the genotypes in multiple environments before effective selection and commercialization can be undertaken. MSAF2 and UKF4 showed the overall best performances for most of the traits, whilst UKF9 (49.5%) and P1/19 (48.5%) had the highest dry matter yield. UKF4 (102.7 t ha−1) had the highest yield and greatest root yield stability across environments. MSAF2 did not perform consistently across environments because it was highly susceptible to cassava mosaic disease (CMD). MSAF2 could be used as a donor parent to generate novel clones with large numbers of marketable roots, and high fresh root yields, if the other parent can provide effective resistance to CMD. Based on genotype and environmental mean, Mabuyeni (KwaZulu-Natal), Mandlakazi (Limpopo), and Shatale (Mpumalanga) were found to be better environments for cassava cultivation and testing. This study is a pioneer in cassava research using multiple environments in South Africa. It provides baseline information on the performance of currently available cassava clones, their adaptation to multiple sites, the identification of suitable test sites, and information on current genetic resources for a future breeding program.
Collapse
Affiliation(s)
- Assefa B. Amelework
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Michael W. Bairu
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa
- Faculty of Natural & Agricultural Sciences, School of Agricultural Sciences, Food Security and Safety Niche Area, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Roelene Marx
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Lawrence Owoeye
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Mark Laing
- African Centre for Crop Improvement, School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Sonja L. Venter
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa
| |
Collapse
|
42
|
Mathiang EA, Sa KJ, Park H, Kim YJ, Lee JK. Genetic Diversity and Population Structure of Normal Maize Germplasm Collected in South Sudan Revealed by SSR Markers. PLANTS (BASEL, SWITZERLAND) 2022; 11:2787. [PMID: 36297809 PMCID: PMC9611378 DOI: 10.3390/plants11202787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Maize is one of the leading global cereals, and in South Sudan maize cultivation occurs in nearly all of the country's agro-ecological zones. Despite its widespread cultivation, farmers in South Sudan depend on undeveloped varieties, which results in very low yields in the field. In the current study, 27 simple sequence repeat (SSR) markers were used to investigate genetic diversity and population structures among 37 landrace maize accessions collected from farmers' fields in South Sudan. In total, 200 alleles were revealed with an average of 7.4 alleles per locus and a range from 3.0 to 13.0 alleles per locus. The observed heterozygosity values ranged from 0.06 to 0.91 with an average of 0.35. High polymorphic information content (PIC) values were identified with a mean of 0.69, which indicates the informativeness of the chosen SSR loci. Genetic structure analysis revealed a moderate genetic differentiation among the maize populations with a fixation index of 0.16, while there was very high genetic differentiation within the groups of populations of three regions with a mean fixation index (F) of 0.37. An unweighted pair group method with an arithmetic mean (UPGMA) dendrogram clustered the 37 maize accessions into three groups with 43% genetic similarity. The clustering pattern of the maize accessions was moderately consistent with their collection area. The findings of this study will provide maize breeders with a better understanding of maize diversification as well as a reserve of genetic resources for use in the selection of advantageous and useful resources for the development of maize varieties in South Sudan.
Collapse
Affiliation(s)
- Emmanuel Andrea Mathiang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Yeon Joon Kim
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
43
|
Investigation of Volatile Iridoid Terpenes in Nepeta cataria L. (Catnip) Genotypes. Molecules 2022; 27:molecules27207057. [PMID: 36296649 PMCID: PMC9607335 DOI: 10.3390/molecules27207057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Catnip (Nepeta cataria L.) is of scientific interest largely due to the production of nepetalactones, volatile iridoid terpenes with strong arthropod repellent activity. However, the plant can also produce other bioactive volatile iridoids, such as nepetalic acid (NA), nepetalactam (NT) and dihydronepetalactone (DHNL) that have not been studied extensively. Germplasm studies on plants that can produce such compounds are scarce. The present study evaluated the chemical diversity of catnip genotypes with a focus on NA, NT and DHNL. A total of 34 genotypes were harvested at different times over two years. The ethanolic extract of the plants was screened for iridoids by ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry. CR9 × CR3 genotype had the highest value for biomass yield, while cultivar CR9 had the highest value for accumulated NA. Genotype UK.2 had the highest value for accumulated NT yield and CR5 had the highest value for accumulated DHNL. Overall, patented cultivars and elite selections performed better than other less studied genotypes. Harvest time influenced the accumulation of secondary metabolites differentially for the genotypes. This is the first germplasm study with a focus on these iridoid compounds, yet more studies are necessary as genotype characterization is essential for breeding and standardization of products for industry.
Collapse
|
44
|
Gangappa ND, Singh C, Verma MK, Thakre M, Sevanthi AM, Singh R, Srivastav M, Raghunandan K, Anusha C, Yadav V, Nagaraja A. Assessing the genetic diversity of guava germplasm characterized by morpho-biochemical traits. Front Nutr 2022; 9:1017680. [PMID: 36245493 PMCID: PMC9562036 DOI: 10.3389/fnut.2022.1017680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Amid environmental crises, a galloping population, and changing food habits, increasing fruit production with nutritional quality is a global challenge. To address this, there is a necessity to exploit the germplasm accessions in order to develop high-yielding varieties/hybrids with good adaptability and high quality fruit under changing environmental and biological conditions. In the study, a total of 33 morpho-biochemical traits enabled an assessment of the genetic variability, diversity, and structure in a collection of 28 diverse germplasm lines of guava. Results showed that highly significant genetic variability existed in the studied traits in the guava germplasm. The coefficient of variation values for the qualitative and quantitative traits varied from 23.5–72.36 to 1.39–58.62%, respectively. Germplasm Thai, Lucknow-49, Punjab Pink, Psidium friedrichsthalianum, and Shweta had the highest fruit weight (359.32 g), ascorbic acid content (197.27 mg/100 g fruit), total phenolic content (186.93 mg GAE/100 g), titratable acidity (0.69 percent), and antioxidant capacity (44.49 μmolTrolox/g), respectively. Fruit weight was positively correlated with ascorbic acid content; however, titratable acidity was negatively correlated with fruit weight. The principal component analysis (PCA) was 84.2% and 93.3% for qualitative and quantitative traits, respectively. Furthermore, K-mean clustering was executed; the population was grouped into three clusters for both traits. Additionally, the dendrogram using agglomerative hierarchical clustering (AHC), where all the germplasm were grouped into four clusters, revealed that among the clusters, clusters III and IV were highly divergent. The high variability, diversity, and structure could be utilized for the breeding programme of guava and also explored for molecular analysis using next-generation technology to enhance the guava yield and nutrition properties and also develop the climate resilient technology to fulfill the existing demand gap and nutrition availability, which could not only mitigate the nutrition requirement but also enhance the easy availability of fruits year-round.
Collapse
Affiliation(s)
- Nayan Deepak Gangappa
- Division of Fruits and Horticultural Technology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Chandu Singh
- Division of Genetics, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Chandu Singh
| | - Mahendra Kumar Verma
- Division of Fruits and Horticultural Technology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Madhubala Thakre
- Division of Fruits and Horticultural Technology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research, National Institute for Plant Biotechnology, New Delhi, India
| | - Rakesh Singh
- Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Manish Srivastav
- Division of Fruits and Horticultural Technology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - K. Raghunandan
- Division of Genetics, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Chukkamettu Anusha
- Division of Fruits and Horticultural Technology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture & Forestry University, Xianyang, China
| | - Arumugam Nagaraja
- Division of Fruits and Horticultural Technology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
- Arumugam Nagaraja
| |
Collapse
|
45
|
Zaki HEM, Radwan KSA. Estimates of genotypic and phenotypic variance, heritability, and genetic advance of horticultural traits in developed crosses of cowpea ( Vigna unguiculata [L.] Walp). FRONTIERS IN PLANT SCIENCE 2022; 13:987985. [PMID: 36237497 PMCID: PMC9551400 DOI: 10.3389/fpls.2022.987985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Cowpea, in addition to being a food and feed crop, plays a key role in sustainable farming. The present study's goal is to develop new high-yielding cowpea varieties. A Field experiment was carried out across 3 summer seasons and the breeding program included 28 distinct cowpea varieties, out of which five potential parents were selected for this investigation. Local cultivars, i.e., Cream 7 'Cr7', Dokki 331 'D331', Commercial 1 'Com1', and introduced cultivars, i.e., Colossus 'Col' and Asian Introduction 'AI' were utilized to produce six crosses in two generations apart; F1 and F2: Col x AI, Col x Com1, Cr7 x AI, Cr7 x Com1, D331 x AI, and D331 x Com1. 'AI' and 'Com1' were superior in pod length, pod diameter, number of seeds/pod and seeds weight/pod, whereas 'Col', 'Cr7' and 'D331' were superior in seeds yield/plant, number of pods/plant and the least number of aborted ovules/pod. The genotypes/crosses showed greater genotypic variance (GV) than phenotypic variance (PV) for number of pods/plant, pod length, number of seeds/pod, number of aborted ovules/pod, fresh pod weight, seeds weight/pod, and seeds yield/plant. All studied variables showed high heritability (H%) in genotypes/crosses, despite the exception of seeds weight/pod, which ranged from 29.14 in 'D331' to 83.7 in F2 of Col x Com1. F2 plants and their parents' genotypes showed greater H%. Cr7 x AI developed the most H%, 99.04% for number of pods/plant. D331 x Com1 and Cr7 x AI exhibited moderate H% for fresh pod weight in F1, but all other crosses had high H%. F1 and F2 crosses yielded moderate to high GCV and PCV for number of seeds/pod. Variations in parental genotypes and crossings reflect genetic diversity and the possibility of selection. Crossing with 'AI,' and 'Com1' genotypes enhanced the performance of the other varieties, 'Col', 'D331' and 'Cr7'. Cr7 x Com1 and D331 x AI were selected as the most promising crosses for cowpea breeding programs.
Collapse
Affiliation(s)
- Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur, Oman
| | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
| |
Collapse
|
46
|
Li X, Qiao L, Chen B, Zheng Y, Zhi C, Zhang S, Pan Y, Cheng Z. SSR markers development and their application in genetic diversity evaluation of garlic ( Allium sativum) germplasm. PLANT DIVERSITY 2022; 44:481-491. [PMID: 36187554 PMCID: PMC9512637 DOI: 10.1016/j.pld.2021.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 05/25/2023]
Abstract
Garlic (Allium sativum), an asexually propagated vegetable and medicinal crop, has abundant genetic variation. Genetic diversity evaluation based on molecular markers has apparent advantages since their genomic abundance, environment insensitivity, and non-tissue specific features. However, the limited number of available DNA markers, especially SSR markers, are insufficient to conduct related genetic diversity assessment studies in garlic. In this study, 4372 EST-SSR markers were newly developed, and 12 polymorphic markers together with other 17 garlic SSR markers were used to assess the genetic diversity and population structure of 127 garlic accessions. The averaged polymorphism information content (PIC) of these 29 SSR markers was 0.36, ranging from 0.22 to 0.49. Seventy-nine polymorphic loci were detected among these accessions, with an average of 3.48 polymorphic loci per SSR. Both the clustering analyses based on either the genotype data of SSR markers or the phenotypic data of morphological traits obtained genetic distance divided the 127 garlic accessions into three clusters. Moreover, the Mantel test showed that genetic distance had no significant correlations with geographic distance, and weak correlations were found between genetic distance and the phenotypic traits. AMOVA analysis showed that the main genetic variation of this garlic germplasm collection existed in the within-population or cluster. Results of this study will be of great value for the genetic/breeding studies in garlic and enhance the utilization of these garlic germplasms.
Collapse
|
47
|
Genetic diversity and population structure of wild and cultivated Crotalaria species based on genotyping-by-sequencing. PLoS One 2022; 17:e0272955. [PMID: 36048841 PMCID: PMC9436042 DOI: 10.1371/journal.pone.0272955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Crotalaria is a plant genus that is found all over the world, with over 700 species of herbs and shrubs. The species are potential alternative food and industrial crops due to their adaptability to different environments. Currently, information on the genetic diversity and population structure of these species is scanty. Genotyping-by-sequencing (GBS) is a cost-effective high-throughput technique in diversity evaluation of plant species that have not been fully sequenced. In the current study, de novo GBS was used to characterize 80 Crotalaria accessions from five geographical regions in Kenya. A total of 9820 single nucleotide polymorphism (SNP) markers were obtained after thinning and filtering, which were then used for the analysis of genetic diversity and population structure in Crotalaria. The proportion of SNPs with a minor allele frequency (maf) > = 0.05 was 45.08%, while the Guanine-Cytosine (GC) content was 0.45, from an average sequence depth of 455,909 reads per base. The transition vs transversion ratio was 1.81 and Heterozygosity (He) ranged between 0.01–0.07 in all the sites and 0.04 to 0.52 in the segregating sites. The mean Tajima’s D value for the population was -0.094, suggesting an excess of rare alleles. The fixation index (Fst) between the different populations based on the Wright Fst (1943) ranged from 0.0119 to 0.066 for the Eastern-Western and Nairobi-Western populations. Model based techniques of population structure analysis including structure, k-means and cross-entropy depicted eight clusters in the study accessions. Non-model based techniques especially DAPC depicted poor population stratification. Correspondence Analysis (CA), Principal coordinate analyses (PCoA) and phylogenetic analysis identified a moderate level of population stratification. Results from this study will help conservationists and breeders understand the genetic diversity of Crotalaria. The study also provides valuable information for genetic improvement of domesticated species.
Collapse
|
48
|
Mashabela MD, Masamba P, Kappo AP. Metabolomics and Chemoinformatics in Agricultural Biotechnology Research: Complementary Probes in Unravelling New Metabolites for Crop Improvement. BIOLOGY 2022; 11:1156. [PMID: 36009783 PMCID: PMC9405339 DOI: 10.3390/biology11081156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
The United Nations (UN) estimate that the global population will reach 10 billion people by 2050. These projections have placed the agroeconomic industry under immense pressure to meet the growing demand for food and maintain global food security. However, factors associated with climate variability and the emergence of virulent plant pathogens and pests pose a considerable threat to meeting these demands. Advanced crop improvement strategies are required to circumvent the deleterious effects of biotic and abiotic stress and improve yields. Metabolomics is an emerging field in the omics pipeline and systems biology concerned with the quantitative and qualitative analysis of metabolites from a biological specimen under specified conditions. In the past few decades, metabolomics techniques have been extensively used to decipher and describe the metabolic networks associated with plant growth and development and the response and adaptation to biotic and abiotic stress. In recent years, metabolomics technologies, particularly plant metabolomics, have expanded to screening metabolic biomarkers for enhanced performance in yield and stress tolerance for metabolomics-assisted breeding. This review explores the recent advances in the application of metabolomics in agricultural biotechnology for biomarker discovery and the identification of new metabolites for crop improvement. We describe the basic plant metabolomics workflow, the essential analytical techniques, and the power of these combined analytical techniques with chemometrics and chemoinformatics tools. Furthermore, there are mentions of integrated omics systems for metabolomics-assisted breeding and of current applications.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Johannesburg 2006, South Africa; (M.D.M.); (P.M.)
| |
Collapse
|
49
|
Lu Y, Chen J, Chen B, Liu Q, Zhang H, Yang L, Chao Z, Tian E. High genetic diversity and low population differentiation of a medical plant Ficus hirta Vahl., uncovered by microsatellite loci: implications for conservation and breeding. BMC PLANT BIOLOGY 2022; 22:334. [PMID: 35820829 PMCID: PMC9277808 DOI: 10.1186/s12870-022-03734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Wuzhimaotao (Radix Fici Hirtae) originates from the dry root of Ficus hirta (Moraceae), which is widely known as a medical and edible plant distributed in South China. As the increasing demand for Wuzhimaotao, the wild F. hirta has been extremely reduced during the past years. It is urgent to protect and rationally develop the wild resources of F. hirta for its sustainable utilization. However, a lack of genetic background of F. hirta makes it difficult to plan conservation and breeding strategies for this medical plant. In the present study, a total of 414 accessions of F. hirta from 7 provinces in southern China were evaluated for the population genetics using 9 polymorphic SSR markers. RESULTS A mean of 17.1 alleles per locus was observed. The expected heterozygosity (He) varied from 0.142 to 0.861 (mean = 0.706) in nine SSR loci. High genetic diversity (He = 0.706, ranged from 0.613 to 0.755) and low genetic differentiation among populations (G'ST = 0.147) were revealed at population level. In addition, analysis of molecular variance (AMOVA) indicated that the principal molecular variance existed within populations (96.2%) was significantly higher than that among populations (3.8%). Meanwhile, the three kinds of clustering methods analysis (STRUCTURE, PCoA and UPGMA) suggested that the sampled populations were clustered into two main genetic groups (K = 2). Mantel test showed a significant correlation between geographic and genetic distance among populations (R2 = 0.281, P < 0.001). Pollen flow, seed flow and/or geographical barriers might be the main factors that formed the current genetic patterns of F. hirta populations. CONCLUSIONS This is a comprehensive study of genetic diversity and population structure of F. hirta in southern China. We revealed the high genetic diversity and low population differentiation in this medicinal plant and clarified the causes of its current genetic patterns. Our study will provide novel insights into the exploitation and conservation strategies for F. hirta.
Collapse
Affiliation(s)
- Yi Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jianling Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qianqian Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hanlin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Liyuan Yang
- Department of Landscape Plants and Ornamental Horticulture, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, People's Republic of China.
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| |
Collapse
|
50
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|