1
|
Kumar V, Kumar R, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate ameliorates Di-2-ethylhexyl phthalate (DEHP) induced hepatotoxicity in a mouse model via TNF-α and NF-κβ signaling. 3 Biotech 2024; 14:181. [PMID: 38911474 PMCID: PMC11189377 DOI: 10.1007/s13205-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024] Open
Abstract
Di-(2-ethylhexyl) phthalic acid (DEHP) pollutes the environment, and posing a significant risk to human and animal health. Consequently, a successful preventative strategy against DEHP-induced liver toxicity needs to be investigated. Morin hydrate (MH), a flavanol compound, possesses toxic preventive attributes against various environmental pollutants. However, the effects of MH have not been investigated against DEHP-induced liver toxicity. Female Swiss albino mice were divided into four groups: control, DEHP (orally administered with 500 mg/kg, DEHP plus MH 10 mg/kg, and DEHP plus MH 100 mg/kg for 14 days. The results showed that the MH treatment ameliorated the DEHP-induced liver dysfunctions by decreasing the alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin, liver histoarchitecture, fibrosis, and markers of oxidative stress. Furthermore, DEHP increased apoptosis, increased active caspase 3 and decreased B cell lymphoma-2 (Bcl-2) expression. However, the MH treatment showed a differential effect on these proteins; a lower dose increased, and a higher dose decreased the expression. Thus, a lower dose of MH could be involved in the disposal of damaged hepatocytes. Expression of Estrogen receptors alpha (ERα) also showed a similar trend with active caspase 3. Furthermore, the expression of Tumor necrosis factor alpha (TNF-α) and Nuclear factor-κβ (NF-κβ) were up-regulated by DEHP treatment, and MH treatment down-regulated the expression of these two inflammatory markers. Since this down-regulation of TNF-α and NF-κβ coincides with improved liver functions against DEHP-induced toxicity, it can be concluded that MH-mediated liver function involves the singling of TNF-α and NF-κβ.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004 India
| |
Collapse
|
2
|
Lemine AS, Ahmad Z, Al-Thani NJ, Hasan A, Bhadra J. Mechanical properties of human hepatic tissues to develop liver-mimicking phantoms for medical applications. Biomech Model Mechanobiol 2024; 23:373-396. [PMID: 38072897 PMCID: PMC10963485 DOI: 10.1007/s10237-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 03/26/2024]
Abstract
Using liver phantoms for mimicking human tissue in clinical training, disease diagnosis, and treatment planning is a common practice. The fabrication material of the liver phantom should exhibit mechanical properties similar to those of the real liver organ in the human body. This tissue-equivalent material is essential for qualitative and quantitative investigation of the liver mechanisms in producing nutrients, excretion of waste metabolites, and tissue deformity at mechanical stimulus. This paper reviews the mechanical properties of human hepatic tissues to develop liver-mimicking phantoms. These properties include viscosity, elasticity, acoustic impedance, sound speed, and attenuation. The advantages and disadvantages of the most common fabrication materials for developing liver tissue-mimicking phantoms are also highlighted. Such phantoms will give a better insight into the real tissue damage during the disease progression and preservation for transplantation. The liver tissue-mimicking phantom will raise the quality assurance of patient diagnostic and treatment precision and offer a definitive clinical trial data collection.
Collapse
Affiliation(s)
- Aicha S Lemine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Zubair Ahmad
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar
| | - Noora J Al-Thani
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Jolly Bhadra
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar.
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Meng H, Jiang L, Jia P, Niu R, Bu F, Zhu Y, Pan X, Li J, Liu J, Zhang Y, Huang C, Lv X, Li J. Inhibition of circular RNA ASPH reduces the proliferation and promotes the apoptosis of hepatic stellate cells in hepatic fibrosis. Biochem Pharmacol 2023; 210:115451. [PMID: 36758707 DOI: 10.1016/j.bcp.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Circular RNAs (circRNAs) are a newly identified form of non-coding RNA that play a crucial role in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we showed that a novel circRNA ASPH (circASPH) mediates HF by targeting the miR-139-5p/Notch1 axis. We investigated the expression profile of circRNAs in hepatocyte exosomes of mice with HF using circRNA-sequencing and found significant upregulation of circASPH. Loss- and gain-of-function analysis of circASPH was performed to assess its role in HF. Furthermore, we performed luciferase reporter assay, RNA pull-down, and fluorescence in situ hybridization analyses and confirmed that circASPH directly binds to miR-139-5p. We also found that circASPH was upregulated in liver fibrogenesis. Downregulation of circASPH expression inhibited hepatic stellate cell (HSC) activation and proliferation, induced apoptosis, and attenuated mouse liver fibrogenic injury. Mechanistically, circASPH directly targeted miR-139-5p to regulate the expression of Notch1 in HF. Thus, downregulation of circASPH may suppress the activation of HSCs and HF through the circASPH/miR-139-5p/Notch1 axis. Our findings indicated that circASPH may be a potential biomarker for HF diagnosis and therapy.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lingfeng Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengcheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruowen Niu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fangtian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xueyin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juanjuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Mukade Y, Kobayashi S, Nishijima Y, Kimura K, Watanabe A, Ikota H, Shirabe K, Yokoo H, Saio M. Phosphotungstic Acid-treated Picrosirius Red Staining Improves Whole-slide Quantitative Analysis of Collagen in Histological Specimens. J Histochem Cytochem 2023; 71:11-26. [PMID: 36433833 PMCID: PMC9912349 DOI: 10.1369/00221554221141140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/28/2022] Open
Abstract
We tried to prevent nonspecific nuclear staining (NS-NS) of picrosirius red (PSR) staining by treating the specimens with one of the heteropoly acids phosphotungstic acid (PTA). We analyzed a total of 35 cases of non-cancerous liver tissue for fibrosis and NS-NS under PSR-alone, phosphomolybdic acid (PMA)-pretreated PSR (PMA + PSR), or PTA-pretreated PSR (PTA + PSR) condition. In addition, we analyzed the photosensitivity of PMA or PTA single stain specimens. PTA + PSR significantly suppressed NS-NS compared with PSR. The color of the specimens did not change into blue by 30 times the exposure to whole slide scanner (WSS) light. The PTA + PSR condition showed the highest correlation with the Ishak score (pathological evaluation of liver fibrosis) compared with other conditions. Furthermore, Sirius Red-positive percentage (SRP%) in PSR was increased in the NS-NS observed cases. SRP% in PMA + PSR was significantly affected by WSS light exposure time. Moreover, the deposition of non-polarized PSR-stained substances (NP-PSR+S) clinging to the collagen fibers potentially explains why SRP% seemed bigger under PSR than PTA + PSR. Our protocol enabled us to analyze the whole slide image of PSR staining by high magnification, which would contribute to the accurate analysis of collagen amount in the tissue sections.
Collapse
Affiliation(s)
- Yui Mukade
- Laboratory of Histopathology and Cytopathology,
Department of Laboratory Sciences, Gunma University Graduate School of
Health Sciences, Maebashi, Japan
| | - Sayaka Kobayashi
- Laboratory of Histopathology and Cytopathology,
Department of Laboratory Sciences, Gunma University Graduate School of
Health Sciences, Maebashi, Japan
| | - Yoshimi Nishijima
- Laboratory of Histopathology and Cytopathology,
Department of Laboratory Sciences, Gunma University Graduate School of
Health Sciences, Maebashi, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan
Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Akira Watanabe
- Department of Hepatobiliary and Pancreatic
Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma
University Hospital, Maebashi, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic
Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University
Graduate School of Medicine, Maebashi, Japan
| | - Masanao Saio
- Laboratory of Histopathology and Cytopathology,
Department of Laboratory Sciences, Gunma University Graduate School of
Health Sciences, Maebashi, Japan
| |
Collapse
|
5
|
Li Q, Wang F, Chen Y, Chen H, Wu S, Farris AB, Jiang Y, Kong J. Virtual liver needle biopsy from reconstructed three-dimensional histopathological images: Quantification of sampling error. Comput Biol Med 2022; 147:105764. [PMID: 35797891 DOI: 10.1016/j.compbiomed.2022.105764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Prevalently considered as the "gold-standard" for diagnosis of hepatic fibrosis and cirrhosis, the clinical liver needle biopsy is known to be subject to inadequate sampling and a high mis-sampling rate. However, quantifying such sampling bias has been difficult as generating a large number of needle biopsies from the same living patient is practically infeasible. We construct a three-dimension (3D) virtual liver tissue volume by spatially registered high resolution Whole Slide Images (WSIs) of serial liver tissue sections with a novel dynamic registration method. We further develop a Virtual Needle Biopsy Sampling (VNBS) method that mimics the needle biopsy sampling process. We apply the VNBS method to the reconstructed digital liver volume at different tissue locations and angles. Additionally, we quantify Collagen Proportionate Area (CPA) in all resulting virtual needle biopsies in 2D and 3D. RESULTS The staging score of the center 2D longitudinal image plane from each 3D biopsy is used as the biopsy staging score, and the highest staging score of all sampled needle biopsies is the diagnostic staging score. The Mean Absolute Difference (MAD) in reference to the Scheuer and Ishak diagnostic staging scores are 0.22 and 1.00, respectively. The absolute Scheuer staging score difference in 22.22% of sampled biopsies is 1. By the Ishak staging method, 55.56% and 22.22% of sampled biopsies present score difference 1 and 2, respectively. There are 4 (Scheuer) and 6 (Ishak) out of 18 3D virtual needle biopsies with intra-needle variations. Additionally, we find a positive correlation between CPA and fibrosis stages by Scheuer but not Ishak method. Overall, CPA measures suffer large intra- and inter- needle variations. CONCLUSIONS The developed virtual liver needle biopsy sampling pipeline provides a computational avenue for investigating needle biopsy sampling bias with 3D virtual tissue volumes. This method can be applied to other tissue-based disease diagnoses where the needle biopsy sampling bias substantially affects the diagnostic results.
Collapse
Affiliation(s)
- Qiang Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303, GA, USA.
| | - Fusheng Wang
- Department of Computer Science, Stony Brook University, Stony Brook, 11794, NY, USA.
| | - Yaobing Chen
- Institue of Pathology, Tongji Hospital, Tongji Medical College, Wuhan, 430030, Hubei, China.
| | - Hao Chen
- Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303, GA, USA; Precision MedCare INC, Atlanta, 30071, GA, USA.
| | - Shengdi Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai, 200032, China.
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, 30322, GA, USA.
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303, GA, USA.
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303, GA, USA.
| |
Collapse
|
6
|
Vitamin C Deficiency May Delay Diet-Induced NASH Regression in the Guinea Pig. Antioxidants (Basel) 2021; 11:antiox11010069. [PMID: 35052573 PMCID: PMC8772888 DOI: 10.3390/antiox11010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is directly linked to non-alcoholic fatty liver disease (NAFLD) and the progression to steaotohepatitis (NASH). Thus, a beneficial role of antioxidants in delaying disease progression and/or accelerating recovery may be expected, as corroborated by recommendations of, e.g., vitamin E supplementation to patients. This study investigated the effect of vitamin C deficiency—often resulting from poor diets low in fruits and vegetables and high in fat—combined with/without a change to a low fat diet on NAFLD/NASH phenotype and hepatic transcriptome in the guinea pig NASH model. Vitamin C deficiency per se did not accelerate disease induction. However, the results showed an effect of the diet change on the resolution of hepatic histopathological hallmarks (steatosis, inflammation, and ballooning) (p < 0.05 or less) and indicated a positive effect of a high vitamin C intake when combined with a low fat diet. Our data show that a diet change is important in NASH regression and suggest that a poor vitamin C status delays the reversion towards a healthy hepatic transcriptome and phenotype. In conclusion, the findings support a beneficial role of adequate vitamin C intake in the regression of NASH and may indicate that vitamin C supplementation in addition to lifestyle modifications could accelerate recovery in NASH patients with poor vitamin C status.
Collapse
|
7
|
Hirao H, Ito T, Kadono K, Kojima H, Naini BV, Nakamura K, Kageyama S, Busuttil RW, Kupiec‐Weglinski JW, Kaldas FM. Donor Hepatic Occult Collagen Deposition Predisposes to Peritransplant Stress and Impacts Human Liver Transplantation. Hepatology 2021; 74:2759-2773. [PMID: 34170562 PMCID: PMC9291051 DOI: 10.1002/hep.32030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Environmentally triggered chronic liver inflammation can cause collagen deposits, whereas early stages of fibrosis without any specific symptoms could hardly be detectable. We hypothesized that some of the human donor grafts in clinical liver transplantation (LT) might possess unrecognizable fibrosis, affecting their susceptibility to LT-induced stress and hepatocellular damage. This retrospective study aimed to assess the impact of occult hepatic fibrosis on clinical LT outcomes. APPROACH AND RESULTS Human (194) donor liver biopsies were stained for collagen with Sirius red, and positive areas (Sirius red-positive area; SRA) were measured. The body mass index, aspartate aminotransferase/alanine aminotransferase ratio, diabetes score was calculated using 962 cases of the donor data at the procurement. LT outcomes, including ischemia-reperfusion injury (IRI), early allograft dysfunction (EAD), and survival rates, were analyzed according to SRA and BARD scores. With the median SRA in 194 grafts of 9.4%, grafts were classified into low-SRA (<15%; n = 140) and high-SRA (≥15%; n = 54) groups. Grafts with high SRA suffered from higher rates of IRI and EAD (P < 0.05) as compared to those with low SRA. Interestingly, high SRA was identified as an independent risk factor for EAD and positively correlated with the donor BARD score. When comparing low-BARD (n = 692) with high-BARD (n = 270) grafts in the same period, those with high BARD showed significantly higher post-LT transaminase levels and higher rates of IRI and EAD. CONCLUSIONS These findings from the largest clinical study cohort to date document the essential role of occult collagen deposition in donor livers on LT outcomes. High-SRA and donor BARD scores correlated with an increased incidence of hepatic IRI and EAD in LT recipients. This study provides the rationale for in-depth and prospective assessment of occult fibrosis for refined personalized LT management.
Collapse
Affiliation(s)
- Hirofumi Hirao
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| | - Takahiro Ito
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| | - Kentaro Kadono
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| | - Hidenobu Kojima
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| | - Bita V. Naini
- Department of PathologyDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| | - Kojiro Nakamura
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA,Division of Hepato‐Biliary‐Pancreatic Surgery and TransplantationDepartment of SurgeryKyoto UniversityKyotoJapan
| | - Shoichi Kageyama
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA,Division of Hepato‐Biliary‐Pancreatic Surgery and TransplantationDepartment of SurgeryKyoto UniversityKyotoJapan
| | - Ronald W. Busuttil
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| | - Jerzy W. Kupiec‐Weglinski
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| | - Fady M. Kaldas
- The Dumont‐UCLA Transplantation CenterDivision of Liver and Pancreas TransplantationDepartment of SurgeryDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA
| |
Collapse
|
8
|
Skat-Rørdam J, Ipsen DH, Seemann SE, Latta M, Lykkesfeldt J, Tveden-Nyborg P. Modelling Nonalcoholic Steatohepatitis In Vivo-A Close Transcriptomic Similarity Supports the Guinea Pig Disease Model. Biomedicines 2021; 9:biomedicines9091198. [PMID: 34572384 PMCID: PMC8471870 DOI: 10.3390/biomedicines9091198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
The successful development of effective treatments against nonalcoholic steatohepatitis (NASH) is significantly set back by the limited availability of predictive preclinical models, thereby delaying and reducing patient recovery. Uniquely, the guinea pig NASH model develops hepatic histopathology and fibrosis resembling that of human patients, supported by similarities in selected cellular pathways. The high-throughput sequencing of guinea pig livers with fibrotic NASH (n = 6) and matched controls (n = 6) showed a clear separation of the transcriptomic profile between NASH and control animals. A comparison to NASH patients with mild disease (GSE126848) revealed a 45.2% overlap in differentially expressed genes, while pathway analysis showed a 34% match between the top 50 enriched pathways in patients with advanced NASH (GSE49541) and guinea pigs. Gene set enrichment analysis highlighted the similarity to human patients (GSE49541), also when compared to three murine models (GSE52748, GSE38141, GSE67680), and leading edge genes THRSP, CCL20 and CD44 were highly expressed in both guinea pigs and NASH patients. Nine candidate genes were identified as highly correlated with hepatic fibrosis (correlation coefficient > 0.8), and showed a similar expression pattern in NASH patients. Of these, two candidate genes (VWF and SERPINB9) encode secreted factors, warranting further investigations as potential biomarkers of human NASH progression. This study demonstrates key similarities in guinea pig and human NASH, supporting increased predictability when translating research findings to human patients.
Collapse
Affiliation(s)
- Josephine Skat-Rørdam
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - David H. Ipsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Section for Animal Genetics, Bioinformatics and Breeding, University of Copenhagen, DK-1871 Frederiksberg, Denmark;
| | - Markus Latta
- Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, DK-2760 Måløv, Denmark;
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
- Correspondence: ; Tel.: +45-35-33-31-67
| |
Collapse
|
9
|
Aamir K, Sugumar V, Khan HU, Looi CY, Juneja R, Waqas M, Arya A. Non-toxic nature of chebulinic acid on biochemical, hematological and histopathological analysis in normal Sprague Dawley rats. Toxicol Res 2021; 38:159-174. [PMID: 35419271 PMCID: PMC8960548 DOI: 10.1007/s43188-021-00092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 01/20/2023] Open
Abstract
Chebulinic acid (CA) is an ellagitannins isolated from the dried fruits of Terminalia chebula with diverse pharmacological activities. The present study focused on the acute toxicity of CA in normal Sprague Dawley (SD) rats. CA was administered via oral gavage to different groups in 300 and 2000 mg/kg body weight and vehicle respectively. All the animals were monitored carefully for any physiological or behavioral changes for 14 days. On day 15th animals were euthanized and blood was collected for hematological and biochemical analysis. Different tissues were collected for histopathological study using four different staining techniques (hematoxylin and eosin, Masson's trichrome, periodic acid Schiff and picro sirius red) to observe any pathological alterations. The results highlighted no morbidity and mortality after oral ingestion of CA (300 and 2000 mg/kg). Food and water consumption, body weight, relative organ weight, hematological and biochemical parameters were normal without any gross pathological lesions in harvested tissues. The outcome of the current study supported safety of CA even at high dose. However, further detailed study is required on experimentally disease model to unfold its therapeutic potential in laboratory animals.
Collapse
|
10
|
Poilil Surendran S, George Thomas R, Moon MJ, Park R, Kim DH, Kim KH, Jeong YY. Effect of hepato-toxins in the acceleration of hepatic fibrosis in hepatitis B mice. PLoS One 2020; 15:e0232619. [PMID: 32428024 PMCID: PMC7237019 DOI: 10.1371/journal.pone.0232619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic liver diseases such as hepatitis B viral (HBV) infection and liver fibrosis have been a major health problem worldwide. However, less research has been conducted owing to the lack of animal models. The key purpose of this study was to determine the effects of different hepatotoxins in HBV-affected liver. In this study, we successfully generated a combined liver fibrosis model by administering HBV 1.2 plasmid and thioacetamide/ethanol (TAA/EtOH). To our knowledge, this is the first study in which an increase in the liver fibrosis level is observed by the intraperitoneal administration of TAA and EtOH in drinking water after the hydrodynamic transfection of the HBV 1.2 plasmid in C3H/HeN mice. The HBV+TAA/EtOH group exhibited higher level of hepatic fibrosis than that of the control groups. The hepatic stellate cell activation in the TAA- and EtOH-administered groups was demonstrated by the elevation in the level of fibrotic markers. In addition, high levels of collagen content and histopathological results were also used to confirm the prominent fibrotic levels. We established a novel HBV mice model by hydrodynamic injection-based HBV transfection in C3H/HeN mice. C3H/HeN mice were reported to have a higher HBV persistence level than that of the C57BL/6 mouse model. All the results showed an increased fibrosis level in the HBV mice treated with TAA and EtOH; hence, this model would be useful to understand the effect of hepatotoxins on the high risk of fibrosis after HBV infection. The acceleration of liver fibrosis can occur with prolonged administration as well as the high dosage of hepatotoxins in mice.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Reju George Thomas
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| | - Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Kyun Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
11
|
Lokugamage N, Choudhuri S, Davies C, Chowdhury IH, Garg NJ. Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Trypanosoma cruzi Infection. Vaccines (Basel) 2020; 8:vaccines8010096. [PMID: 32098116 PMCID: PMC7157635 DOI: 10.3390/vaccines8010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). We identified two candidate antigens (TcG2 and TcG4) that elicit antibodies and T cell responses in naturally infected diverse hosts. In this study, we cloned TcG2 and TcG4 in a nanovector and evaluated whether nano-immunotherapy (referred as nano2/4) offers resistance to chronic Chagas disease. For this, C57BL/6 mice were infected with Tc and given nano2/4 at 21 and 42 days post-infection (pi). Non-infected, infected, and infected mice treated with pcDNA3.1 expression plasmid encoding TcG2/TcG4 (referred as p2/4) were used as controls. All mice responded to Tc infection with expansion and functional activation of splenic lymphocytes. Flow cytometry showed that frequency of splenic, poly-functional CD4+ and CD8+ T cells expressing interferon-γ, perforin, and granzyme B were increased by immunotherapy (Tc.nano2/4 > Tc.p2/4) and associated with 88%–99.7% decline in cardiac and skeletal (SK) tissue levels of parasite burden (Tc.nano2/4 > Tc.p2/4) in Chagas mice. Subsequently, Tc.nano2/4 mice exhibited a significant decline in peripheral and tissues levels of oxidative stress (e.g., 4-hydroxynonenal, protein carbonyls) and inflammatory infiltrate that otherwise were pronounced in Chagas mice. Further, nano2/4 therapy was effective in controlling the tissue infiltration of pro-fibrotic macrophages and established a balanced environment controlling the expression of collagens, metalloproteinases, and other markers of cardiomyopathy and improving the expression of Myh7 (encodes β myosin heavy chain) and Gsk3b (encodes glycogen synthase kinase 3) required for maintaining cardiac contractility in Chagas heart. We conclude that nano2/4 enhances the systemic T cell immunity that improves the host’s ability to control chronic parasite persistence and Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Carolina Davies
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina;
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
- Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-409-747-6865
| |
Collapse
|
12
|
El-Safy S, Tammam SN, Abdel-Halim M, Ali ME, Youshia J, Shetab Boushehri MA, Lamprecht A, Mansour S. Collagenase loaded chitosan nanoparticles for digestion of the collagenous scar in liver fibrosis: The effect of chitosan intrinsic collagen binding on the success of targeting. Eur J Pharm Biopharm 2020; 148:54-66. [PMID: 31945489 DOI: 10.1016/j.ejpb.2020.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
A variety of hepatic insults result in the accumulation of collagen-rich new extracellular matrix in the liver, ultimately culminating in liver fibrosis and cirrhosis. For such reasons, approaches looking into digestion of the collagen-rich extracellular matrix present an interesting therapeutic approach for cases of chronic liver disease, where the fibrotic scar is well established. Portal collagenase administration has recently led to the successful reversion of cirrhosis in an experimental rabbit model. Notwithstanding, the question of how such a sensitive therapeutic macromolecule could be administered in a less invasive manner, and in a way that preserves its functionality and avoids digestion of other non-hepatic vital collagen presents itself. Chitosan is a biodegradable polymer that has been reported to interact and bind to collagen. Chitosan nanoparticles (CS NPs) have also been reported to encapsulate therapeutic proteins, maintaining their functional form and protecting them from in-vivo degradation. For such reasons, CS NPs were loaded with collagenase and evaluated in-vitro and in-vivo for their ability to target and digest collagen. CS NPs were able to encapsulate collagenase (≈ 60% encapsulation efficiency) and release its content in active form. To determine whether chitosan's collagen interaction would enable NP collagen binding or whether the modification with collagen binding peptides (CBPs) is necessary, CS NPs were modified with the CBP; CCQDSETRTFY. Since the density of targeting ligand and the length of tether play a significant role in the success of active targeting, the surface of NPs was modified with different densities of the CBP either directly or using a polyethylene glycol (PEG) spacer. PEGylated NPs showed higher levels of CBP tagging; high, intermediate and low density of CBPs corresponded to 585.8 ± 33, 252.9 ± 25.3 and 56.5 ± 8.8 µg/mL for PEGylated NPs and 425.56 ± 12.67, 107.91 ± 10.3 and 49.86 ± 3.2 µg/mL for unPEGylated NPs, respectively. In-vitro collagen binding experiments showed that unmodified CS NPs were able to bind collagen and that modification with CBPs either directly or via PEG did not enhance collagen binding. In-vivo experiments demonstrated that unmodified CS NPs were able to reverse fibrosis with a survival rate of 100% at the end of the study, indicating the ability of CS NPs to deliver functional collagenase to the fibrotic liver and making the use of CBPs unnecessary.
Collapse
Affiliation(s)
- Sara El-Safy
- Department of Pharmaceutical Technology, The German University in Cairo (GUC), Cairo, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, The German University in Cairo (GUC), Cairo, Egypt.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, The German University in Cairo (GUC), Cairo, Egypt
| | - Mohamed E Ali
- Laboratory of Pharmaceutics, University of Bonn, Bonn 53121, Germany; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - John Youshia
- Laboratory of Pharmaceutics, University of Bonn, Bonn 53121, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Alf Lamprecht
- Laboratory of Pharmaceutics, University of Bonn, Bonn 53121, Germany; PEPITE EA4267, Univ. Bourgonge Franch-Comte, Besançon, France
| | - Samar Mansour
- Department of Pharmaceutical Technology, The German University in Cairo (GUC), Cairo, Egypt
| |
Collapse
|
13
|
Melo RCN, Raas MWD, Palazzi C, Neves VH, Malta KK, Silva TP. Whole Slide Imaging and Its Applications to Histopathological Studies of Liver Disorders. Front Med (Lausanne) 2020; 6:310. [PMID: 31970160 PMCID: PMC6960181 DOI: 10.3389/fmed.2019.00310] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Histological analysis of hepatic tissue specimens is essential for evaluating the pathology of several liver disorders such as chronic liver diseases, hepatocellular carcinomas, liver steatosis, and infectious liver diseases. Manual examination of histological slides on the microscope is a classically used method to study these disorders. However, it is considered time-consuming, limited, and associated with intra- and inter-observer variability. Emerging technologies such as whole slide imaging (WSI), also termed virtual microscopy, have increasingly been used to improve the assessment of histological features with applications in both clinical and research laboratories. WSI enables the acquisition of the tissue morphology/pathology from glass slides and translates it into a digital form comparable to a conventional microscope, but with several advantages such as easy image accessibility and storage, portability, sharing, annotation, qualitative and quantitative image analysis, and use for educational purposes. WSI-generated images simultaneously provide high resolution and a wide field of observation that can cover the entire section, extending any single field of view. In this review, we summarize current knowledge on the application of WSI to histopathological analyses of liver disorders as well as to understand liver biology. We address how WSI may improve the assessment and quantification of multiple histological parameters in the liver, and help diagnose several hepatic conditions with important clinical implications. The WSI technical limitations are also discussed.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Maximilian W D Raas
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Faculty of Medical Sciences, Radboud University, Nijmegen, Netherlands
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
14
|
Aamir K, Khan HU, Hossain CF, Afrin MR, Shaik I, Salleh N, Giribabu N, Arya A. Oral toxicity of arjunolic acid on hematological, biochemical and histopathological investigations in female Sprague Dawley rats. PeerJ 2019; 7:e8045. [PMID: 31772835 PMCID: PMC6876537 DOI: 10.7717/peerj.8045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/16/2019] [Indexed: 11/20/2022] Open
Abstract
Background Arjunolic acid (AA) is a potent phytochemical with wider pharmacological activities. Despite potential medicinal properties on various in vitro and in vivo studies, there is still a dearth of scientific data related to its safety profile and toxicological parameters. The current study aimed to investigate acute toxicity of AA in normal female Sprague Dawley rats. Methods In this study, AA was administered orally at an individual dose of 300 and 2000 mg/kg body weight to group 1 and 2 respectively, while group 3 served as normal control. All the animals were observed for 2 weeks to determine any behavioral and physical changes. On day 15, blood was collected for hematological and biochemical investigation, later animals from all the three groups were euthanized to harvest and store essential organs for histopathological analysis. Four different staining techniques; hematoxylin and eosin, Masson trichrome, Periodic acid Schiff and Oil O Red were used to investigate any alterations in different tissues through microscopical observation. Results The results of the study showed no morbidity and mortality at two different dosage of AA treatment. Daily food & water intake, body weight, relative organ weight, hematological and biochemical parameters were detected to be normal with no severe alteration seen through microscopical investigation in the structure of harvested tissues. Our findings support the safety profile of AA, which was well tolerated at higher dose. Thus, an in-detail study on the subacute disease model is warranted.
Collapse
Affiliation(s)
- Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hidayat Ullah Khan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Chowdhury Faiz Hossain
- Department of Pharmacy, Faculty of Science and Engineering, East West University, Dhaka, Bangladesh
| | - Mst Rejina Afrin
- Department of Pharmacy, Faculty of Science and Engineering, East West University, Dhaka, Bangladesh
| | - Imam Shaik
- Department of Pathology, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Parkville, VIC, Australia.,Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
15
|
Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S, Scott A, Hsiao LL, Ichimura T, Terzi F, Yang L, Bonventre JV. Cyclin G1 and TASCC regulate kidney epithelial cell G 2-M arrest and fibrotic maladaptive repair. Sci Transl Med 2019; 11:11/476/eaav4754. [PMID: 30674655 PMCID: PMC6527117 DOI: 10.1126/scitranslmed.aav4754] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
Fibrosis contributes to the progression of chronic kidney disease (CKD). Severe acute kidney injury can lead to CKD through proximal tubular cell (PTC) cycle arrest in the G2-M phase, with secretion of profibrotic factors. Here, we show that epithelial cells in the G2-M phase form target of rapamycin (TOR)-autophagy spatial coupling compartments (TASCCs), which promote profibrotic secretion similar to the senescence-associated secretory phenotype. Cyclin G1 (CG1), an atypical cyclin, promoted G2-M arrest in PTCs and up-regulated TASCC formation. PTC TASCC formation was also present in humans with CKD. Prevention of TASCC formation in cultured PTCs blocked secretion of profibrotic factors. PTC-specific knockout of a key TASCC component reduced the rate of kidney fibrosis progression in mice with CKD. CG1 induction and TASCC formation also occur in liver fibrosis. Deletion of CG1 reduced G2-M phase cells and TASCC formation in vivo. This study provides mechanistic evidence supporting how profibrotic G2-M arrest is induced in kidney injury and how G2-M-arrested PTCs promote fibrosis, identifying new therapeutic targets to mitigate kidney fibrosis.
Collapse
Affiliation(s)
- Guillaume Canaud
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- INSERM U1151, Institut Necker-Enfants Malades, Université Paris Descartes, Paris 75743, France
- Service de Néphrologie et Transplantation Adultes, Hôpital Necker-Enfants Malades, Paris 75743, France
| | - Craig R Brooks
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seiji Kishi
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Nephrology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708503, Japan
| | - Kensei Taguchi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kenji Nishimura
- Department of Nephrology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708503, Japan
| | - Sato Magassa
- INSERM U1151, Institut Necker-Enfants Malades, Université Paris Descartes, Paris 75743, France
| | - Adam Scott
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Fabiola Terzi
- INSERM U1151, Institut Necker-Enfants Malades, Université Paris Descartes, Paris 75743, France
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing 100871, China
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Elzuoki AN, Elzouki I, Albarassi S, Gammo M, Burwaiss A. Hepatitis C Genotypes in Libya: Correlation with Patients' Characteristics, Level of Viremia, and Degree of Liver Fibrosis. Oman Med J 2017; 32:409-416. [PMID: 29026473 DOI: 10.5001/omj.2017.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Our study sought to determine the distribution of hepatitis C virus (HCV)-genotypes among patients attending two tertiary care hospitals in Benghazi and Tripoli, Libya, and correlate this with patient's characteristics, viral load, and degree of fibrosis. METHODS We conducted a retrospective study of 286 HCV-RNA positive Libyan patients referred from different health care facilities in east and west Libya for specific HCV treatment. HCV genotyping was carried out by gene amplification. Liver histology was graded by Metavir score according to the stage of fibrosis. RESULTS HCV genotypes 1, 2, 3, and 4 were found in 24.1%, 10.8%, 3.4%, and 61.5% of the patients, respectively. Genotype 4 was detected more frequently in patients from east Libya (Benghazi) compared to west Libya (Tripoli) (75.9% vs. 41.6%, p = 0.245). Genotype 1 was more frequent in patients from west Libya compared to east Libya (34.1% vs. 16.8%, p = 0.657). There was a significant correlation between HCV genotype distribution and viral load. Patients with genotype 4 exhibited a higher degree of liver fibrosis (p < 0.001). CONCLUSIONS HCV genotype 4 is the predominant genotype in Libya followed by genotype 1. However, as we go from the east to the west of the country, genotype 1 increases. Genotype 4 was associated with higher level of viremia and higher stage of liver fibrosis. It is important to note that both genotypes 1 and 4 are associated with a poor response to pegylated interferon and ribavirin combination therapy. The findings emphasize the need to develop improved strategies in Libya for the successful treatment of HCV infection with novel newly available antiviral drugs.
Collapse
Affiliation(s)
- Abdel-Naser Elzuoki
- Department of Medicine, Hamad General Hospital, Weill Cornell Medical College, Doha, Qatar
| | - Islam Elzouki
- Department of Medicine, Faculty of Medicine, Benghazi University, Benghazi, Libya
| | - Sabah Albarassi
- Department of Medicine, Faculty of Medicine, Benghazi University, Benghazi, Libya
| | - Mohamed Gammo
- Department of Medicine, Tripoli Medical Center, Tripoli, Libya
| | | |
Collapse
|