1
|
Ding W, Xi S, Gao K, Weng D, Xu S, Huang G, Yu M, Yue H, Wang J. Clinical significance of LINC02532 in hepatitis B virus-associated hepatocellular carcinoma and its regulatory effect on tumor progression. Clin Res Hepatol Gastroenterol 2024; 48:102403. [PMID: 38901567 DOI: 10.1016/j.clinre.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) play an important role in tumor progression, including in hepatocellular carcinoma (HCC) induced by hepatitis B virus (HBV). Therefore, the aim of this study was to investigate the role of LINC02532 in HCC, mainly for diagnostic prognostic value and cellular function, as well as mechanistic aspects. METHODS Initially, GEO and VirBase databases were used to screen for aberrant lncRNAs in HBV-HCC.Then, HBV-HCC persons followed up in our center were retrospectively studied to investigate the diagnostic, prognostic value of LINC02532 in HBV-HCC. Subsequently, the role of LINC02532 in HBV-HCC was measured using cellular function assay methods and possible mechanisms were analyzed in conjunction with bioinformatic predictive science. RESULTS LINC02532 was a lncRNA abnormally expressed in HBV-HCC. LINC02532 was significantly up-regulated in the expression level in HBV-HCC tissues compared with normal tissues from patients. Moreover, LINC02532 could distinguish HBV-HCC and predict the prognosis of HBV-HCC. In vitro experiments showed that LINC02532 could regulate miR-455-3p and promote the malignant characterization of HBV-HCC cells. CHEK2 was a target gene of miR-455-3p. CONCLUSIONS The prognosis and diagnosis of HBV-HCC can rely on the expression of LINC02532. LINC02532 was important for further progression of HBV-HCC, by moderating miR-455-3p/CHEK2.
Collapse
Affiliation(s)
- Wei Ding
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Sujuan Xi
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Kewei Gao
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Danping Weng
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Sheng Xu
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Guoping Huang
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Min Yu
- Department of Radiotherapy, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Haiyan Yue
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China.
| | - Jianguo Wang
- Department of Radiotherapy, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China.
| |
Collapse
|
2
|
Liu L, Zhao J, Guo H, Jia J, Shi L, Ma J, Zhang Z. Participation of Long Noncoding RNA FOXP4-AS1 in the Development and Progression of Endometrioid Carcinoma with Epigenetically Silencing DUSP5. Cancer Biother Radiopharm 2024; 39:451-462. [PMID: 38512300 DOI: 10.1089/cbr.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Background: Long noncoding RNAs (lncRNAs), as emerging regulators of a wide variety of biological processes via diverse mechanisms, have been demonstrated to be of increasing importance in biology. Genome-wide association studies of tumor samples have identified several lncRNAs as either oncogenes or tumor suppressors in various types of cancers. In recent years, the importance of lncRNAs, especially in endometrioid cancer (EEC), has become increasingly well understood. The lncRNA Forkhead box P4 antisense RNA 1 (FOXP4-AS1) has been reported to fulfill roles in several types of cancers; however, the main biological function and associated underlying molecular mechanism of FOXP4-AS1 in EEC have yet to be fully elucidated. The present study therefore aimed to investigate how RNA FOXP4-AS1 may participate in the development and progression of endometrioid carcinoma tissues. Materials and Methods: In the present study, the expression level of FOXP4-AS1 was investigated in endometrioid carcinoma tissues and matching nearby normal endometrial tissues collected from patients receiving surgery at the hospital. A series of molecular biological assays were performed to investigate the effect of FOXP4-AS1 on cell proliferation, cell migration, and cell invasion. Results: An increased concentration of FOXP4-AS1 was identified in endometrioid carcinoma samples and cell lines compared with the corresponding controls, and this lncRNA was found to be positively correlated with advanced FIGO stages in patients with endometrial cancer. Furthermore, knocking down endogenous FOXP4-AS1 led to a significant reduction in the colony formation number and a significant inhibition of cell proliferation, cell migration, and cell invasion in endometrioid carcinoma cells. Moreover, dual-specificity phosphatase 5 (DUSP5), which is lowly expressed in endometrioid carcinoma tissues cells and negatively modulated by FOXP4-AS1, was identified as the downstream target molecule of FOXP4-AS1. Subsequently, the mechanistic experiments confirmed that, through binding to enhancer of zeste homolog 2 (EZH2; one of the catalytic subunits of polycomb repressive complex 2 [PRC2]), FOXP4-AS1 could epigenetically suppress the expression of DUSP5. Finally, the oncogenic function of the FOXP4-AS1/EZH2/DUSP5 axis in endometrioid carcinoma was confirmed via rescue assays. Conclusions: The findings of the present study have highlighted how FOXP4-AS1 fulfills an oncogenic role in endometrioid carcinoma, and targeting FOXP4-AS1 and its pathway may provide new biomarkers for patients with endometrioid carcinoma.
Collapse
Affiliation(s)
- Leilei Liu
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingyun Zhao
- Department of Reproduction, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingde Jia
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Shi
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhengmao Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Verma S, Sahu BD, Mugale MN. Role of lncRNAs in hepatocellular carcinoma. Life Sci 2023; 325:121751. [PMID: 37169145 DOI: 10.1016/j.lfs.2023.121751] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the deadliest cancer in human malignancies. It is the most common and severe type of primary liver cancer. However, the molecular mechanisms underlying HCC pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs), a new kind of RNA and epigenetic factors, play a crucial role in tumorigenesis and the progression of HCC. LncRNAs are capable of promoting the autophagy, proliferation, and migration of tumor cells by targeting and modulating the expression of downstream genes in signaling pathways related to cancer; these transcripts modify the activity and expression of various tumor suppressors and oncogenes. LncRNAs could act as biomarkers for treatment approaches such as immunotherapy, chemotherapy, and surgery to effectively treat HCC patients. Improved knowledge regarding the aetiology of HCC may result from an advanced understanding of lncRNAs. Enhanced oxidative stress in the mitochondrial and Endoplasmic reticulum leads to the activation of unfolded protein response pathway that plays a crucial role in the pathophysiology of hepatocellular carcinoma. The mutual regulation between LncRNAs and Endoplasmic reticulum (ER) stress in cancer and simultaneous activation of the unfolded protein response (UPR) pathway determines the fate of tumor cells in HCC. Mitochondria-associated lncRNAs work as essential components of several gene regulatory networks; abnormal regulation of mitochondria-associated lncRNAs may lead to oncogenesis, which provides further insight into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bidhya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Kerachian MA, Azghandi M. Identification of long non-coding RNA using single nucleotide epimutation analysis: a novel gene discovery approach. Cancer Cell Int 2022; 22:337. [PMID: 36333783 PMCID: PMC9636742 DOI: 10.1186/s12935-022-02752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in a variety of mechanisms related to tumorigenesis by functioning as oncogenes or tumor-suppressors or even harboring oncogenic and tumor-suppressing effects; representing a new class of cancer biomarkers and therapeutic targets. It is predicted that more than 35,000 ncRNA especially lncRNA are positioned at the intergenic regions of the human genome. Emerging research indicates that one of the key pathways controlling lncRNA expression and tissue specificity is epigenetic regulation. METHODS In the current article, a novel approach for lncRNA discovery based on the intergenic position of most lncRNAs and a single CpG site methylation level representing epigenetic characteristics has been suggested. RESULTS Using this method, a novel antisense lncRNA named LINC02892 presenting three transcripts without the capacity of coding a protein was found exhibiting nuclear, cytoplasmic, and exosome distributions. CONCLUSION The current discovery strategy could be applied to identify novel non-coding RNAs influenced by methylation aberrations.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Khan A, Zhang X. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, Molecular Mechanisms, and Significant Therapeutic Potentials. Bioengineering (Basel) 2022; 9:406. [PMID: 36004931 PMCID: PMC9405066 DOI: 10.3390/bioengineering9080406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and serious type of primary liver cancer. HCC patients have a high death rate and poor prognosis due to the lack of clear signs and inadequate treatment interventions. However, the molecular pathways that underpin HCC pathogenesis remain unclear. Long non-coding RNAs (lncRNAs), a new type of RNAs, have been found to play important roles in HCC. LncRNAs have the ability to influence gene expression and protein activity. Dysregulation of lncRNAs has been linked to a growing number of liver disorders, including HCC. As a result, improved understanding of lncRNAs could lead to new insights into HCC etiology, as well as new approaches for the early detection and treatment of HCC. The latest results with respect to the role of lncRNAs in controlling multiple pathways of HCC were summarized in this study. The processes by which lncRNAs influence HCC advancement by interacting with chromatin, RNAs, and proteins at the epigenetic, transcriptional, and post-transcriptional levels were examined. This critical review also highlights recent breakthroughs in lncRNA signaling pathways in HCC progression, shedding light on the potential applications of lncRNAs for HCC diagnosis and therapy.
Collapse
Affiliation(s)
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Xue C, Gu X, Bao Z, Su Y, Lu J, Li L. The Mechanism Underlying the ncRNA Dysregulation Pattern in Hepatocellular Carcinoma and Its Tumor Microenvironment. Front Immunol 2022; 13:847728. [PMID: 35281015 PMCID: PMC8904560 DOI: 10.3389/fimmu.2022.847728] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Kim YA, Park KK, Lee SJ. LncRNAs Act as a Link between Chronic Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:2883. [PMID: 32326098 PMCID: PMC7216144 DOI: 10.3390/ijms21082883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important contributors to the biological processes underlying the pathophysiology of various human diseases, including hepatocellular carcinoma (HCC). However, the involvement of these molecules in chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD) and viral hepatitis, has only recently been considered in scientific research. While extensive studies on the pathogenesis of the development of HCC from hepatic fibrosis have been conducted, their regulatory molecular mechanisms are still only partially understood. The underlying mechanisms related to lncRNAs leading to HCC from chronic liver diseases and cirrhosis have not yet been entirely elucidated. Therefore, elucidating the functional roles of lncRNAs in chronic liver disease and HCC can contribute to a better understanding of the molecular mechanisms, and may help in developing novel diagnostic biomarkers and therapeutic targets for HCC, as well as in preventing the progression of chronic liver disease to HCC. Here, we comprehensively review and briefly summarize some lncRNAs that participate in both hepatic fibrosis and HCC.
Collapse
Affiliation(s)
| | | | - Sun-Jae Lee
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu 42472, Korea; (Y.-A.K.); (K.-K.P.)
| |
Collapse
|
8
|
Kim H, Lee S, Shin E, Seong KM, Jin YW, Youn H, Youn B. The Emerging Roles of Exosomes as EMT Regulators in Cancer. Cells 2020; 9:cells9040861. [PMID: 32252322 PMCID: PMC7226841 DOI: 10.3390/cells9040861] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) causes epithelial cells to lose their polarity and adhesion property, and endows them with migratory and invasive properties to enable them to become mesenchymal stem cells. EMT occurs throughout embryonic development, during wound healing, and in various pathological processes, including tumor progression. Considerable research in the last few decades has revealed that EMT is invariably related to tumor aggressiveness and metastasis. Apart from the interactions between numerous intracellular signaling pathways known to regulate EMT, extracellular modulators in the tumor microenvironment also influence tumor cells to undergo EMT, with extracellular vesicles (EVs) receiving increasing attention as EMT inducers. EVs comprise exosomes and microvesicles that carry proteins, nucleic acids, lipids, and other small molecules to stimulate EMT in cells. Among EVs, exosomes have been investigated in many studies, and their role has been found to be significant with respect to regulating intercellular communications. In this review, we summarize recent studies on exosomes and their cargoes that induce cancer-associated EMT. Furthermore, we describe the possible applications of exosomes as promising therapeutic strategies.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.M.S.); (Y.W.J.)
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
- Correspondence: (H.Y.); (B.Y.); Tel.: +82-2-6935-2438 (H.Y.); +82-51-510-2264 (B.Y.); Fax: +82-2-3408-4334 (H.Y.); +82-51-581-2962 (B.Y.)
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: (H.Y.); (B.Y.); Tel.: +82-2-6935-2438 (H.Y.); +82-51-510-2264 (B.Y.); Fax: +82-2-3408-4334 (H.Y.); +82-51-581-2962 (B.Y.)
| |
Collapse
|
9
|
Yu H, Yang AM, Lu XH, Feng L, Wu X, Cui JF, Cheng JY. Analysis of Long Non-Coding RNA Expression Profile and Functional Study of LOC389332 in Early Gastric Cancer. Med Sci Monit 2019; 25:10114-10121. [PMID: 31884510 PMCID: PMC6948287 DOI: 10.12659/msm.917935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Long non-coding RNAs (LncRNAs) could potentially function as diagnostic markers for gastric carcinoma. Nevertheless, the expression profile and biological feature of LncRNAs in early gastric cancer (EGC) remains to be explored. Material/Methods LncRNA expression microarray analysis was performed on 6 paired EGC tissues. One deregulated LncRNA, LOC389332, was validated using a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay using independent tissue samples and cell lines. The Cell Counting Kit-8 (CCK-8) assay and wound healing assay were conducted to evaluate its influences on the proliferation and migration of gastric cancer cells. LncRNA expression microarray and gene ontology (GO) analysis were also performed on the LOC389332 knockdown cell line model to explore the molecular feature of LOC389332 in gastric carcinoma. Results The LncRNA expression profiling showed that 72 LncRNAs were significantly differentially expressed in EGC tissues. The results in the validation phase revealed that LOC389332 was remarkably overexpressed in gastric carcinoma tissues, precancerous lesions, and gastric cancer cells. Functional study showed that knockdown of LOC389332 expression could inhibit cell proliferation and migration. LncRNA expression microarray on the LOC389332 knockdown cell line model revealed that 393 mRNAs were differentially expressed. The GO enrichment analysis indicated that the downregulated genes were mainly associated with cell membrane function, signal transmission process, and cell adhesion process. Conclusions The LncRNA expression profile between EGC and gastritis tissues was significantly different. LOC389332 was potential non-coding oncogenes in gastric cancer, and it may perform its function through altering cell membrane function, signal transmission, and cell adhesion.
Collapse
Affiliation(s)
- Hang Yu
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Ai-Ming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Xing-Hua Lu
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Cancer Institute Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Xi Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Jian-Fang Cui
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Jie-Yao Cheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| |
Collapse
|
10
|
Cissé Y, Bai L, Chen MT. LncRNAs in ocular neovascularizations. Int J Ophthalmol 2019; 12:1959-1965. [PMID: 31850182 PMCID: PMC6901876 DOI: 10.18240/ijo.2019.12.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
The prevalence of eye diseases worldwide is dramatically increasing and represents a major concern in underdeveloped and developed regions. Ocular diseases, previously associated with a higher depression risk, also impose a substantial economic burden on affected families, thus early detection and/or accurate treatment in order to avoid and prevent blindness should be emphasized. Ocular neovascularization (NV), the leading cause of blindness in a variety of eye diseases, is a pathologic process characterized by the formation, proliferation and infiltration of anomalous, tiny and leaky fragile blood vessels within the eye. Genetics have been suspected to play an important role in the occurrence of eye diseases, with the detection of a numbers of specific gene mutations. Long non-coding RNA (lncRNAs) are novel class of regulatory molecules previously associated with various biological processes and diseases, however the nature of the relation and pathways by which they might contribute to the development of corneal, choroidal and retinal NV have not yet been completely elucidated. In this review, we focus on the regulation and characteristics of lncRNAs, summarize results from ocular NV-related studies and discuss the implication of lncRNAs in ocular NV development.
Collapse
Affiliation(s)
- Yacouba Cissé
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Min-Ting Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
11
|
Genome-wide discovery and characterization of long noncoding RNAs in patients with multiple myeloma. BMC Med Genomics 2019; 12:135. [PMID: 31619233 PMCID: PMC6794882 DOI: 10.1186/s12920-019-0577-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in a wide range of biological processes in tumorigenesis. However, the role of lncRNA expression in the biology, prognosis, and molecular classification of human multiple myeloma (MM) remains unclear, especially the biological functions of the vast majority of lncRNAs. Recently, lncRNAs have been identified in neoplastic hematologic disorders. Evidence has accumulated on the molecular mechanisms of action of lncRNAs, providing insight into their functional roles in tumorigenesis. This study aimed to characterize potential lncRNAs in patients with MM. Methods In this study, the whole-transcriptome strand-specific RNA sequencing of samples from three newly diagnosed patients with MM was performed. The whole transcriptome, including lncRNAs, microRNAs, and mRNAs, was analyzed. Using these data, MM lncRNAs were systematically analyzed, and the lncRNAs involved in the occurrence of MM were identified. Results The results revealed that MM lncRNAs had distinctive characteristics different from those of other malignant tumors. Further, the functions of a set of lncRNAs preferentially expressed in MM were verified, and several lncRNAs were identified as competing endogenous RNAs. More importantly, the aberrant expression of certain lncRNAs, including maternally expressed gene3, colon cancer–associated transcript1, and coiled-coil domain-containing 26, as well as some novel lncRNAs involved in the occurrence of MM was established. Further, lncRNAs were related to some microRNAs, regulated each other, and participated in MM development. Conclusions Genome-wide screening and functional analysis enabled the identification of a set of lncRNAs involved in the occurrence of MM. The interaction exists among microRNAs and lncRNAs.
Collapse
|
12
|
Yao Z, Liu C, Yu X, Meng J, Teng B, Sun Y, Kerem G, Ismayil A, Fang P, Zhang JV, Ren PG. Microarray Profiling and Coexpression Network Analysis of Long Noncoding RNAs in Adipose Tissue of Obesity-T2DM Mouse. Obesity (Silver Spring) 2019; 27:1644-1651. [PMID: 31464075 DOI: 10.1002/oby.22590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to understand more about long noncoding RNAs (lncRNAs) as potential prediction biomarkers or therapeutic targets for obesity and type 2 diabetes mellitus (T2DM). This study aimed to find more lncRNA candidates related to obesity and T2DM. METHODS In this study, a high-fat diet (HFD)-induced obesity-T2DM mouse model was used, and a mRNA and lncRNA expression map was drawn up in adipose tissue by microarray technology. Then Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed and revealed that the most associated genes and pathways were metabolism-related ones. The candidate lncRNA expression was further validated in adipose tissue from HFD-induced mice by quantitative real-time polymerase chain reaction analysis. RESULTS Transcriptome analyses were performed to show expression profiles of mRNAs and lncRNAs in epididymal adipose tissue in the obesity-T2DM mice. A total of 124 lncRNAs and 1,606 mRNAs were differentially expressed between the chow and HFD groups. Then, an mRNA-lncRNA coexpression network was constructed. Based on a series of analyses, 15 candidate lncRNAs were screened, and their expression was further validated by quantitative real-time polymerase chain reaction analysis. CONCLUSIONS The results reveal significant differences between the transcriptomes of the HFD and control groups in adipose tissue that provide clues to the molecular mechanisms of diet-induced metabolic disorders as well as biomarkers of risk for these disorders.
Collapse
Affiliation(s)
- Zhenyu Yao
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chang Liu
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xiangfang Yu
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jun Meng
- Department of Microbiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Bin Teng
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yutao Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Goher Kerem
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Aynur Ismayil
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Peng Fang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jian V Zhang
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Pei-Gen Ren
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Dai X, Kaushik AC, Zhang J. The Emerging Role of Major Regulatory RNAs in Cancer Control. Front Oncol 2019; 9:920. [PMID: 31608229 PMCID: PMC6771296 DOI: 10.3389/fonc.2019.00920] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Alterations and personal variations of RNA interactions have been mechanistically coupled with disease etiology and phenotypical variations. RNA biomarkers, RNA mimics, and RNA antagonists have been developed for diagnostic, prognostic, and therapeutic uses. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two major types of RNA molecules with regulatory roles, deregulation of which has been implicated in the initiation and progression of many human malignancies. Accumulating evidence indicated the clinical roles of regulatory RNAs in cancer control, stimulating a surge in exploring the functionalities of regulatory RNAs for improved understanding on disease pathogenesis and management. In this review, we highlight the critical roles of lncRNAs and miRNAs played in tumorigenesis, scrutinize their potential functionalities as diagnostic/prognostic biomarkers and/or therapeutic targets in clinics, outline opportunities that ncRNAs may bring to complement current clinical practice for improved cancer management and identify challenges faced by translating frontier knowledge on non-coding RNAs (ncRNAs) to bedside clinics as well as possible solutions.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianying Zhang
- Henan Key Laboratory of Tumor Epidemiology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Li Y, Zhuang W, Huang M, Li X. Long noncoding RNA DDX11-AS1 epigenetically represses LATS2 by interacting with EZH2 and DNMT1 in hepatocellular carcinoma. Biochem Biophys Res Commun 2019; 514:1051-1057. [PMID: 31097223 DOI: 10.1016/j.bbrc.2019.05.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/05/2019] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), a group of transcripts without protein coding potential, have been reported to play critical roles in progression of hepatocellular carcinoma (HCC). However, the biological role of DDX11-AS1 in HCC is not clear. In this study, we found that DDX11-AS1 expression was dramatically higher in HCC tissues and cell lines. Higher DDX11-AS1 expression predicted poor overall survival of patients. Functionally, the proliferation, cell cycle progression, migration, and invasion of HCC cells were inhibited by DDX11-AS1 silencing, while promoted by ectopic expression of DDX11-AS1. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays validated that DDX11-AS1 suppressed LATS2 expression by interacting with EZH2 and DNMT1 in HCC cells. Knockdown of DDX11-AS1 increased the mRNA and protein levels of LATS2. Overexpression of LATS2 abolished the promotive effect of DDX11-AS1 on cell growth and invasion. Besides, DDX11-AS1 promoted tumor formation in vivo. The mRNA levels of LATS2 were markedly decreased in tumor tissues and negatively correlated with DDX11-AS1 expression. Taken together, our data indicated that DDX11-AS1 may be a novel oncogene in hepatocarcinogenesis by repressing LATS2, providing a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Yong Li
- Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 201129, China; Department of Hepatobiliary Surgery, Suqian First Hospital, Suqian, Jiangsu, 223800, China
| | - Wenlong Zhuang
- Department of Hepatobiliary Surgery, Suqian First Hospital, Suqian, Jiangsu, 223800, China
| | - Maosheng Huang
- Department of Hepatobiliary Surgery, Suqian First Hospital, Suqian, Jiangsu, 223800, China
| | - Xiangcheng Li
- Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 201129, China.
| |
Collapse
|
15
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|
16
|
Xu S, Wang P, Zhang J, Wu H, Sui S, Zhang J, Wang Q, Qiao K, Yang W, Xu H, Pang D. Ai-lncRNA EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions in human cancer. Mol Cancer 2019; 18:89. [PMID: 30999914 PMCID: PMC6471868 DOI: 10.1186/s12943-019-1017-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer. METHODS Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity. RESULTS EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324-645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens. CONCLUSIONS These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Jinfeng Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Hongbiao Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
17
|
Exosome-Mediated Signaling in Epithelial to Mesenchymal Transition and Tumor Progression. J Clin Med 2018; 8:jcm8010026. [PMID: 30591649 PMCID: PMC6352067 DOI: 10.3390/jcm8010026] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Growing evidence points to exosomes as key mediators of cell⁻cell communication, by transferring their specific cargo (e.g., proteins, lipids, DNA and RNA molecules) from producing to receiving cells. In cancer, the regulation of the exosome-mediated intercellular communication may be reshaped, inducing relevant changes in gene expression of recipient cells in addition to microenvironment alterations. Notably, exosomes may deliver signals able to induce the transdifferentiation process known as Epithelial-to-Mesenchymal Transition (EMT). In this review, we summarize recent findings on the role of exosomes in tumor progression and EMT, highlighting current knowledge on exosome-mediated intercellular communication in tumor-niche establishment, migration, invasion, and metastasis processes. This body of evidence suggests the relevance of taking into account exosome-mediated signaling and its multifaceted aspects to develop innovative anti-tumoral therapeutic approaches.
Collapse
|
18
|
Song Y, Wang R, Li LW, Liu X, Wang YF, Wang QX, Zhang Q. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. Int J Oncol 2018; 54:77-86. [PMID: 30431069 PMCID: PMC6254860 DOI: 10.3892/ijo.2018.4625] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
HOX transcript antisense intergenic RNA (HOTAIR), a well-known long non-coding RNA, plays an important role in the regulation of epithelial-to-mesenchymal transition (EMT). In this study, we propose a novel mechanism through which HOTAIR promotes EMT by switching histone H3 lysine 27 acetylation to methylation at the E-cadherin promoter, which induces the transcriptional inhibition of E-cadherin. HOTAIR recruits polycomb repressive complex 2 (PRC2) to catalyze H3K27me3; however, whether HOTAIR is associated with the acetylation of histone H3 lysine 27, a marker of transcriptional activation, and the mechanisms through which HOTAIR triggers the metastasis of gastric cancer (GC) by epigenetic regulation remain largely unknown. In this study, HOTAIR knockdown significantly reversed EMT by increasing the expression of E-cadherin in GC cells. Additionally, the loss of PRC2 activity induced by HOTAIR knockdown resulted in a global decrease in H3K27 methylation and an increase in H3K27 acetylation. Furthermore, HOTAIR recruits PRC2 (which consists of H3K27 methyltransferase EZH2, SUZ12 and EED), which may inhibit the reaction between the acetyltransferase CBP and H3K27 acetylation. On the whole, the findings of this study suggested that the HOTAIR-mediated acetylation to methylation switch was associated with the transcriptional inhibition of E-cadherin. HOTAIR can promote the development of GC through the epigenetic regulation of E-cadherin, switching the state of the E-cadherin promoter from the transcriptionally active to the transcriptionally repressive state.
Collapse
Affiliation(s)
- Yue Song
- Department of Phase I Clinical Trial, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, P.R. China
| | - Rui Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Li-Wei Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300000, P.R. China
| | - Yun-Fei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qi-Xue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
19
|
Bao J, Chen X, Hou Y, Kang G, Li Q, Xu Y. LncRNA DBH-AS1 facilitates the tumorigenesis of hepatocellular carcinoma by targeting miR-138 via FAK/Src/ERK pathway. Biomed Pharmacother 2018; 107:824-833. [DOI: 10.1016/j.biopha.2018.08.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
|
20
|
Yu H, Rong L. Emerging role of long non-coding RNA in the development of gastric cancer. World J Gastrointest Oncol 2018; 10:260-270. [PMID: 30254721 PMCID: PMC6147769 DOI: 10.4251/wjgo.v10.i9.260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is a common, worldwide malignancy and has a poor prognosis due to late diagnosis. Long non-coding RNAs (lncRNAs) are a significant subtype of RNA molecules with a length longer than 200 nucleotides (nt) that rarely encode proteins. In recent decades, deregulation of lncRNAs has been shown to be involved in tumorigenesis and tumor progression in various human carcinomas, including gastric cancer. Accumulating evidence has shown that some lncRNAs may function as diagnostic biomarkers or therapeutic targets for gastric cancer. Thus, exploring the specific functions of lncRNAs will help both gain a better understanding of the pathogenesis and develop novel treatments for gastric cancer. In this review, we highlight the expression and functional roles of lncRNAs in gastric cancer, and analyze the potential applications of lncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Hang Yu
- Department of Endoscopic Center, Peking University First Hospital, Beijing 100034, China
| | - Long Rong
- Department of Endoscopic Center, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
21
|
Amicone L, Marchetti A. Microenvironment and tumor cells: two targets for new molecular therapies of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:24. [PMID: 29971255 DOI: 10.21037/tgh.2018.04.05] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), is one of the most frequent human cancer and is characterized by a high mortality rate. The aggressiveness appears strictly related to the liver pathological background on which cancer develops. Inflammation and the consequent fibro/cirrhosis, derived from chronic injuries of several origins (viral, toxic and metabolic) and observable in almost all oncological patients, represents the most powerful risk factor for HCC and, at the same time, an important obstacle to the efficacy of systemic therapy. Multiple microenvironmental cues, indeed, play a pivotal role in the pathogenesis, evolution and recurrence of HCC as well as in the resistance to standard therapies observed in most of patients. The identification of altered pathways in cancer cells and of microenvironmental changes, strictly connected in pathogenic feedback loop, may permit to plan new therapeutic approaches targeting tumor cells and their permissive microenvironment, simultaneously.
Collapse
Affiliation(s)
- Laura Amicone
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Marchetti
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Zhu X, Li W, Meng Q. LncRNA H19 promotes proliferation and invasion in A375 human melanoma cell line. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1063-1073. [PMID: 31938202 PMCID: PMC6958159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To determine the effects of H19 gene on the proliferation and invasion of A375 human melanoma cells. METHODS A375 cells were infected with a lentiviral vector overexpressing H19 or transfected with H19 RNA interference constructs. The proliferation and invasion of A375/H19+ cells were measured by MTT cell viability and transwell assays, respectively. The mRNA and protein expression levels of matrix metalloproteinase 2 (MMP2) and MMP9 were measured by quantitative PCR (qPCR) and Western blotting, respectively, and the protein expression of Akt, phosphorylated Akt (p-Akt), Slug and E-cadherin were examined by Western blot analysis. RESULTS The optical density value of A375/H19+ cells increased after incubation with MTT reagent for 12 h (P < 0.05), and the transwell assay showed that the average penetration rate of A375/H19+ cells significantly increased (P < 0.001). The expression levels of MMP2 and MMP9 were significantly increased in A375/H19+ cells, as determined by qPCR and Western blotting (P < 0.001). Moreover, A375/H19+ cells had upregulated levels of Slug and p-Akt and downregulated E-cadherin (P < 0.001). The weight and volume of A375/H19+ cell xenografts in nude mice were significantly increased, but its inhibition rate was smaller (P < 0.05 and P < 0.001, respectively). CONCLUSIONS The results of this study showed that H19 overexpression promoted the proliferation, invasion, and growth of A375 cells. In addition, it upregulated the mRNA and protein expression levels of MMP2 and MMP9, which in turn promoted cell invasion. Furthermore, H19 appeared to enhance Akt phosphorylation, directly suppress E-cadherin, and upregulate Slug expression to promote A375 cell invasion.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Dermatology, The First Hospital of HarbinHarbin, Heilongjiang, China
| | - Wei Li
- Department of Orthopaedic Surgery, The First Hospital of HarbinHarbin, Heilongjiang, China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, The First Hospital of HarbinHarbin, Heilongjiang, China
| |
Collapse
|
23
|
Hao S, Yao L, Huang J, He H, Yang F, Di Y, Jin C, Fu D. Genome-Wide Analysis Identified a Number of Dysregulated Long Noncoding RNA (lncRNA) in Human Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2018; 17:1533034617748429. [PMID: 29343207 PMCID: PMC5784569 DOI: 10.1177/1533034617748429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/25/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long noncoding RNAs have been shown to play crucial roles in cancer biology, while the long noncoding RNA landscapes of pancreatic ductal adenocarcinoma have not been completely characterized. We aimed to determine whether long noncoding RNA could serve as early diagnostic biomarkers for pancreatic ductal adenocarcinoma. METHOD We conducted a genome-wide microarray analysis on pancreatic ductal adenocarcinoma and their adjacent noncancerous tissues from 8 Chinese patients. RESULTS A total of 3352 significantly differentially expressed long noncoding RNAs were detected. Of total, 1249 long noncoding RNAs were upregulated and 2103 were downregulated (fold change ≥2, P < 0.05, FDR <0.05). These differentially expressed long noncoding RNAs were not evenly distributed among chromosomes in human genome. Hierarchical clustering of these differentially expressed long noncoding RNAs revealed large variabilities in long noncoding RNA expression among individual patient, indicating that certain long noncoding RNAs could play a unique role or be used as a biomarker for specific subtype of pancreatic ductal adenocarcinoma. Gene Ontology enrichment and pathway analysis identified several remarkably dysregulated pathways in pancreatic ductal adenocarcinoma tissue, such as interferon-γ-mediated signaling pathway, mitotic cell cycle and proliferation, extracellular matrix receptor interaction, focal adhesion, and regulation of actin cytoskeleton. The co-expression network analysis detected 393 potential interactions between 80 differentially expressed long noncoding RNAs and 105 messenger RNAs. We experimentally verified 7 most markedly dysregulated long noncoding RNAs from the network. CONCLUSION Our study provided a genome-wide survey of dysregulated long noncoding RNAs and long noncoding RNA/messenger RNA co-regulation networks in pancreatic ductal adenocarcinoma tissue. These dysregulated long noncoding RNA/messenger RNA networks could be used as biomarkers to provide early diagnosis of pancreatic ductal adenocarcinoma or its subtype, predict prognosis, and evaluate treatment efficacy.
Collapse
Affiliation(s)
- Sijie Hao
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lie Yao
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaxin Huang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hang He
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Jin
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Epigenetic reprogramming in liver fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:124-132. [PMID: 29079534 PMCID: PMC5716427 DOI: 10.1016/j.addr.2017.10.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022]
Abstract
Novel insights into the epigenetic control of chronic liver diseases are now emerging. Recent advances in our understanding of the critical roles of DNA methylation, histone modifications and ncRNA may now be exploited to improve management of fibrosis/cirrhosis and cancer. Furthermore, improved technologies for the detection of epigenetic markers from patients' blood and tissues will vastly improve diagnosis, treatment options and prognostic tracking. The aim of this review is to present recent findings from the field of liver epigenetics and to explore their potential for translation into therapeutics to prevent disease promoting epigenome reprogramming and reverse epigenetic changes.
Collapse
|
25
|
Long noncoding RNA PCAT-1 promotes invasion and metastasis via the miR-129-5p-HMGB1 signaling pathway in hepatocellular carcinoma. Biomed Pharmacother 2017; 95:1187-1193. [PMID: 28931210 DOI: 10.1016/j.biopha.2017.09.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/03/2017] [Accepted: 09/10/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The long non-coding RNA (lncRNA) prostate cancer-associated transcript 1(PCAT-1) has been shown to be dysregulated and exert vital roles in tumorigenesis and progression of various malignancies. However, the precise molecular mechanism in the metastasis and invasion of HCC remain unclear. METHODS The expression levels of PCAT1 derived from human HCC tissues and cell lines were analyzed through quantitative real-time PCR. QRT-PCR was also applied to detect the expression of HMGB1 and miR-129-5p. Wound healing assay and transwell assays were performed to analyze cell migration and invasion ability. The mRNA levels and protein expression of HMGB1 were detected by western-blotting analysis and immunohistochemistry, respectively. Luciferase assays were used to investigate binding seeds beteen miRNA-129-5p and other transcripts, such as PCAT-1, HMGB1. RESULT In this study, our founding demonstrated that PCAT-1 was not only aberrantly upregulated in HCC tissues and cell lines, but also associated with TNM stage, metastasis and Histological grade. In vitro, downregulation of PCAT-1 could reduce the invasion and migration of HCC cells. Moreover, our results showed that PCAT-1 could act as an endogenous RNA by directly binding to miR-129-5p. In addition, Luciferase reporter assay and western blotting analyses showed that PCAT-1 repressed inhibitory effect of miR-129-5p and reverse high mobility group box 1 (HMGB1) expression, a target gene of miR-129-5p. CONCLUSION PCAT-1 functions as competing endogenous RNA (ceRNA) to provide a better understanding for HCC metastasis, and serves as a potential diagnostic and therapeutic target via PCAT-1/miR-129-5p/HMGB1 regulatory crosstalk for the deadly disease.
Collapse
|
26
|
Niu ZS, Niu XJ, Wang WH. Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications. World J Gastroenterol 2017; 23:5860-5874. [PMID: 28932078 PMCID: PMC5583571 DOI: 10.3748/wjg.v23.i32.5860] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/10/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Disease Progression
- Early Detection of Cancer/methods
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/diagnosis
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Molecular Targeted Therapy/methods
- Prognosis
- RNA, Long Noncoding/analysis
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Oncology Specialty, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
27
|
Fatima F, Nawaz M. Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies. Noncoding RNA 2017; 3:ncrna3010010. [PMID: 29657282 PMCID: PMC5831998 DOI: 10.3390/ncrna3010010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA) have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil.
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil.
| |
Collapse
|
28
|
Functional Roles and Therapeutic Applications of Exosomes in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2931813. [PMID: 28265569 PMCID: PMC5318635 DOI: 10.1155/2017/2931813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/15/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are important in intercellular communication. They assure the horizontal transfer of specific functional contents (i.e., proteins, lipids, RNA molecules, and circulating DNA) from donor to recipient cells. Notably, tumor-derived exosomes (TDEs) appear to be an important vehicle of specific signals in cancer, impacting on tumor growth and metastasis. Recent researches point to the characterization of exosomes in Hepatocellular Carcinoma (HCC), the major adult liver malignancy. In this review, we summarize current findings on HCC exosomes, focusing on the identification of noncoding RNAs as exosome-enriched functional regulators and new potential biomarkers. The great potential of exosomes in future HCC diagnostic and therapeutic approaches is underlined.
Collapse
|
29
|
Lu C, Yang L, Chen H, Shan Z. Upregulated long non-coding RNA BC032469 enhances carcinogenesis and metastasis of esophageal squamous cell carcinoma through regulating hTERT expression. Tumour Biol 2016; 37:16065–16075. [PMID: 27726103 DOI: 10.1007/s13277-016-5428-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/23/2016] [Indexed: 01/19/2023] Open
Abstract
Currently, long non-coding RNAs (lncRNAs) have been shown to have critical regulatory roles in various cancers. However, its role in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Here, we focused on lncRNA BC032469, one of the lncRNAs involved in the development of ESCC. The levels of a specific differentially expressed lncRNA (termed lncRNA-BC032469) were measured in 45 paired esophageal squamous cell carcinoma tissue samples by quantitative real-time RT-PCR and then subjected to correlation analysis with clinical parameters and prognosis. The functions of lncRNA-BC032469 were evaluated by silencing and overexpressing the lncRNA in vitro and in vivo. The expression level of BC032469 in esophageal squamous cell carcinoma tissues was higher than that in the corresponding non-cancerous tissues. High BC032469 levels were correlated with lymph node metastasis, TNM stage, and tumor size and lower overall survival. Knockdown of BC032469 in TE13 and Eca109 cells inhibited cell proliferation, migration, and invasion; induced cell cycle arrest in the G0/G1 phase; and promoted apoptosis. Western blot analysis revealed that BC032469 regulated the expression of human telomerase reverse transcriptase (hTERT), which is important for cell proliferation and metastasis. Moreover, the restored expression of hTERT protein in BC032469-knockdown cells attenuated the suppressive effects of BC032469 on ESCC cells. Collectively, these results indicated that lncRNA-BC032469 is an oncogenic lncRNA that promotes tumor progression and leads us to propose that lncRNAs may serve as key regulatory hubs in ESCC development.
Collapse
Affiliation(s)
- Chaojing Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, No 168, Changhai Rd, Shanghai, China
| | - Lixin Yang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, No 168, Changhai Rd, Shanghai, China.
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, No 168, Changhai Rd, Shanghai, China
| | - Zhengxiang Shan
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, No 168, Changhai Rd, Shanghai, China
| |
Collapse
|
30
|
El-Tawdi AHF, Matboli M, El-Nakeep S, Azazy AEM, Abdel-Rahman O. Association of long noncoding RNA and c-JUN expression in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2016; 10:869-77. [PMID: 27215316 DOI: 10.1080/17474124.2016.1193003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long noncoding RNAs(lncRNAs) have emerged as key elements in modulating gene expression in different biological contexts. PATIENTS AND METHODS We used quantitative real-time PCR (Qpcr) to evaluate the expression of lncRNA-UCA1 and C-JUN in serum of 70 patients with hepatocellular carcinoma (HCC), 32 patients chronic hepatitis C (CHC) and 38 healthy subjects and their correlation with different clinicopathological factors. RESULTS The expression of lncRNA-UCA1 and C-JUN was positive in 91.4%HCC patients with strong discriminating power between HCC and healthy subjects and CHC patients as well. The median follow up period was 29 months. The survival analysis showed that both lncRNA-UCA1 and C-JUN were independent prognostic factors. Of note, we identified C-JUN expression changes consistent with the lncRNA-UCA1 target regulation. CONCLUSION This information sheds light on the possible role of lncRNA-UCA1 and C-JUN mRNA as promising diagnostic and prognostic markers as well as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Ahmed H F El-Tawdi
- a General and Plastic Surgery Department , Military Medical Academy , Cairo , Egypt
| | - Marwa Matboli
- b Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Sarah El-Nakeep
- c Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | | | - Omar Abdel-Rahman
- e Clinical Oncology Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| |
Collapse
|
31
|
Liu YR, Tang RX, Huang WT, Ren FH, He RQ, Yang LH, Luo DZ, Dang YW, Chen G. Long noncoding RNAs in hepatocellular carcinoma: Novel insights into their mechanism. World J Hepatol 2015; 7:2781-2791. [PMID: 26668690 PMCID: PMC4670950 DOI: 10.4254/wjh.v7.i28.2781] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/22/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant subject of liver malignancies which arouse global concern. Advanced studies have found that long noncoding RNAs (lncRNAs) are differentially expressed in HCC and implicate they may play distinct roles in the pathogenesis and metastasis of HCC. However, the underlying mechanisms remain largely unclear. In this review, we summarized the functions and mechanisms of those known aberrantly expressed lncRNAs identified in human HCC tissues. We hope to enlighten more comprehensive researches on the detailed mechanisms of lncRNAs and their application in clinic, such as being used as diagnostic and prognostic biomarkers and the targets for potential therapy. Although studies on lncRNAs in HCC are still deficient, an improved understanding of the roles played by lncRNAs in HCC will lead to a much more effective utilization of those lncRNAs as novel candidates in early detection, diagnosis, prevention and treatment of HCC.
Collapse
|
32
|
New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015; 3:325-340. [PMID: 28943628 PMCID: PMC5548255 DOI: 10.3390/diseases3040325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, arising from neoplastic transformation of hepatocytes or liver precursor/stem cells. HCC is often associated with pre-existing chronic liver pathologies of different origin (mainly subsequent to HBV and HCV infections), such as fibrosis or cirrhosis. Current therapies are essentially still ineffective, due both to the tumor heterogeneity and the frequent late diagnosis, making necessary the creation of new therapeutic strategies to inhibit tumor onset and progression and improve the survival of patients. A promising strategy for treatment of HCC is the targeted molecular therapy based on the restoration of tumor suppressor proteins lost during neoplastic transformation. In particular, the delivery of master genes of epithelial/hepatocyte differentiation, able to trigger an extensive reprogramming of gene expression, could allow the induction of an efficient antitumor response through the simultaneous adjustment of multiple genetic/epigenetic alterations contributing to tumor development. Here, we report recent literature data supporting the use of members of the liver enriched transcription factor (LETF) family, in particular HNF4α, as tools for gene therapy of HCC.
Collapse
|