1
|
Fatima A, Attem J, Esam S, Vemuganti GK. Extracellular Vesicles of Tears and Ocular Surface: An Enigma. Curr Eye Res 2025:1-15. [PMID: 40390228 DOI: 10.1080/02713683.2025.2503214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025]
Abstract
PURPOSE A stable ocular surface is crucial for maintaining ocular health by protecting against various infections. This is achieved by coordinated function of ocular structures (cornea, limbus, conjunctiva), innervation, and the tear film which forms a protective barrier over the ocular surface ensuring proper hydration, lubrication, and overall ocular comfort. This complex three-layered tear film secreted by different sources ensures its stability by adhesion to the corneal epithelium. Ocular surface fluid kinetics and tear secretion involve complex processes influenced by neural regulation, environmental factors, and molecular composition. Recent advances in cell biology and secretome has unravelled the mysteries of cellular cargo of almost every cell and system i.e. the extracellular vesicles (EVs) which facilitate intercellular communication. EVs are of different sizes, amongst which small EVs (sEVs) potentially are more informative than other EVs. METHODS An extensive review of literature on sEVs in tears and ocular surface was conducted. RESULTS Emerging literature on sEVs derived from ocular surface structures such as cornea and limbal stem cells contribute to corneal wound healing, regeneration and reduced fibrosis by the activation of specific proteins. A recent study documents that homeostasis between cornea and conjunctiva is maintained by the expression of specific genes triggering trans differentiation in diseased conditions. There is also mounting evidence on role of tear-derived sEVs in normal and diseased states. The approach in which tear layers secreted from three different sources form into a single tri-layered stable biofilm covering the entire ocular surface remains elusive. Hence not surprisingly, the tear sEVs therefore have been referred to as one entity and not attributed to any of the 3 different sources that they originate from. CONCLUSION This review attempts to present the recent concepts of sEVs, ocular surface, tears and highlight the gaps in our understanding of tear-derived exosomes and its potential role in homeostasis and disease conditions.
Collapse
Affiliation(s)
- Asra Fatima
- School of Medical Science, University of Hyderabad, Hyderabad, India
| | - Jyothi Attem
- School of Medical Science, University of Hyderabad, Hyderabad, India
| | - Sandhya Esam
- School of Medical Science, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
2
|
Fu L, Pelosini L, Kopsachilis N, Foti R, D'Esposito F, Musa M, D'Amico A, Tognetto D, Gagliano C, Zeppieri M. Evaluating the efficacy of stem cells in treating severe dry eye disease. World J Stem Cells 2025; 17:101891. [PMID: 40308890 PMCID: PMC12038461 DOI: 10.4252/wjsc.v17.i4.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/17/2025] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that disturbs ocular surface equilibrium, considerably diminishing quality of life. Present therapies only offer symptomatic alleviation. Stem cell treatment, especially mesenchymal stem cells (MSCs), has surfaced as a viable approach for tissue regeneration and immunological regulation in DED. Preclinical and early clinical investigations indicate that MSCs can improve lacrimal gland functionality, diminish inflammation, and facilitate corneal regeneration. Nonetheless, obstacles persist in enhancing MSC viability, determining the optimal MSC source, and guaranteeing sustained therapeutic effectiveness. Additional extensive randomized clinical trials are required to confirm the efficacy of MSC-based therapies for severe DED.
Collapse
Affiliation(s)
- Lanxing Fu
- Department of Ophthalmology, East Kent Hospitals University NHS Foundation Trust, Canterbury CT1 3NG, United Kingdom
| | - Lucia Pelosini
- Department of Ophthalmology, King's College Hospital NHS Foundation Trust, London SE5 9RS, United Kingdom
| | - Nick Kopsachilis
- Department of Ophthalmology, East Kent Hospitals University NHS Foundation Trust, Canterbury CT1 3NG, United Kingdom
| | - Roberta Foti
- Division of Rheumatology, A.O.U. "Policlinico-San Marco," Catania 95123, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group Unit, Imperial College, London NW1 5QH, United Kingdom
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Alberto D'Amico
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova 35128, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34129, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore," Catania 94100, Italy
- Mediterranean Foundation "G.B. Morgagni", 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34129, Italy
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
3
|
Chen X, Zhang C, Peng F, Wu L, Zhuo D, Wang L, Zhang M, Li Z, Tian L, Jie Y, Huang Y, Yang X, Li X, Lei F, Cheng Y. Identification of glutamine as a potential therapeutic target in dry eye disease. Signal Transduct Target Ther 2025; 10:27. [PMID: 39837870 PMCID: PMC11751114 DOI: 10.1038/s41392-024-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes. In situ metabolomics through matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed increased glutamine levels in cornea following MSC + Tβ4 combined therapy. Inhibition of glutamine reversed the anti-inflammatory, anti-apoptotic, and homeostasis-preserving effects observed with combined therapy, highlighting the critical role of glutamine in dry eye therapy. Clinical cases and rodent model showed elevated expression of glutaminase (GLS1), an upstream enzyme in glutamine metabolism, following dry eye injury. Mechanistic studies indicated that overexpression and inhibition of GLS1 counteracted and enhanced, respectively, the anti-inflammatory effects of combined therapy, underscoring GLS1's pivotal role in regulating glutamine metabolism. Furthermore, single-cell sequencing revealed a distinct subset of pro-inflammatory and pro-fibrotic corneal epithelial cells in the dry eye model, while glutamine treatment downregulated those subclusters, thereby reducing their inflammatory cytokine secretion. In summary, glutamine effectively ameliorated inflammation and the occurrence of apoptosis by downregulating the pro-inflammatory and pro-fibrotic corneal epithelial cells subclusters and the related IκBα/NF-κB signaling. The present study suggests that glutamine metabolism plays a critical, previously unrecognized role in DED and proposes an attractive strategy to enhance glutamine metabolism by inhibiting the enzyme GLS1 and thus alleviating inflammation-driven DED progression.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China.
| | - Chuyue Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Fei Peng
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Min Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinji Yang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Mitani K, Ito Y, Takene Y, Inaba T. Evaluation of the quality of life-enhancing effect of allogeneic feline adipose mesenchymal stem cells in cats with osteoarthritis: A pilot study. Res Vet Sci 2025; 182:105470. [PMID: 39612738 DOI: 10.1016/j.rvsc.2024.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease in older cats, and often leads to decreased quality of life (QOL). Mesenchymal stem cells (MSCs) have been used in novel therapies for inflammatory diseases. We aimed to evaluate quantitatively allogeneic adipose-derived MSC (ADSC) therapy in cats with naturally occurring OA, based on QOL assessment resources. To characterize the in vitro properties of ADSCs, we estimated ADSCs from four healthy cats with respect to morphology, differentiation potential, and immunomodulatory potential. Six cats with OA were administered a single intravenous injection of allogeneic ADSCs. Based on the feline musculoskeletal pain index (FMPI), the outcome measure was QOL. The cultured cells were adherent, exhibited a spindle shape without becoming flattened or large, and maintained doubling time until passage 5. After induction, the cells had osteogenic, adipogenic, and chondrogenic phenotypes. These cells expressed CD44 and CD90 and lacked expression of CD14 and CD45, had significantly suppressed the production of interferon -ɤ released from mitogen-stimulated lymphocytes (P < 0.05). The FMPI of all cats with OA significantly increased one month after ADSC therapy (P < 0.05). No adverse effects associated with ADSC administration were observed during follow-up in any of the cats. In conclusion, ADSC therapy with immunomodulatory potential could have beneficial effects on the QOL in cats with OA. Further research is necessary to carry out larger studies of the effectiveness of ADSC therapy.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Toshio Inaba
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan.
| |
Collapse
|
5
|
de Sousa Moreira A, Lopes B, Sousa AC, Coelho A, Sousa P, Araújo A, Delgado E, Alvites R, Maurício AC. Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients. Int J Mol Sci 2024; 26:232. [PMID: 39796087 PMCID: PMC11719664 DOI: 10.3390/ijms26010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential. These therapies, particularly those based on mesenchymal stem cells, offer the potential to repair and protect retinal tissues through the bioactive molecules (growth factors, cytokines, chemokines) secreted, their secretome. However, research in this field, especially on the use of umbilical cord mesenchymal stem cells' secretome, remains sparse. Most clinical trials focus on human glaucomatous patients, leaving a significant gap in veterinary patients' application, especially in dogs, with additional research being needed to determine its usefulness in canine glaucoma treatment. Future studies should aim to evaluate these therapies across both human and veterinary contexts, broadening treatment possibilities for glaucoma.
Collapse
Affiliation(s)
- Alícia de Sousa Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Araújo
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Esmeralda Delgado
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra n° 1317, 4585-116 Paredes, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| |
Collapse
|
6
|
Sharun K, Banu SA, Alifsha B, Abualigah L, Pawde AM, Dhama K, Pal A. Mesenchymal stem cell therapy in veterinary ophthalmology: clinical evidence and prospects. Vet Res Commun 2024; 48:3517-3531. [PMID: 39212813 DOI: 10.1007/s11259-024-10522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mesenchymal stem cell (MSC) therapy presents a promising strategy for treating various ocular conditions in veterinary medicine. This review explores the therapeutic potential of MSCs in managing corneal ulcers, immune-mediated keratitis, chronic superficial keratitis, keratoconjunctivitis sicca, retinal degeneration, and ocular burns in feline, equine, and canine patients. Studies have demonstrated the immunomodulatory and regenerative properties of MSCs, highlighting their ability to mitigate inflammation and promote tissue regeneration. Experimental studies have shown the potential of MSC therapy in reducing corneal opacity and vascularization, indicating significant therapeutic advantages. Delivery methods play a crucial role in optimizing the therapeutic efficacy of MSCs in ocular diseases. Various delivery methods, such as intravitreal injection, subconjunctival injection, topical administration, and scaffold-mediated delivery, are being explored to optimize MSC delivery to the target ocular tissues. Clinical trials have shown significant improvements in clinical signs following MSC therapy, underscoring its efficacy in treating ocular diseases. Additionally, tissue engineering approaches incorporating MSCs, growth factors, and scaffolds offer innovative strategies for corneal regeneration and tissue repair. Despite challenges such as standardization of protocols and long-term safety assessment, ongoing research endeavours seek to unlock the full therapeutic potential of MSC therapy in ocular diseases. Future prospects in MSC therapy involve exploring scaffold and hydrogel-based approaches and cell-free therapies leveraging the bioactive molecules released by MSCs. Continued research and development efforts are essential to unlock the full therapeutic potential of MSCs and realize their transformative impact on ocular diseases in veterinary patients.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, 32003, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - B Alifsha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
7
|
Williams ZJ, Pezzanite LM, Chow L, Rockow M, Dow SW. Evaluation of stem-cell therapies in companion animal disease models: a concise review (2015-2023). Stem Cells 2024; 42:677-705. [PMID: 38795363 DOI: 10.1093/stmcls/sxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/25/2024] [Indexed: 05/27/2024]
Abstract
Companion animals in veterinary medicine develop multiple naturally occurring diseases analogous to human conditions. We previously reported a comprehensive review on the feasibility, safety, and biologic activity of using novel stem cell therapies to treat a variety of inflammatory conditions in dogs and cats (2008-2015) [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The purpose of this review is to provide an updated summary of current studies in companion animal disease models that have evaluated stem cell therapeutics that are relevant to human disease. Here we have reviewed the literature from 2015 to 2023 for publications on stem cell therapies that have been evaluated in companion animals, including dogs, cats, and horses. The review excluded case reports or studies performed in experimentally induced models of disease, studies involving cancer, or studies in purpose-bred laboratory species such as rodents. We identified 45 manuscripts meeting these criteria, an increase from 19 that were described in the previous review [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The majority of studies were performed in dogs (n = 28), with additional studies in horses (n = 9) and cats (n = 8). Disease models included those related to musculoskeletal disease (osteoarthritis and tendon/ligament injury), neurologic disease (canine cognitive dysfunction, intervertebral disc disease, spinal cord injury) gingival/dental disease (gingivostomatitis), dermatologic disease (atopic dermatitis), chronic multi-drug resistant infections, ophthalmic disease (keratoconjunctivitis sicca, eosinophilic keratitis, immune-mediated keratitis), cardiopulmonary disease (asthma, degenerative valve disease, dilated cardiomyopathy), gastrointestinal disease (inflammatory bowel disease, chronic enteropathy), and renal disease (chronic kidney disease). The majority of studies reported beneficial responses to stem cell treatment, with the exception of those related to more chronic processes such as spinal cord injury and chronic kidney disease. However, it should also be noted that 22 studies were open-label, baseline-controlled trials and only 12 studies were randomized and controlled, making overall study interpretation difficult. As noted in the previous review, improved regulatory oversight and consistency in manufacturing of stem cell therapies are needed. Enhanced understanding of the temporal course of disease processes using advanced-omics approaches may further inform mechanisms of action and help define appropriate timing of interventions. Future directions of stem-cell-based therapies could include use of stem-cell-derived extracellular vesicles, or cell conditioning approaches to direct cells to specific pathways that are tailored to individual disease processes and stages of illness.
Collapse
Affiliation(s)
- Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Meagan Rockow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
8
|
Picazo RA, Rojo C, Rodriguez-Quiros J, González-Gil A. Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals. Animals (Basel) 2024; 14:1363. [PMID: 38731367 PMCID: PMC11083242 DOI: 10.3390/ani14091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a very promising alternative tool in cell therapies and regenerative medicine due to their ease of obtaining from various tissues and their ability to differentiate into different cell types. This manuscript provides a review of current knowledge on the use of MSC-based therapies as an alternative for certain common pathologies in dogs and cats where conventional treatments are ineffective. The aim of this review is to assist clinical veterinarians in making decisions about the suitability of each protocol from a clinical perspective, rather than focusing solely on research. MSC-based therapies have shown promising results in certain pathologies, such as spinal cord injuries, wounds, and skin and eye diseases. However, the effectiveness of these cell therapies can be influenced by a wide array of factors, leading to varying outcomes. Future research will focus on designing protocols and methodologies that allow more precise and effective MSC treatments for each case.
Collapse
Affiliation(s)
- Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Concepción Rojo
- Department of Anatomy and Embryology, School of Veterinary Medicine, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Jesus Rodriguez-Quiros
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
9
|
Surico PL, Scarabosio A, Miotti G, Grando M, Salati C, Parodi PC, Spadea L, Zeppieri M. Unlocking the versatile potential: Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics. World J Stem Cells 2024; 16:89-101. [PMID: 38455097 PMCID: PMC10915950 DOI: 10.4252/wjsc.v16.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
This review comprehensively explores the versatile potential of mesenchymal stem cells (MSCs) with a specific focus on adipose-derived MSCs. Ophthalmic and oculoplastic surgery, encompassing diverse procedures for ocular and periocular enhancement, demands advanced solutions for tissue restoration, functional and aesthetic refinement, and aging. Investigating immunomodulatory, regenerative, and healing capacities of MSCs, this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside, addressing common unmet needs in the field of reconstructive and regenerative surgery.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
- Department of Ophthalmology, Campus Bio-Medico University, Rome 00128, Italy
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
10
|
Møller-Hansen M, Utheim TP, Heegaard S. Surgical Procedures in the Treatment of Dry Eye Disease. J Ocul Pharmacol Ther 2023; 39:692-698. [PMID: 37566528 DOI: 10.1089/jop.2023.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disease affecting 5% to 50% in different populations. The most severe cases of DED are often caused by aqueous deficient dry eye disease (ADDE) due to lacrimal gland (LG) hypofunction. Many patients with severe ADDE do not experience adequate symptom relief from topical treatment, severely reducing their quality of life. The focus of this review is to describe the surgical interventions presently being used or investigated when topical treatment with eye drops is insufficient. The conventional surgical approach is to proceed to punctal occlusion or partial or total tarsorrhaphy. However, novel surgical procedures have been reported to have higher efficacy and patient satisfaction than conventional treatments. These procedures include amniotic membrane transplantation, transposition or transplantation of the salivary glands, and cell-based injections into the LG, each with strengths and weaknesses. Further development of these treatment modalities might prove pivotal in treating dry eye patients in the future.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tor Paaske Utheim
- Departmernt of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Steffen Heegaard
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Møller-Hansen M. Mesenchymal stem cell therapy in aqueous deficient dry eye disease. Acta Ophthalmol 2023; 101 Suppl 277:3-27. [PMID: 37840443 DOI: 10.1111/aos.15739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ENGLISH SUMMARY Dry eye disease (DED) is characterized by ocular dryness, irritation and blurred vision and has a significant impact on the patient's quality of life. This condition can be particularly severe in patients with aqueous deficient dry eye disease (ADDE) due to Sjögren's syndrome (SS), an autoimmune disease that affects the lacrimal and salivary glands. Current treatments for ADDE are often limited to symptomatic relief. A literature review was conducted to explore the current surgical interventions used or tested in humans with ADDE (I). These interventions include procedures involving the eyelids and tear ducts, transplantation of amniotic membrane or salivary glands, injections around the tear ducts and cell-based injections into the lacrimal gland (LG). Each treatment has its advantages and disadvantages; however, treating dry eyes in patients with SS presents a particular challenge due to the systemic nature of the disease. Moreover, there is a need for new therapeutic options. Mesenchymal stem cells (MSCs) are a type of stem cell that have shown promise in regenerating damaged tissue and reducing inflammation in various diseases. Previous studies in animal models have suggested that MSCs could be effective in treating ADDE. Thus, this thesis aims to investigate the safety and efficacy of injecting MSCs into the LG as a treatment option for patients with ADDE secondary to SS. The study also aims to see this treatment in light of existing and novel investigational treatment options. The clinical studies conducted for this thesis are the first of their kind in humans. MSCs derived from healthy donors' adipose tissue (ASCs) were cultured in a laboratory, frozen and thawed ready for use. In the safety study, we performed the first human trial involving the administration of a single injection of ASCs into the LG of one eye in seven patients suffering from severe ADDE (II). The primary objective was to test the safety of this treatment, while the secondary objective was to assess improvements in subjective and objective signs of dry eye. The results of the trial showed no serious side effects within 4 months of follow-up after treatment. On average, there was a 40% reduction in dry eye symptoms assessed with the Ocular Surface Disease Index (OSDI) questionnaire. Additionally, in the treated eye, there was a significant decrease in tear osmolarity, an increase in tear film stability and an increase in tear production. To further investigate the efficacy of this treatment, our research group performed a clinical, randomized study aiming to compare the ASC injection into the LG with the injection of a vehicle (the excipient in which the ASCs are dissolved) and observation (no intervention) (III). The study involved 20 subjects receiving ASC injection, 20 subjects receiving vehicle injection and 14 patients being observed without intervention. The subjects were examined to assess the outcomes with a 12-month follow-up after treatment. Both intervention groups showed a significant reduction in subjective dry eye symptoms of approximately 40%. This improvement was evident at the 1-week follow-up and persisted until the 12-month follow-up. The observation group did not experience any change in OSDI score. The ASCs group exhibited a significant mean increase in non-invasive tear break-up time (NIKBUT) of 6.48 s (149%) at the four-week follow-up, which was significantly higher than that in the vehicle group (p = 0.04). Moreover, the ASCs group showed a significant increase in NIKBUT compared to that in the observation group at the 12-month follow-up (p = 0.004). In both the ASCs and vehicle group, a significant increase in Schirmer test scores at the 4-month follow-up and the 12-month follow-up was observed. In conclusion, this thesis contributes valuable findings with a new treatment option for patients with dry eye disease. Injection of ASCs into the LG was shown to be safe and to improve subjective dry eye symptoms and specifically the tear film stability in patients with ADDE due to SS. Compared to other treatment modalities of ADDE, this treatment has greater potential, as ASCs could potentially be used as an anti-inflammatory therapeutic option for managing DED of other causes as well. RESUMÉ (DANISH SUMMARY): Tørre øjne, karakteriseret ved tørhedsfornemmelse og irritation af øjnene samt sløret syn, har en betydelig indvirkning på patientens livskvalitet. Denne tilstand kan vaere saerligt alvorlig hos patienter med nedsat tåreproduktion (ADDE) som følge af Sjögrens syndrom (SS), en autoimmun sygdom, der påvirker tårekirtlerne og spytkirtlerne. Nuvaerende behandlinger for ADDE er ofte begraenset til symptomlindring. Vi gennemførte en litteraturgennemgang for at undersøge, hvilke nuvaerende kirurgiske behandlingsmetoder, der anvendes eller testes hos patienter med ADDE (I). Disse interventioner inkluderer procedurer, der involverer øjenlåg og tårekanaler, transplantation af amnionhinde eller spytkirtler, injektioner omkring tårekanalerne samt cellebaserede injektioner i tårekirtlen. Hver behandling har sine fordele og ulemper, men behandling af tørre øjne hos patienter med SS udgør en saerlig udfordring på grund af sygdommens systemiske udbredning, og der er behov for nye behandlingsmuligheder. Mesenkymale stamceller (MSCs) er en type stamcelle, der har vist lovende resultater med hensyn til at regenerere beskadiget vaev og reducere inflammation i forskellige sygdomme. Tidligere undersøgelser i dyremodeller har indikeret, at MSCs kan vaere en effektiv behandling af ADDE. Denne afhandling har til formål at undersøge sikkerheden og effekten af injektion af MSCs i tårekirtlen som en mulig behandling til patienter med ADDE som følge af SS. Afhandlingen sigter også mod at sammenligne denne behandling med andre eksisterende, kirurgiske behandlingsmuligheder af ADDE. Som led i dette projekt udførte vi de første kliniske forsøg af sin art i mennesker. MSCs fra raske donorers fedtvaev (ASCs) blev dyrket i et laboratorium, frosset ned og er optøet klar til brug. Det første mål var at teste sikkerheden ved denne behandling og sekundaert at undersøge behandlingens effekt. For at undersøge dette modtog syv forsøgspersoner med svaer ADDE én injektion med ASCs i tårekirtlen på det ene øje (II). Resultaterne af forsøget viste ingen alvorlige bivirkninger inden for fire måneders opfølgning efter behandlingen. I gennemsnit fandt vi yderligere en 40% reduktion i symptomer på tørre øjne vurderet med et spørgeskema, og en markant stigning i tåreproduktionen og af tårefilmens stabilitet i det behandlede øje. For yderligere at undersøge effekten af denne behandling udførte vi et klinisk, randomiseret forsøg med det formål at sammenligne injektion af ASCs i tårekirtlen med injektion af en kontrolopløsning (vaesken, hvor stamcellerne var opløst) og observation (ingen intervention) (III). Studiet omfattede 20 forsøgspersoner, der modtog ASC-injektion, 20 forsøgspersoner, der modtog injektion af kontrolopløsningen, og 14 forsøgspersoner i observationsgruppen. Forsøgspersonerne blev undersøgt med en opfølgningstid på 12 måneder efter behandling. Begge interventionsgrupper viste en betydelig reduktion på ca. 40% i subjektive symptomer på tørre øjne. Denne forbedring var betydelig allerede ved opfølgning efter en uge og varede ved 12 måneder efter behandling. Observationsgruppen oplevede ingen betydelig aendring i symptomer. ASCs gruppen viste desuden en signifikant stigning i tårefilmsstabiliteten (NIKBUT) på 6,48 sekunder (149%) ved opfølgning efter fire uger, hvilket var markant højere end efter injektion af kontrolopløsning (p = 0,04). Desuden viste ASCs gruppen en betydelig stigning i NIKBUT sammenlignet med observationsgruppen ved opfølgning efter 12 måneder (p = 0,004). Både injektion af ASCs og kontrolopløsning medførte en betydelig stigning i tåreproduktionen ved opfølgning fire måneder og 12 måneder efter behandling. Denne afhandling bidrager med vigtige resultater inden for en ny behandlingsmulighed af tørre øjne. Injektion af ASCs i tårekirtlen viste sig at vaere sikker, forbedrede subjektive symptomer på tørre øjne og øgede saerligt tårfilmens stabilitet hos patienter med ADDE på grund af SS. Sammenlignet med andre behandlingsmuligheder for ADDE har denne behandling vist et stort potentiale. ASCs kan muligvis også bruges som en anti-inflammatorisk behandling af tørre øjne af andre årsager i fremtiden.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Scattini G, Pellegrini M, Severi G, Cagiola M, Pascucci L. The Stromal Vascular Fraction from Canine Adipose Tissue Contains Mesenchymal Stromal Cell Subpopulations That Show Time-Dependent Adhesion to Cell Culture Plastic Vessels. Animals (Basel) 2023; 13:ani13071175. [PMID: 37048431 PMCID: PMC10093060 DOI: 10.3390/ani13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (MSCs) are extensively studied in both human and veterinary medicine. Their isolation is usually performed by collagenase digestion followed by filtration and removal of nonadherent tissue remnants 48 h after seeding. We observed that waste tissue fragments contain cells that adhere belatedly to the plastic. We aimed to investigate their basic properties to speculate on the possible existence of MSC subpopulations. Adipose tissue from three dogs was enzymatically digested. Three cell populations that adhered to the culture plastic 48, 96, and 144 h after seeding were obtained. After expansion, they were analyzed by flow cytometry for MSC-positive (CD90, CD44, and CD29) and -negative (CD14, MHCII, and CD45) markers as well as for endothelial, pericyte, and smooth muscle cell markers (CD31, CD146, and alpha-SMA). Furthermore, cells were assessed for viability, doubling time, and trilineage differentiation ability. No significant differences were found between the three subpopulations. As a result, this procedure has proven to be a valuable method for dramatically improving MSCs yield. As a consequence of cell recovery optimization, the amount of tissue harvested could be reduced, and the time required to obtain sufficient cells for clinical applications could be shortened. Further studies are needed to uncover possible different functional properties.
Collapse
Affiliation(s)
- Gabriele Scattini
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Martina Pellegrini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
- Correspondence: (M.P.); (L.P.); Tel.: +39-075-3431 (M.P.); +39-075-585-7632 (L.P.)
| | - Giulio Severi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
- Correspondence: (M.P.); (L.P.); Tel.: +39-075-3431 (M.P.); +39-075-585-7632 (L.P.)
| |
Collapse
|
14
|
Musa M, Zeppieri M, Enaholo ES, Salati C, Parodi PC. Adipose Stem Cells in Modern-Day Ophthalmology. Clin Pract 2023; 13:230-245. [PMID: 36826163 PMCID: PMC9955457 DOI: 10.3390/clinpract13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Stem cells (SCs) have evolved as an interesting and viable factor in ophthalmologic patient care in the past decades. SCs have been classified as either embryonic, mesenchymal, tissue-specific, or induced pluripotent cells. Multiple novel management techniques and clinical trials have been established to date. While available publications are predominantly animal-model-based, significant material is derived from human studies and case-selected scenarios. This possibility of explanting cells from viable tissue to regenerate/repair damaged tissue points to an exciting future of therapeutic options in all fields of medicine, and ophthalmology is surely not left out. Adipose tissue obtained from lipo-aspirates has been shown to produce mesenchymal SCs that are potentially useful in different body parts, including the oculo-visual system. An overview of the anatomy, physiology, and extraction process for adipose-tissue-derived stem cells (ADSC) is important for better understanding the potential therapeutic benefits. This review examines published data on ADSCs in immune-modulatory, therapeutic, and regenerative treatments. We also look at the future of ADSC applications for ophthalmic patient care. The adverse effects of this relatively novel therapy are also discussed.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
15
|
Jackson CJ, Naqvi M, Gundersen KG, Utheim TP. Role of stem cells in regenerative treatment of dry eye disease caused by lacrimal gland dysfunction. Acta Ophthalmol 2022; 101:360-375. [PMID: 36564971 DOI: 10.1111/aos.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 12/11/2022] [Indexed: 12/25/2022]
Abstract
An ageing population and increased screen use in younger people have contributed to a rise in incidence of dry eye disease (DED). Quality of life can be significantly affected by DED, with patients experiencing eye dryness, burning, pain and sensitivity to light. If left untreated, DED may progress to cause lasting damage to the delicate cell layers of the ocular surface. The aqueous-deficient form of DED is characterized by decreased tear volume. This can occur through underlying disease or damage to the lacrimal gland (LG), which results in increased inflammation at the ocular surface and decreased tear secretion. Regenerative therapy for treatment of aqueous-deficient DED would ideally restore LG function without causing adverse side effects and be feasible in terms of cost, production and practical application in the clinic. In this review, we evaluate research directed at the development of clinical procedures for regeneration of the LG using various stem cell types and their products. We also discuss work identifying potential therapeutic targets that may alter pathways to effect healing and ameliorate development of DED. Finally, we discuss shortcomings and recommend future avenues for research. These include determination of the best tissue of origin for mesenchymal cells and transference of knowledge gleaned from animal studies to clinical investigations.
Collapse
Affiliation(s)
- Catherine J Jackson
- Ifocus, Haugesund, Norway.,Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Maria Naqvi
- Department of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Ophthalmology, Vestre Viken Hospital Trust, Drammen, Norway.,Faculty of Medicine, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,The Faculty of Health Sciences, Department of Quality and Health Technology, University of Stavanger, Stavanger, Norway.,Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway.,National Centre for Optics, Vision and Eye Care, Faculty of Health Sciences, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway.,The Faculty of Health and Sport Sciences, Department of Health and Nursing Science, University of Agder, Grimstad, Norway.,Department of Computer Science, Oslo Metropolitan University, Oslo, Norway.,The Norwegian Dry Eye Clinic, Oslo, Norway
| |
Collapse
|
16
|
ÖZGENÇ Ö, ÖZEN A. Osteogenic Differentiation of Canine Adipose Derived Mesenchymal Stem Cells on B-TCP and B-TCP/Collagen Biomaterials. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cells are adult stem cells that have the ability to differentiate into osteogenic, chondrogenic, adipogenic and myogenic lineages. In the field of orthopedics and traumatology, mesenchymal stem cells in combination with biomaterials are used especially for the treatment of bone fractures and diseases in both humans and animals. The purpose of this study is to promote growth, proliferation and osteogenic differentiation of mesenchymal stem cells that were isolated from the adipose tissue of canines on B-TCP (Beta-tricalcium phosphate) and B-TCP/Collagen biomaterials. MTT analysis was performed to test the cell adhesion and proliferation on B-TCP and B-TCP/Collagen biomaterials that were used to mimic the extracellular matrix of three-dimensional bone tissue. Scanning electron microscope analysis was performed to show general surface characters of B-TCP and B-TCP /Collagen biomaterials. The osteoinductive capacities of the B-TCP and B-TCP/Collagen biomaterials were determined by alkaline phosphatase and Von Kossa stainings, and RT-PCR analysis. The ALP activity of the B-TCP/Col containing material was significantly higher than the B-TCP on the first days. In terms of gene expression, there were no significant differences except 14th-day SPARC gene expression. The results of Von Kossa staining indicate that B-TCP/Col has above the desired level degradation capacity. As a result of this research, although it is advantageous in terms of alkaline phosphatase activity and osteogenic gene expression compared to B-TCP material, it is thought that B-TCP/Collagen biomaterial should be developed for use in bone tissue engineering due to its high degradation property.
Collapse
|
17
|
El-Husseiny HM, Mady EA, Helal MAY, Tanaka R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet Sci 2022; 9:648. [PMID: 36423096 PMCID: PMC9698002 DOI: 10.3390/vetsci9110648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
The introduction of new regenerative therapeutic modalities in the veterinary practice has recently picked up a lot of interest. Stem cells are undifferentiated cells with a high capacity to self-renew and develop into tissue cells with specific roles. Hence, they are an effective therapeutic option to ameliorate the ability of the body to repair and engineer damaged tissues. Currently, based on their facile isolation and culture procedures and the absence of ethical concerns with their use, mesenchymal stem cells (MSCs) are the most promising stem cell type for therapeutic applications. They are becoming more and more well-known in veterinary medicine because of their exceptional immunomodulatory capabilities. However, their implementation on the clinical scale is still challenging. These limitations to their use in diverse affections in different animals drive the advancement of these therapies. In the present article, we discuss the ability of MSCs as a potent therapeutic modality for the engineering of different animals' tissues including the heart, skin, digestive system (mouth, teeth, gastrointestinal tract, and liver), musculoskeletal system (tendons, ligaments, joints, muscles, and nerves), kidneys, respiratory system, and eyes based on the existing knowledge. Moreover, we highlighted the promises of the implementation of MSCs in clinical use in veterinary practice.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Mahmoud A. Y. Helal
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
18
|
Jiang Y, Lin S, Gao Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transplant 2022; 31:9636897221133818. [PMID: 36398793 PMCID: PMC9679336 DOI: 10.1177/09636897221133818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dry eye is one of the most common chronic diseases in ophthalmology. It affects quality of life and has become a public health problem that cannot be ignored. The current treatment methods mainly include artificial tear replacement therapy, anti-inflammatory therapy, and local immunosuppressive therapy. These treatments are mainly limited to improvement of ocular surface discomfort and other symptoms. In recent years, regenerative medicine has developed rapidly, and ophthalmologists are working on new methods to treat dry eye. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immune regulatory effects, and have become a promising tool for the treatment of dry eye. These effects can also be produced by MSC-derived exosomes (MSC-Exos). As a cell-free therapy, MSC-Exos are hypoimmunogenic, serve more stable entities, and compared with MSCs, reduce the safety risks associated with the injection of live cells. This article reviews current knowledge about MSCs and MSC-Exos, and highlights the latest progress and future prospects of MSC-based therapy in dry eye treatment.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Yingying Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Yingying Gao, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian, China.
| |
Collapse
|
19
|
Serrano A, Osei KA, Huertas-Bello M, Sabater AL. The Potential of Stem Cells as Treatment for Ocular Surface Diseases. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Trends in using mesenchymal stromal/stem cells (MSCs) in treating corneal diseases. Ocul Surf 2022; 26:255-267. [DOI: 10.1016/j.jtos.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
|
21
|
Singh VK, Sharma P, Vaksh UKS, Chandra R. Current approaches for the regeneration and reconstruction of ocular surface in dry eye. Front Med (Lausanne) 2022; 9:885780. [PMID: 36213677 PMCID: PMC9544815 DOI: 10.3389/fmed.2022.885780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Significant research revealed the preocular tear film composition and regulations that remain vital for maintaining Ocular surface functional integrity. Inflammation triggered by many factors is the hallmark of Ocular surface disorders or dry eyes syndrome (DES). The tear deficiencies may lead to ocular surface desiccation, corneal ulceration and/or perforation, higher rates of infectious disease, and the risk of severe visual impairment and blindness. Clinical management remains largely supportive, palliative, and frequent, lifelong use of different lubricating agents. However, few advancements such as punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts are of limited use. Cell-based therapies, tissue engineering, and regenerative medicine, have recently evolved as long-term cures for many diseases, including ophthalmic diseases. The present article focuses on the different regenerative medicine and reconstruction/bioengineered lacrimal gland formation strategies reported so far, along with their limiting factors and feasibility as an effective cure in future.
Collapse
Affiliation(s)
- Vimal Kishor Singh
- Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vimal Kishor Singh ; ;
| | - Pallavi Sharma
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
| | - Uttkarsh Kumar Sharma Vaksh
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Gurgaon, Haryana, India
| | - Ramesh Chandra
- Institute of Nanomedical Sciences, University of Delhi, Delhi, India
| |
Collapse
|
22
|
[Beyond esthetics-Regenerative medicine for severe diseases of the adnexa oculi]. DIE OPHTHALMOLOGIE 2022; 119:878-890. [PMID: 35925347 DOI: 10.1007/s00347-022-01643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Restoration of eyelid and lacrimal functions are important steps on the way to an intact ocular surface. Clinically available substitute tissues or therapeutic options for eyelid reconstruction and lacrimal gland regeneration often reach their limits in patients with severe diseases of the adnexa oculi. Several approaches in regenerative medicine have been intensively researched and clinically tested in recent years. These range from reconstructive approaches with novel tissue matrices in the field of eyelid surgery to stem cell therapies to regenerate lacrimal gland function. MATERIAL AND METHODS The state of the art in the current literature is presented and an overview of clinically applied or currently researched tissues for eyelid reconstruction is given. Furthermore, approaches in stem cell therapy of the lacrimal gland as well as own results are presented. RESULTS Acellular dermis has been successfully used for eyelid reconstruction and represents a viable option in cases of limited availability of autologous tissue. In vitro grown cellular constructs or tissues with genetically modified cells have already been successfully applied in dermatology for the treatment of burns or severe genodermatoses. First studies on stem cell therapy for severe dry eye in Sjögren syndrome showed a safe and effective application of mesenchymal stem cells by injection into the lacrimal gland. CONCLUSION Due to the limitations of currently available replacement tissues, there is a clinical need for the development of new materials for adnexa oculi reconstruction. Constructs grown in vitro with allogeneic and/or genetically engineered cells are slowly making their way into clinical practice. The efficacy and mode of action of stem cells in severe dry eye are subject matters of current clinical trials.
Collapse
|
23
|
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11162549. [PMID: 36010626 PMCID: PMC9406486 DOI: 10.3390/cells11162549] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is currently being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice. In the current article, we will review the existing preclinical and human clinical evidence regarding the use of such adipose-derived mesenchymal stem cells for the regeneration of the three main layers of the human cornea: the epithelium (derived from the surface ectoderm), the stroma (derived from the neural crest mesenchyme), and the endothelium (derived from the neural crest cells).
Collapse
|
24
|
Ivanovska A, Wang M, Arshaghi TE, Shaw G, Alves J, Byrne A, Butterworth S, Chandler R, Cuddy L, Dunne J, Guerin S, Harry R, McAlindan A, Mullins RA, Barry F. Manufacturing Mesenchymal Stromal Cells for the Treatment of Osteoarthritis in Canine Patients: Challenges and Recommendations. Front Vet Sci 2022; 9:897150. [PMID: 35754551 PMCID: PMC9230578 DOI: 10.3389/fvets.2022.897150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
The recent interest in advanced biologic therapies in veterinary medicine has opened up opportunities for new treatment modalities with considerable clinical potential. Studies with mesenchymal stromal cells (MSCs) from animal species have focused on in vitro characterization (mostly following protocols developed for human application), experimental testing in controlled studies and clinical use in veterinary patients. The ability of MSCs to interact with the inflammatory environment through immunomodulatory and paracrine mechanisms makes them a good candidate for treatment of inflammatory musculoskeletal conditions in canine species. Analysis of existing data shows promising results in the treatment of canine hip dysplasia, osteoarthritis and rupture of the cranial cruciate ligament in both sport and companion animals. Despite the absence of clear regulatory frameworks for veterinary advanced therapy medicinal products, there has been an increase in the number of commercial cell-based products that are available for clinical applications, and currently the commercial use of veterinary MSC products has outpaced basic research on characterization of the cell product. In the absence of quality standards for MSCs for use in canine patients, their safety, clinical efficacy and production standards are uncertain, leading to a risk of poor product consistency. To deliver high-quality MSC products for veterinary use in the future, there are critical issues that need to be addressed. By translating standards and strategies applied in human MSC manufacturing to products for veterinary use, in a collaborative effort between stem cell scientists and veterinary researchers and surgeons, we hope to facilitate the development of quality standards. We point out critical issues that need to be addressed, including a much higher level of attention to cell characterization, manufacturing standards and release criteria. We provide a set of recommendations that will contribute to the standardization of cell manufacturing methods and better quality assurance.
Collapse
Affiliation(s)
- Ana Ivanovska
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Mengyu Wang
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Tarlan Eslami Arshaghi
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | - Russell Chandler
- Orthopaedic Referral Service, Alphavet Veterinary Centre, Newport, United Kingdom
| | - Laura Cuddy
- Small Animal Surgery, Canine Sports Medicine and Rehabilitation, Veterinary Specialists Ireland, Summerhill, Ireland
| | - James Dunne
- Knocknacarra Veterinary Clinic, Ark Vets Galway, Galway, Ireland
| | - Shane Guerin
- Small Animal Surgery, Gilabbey Veterinary Hospital, Cork, Ireland
| | | | - Aidan McAlindan
- Northern Ireland Veterinary Specialists, Hillsborough, United Kingdom
| | - Ronan A Mullins
- Department of Small Animal Surgery, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
25
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
26
|
Wei LN, Wu CH, Lin CT, Liu IH. Topical applications of allogeneic adipose-derived mesenchymal stem cells ameliorate the canine keratoconjunctivitis sicca. BMC Vet Res 2022; 18:217. [PMID: 35689226 PMCID: PMC9185903 DOI: 10.1186/s12917-022-03303-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Canine keratoconjunctivitis sicca (KCS) is predominantly an immune-mediated disease. Current therapy of canine KCS is mainly by immunosuppressant, but the effectiveness was limited in some patients. In the past few years, some studies showed the results of the use of mesenchymal stem cells in treating canine KCS via periocular injections. However, the periocular injection procedure requires sedation or general anesthesia, and may lead to iatrogenic or incidental injury during the injection process. The aim of this study was to investigate the efficacy of topical allogenic canine adipose-derived mesenchymal stem cells (cAD-MSCs) in clinical patients of canine KCS. Results The cAD-MSCs used in this study were characterized for their capability of tri-lineage differentiation and immunomodulatory properties. In addition, preparation methods for eye drops of cAD-MSCs was developed and its optimal preservation was tested. The canine KCS patients were recruited for clinical trial and divided into two groups based on their history of previous treatment. All patients received topical cAD-MSCs treatment once per week for 6 consecutive weeks and complete ophthalmic examinations were performed 1 week before treatment (week 0) and at 3rd, 6th, 9th weeks, respectively. The results showed that the quantity and quality of tears have improved significantly following topical cAD-MSCs treatment based on Schirmers tear test-1 and tear break-up time. More than half of all patients were found improved in the tear quantity. In particular, 56.5% of the patients that were unresponsive to prior immunosuppressant therapy had an effective increase in tear volume. The severity of clinical signs was also ameliorated according to the numeric rating scale score from both patient owners and the clinician. Conclusion To sum up, topical cAD-MSCs may be beneficial especially in KCS patients with poor owner compliance for frequent daily use of eye drops or those who are unresponsive to immunosuppressant therapy.
Collapse
Affiliation(s)
- Li-Ning Wei
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,Department of Ophthalmology, National Taiwan University Veterinary Hospital, Taipei, 106, Taiwan
| | - Ching-Ho Wu
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,Department of Small Animal Surgery, National Taiwan University Veterinary Hospital, Taipei, 106, Taiwan
| | - Chung-Tien Lin
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan. .,Department of Ophthalmology, National Taiwan University Veterinary Hospital, Taipei, 106, Taiwan.
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
27
|
Huang R, Su C, Fang L, Lu J, Chen J, Ding Y. Dry eye syndrome: comprehensive etiologies and recent clinical trials. Int Ophthalmol 2022; 42:3253-3272. [PMID: 35678897 PMCID: PMC9178318 DOI: 10.1007/s10792-022-02320-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/18/2022] [Indexed: 12/07/2023]
Abstract
Dry eye syndrome (DES) is multifactorial and likely to be a cause of concern more so than ever given the rapid pace of modernization, which is directly associated with many of the extrinsic causative factors. Additionally, recent studies have also postulated novel etiologies that may provide the basis for alternative treatment methods clinically. Such insights are especially important given that current approaches to tackle DES remains suboptimal. This review will primarily cover a comprehensive list of causes that lead to DES, summarize all the upcoming and ongoing clinical trials that focuses on treating this disease as well as discuss future potential treatments that can improve inclusivity.
Collapse
Affiliation(s)
- Ruojing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Caiying Su
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Lvjie Fang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiaqi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Huangpu Avenue West 601, Tianhe District, Guangzhou, 510632, China.
| | - Yong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
28
|
Buote NJ. Laparoscopic adipose-derived stem cell harvest technique with bipolar sealing device: Outcome in 12 dogs. Vet Med Sci 2022; 8:1421-1428. [PMID: 35537084 PMCID: PMC9297765 DOI: 10.1002/vms3.816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective This study aimed to describe the technique and clinical outcomes in dogs undergoing Laparoscopic Adipose‐Derived Stem Cell Harvest via bipolar sealing device (LADSCHB) for degenerative orthopaedic and neurologic disease. Study Design Descriptive retrospective case series. Animals Eleven dogs with orthopaedic disease and one dog with degenerative spinal disease were enrolled in the study. Methods Medical records of dogs undergoing LADSCHB were reviewed for signalment, weight, reason for the procedure, anaesthesia time, surgery time, other procedures performed, post‐operative pain protocols, incision size, amount of adipose tissue collected, number of viable cells collected, days to discharge, short‐term complications, and owner satisfaction. Results The median weight of the population was 34.2 kg (range 9.2–62 kg), the median surgery time was 39 min (range 15–45 min), mean incision length was 2.5 cm, the median amount of adipose collected was 60 g, and the median number of viable stem cells was 21 million cells. Conversion to open laparotomy was not needed. The most common reason for the harvest was osteoarthritis of the elbow (8/12 cases). Nine cases had other procedures performed at the same time as the harvest. No complications were noted during the procedure or within the post‐operative period. All owners surveyed were satisfied with the laparoscopic harvest procedure. Conclusions LADSCHB was technically feasible, productive, and not associated with any complications. This procedure was performed rapidly and was paired with other surgical procedures. Clinical Significance LADSCHB allows for stem cell harvest with commonly utilized laparoscopic equipment. This surgical technique could lead to the increased ability to treat patients with diseases that benefit from stem cell therapy.
Collapse
Affiliation(s)
- Nicole J Buote
- VCA West Los Angeles Animal Hospital, Los Angeles, California, USA
| |
Collapse
|
29
|
Kim SY, Yoon TH, Na J, Yi SJ, Jin Y, Kim M, Oh TH, Chung TW. Mesenchymal Stem Cells and Extracellular Vesicles Derived from Canine Adipose Tissue Ameliorates Inflammation, Skin Barrier Function and Pruritus by Reducing JAK/STAT Signaling in Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23094868. [PMID: 35563259 PMCID: PMC9101369 DOI: 10.3390/ijms23094868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Canine atopic dermatitis (AD) is a common chronic inflammatory skin disorder resulting from imbalance between T lymphocytes. Current canine AD treatments use immunomodulatory drugs, but some of the dogs have limitations that do not respond to standard treatment, or relapse after a period of time. Thus, the purpose of this study was to evaluate the immunomodulatory effect of mesenchymal stem cells derived from canine adipose tissue (cASCs) and cASCs-derived extracellular vesicles (cASC-EVs) on AD. First, we isolated and characterized cASCs and cASCs-EVs to use for the improvement of canine atopic dermatitis. Here, we investigated the effect of cASCs or cASC-EVs on DNCB-induced AD in mice, before using for canine AD. Interestingly, we found that cASCs and cASC-EVs improved AD-like dermatitis, and markedly decreased levels of serum IgE, (49.6%, p = 0.002 and 32.1%, p = 0.016 respectively) epidermal inflammatory cytokines and chemokines, such as IL-4 (32%, p = 0.197 and 44%, p = 0.094 respectively), IL-13 (47.4%, p = 0.163, and 50.0%, p = 0.039 respectively), IL-31 (64.3%, p = 0.030 and 76.2%, p = 0.016 respectively), RANTES (66.7%, p = 0.002 and 55.6%, p = 0.007) and TARC (64%, p = 0.016 and 86%, p = 0.010 respectively). In addition, cASCs or cASC-EVs promoted skin barrier repair by restoring transepidermal water loss, enhancing stratum corneum hydration and upregulating the expression levels of epidermal differentiation proteins. Moreover, cASCs or cASC-EVs reduced IL-31/TRPA1-mediated pruritus and activation of JAK/STAT signaling pathway. Taken together, these results suggest the potential of cASCs or cASC-EVs for the treatment of chronic inflammation and damaged skin barrier in AD or canine AD.
Collapse
Affiliation(s)
- Sung Youl Kim
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Tae Hong Yoon
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Jungtae Na
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
| | - Seong Joon Yi
- Department of Veterinary Anatomy, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Yunseok Jin
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Tae-Ho Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
- Correspondence: (T.-H.O.); (T.-W.C.)
| | - Tae-Wook Chung
- JIN BioCell Co., Ltd., R&D Center, #101-103, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Korea
- Correspondence: (T.-H.O.); (T.-W.C.)
| |
Collapse
|
30
|
Prišlin M, Vlahović D, Kostešić P, Ljolje I, Brnić D, Turk N, Lojkić I, Kunić V, Karadjole T, Krešić N. An Outstanding Role of Adipose Tissue in Canine Stem Cell Therapy. Animals (Basel) 2022; 12:ani12091088. [PMID: 35565514 PMCID: PMC9099541 DOI: 10.3390/ani12091088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Adipose tissue, previously known as connective tissue with a role in energy storage, is currently changing the course of treatments in veterinary medicine. Recent studies have revealed one particularly impressive function among all the newly discovered functions of adipose tissue. The interactive cells hosted by adipose tissue, the stromal vascular fraction (SVF), and their role in treating numerous diseases have provided a prospective course of research with positive outcomes in regenerative veterinary medicine (RVM). This review describes the main features of adipose tissue, emphasizing an eclectic combination of cells within the SVF and its thus far researched therapeutic possibilities in canine RVM. An afterwards focus is on a highly researched component of the SVF, adipose-derived mesenchymal stem cells (ASCs), which were shown to have an extraordinary impact relying on several proposed mechanisms of action on mitigating pathologies in canines. Furthermore, ASC therapy showed the most significant results in the orthopaedics field and in neurology, dermatology, ophthalmology, gastroenterology, and hepatology, which elevates the possibilities of ASC therapy to a whole new level. Therefore, this review article aims to raise awareness of the importance of research on cellular components, within abundant and easily accessible adipose tissue, in the direction of regenerative therapy in canines, considering the positive outcomes so far. Although the focus is on the positive aspects of cellular therapy in canines, the researchers should not forget the importance of identifying the potential negative aspects within published and upcoming research. Safe and standardized treatment represents a fundamental prerequisite for positively impacting the lives of canine patients.
Collapse
Affiliation(s)
- Marina Prišlin
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Dunja Vlahović
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Petar Kostešić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Ivana Ljolje
- Veterinary Clinic for Small Animals Buba, Dore Pfanove 11, 10000 Zagreb, Croatia;
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Nenad Turk
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Valentina Kunić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Tugomir Karadjole
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Nina Krešić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
- Correspondence:
| |
Collapse
|
31
|
Suicide gene therapy by canine mesenchymal stem cell transduced with thymidine kinase in a u-87 glioblastoma murine model: Secretory profile and antitumor activity. PLoS One 2022; 17:e0264001. [PMID: 35167620 PMCID: PMC8846542 DOI: 10.1371/journal.pone.0264001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/31/2022] [Indexed: 01/22/2023] Open
Abstract
The role played by certain domestic species such as dogs as a translational model in comparative oncology shows great interest to develop new therapeutic strategies in brain tumors. Gliomas are a therapeutic challenge that represents the most common form of malignant primary brain tumors in humans and the second most common form in dogs. Gene-directed enzyme/prodrug therapy using adipose mesenchymal stem cells (Ad-MSCs) expressing the herpes simplex virus thymidine kinase (TK) has proven to be a promising alternative in glioblastoma therapy, through its capacity to migrate and home to the tumor and delivering local cytotoxicity avoiding other systemic administration. In this study, we demonstrate the possibility for canine Ad-MSCs (cAd-MSCs) to be genetically engineered efficiently with a lentiviral vector to express TK (TK-cAd-MSCs) and in combination with ganciclovir (GCV) prodrug demonstrated its potential antitumor efficacy in vitro and in vivo in a mice model with the human glioblastoma cell line U87. TK-cAd-MSCs maintained cell proliferation, karyotype stability, and MSCs phenotype. Genetic modification significantly affects its secretory profile, both the analyzed soluble factors and exosomes. TK-cAd-MSCs showed a high secretory profile of some active antitumor immune response cytokines and a threefold increase in the amount of secreted exosomes, with changes in their protein cargo. We also found that the prodrug protein is not released directly into the culture medium by TK-cAd-MSCs. We believe that our work provides new perspectives for glioblastoma gene therapy in dogs and a better understanding of this therapy in view of its possible implantation in humans.
Collapse
|
32
|
Pereira AL, Bittencourt MKW, Barros MA, Malago R, Panattoni JFM, de Morais BP, Montiani-Ferreira F, Vasconcellos JPC. Subconjunctival use of allogeneic mesenchymal stem cells to treat chronic superficial keratitis in German shepherd dogs: Pilot study. Open Vet J 2022; 12:744-753. [PMID: 36589393 PMCID: PMC9789768 DOI: 10.5455/ovj.2022.v12.i5.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/18/2022] [Indexed: 01/03/2023] Open
Abstract
Background Chronic superficial keratitis (CSK) is an ocular condition in dogs characterized by corneal opacification leading to visual function impairment. Control of this chronic condition requires the use of topical immunomodulators or corticosteroids daily. Regenerative medicine has shown promising results in several fields of medicine. Aim The aim of this study was to evaluate the clinical effect of allogeneic mesenchymal stem cells (MSCs) of adipose tissue applied via subconjunctival in dogs with CSK. Methods A series of cases of eight dogs diagnosed with CSK were divided into two groups, four dogs each; the conventional treatment group received prednisolone 1% as topical eye drops and the experimental group (EG) received allogeneic MSCs transplantation. The dogs had not previously been treated for CSK. Systemic and ophthalmologic examinations were performed to exclude other abnormalities. An administered amount of MSC (1 × 106 cells each time) was injected via subconjunctival in the peri-limbal region at 0 and 30 days. The animals were followed for 110 days for clinical evaluation, and, at the same time, the images of the corneal abnormalities were obtained and analyzed in the ImageJ software. The statistical analysis was performed in the GrandPrism 7.0 software. Results Initial and final images revealed that areas with neovascularization, inflammatory infiltrate, and opacity regressed in most eyes in both groups (7/8 eyes in each group) at the end of the 110 days, p = 0.0391 and p = 0.0078 respectively, but this response was minor in the EG comparing to conventional group (CG) (p = 0.026). No local or systemic side effects were observed. Conclusions Despite the small melioration, MSCs treatment suggests clinical improvement in patients with CSK after 110 days without any local or systemic side effects. However, the improvement achieved was significantly less than the observed within CG. Further studies still are needed to evaluate the use and benefits of stem cells as an adjunct treatment for CSK.
Collapse
Affiliation(s)
- Alexandre Luiz Pereira
- Department of Ophthalmology, Faculty of Medical Sciences, UNICAMP, Campinas, Brazil,Corresponding Author: Alexandre Luiz Pereira. Department of Ophthalmology, Faculty of Medical Sciences, UNICAMP, Campinas, Brazil.
| | | | | | - Rodolfo Malago
- Department of Ophthalmology, Faculty of Medical Sciences, UNICAMP, Campinas, Brazil
| | | | | | | | | |
Collapse
|
33
|
Sheptulin VA, Fedorov AA, Kovrigina AM, Lazuk AV, Grusha YO. [Granulomatous inflammation of the orbit as a complication of stem cells injection (case study)]. Vestn Oftalmol 2021; 137:94-98. [PMID: 34965074 DOI: 10.17116/oftalma202113706194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article present a case report of orbital granulomatous inflammation after a retrobulbar injection of allogenous stem cells. Experimental treatment resulted in an orbital tumor that required surgical excision. Lymphogranulomatous inflammation with a secondary abscess was verified by morphological and immunohistochemical analyses. This case demonstrates the possible dangerous complications of the "off-label" therapy amid the rising popularity of stem cells treatment.
Collapse
Affiliation(s)
| | - A A Fedorov
- Research Institute of Eye Diseases, Moscow, Russia
| | - A M Kovrigina
- National Medical Research Center of Hematology, Ministry of Health of Russia Moscow, Russia
| | | | - Y O Grusha
- Research Institute of Eye Diseases, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
34
|
The link module of human TSG-6 (Link_TSG6) promotes wound healing, suppresses inflammation and improves glandular function in mouse models of Dry Eye Disease. Ocul Surf 2021; 24:40-50. [PMID: 34968766 DOI: 10.1016/j.jtos.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 (TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). METHODS We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a mouse model of corneal epithelial debridement. RESULTS Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions remained in ∼50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial debridement wounds. CONCLUSION Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of inflammation.
Collapse
|
35
|
Hermida-Prieto M, García-Castro J, Mariñas-Pardo L. Systemic Treatment of Immune-Mediated Keratoconjunctivitis Sicca with Allogeneic Stem Cells Improves the Schirmer Tear Test Score in a Canine Spontaneous Model of Disease. J Clin Med 2021; 10:jcm10245981. [PMID: 34945277 PMCID: PMC8709250 DOI: 10.3390/jcm10245981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Keratoconjunctivitis sicca (KCS) is characterized by ocular discomfort, conjunctival hyperaemia, and corneal scarring, causing reduced aqueous tear production that can be measured using the standard Schirmer tear test (STT). Canine adipose tissue-derived MSCs (cATMSCs) have been proposed as treatment due to their anti-inflammatory effect, by releasing cytokines and immunomodulatory soluble factors. PURPOSE The aim of this study was to evaluate the effect of the systemic administration of cATMSCs on tear production in dogs with immune-mediated KCS, compared to classical Cyclosporine A (CsA) treatment. METHODS Twenty-eight client-owned dogs with spontaneous KCS were allocated in the experimental group (n = 14, treated with systemic cATMSCs or control group (n = 14, treated with CsA). SST values increased significantly at days 15 (p = 0.002), 45 (p = 0.042) and 180 (p = 0.005) with no observed side-effects in the experimental group. Eyes with an initial STT value of 11-14 mm/min maintained significant improvement at day 180, needing only artificial tears as treatment. Eyes with an initial STT value <11 mm/min needed cyclosporin treatment at day 45, so follow-up was stopped. Control animals treated with CsA did not improve their STT at day 180. RESULTS AND CONCLUSIONS Systemic allogeneic cATMSCs application appeared to be a feasible and effective therapy with positive outcome in dogs with initial STT between 11-14 mm/min, with a significant improvement in tear production. The STT increment was maintained for at least 180 days, without needing additional medication, thus suggesting it could constitute an alternative therapy to classical immunosuppressive treatments.
Collapse
Affiliation(s)
- Manuel Hermida-Prieto
- Instituto de Investigación Biomédica de A Coruña—Universidade de A Coruña (INIBIC—UDC), 15006 A Coruna, Spain;
| | - Javier García-Castro
- Faculty of Veterinary Medicine, Universidad Alfonso X El Sabio (UAX), 28691 Villanueva de la Canada, Spain;
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Mariñas-Pardo
- Instituto de Investigación Biomédica de A Coruña—Universidade de A Coruña (INIBIC—UDC), 15006 A Coruna, Spain;
- Correspondence:
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Dry eye disease (DED) is a multifactorial disease affecting approximately 5-50% of individuals in various populations. Contributors to DED include, but are not limited to, lacrimal gland hypofunction, meibomian gland dysfunction (MGD), ocular surface inflammation, and corneal nerve dysfunction. Current DED treatments target some facets of the disease, such as ocular surface inflammation, but not all individuals experience adequate symptom relief. As such, this review focuses on alternative and adjunct approaches that are being explored to target underlying contributors to DED. RECENT FINDINGS Neuromodulation, stem cell treatments, and oral royal jelly have all been studied in individuals with DED and lacrimal gland hypofunction, with promising results. In individuals with MGD, devices that provide eyelid warming or intense pulsed light therapy may reduce DED symptoms and signs, as may topical Manuka honey. For those with ocular surface inflammation, naturally derived anti-inflammatory agents may be helpful, with the compound trehalose being farthest along in the process of investigation. Nerve growth factor, blood-derived products, corneal neurotization, and to a lesser degree, fatty acids have been studied in individuals with DED and neurotrophic keratitis (i.e. corneal nerve hyposensitivity). Various adjuvant therapies have been investigated in individuals with DED with neuropathic pain (i.e. corneal nerve hypersensitivity) including nerve blocks, neurostimulation, botulinum toxin, and acupuncture, although study numbers and design are generally weaker than for the other DED sub-types. SUMMARY Several alternatives and adjunct DED therapies are being investigated that target various aspects of disease. For many, more robust studies are required to assess their sustainability and applicability.
Collapse
Affiliation(s)
- Rhiya Mittal
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Sneh Patel
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Anat Galor
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Research Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
37
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
38
|
Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Prog Retin Eye Res 2021; 85:100967. [PMID: 33775824 DOI: 10.1016/j.preteyeres.2021.100967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, have emerged as a promising cell-based therapy for a range of autoimmune diseases thanks to several therapeutic advantages. Key among these are: 1) the ability to modulate innate and adaptive immune responses and to promote tissue regeneration, 2) the ease of their isolation from readily accessible tissues and expansion at scale in culture, 3) their low immunogenicity enabling use as an allogeneic "off-the-shelf" product, and 4) MSC therapy's safety and feasibility in humans, as demonstrated in more than one thousand clinical trials. Evidence from preclinical studies and early clinical trials indicate the therapeutic potential of MSCs and their derivatives for efficacy in ocular autoimmune diseases such as autoimmune uveoretinitis and Sjögren's syndrome-related dry eye disease. In this review, we provide an overview of the current understanding of the therapeutic mechanisms of MSCs, and summarize the results from preclinical and clinical studies that have used MSCs or their derivatives for the treatment of ocular autoimmune diseases. We also discuss the challenges to the successful clinical application of MSC therapy, and suggest strategies for overcoming them.
Collapse
|
39
|
Mitani K, Ito Y, Takene Y, Hatoya S, Sugiura K, Inaba T. Long-Term Trypsin Treatment Promotes Stem Cell Potency of Canine Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:337-349. [PMID: 33528297 DOI: 10.1089/scd.2020.0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from adipose tissue (adipose-derived stem cells [ADSCs]) are considered one of the most promising cell types for applications in regenerative medicine. However, the regenerative potency of ADSCs may vary because of heterogeneity. Long-term trypsin treatment (LTT) is known to significantly concentrate multilineage-differentiating stress-enduring (Muse) cells from human MSCs. In this study, we aimed to generate cells with high stem cell potency from canine ADSCs using LTT. After 16 h of treatment with trypsin, surviving ADSCs (LTT-tolerant cells) had significantly enhanced expression of stage-specific embryonic antigen (SSEA)-1, a mouse embryonic stem cell marker, and fucosyltransferase 9, one of several fucosyltransferases for SSEA-1 biosynthesis. However, LTT-tolerant cells did not enhance the expression of SSEA-3, a known human Muse cell marker. LTT-tolerant cells, however, showed significantly higher self-renewal capacity in the colony-forming unit fibroblast assay than ADSCs. In addition, the LTT-tolerant cells formed cell clusters similar to embryoid bodies and expressed undifferentiated markers. Moreover, these cells differentiated into cells of all three germ layers and showed significantly higher levels of α 2-6 sialic acid (Sia)-specific lectins, known as differentiation potential markers of human MSCs, than ADSCs. LTT-tolerant cells had a normal karyotype and had low telomerase activity, showing little carcinogenetic potency. LTT-tolerant cells also showed significantly increased activity of transmigration in the presence of chemoattractants and had increased expression of migration-related genes compared with ADSCs. In addition, LTT-tolerant cells had stronger suppressive activity against mitogen-stimulated lymphocyte proliferation than ADSCs. Overall, these results indicated that the LTT-tolerant cells in canine ADSCs have similar properties as human Muse cells (although one of the undifferentiated markers is different) and are expected to be a promising tool for regenerative therapy in dogs.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan.,Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
40
|
Roszkowska AM, Oliverio GW, Aragona E, Inferrera L, Severo AA, Alessandrello F, Spinella R, Postorino EI, Aragona P. Ophthalmologic Manifestations of Primary Sjögren's Syndrome. Genes (Basel) 2021; 12:genes12030365. [PMID: 33806489 PMCID: PMC7998625 DOI: 10.3390/genes12030365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic, progressive, inflammatory, autoimmune disease, characterized by the lymphocyte infiltration of exocrine glands, especially the lacrimal and salivary, with their consequent destruction. The onset of primary SS (pSS) may remain misunderstood for several years. It usually presents with different types of severity, e.g., dry eye and dry mouth symptoms, due to early involvement of the lacrimal and salivary glands, which may be associated with parotid enlargement and dry eye; keratoconjunctivitis sicca (KCS) is its most common ocular manifestation. It is still doubtful if the extent ocular surface manifestations are secondary to lacrimal or meibomian gland involvement or to the targeting of corneal and conjunctival autoantigens. SS is the most representative cause of aqueous deficient dry eye, and the primary role of the inflammatory process was evidenced. Recent scientific progress in understanding the numerous factors involved in the pathogenesis of pSS was registered, but the exact mechanisms involved still need to be clarified. The unquestionable role of both the innate and adaptive immune system, participating actively in the induction and evolution of the disease, was recognized. The ocular surface inflammation is a central mechanism in pSS leading to the decrease of lacrimal secretion and keratoconjunctival alterations. However, there are controversies about whether the ocular surface involvement is a direct autoimmune target or secondary to the inflammatory process in the lacrimal gland. In this review, we aimed to present actual knowledge relative to the pathogenesis of the pSS, considering the role of innate immunity, adaptive immunity, and genetics.
Collapse
Affiliation(s)
- Anna Maria Roszkowska
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
- Correspondence:
| | - Giovanni William Oliverio
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Ophthalmology Clinic, Vita Salute San Raffaele University, 20132 Milan, Italy;
| | - Leandro Inferrera
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Alice Antonella Severo
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Federica Alessandrello
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Rosaria Spinella
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Elisa Imelde Postorino
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Pasquale Aragona
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| |
Collapse
|
41
|
Villatoro AJ, Alcoholado C, Martín-Astorga MDC, Rico G, Fernández V, Becerra J. Characterization of the secretory profile and exosomes of limbal stem cells in the canine species. PLoS One 2020; 15:e0244327. [PMID: 33373367 PMCID: PMC7771867 DOI: 10.1371/journal.pone.0244327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Limbal stem cells (LSCs) are a quiescent cell population responsible for the renewal of the corneal epithelium. Their deficiency is responsible for the conjunctivization of the cornea that is seen in different ocular pathologies, both in humans and in the canine species. The canine species represents an interesting preclinical animal model in ocular surface pathologies. However, the role of LSCs in physiological and pathological conditions in canine species is not well understood. Our objective was to characterize for the first time the soluble factors and the proteomic profile of the secretome and exosomes of canine LSCs (cLSCs). In addition, given the important role that fibroblasts play in the repair of the ocular surface, we evaluated the influence of the secretome and exosomes of cLSCs on their proliferation in vitro. Our results demonstrated a secretory profile of cLSCs with high concentrations of MCP-1, IL-8, VEGF-A, and IL-10, as well as significant production of exosomes. Regarding the proteomic profile, 646 total proteins in the secretome and 356 in exosomes were involved in different biological processes. Functionally, the cLSC secretome showed an inhibitory effect on the proliferation of fibroblasts in vitro, which the exosomes did not. These results open the door to new studies on the possible use of the cLSC secretome or some of its components to treat certain pathologies of the ocular surface in canine species.
Collapse
Affiliation(s)
- Antonio J. Villatoro
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Instituto de Immunología Clínica y Terapia Celular (IMMUNESTEM), Málaga, Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario Teatinos, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Gustavo Rico
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Viviana Fernández
- Instituto de Immunología Clínica y Terapia Celular (IMMUNESTEM), Málaga, Spain
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- * E-mail:
| |
Collapse
|
42
|
Møller-Hansen M, Larsen AC, Toft PB, Lynggaard CD, Schwartz C, Bruunsgaard H, Haack-Sørensen M, Ekblond A, Kastrup J, Heegaard S. Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease. Ocul Surf 2020; 19:43-52. [PMID: 33253910 DOI: 10.1016/j.jtos.2020.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the safety and feasibility of injecting allogeneic adipose-derived mesenchymal stem cells (ASCs) into the lacrimal gland (LG) as a treatment of aqueous deficient dry eye disease (ADDE). METHODS In this open-label, 5-visit clinical trial (baseline, treatment and weeks 1, 4 and 16) seven subjects with ADDE received one transconjunctival injection of allogeneic ASCs into the LG in one eye. The ASC product contained 22 million ASCs/ml and the injected volume was maximally 50% of the LG volume as determined on magnetic resonance imaging (MRI). Treatment related adverse events (AEs) were assessed at each visit (primary endpoint). Ocular Surface Disease Index (OSDI), tear osmolarity, tear film breakup time (TBUT), corneal staining (Oxford grade) and Schirmer's I test were assessed at each timepoint. RESULTS No AEs related to the study treatment were observed. Mean follow-up time was 126 days after treatment. The mean OSDI score decreased from 58.9 ± 20.6 at baseline to 34.1 ± 21.6 (p < 0.002). In the study eye mean tear osmolarity decreased from 312.9 ± 10.4 to 291.6 ± 10.9 mosm/l (p < 0.002), mean TBUT increased from 3.7 ± 1.5 to 7.1 ± 1.9 s (p < 0.002), mean Schirmer's I test increased from 4.6 ± 0.7 to 8.1 ± 3.1 mm/5 min (p < 0.03), while mean Oxford grade showed a trend towards a decrease from 2.4 ± 0.7 to 1.3 ± 1 (p < 0.10). CONCLUSION Our trial suggests that injection of allogeneic ASCs into the LG is a safe and feasible treatment of severe ADDE. A randomized placebo-controlled trial aimed at elucidating the therapeutic effect of allogeneic ASCs in a larger patient cohort from our research group is currently underway.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Denmark.
| | - Ann-Cathrine Larsen
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Denmark
| | - Peter Bjerre Toft
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Denmark
| | - Charlotte Duch Lynggaard
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Denmark
| | - Camilla Schwartz
- Department of Diagnostic Radiology, Rigshospitalet-Glostrup, University of Copenhagen, Denmark
| | - Helle Bruunsgaard
- Department of Clinical Immunology, Rigshospitalet, And Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Villatoro AJ, Martín-Astorga MDC, Alcoholado C, Becerra J. Canine colostrum exosomes: characterization and influence on the canine mesenchymal stem cell secretory profile and fibroblast anti-oxidative capacity. BMC Vet Res 2020; 16:417. [PMID: 33138803 PMCID: PMC7607682 DOI: 10.1186/s12917-020-02623-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Canine colostrum milk (CCM) is a specific secretion of the mammary gland that is fundamental for the survival of the newborn. CCM has many described components (immunoglobulins, proteins or fat), but its small vesicles, named exosomes, are largely unknown. Results A characterization of CCM exosomes was performed. Exosomes were abundant in CCM and appeared with the characteristic cup-shaped morphology and well-defined round vesicles. The size distribution of exosomes was between 37 and 140 nm, and western blot analysis showed positive expression of specific exosomal markers. Proteomic analysis revealed a total of 826 proteins in exosome cargo. We also found that exosomes modified the proliferation and secretory profiles in canine mesenchymal stem cells derived from bone marrow (cBM-MSCs) and adipose tissue (cAd-MSCs). Additionally, CCM exosomes demonstrated a potent antioxidant effect on canine fibroblasts in culture. Conclusions Our findings highlight, for the first time, the abundant presence of exosomes in CCM and their ability to interact with mesenchymal stem cells (MSCs). The addition of exosomes to two types of MSCs in culture resulted in specific secretory profiles with functions related to angiogenesis, migration and chemotaxis of immune cells. In particular, the cAd-MSCs secretory profile showed higher potential in adipose tissue development and neurogenesis, while cBM-MSC production was associated with immunity, cell mobilization and haematopoiesis. Finally, exosomes also presented antioxidant capacity on fibroblasts against reactive oxygen species activity within the cell, demonstrating their fundamental role in the development and maturation of dogs in the early stages of their life. Supplementary information Supplementary information accompanies this paper at 10.1186/s12917-020-02623-w.
Collapse
Affiliation(s)
- Antonio J Villatoro
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain.,Instituto de Immunología Clínica y Terapia Celular (IMMUNESTEM), Miraflores del Palo, 14, 29018, Málaga, Spain
| | - María Del Carmen Martín-Astorga
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain. .,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain. .,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Severo Ochoa 35, 29590, Málaga, Spain.
| |
Collapse
|
44
|
Knight LN, Ben-Shlomo G. Electrolyte composition of tears in normal dogs and its comparison to serum and plasma. Exp Eye Res 2020; 201:108265. [PMID: 32979395 DOI: 10.1016/j.exer.2020.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE The dog is an important animal model for tear dysfunction diseases, however to-date the electrolyte composition of the dog's tears is unknown. The aim of this study was to analyze the electrolyte content of canine tears and compare it to serum and plasma. METHODS Tear samples were collected from 18 eyes of 9 dogs. Blood for serum was collected in tubes with no anticoagulants; plasma was obtained by using two different anticoagulants: Citrate-Phosphate-Dextrose (CPD) and heparin. The electrolytes were measured in all samples, analyzed, and compared. RESULTS Most of the electrolyte values in tears were statistically different (P < 0.05) from electrolyte values in serum and plasma. Potassium and chloride values were significantly higher in tears compared to serum and plasma, while calcium and phosphate values were significantly lower. Sodium values in tears were higher than in serum and heparinized-plasma, but lower than CPD-plasma. Bicarbonate values were lower in tears compared to serum and heparinized plasma, but was not statistically different than CPD-plasma. While magnesium values were lower in tears compared to serum and heparinized-plasma, the difference was not statistically different. CONCLUSIONS Herein, we report for the first time the electrolyte composition of the canine tears and its comparison to serum and plasma.
Collapse
Affiliation(s)
- LaTisha N Knight
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Gil Ben-Shlomo
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
45
|
Maki CB, Beck A, Wallis CBCC, Choo J, Ramos T, Tong R, Borjesson DL, Izadyar F. Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front Vet Sci 2020; 7:570. [PMID: 33110913 PMCID: PMC7489271 DOI: 10.3389/fvets.2020.00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the therapeutic effect of allogeneic adipose-derived MSCs on dogs with hip osteoarthritis (OA). Twenty dogs with bilateral osteoarthritis of the coxofemoral (hip) joint, diagnosed by a veterinarian through physical examination and radiographs were randomly allocated into four groups. Group 1 served as a placebo control and were injected with 0.9% sodium chloride (saline) (n = 4). Group 2 were injected with a single dose of 5 million MSCs (n = 5). Group 3 received a single dose of 25 million MSCs (n = 6) and Group 4 received a single dose of 50 million MSCs (n = 5). Intra-articular administration of allogeneic MSCs into multiple joints did not result in any serious adverse events. The average lameness score of the dogs in the placebo control group (−0.31) did not show improvement after 90 days of intra-articular saline administration. However, the average lameness score of the all MSC-treated dogs was improved 2.11 grade at this time point (P < 0.001). Overall, sixty five percent (65%) of the dogs that received various doses of MSCs showed improvement in lameness scores 90 days after intra-articular MSC administration. Our results showed that intra-articular administration of allogeneic adipose derived MSCs was well-tolerated and improved lameness scores and reduced pain in dogs associated with hip OA. All doses of MSCs were effective. Subsequent studies with more animals per group are needed to make a conclusion about the dose response. The improved lameness effect was present up to 90 days post-injection. Serum interleukin 10 was increased in a majority of the dogs that received MSCs and that also had improved lameness.
Collapse
Affiliation(s)
- Chad B Maki
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | - Anthony Beck
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | | | - Justin Choo
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | - Thomas Ramos
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | | | - Dori L Borjesson
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
46
|
Abstract
The lack of clear regulations for the use of veterinary stem cells has triggered the commercialization of unproven experimental therapies for companion animal diseases. Adult stem cells have complex biological characteristics that are directly related to the therapeutic application, but several questions remain to be answered. In order to regulate the use of these cells, well-conducted, controlled scientific studies that generate high-quality data should be performed, in order to assess the efficacy and safety of the intended treatment. This paper discusses the scientific challenges of mesenchymal stem cell therapy in veterinary regenerative medicine, and reviews published trials of adipose-tissue-derived stem cells in companion animal diseases that spontaneously occur.
Collapse
|
47
|
Singh S, Basu S. The Human Lacrimal Gland: Historical Perspectives, Current Understanding, and Recent Advances. Curr Eye Res 2020; 45:1188-1198. [DOI: 10.1080/02713683.2020.1774065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Swati Singh
- Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute , Hyderabad, Telangana, India
| | - Sayan Basu
- Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute , Hyderabad, Telangana, India
- The Cornea Institute, L V Prasad Eye Institute , Hyderabad, Telangana, India
| |
Collapse
|
48
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
49
|
Dees DD, Kent MS. Efficacy of adjunctive therapy using Vizoovet in improving clinical signs of keratoconjunctivitis sicca in dogs: A pilot study. Vet Ophthalmol 2020; 23:632-639. [PMID: 32386123 DOI: 10.1111/vop.12763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the clinical safety and efficacy of adjunctive therapy using Vizoovet to ameliorate clinical signs of keratoconjunctivitis sicca (KCS) in dogs. ANIMALS STUDIED Twenty client-owned dogs. PROCEDURES Canine patients diagnosed with KCS were enrolled in this prospective study. Patients were randomly selected to receive either Vizoovet or GenTeal drops twice daily in addition to twice daily tacrolimus 0.03% solution. Data were collected from only one eye of each patient and included STT-1, IOP, TFBUT, and results of objective clinical scoring performed by pet owners. Statistical significance was set at P ≤ .05. RESULTS In all, 20 dogs (20 eyes) were enrolled in this prospective randomized study. Females (n = 12; 60%) outnumbered males (n = 8; 40%) and all dogs were spayed/neutered. Mean age of all dogs was 10.6 ± 3.79 years. In both treatment groups, the improvement in STT-1 values over the course of the study was significant (P = .002). When comparing the STT-1 improvements between groups, no significance was found (P = .78). In both groups, the improvement in TFBUT was significant (P = .0018). When comparing the TFBUT improvements between groups, no significance was found (P = .14). Squinting, rubbing, ocular discharge, and medication administration scores all significantly improved throughout the course of the study; however, they did not differ significantly between groups. Throughout the study, no adverse side effects were noted clinically or by the pet owner in either group. CONCLUSIONS AND CLINICAL RELEVANCE Adjunctive treatment with Vizoovet was as safe and effective as GenTeal drops at improving clinical signs of dry eye in dogs.
Collapse
Affiliation(s)
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, California
| |
Collapse
|
50
|
Zakirova EY, Valeeva AN, Aimaletdinov AM, Nefedovskaya LV, Akhmetshin RF, Rutland CS, Rizvanov AA. Potential therapeutic application of mesenchymal stem cells in ophthalmology. Exp Eye Res 2019; 189:107863. [PMID: 31669045 DOI: 10.1016/j.exer.2019.107863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023]
Abstract
At present a wide variety of methods have been proposed to treat eye disorders, drug therapies are most commonly used. It should be noted that effective treatment modalities especially for degeneration of the retina and optic nerve are lacking. In the last few years stem cell transplantation has been proposed as an alternative method. The opportunities that stem cells provide within clinical use are almost unlimited. These cells are presently applied to treat various traumatic and degenerative disorders due to their unique biologic properties. Stem cells have high proliferative capabilities and are a self-maintained population of cells capable of differentiating into different cell types. Thus, they are represent a very primary stage of a cell lineage. Their ability to differentiate into different pathways provides animals with great plasticity in the renewal of somatic cells in postnatal ontogenesis. Pre-clinical and clinical ophthalmology studies where mesenchymal stem cells are applied and various methods of their administration are discussed herein. In addition the safety and efficacy of using bone marrow- and adipose tissue-derived mesenchymal stem cells have been discussed.
Collapse
Affiliation(s)
| | - A N Valeeva
- Kazan Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| | | | | | | | | | | |
Collapse
|