1
|
Liu L, Hao X, Bai Y, Tian Y. The soil Mycobacterium sp. promotes health and longevity through different bacteria-derived molecules in Caenorhabditis elegans. Aging Cell 2025; 24:e14416. [PMID: 39560153 PMCID: PMC11896450 DOI: 10.1111/acel.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
Commensal bacteria and their derivatives hold significant promise as therapeutic interventions to delay aging. However, with the diverse nature of the soil microbiome and the long lifespan of mammalian models, the exploration of the influence of soil bacteria and bacteria-derived molecules on host aging remains limited. We conducted a lifespan screening in Caenorhabditis elegans using plant root bacterial collection. Our screening identified 8 genera of bacterial isolates capable of extending lifespan, with Mycobacterium sp. Root265 exhibits the most pronounced effect on lifespan extension. Biochemical analysis revealed two specific molecules derived from Root265, polysaccharides (PSs) and arabinogalactan peptidoglycan (AGP), responsible for lifespan extension via daf-16-dependent and -independent pathways, respectively. Notably, AGP exhibited a unique ability to enhance protein homeostasis effectively. Moreover, polar lipids originating from Root265 were found to extend lifespan while mitigating age-related BAS-1 decline in neurons. Intriguingly, even brief exposures to these bioactive compounds were sufficient to achieve the lifespan-promoting effects. We found diverse beneficial bacteria and anti-aging active compounds from soil bacteria. These findings highlight the potential of exploring bacterial derivatives as therapies targeting aging without the constraints associated with direct microbial interventions.
Collapse
Affiliation(s)
- Limeng Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Xusheng Hao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Bai
- State Key Laboratory of Plant Genomics, CAS‐JIC Centre of Excellence for Plant and Microbial SciencesInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- Peking‐Tsinghua Center for Life Sciences, College of Life SciencesPeking UniversityBeijingChina
| | - Ye Tian
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Goyache I, Yavorov-Dayliev D, Milagro FI, Aranaz P. Caenorhabditis elegans as a Screening Model for Probiotics with Properties against Metabolic Syndrome. Int J Mol Sci 2024; 25:1321. [PMID: 38279322 PMCID: PMC10816037 DOI: 10.3390/ijms25021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
There is a growing need to develop new approaches to prevent and treat diseases related to metabolic syndromes, including obesity or type 2 diabetes, that focus on the different factors involved in the pathogenesis of these diseases. Due to the role of gut microbiota in the regulation of glucose and insulin homeostasis, probiotics with beneficial properties have emerged as an alternative therapeutic tool to ameliorate metabolic diseases-related disturbances, including fat excess or inflammation. In the last few years, different strains of bacteria, mainly lactic acid bacteria (LAB) and species from the genus Bifidobacterium, have emerged as potential probiotics due to their anti-obesogenic and/or anti-diabetic properties. However, in vivo studies are needed to demonstrate the mechanisms involved in these probiotic features. In this context, Caenorhabditis elegans has emerged as a very powerful simple in vivo model to study the physiological and molecular effects of probiotics with potential applications regarding the different pathologies of metabolic syndrome. This review aims to summarize the main studies describing anti-obesogenic, anti-diabetic, or anti-inflammatory properties of probiotics using C. elegans as an in vivo research model, as well as providing a description of the molecular mechanisms involved in these activities.
Collapse
Affiliation(s)
- Ignacio Goyache
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Deyan Yavorov-Dayliev
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain
| | - Fermín I. Milagro
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Paula Aranaz
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
3
|
Alonzo-De la Rosa CM, Miard S, Taubert S, Picard F. Methods to extract and study the biological effects of murine gut microbiota using Caenorhabditis elegans as a screening host. PLoS One 2023; 18:e0281887. [PMID: 36821579 PMCID: PMC9949637 DOI: 10.1371/journal.pone.0281887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Gut microbiota has been established as a main regulator of health. However, how changes in gut microbiota are directly associated with physiological and cellular alterations has been difficult to tackle on a large-scale basis, notably because of the cost and labor-extensive resources required for rigorous experiments in mammals. In the present study, we used the nematode Caenorhabditis elegans as a model organism to elucidate microbiota-host interactions. We developed a method to extract gut microbiota (MCB) from murine feces, and tested its potential as food source for and its impact on C. elegans biology compared to the standard bacterial diet Escherichia coli OP50. Although less preferred than OP50, MCB was not avoided but had a lower energy density (triglycerides and glucose). Consistently, MCB-fed worms exhibited smaller body length and size, lower fertility, and lower fat content than OP50-fed worms, but had a longer mean lifespan, which resembles the effects of calorie restriction in mammals. However, these outcomes were altered when bacteria were inactivated, suggesting an important role of symbiosis of MCB beyond nutrient source. Taken together, our findings support the effectiveness of gut MCB processing to test its effects in C. elegans. More work comparing MCB of differently treated mice or humans is required to further validate relevance to mammals before large-scale screening assays.
Collapse
Affiliation(s)
- Claudia Miriam Alonzo-De la Rosa
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - Stéphanie Miard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Stefan Taubert
- British Columbia Children’s Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Frédéric Picard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Faculty of Pharmacy, Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
4
|
Li Z, Wu D, Yu Z, Cui C, Yin D. Nontargeted metabolomic evidence for antagonism between tetracycline and its resistance bacteria underlying their obesogenic effects on Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160223. [PMID: 36402327 DOI: 10.1016/j.scitotenv.2022.160223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Environmental antibiotics raise serious health concerns due to their contribution to the obesity prevalence. Moreover, antibiotics promote antibiotic-resistance bacteria (ARB) which represent another emerging pollutant. However, the interaction between antibiotic and ARB in the obesogenic effects remained unexplored. In the present study, the obesogenic effects of tetracycline antibiotic (TCH) and ARB containing tetA were studied on C. elegans, and E. coli OP50 (OP50) was referred as a normal bacterial food. Results showed that TCH stimulated nematode triglyceride contents, while ARB alone had no significant influences. The combination of TCH and ARB showed less obesogenic effects than TCH alone, showing antagonism. Biochemical assays showed that the combination of TCH and ARB showed similar effects to ARB alone, and had less increases in lipid metabolism enzymes or metabolites than those of TCH or ARB alone, supporting the antagonism. In the nontargeted metabolomic analysis, TCH with ARB showed less significantly changed metabolites (SCMs) in the nematodes than TCH or ARB alone, partially explaining the antagonism. The metabolomic results also pointed out the significant involvement of amino acids, the carboxylic acids and derivatives, and also the benzene and substituted derivatives in the obesogenic effects of TCH and ARB. The findings of the present study provided a direct support for interaction between antibiotics and ARB underlying their health risks.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Di Wu
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Changzheng Cui
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
5
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
6
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Basic M, Dardevet D, Abuja PM, Bolsega S, Bornes S, Caesar R, Calabrese FM, Collino M, De Angelis M, Gérard P, Gueimonde M, Leulier F, Untersmayr E, Van Rymenant E, De Vos P, Savary-Auzeloux I. Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders. Gut Microbes 2022; 14:2107386. [PMID: 35939623 PMCID: PMC9361767 DOI: 10.1080/19490976.2022.2107386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Our understanding of microorganisms residing within our gut and their roles in the host metabolism and immunity advanced greatly over the past 20 years. Currently, microbiome studies are shifting from association and correlation studies to studies demonstrating causality of identified microbiome signatures and identification of molecular mechanisms underlying these interactions. This transformation is crucial for the efficient translation into clinical application and development of targeted strategies to beneficially modulate the intestinal microbiota. As mechanistic studies are still quite challenging to perform in humans, the causal role of microbiota is frequently evaluated in animal models that need to be appropriately selected. Here, we provide a comprehensive overview on approaches that can be applied in addressing causality of host-microbe interactions in five major animal model organisms (Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and pigs). We particularly focused on discussing methods available for studying the causality ranging from the usage of gut microbiota transfer, diverse models of metabolic and immune perturbations involving nutritional and chemical factors, gene modifications and surgically induced models, metabolite profiling up to culture-based approached. Furthermore, we addressed the impact of the gut morphology, physiology as well as diet on the microbiota composition in various models and resulting species specificities. Finally, we conclude this review with the discussion on models that can be applied to study the causal role of the gut microbiota in the context of metabolic syndrome and host immunity. We hope this review will facilitate important considerations for appropriate animal model selection.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Peter Michael Abuja
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Stéphanie Bornes
- University Clermont Auvergne, Inrae, VetAgro Sup, Umrf, Aurillac, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Massimo Collino
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Science, “Aldo Moro” University Bari, Bari, Italy
| | - Philippe Gérard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, France
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC;Villaviciosa, Spain
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard-Lyon1, Lyon, France
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Evelien Van Rymenant
- Flanders Research Institute for Agriculture, Fisheries and Food (Ilvo), Merelbeke, Belgium
| | - Paul De Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen; Groningen, Netherlands
| | - Isabelle Savary-Auzeloux
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France,CONTACT Isabelle Savary-Auzeloux Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| |
Collapse
|
8
|
Kumar S, Praneet NS, Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway. Free Radic Res 2022; 56:555-571. [PMID: 36480684 DOI: 10.1080/10715762.2022.2155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Redox imbalance plays a crucial role in the development of age-related diseases, and resistance to oxidative stress is crucial for optimum longevity and healthy aging. Using the wild-type, mutant and transgenic strains, this study explored the antioxidative potential and lifespan extension benefits of different Lactobacillus strains in Caenorhabditis elegans (C. elegans). We observed that Lactobacillus brevis MTCC 1750 could enhance the resistance of C. elegans against juglone induced oxidative stress by reducing its intracellular reactive oxygen species (ROS) accumulation. Also, live L. brevis MTCC 1750 could prolong the worm's lifespan. These effects are dependent on transcription factor DAF-16 evident with significant upregulation of its target gene sod-3. This also explained the significant improvements in different age-associated changes in physiological and mechanical parameters of the worm by L. brevis MTCC 1750. Further investigations revealed that DAF-16 activation and, its enhanced translocation in the nucleus is independent of DAF-2 or JNK pathway. These findings highlighted L. brevis MTCC 1750 as a potent anti-oxidant source for complementing current antioxidant therapeutic strategies. Nonetheless, the findings showed how different signaling events are regulated based on an organism's diet component, and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Nalla Sai Praneet
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
The evolving role of the Caenorhabditis elegans model as a tool to advance studies in nutrition and health. Nutr Res 2022; 106:47-59. [DOI: 10.1016/j.nutres.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
|
10
|
HODDA M. Phylum Nematoda: feeding habits for all valid genera using a new, universal scheme encompassing the entire phylum, with descriptions of morphological characteristics of the stoma, a key, and discussion of the evidence for trophic relationships. Zootaxa 2022; 5114:318-451. [DOI: 10.11646/zootaxa.5114.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/04/2022]
Abstract
This paper details a system for classifying the trophic relationships of the entire Phylum Nematoda, together with a table specifying the categories of every valid genus. This system encompasses both the diets of nematodes and how the food is obtained. The types of evidence used to evaluate trophic relationships and the inferences that can be drawn from each are evaluated. The general morphological and ecological characteristics of each trophic type are detailed, and a morphological key is presented. This information will enable the trophic relationships of any valid genus of nematodes to be assessed, along with currently undescribed genera, provided their affinities to existing genera can be ascertained. The system and list can add value to ecological, environmental and biodiversity studies where there is no morphological information, for example in environmental sequencing or metabarcoding studies.
Collapse
|
11
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
12
|
Kumar A, Joishy T, Das S, Kalita MC, Mukherjee AK, Khan MR. A Potential Probiotic Lactobacillus plantarum JBC5 Improves Longevity and Healthy Aging by Modulating Antioxidative, Innate Immunity and Serotonin-Signaling Pathways in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:268. [PMID: 35204151 PMCID: PMC8868178 DOI: 10.3390/antiox11020268] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Since the hypothesis of Dr. Elie Metchnikoff on lactobacilli-mediated healthy aging, several microbes have been reported to extend the lifespan with different features of healthy aging. However, a microbe affecting diverse features of healthy aging is of choice for broader acceptance and marketability as a next-generation probiotic. We employed Caenorhabditis elegans as a model to understand the potential of Lactobacillus plantarum JBC5 (LPJBC5), isolated from fermented food sample on longevity and healthy aging as well as their underlying mechanisms. Firstly, LPJBC5 enhanced the mean lifespan of C. elegans by 27.81% compared with control (untreated). LPBC5-induced longevity was accompanied with better aging-associated biomarkers, such as physical functions, fat, and lipofuscin accumulation. Lifespan assay on mutant worms and gene expression studies indicated that LPJBC5-mediated longevity was due to upregulation of the skinhead-1 (skn-1) gene activated through p38 MAPK signaling cascade. Secondly, the activated transcription factor SKN-1 upregulated the expression of antioxidative, thermo-tolerant, and anti-pathogenic genes. In support, LPJBC5 conferred resistance against abiotic and biotic stresses such as oxidative, heat, and pathogen. LPJBC5 upregulated the expression of intestinal tight junction protein ZOO-1 and improved gut integrity. Thirdly, LPJBC5 improved the learning and memory of worms trained on LPJBC5 compared with naive worms. The results showed upregulation of genes involved in serotonin signaling (ser-1, mod-1, and tph-1) in LPJBC5-fed worms compared with control, suggesting that serotonin-signaling was essential for LPJBC5-mediated improved cognitive function. Fourthly, LPJBC5 decreased the fat accumulation in worms by reducing the expression of genes encoding key substrates and enzymes of fat metabolism (i.e., fat-5 and fat-7). Lastly, LPJBC5 reduced the production of reactive oxygen species and improved mitochondrial function, thereby reducing apoptosis in worms. The capability of a single bacterium on pro-longevity and the features of healthy aging, including enhancement of gut integrity and cognitive functions, makes it an ideal candidate for promotion as a next-generation probiotic.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Tulsi Joishy
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Santanu Das
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Mohan C. Kalita
- Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Ashis K. Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Mojibur R. Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| |
Collapse
|
13
|
Yun B, Ryu S, Kang M, Lee J, Yoo J, Kim Y, Oh S. Probiotic Lacticaseibacillus rhamnosus GG Increased Longevity and Resistance Against Foodborne Pathogens in Caenorhabditis elegans by Regulating MicroRNA miR-34. Front Cell Infect Microbiol 2022; 11:819328. [PMID: 35127565 PMCID: PMC8807481 DOI: 10.3389/fcimb.2021.819328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the relation of probiotic activity of Lacticaseibacillus rhamnosus strain GG (LGG) and expression of microRNA to immune response and longevity in Caenorhabditis elegans host model. First, we evaluated the survival rate of C. elegans due to LGG exposure and bacterial colonization in the intestine. Next, the expression of mRNA and miRNA was analyzed in C. elegans exposure to LGG for 24 h using microarray. After exposure to LGG to C. elegans, colonized LGG was observed in the intestines of C. elegans and induced to extend lifespan. Moreover, persistent LGG in the intestine significantly enhanced the resistance of C. elegans exposed to both pathogenic bacteria and prolonged the lifespan of C. elegans. Transcriptome analysis indicated that LGG affected the expression levels of genes related to the innate immune response and upregulated the abundance of genes in multiple pathways of C. elegans, including Wnt signaling, TGF-beta signaling and mitogen-activated protein kinase (MAPK) pathways. In addition, qRT-PCR analysis confirmed that the expression of antibacterial genes was increased by LGG. Moreover, as the expression of microRNA miR-34 and immune-related pathways increased by exposure to LGG, the lifespan of C. elegans increased. However, in the miR-34 mutant C. elegans, the lifespan by LGG did not increase, so it was determined that miR-34 indirectly affects immune-related pathways. There was no significant difference in the expression of PMK-1 for LGG exposure in miR-34 mutants, suggesting that miR-34 may regulate PMK-1. In conclusion, we suggest that exposure of LGG to C. elegans enhances lifespan and resistance to food-borne pathogen infection by stimulating miR-34 and indirectly promoting PMK-1 activity.
Collapse
Affiliation(s)
- Bohyun Yun
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Juyeon Lee
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Jiseon Yoo
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Younghoon Kim, ; Sangnam Oh,
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
- *Correspondence: Younghoon Kim, ; Sangnam Oh,
| |
Collapse
|
14
|
Probiotics Interactions and the Modulation of Major Signalling Pathways in Host Model Organism Caenorhabditis elegans. Indian J Microbiol 2021; 61:404-416. [PMID: 34744196 DOI: 10.1007/s12088-021-00961-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Microorganisms live in the human digestive system and the gut microbiome constitutes part of our prime determining component for healthy aging and wellness. Gut microbiota has broad influences on its host, beginning from the digestion of food and nutrients absorption to protective roles against invading pathogens and host immune system regulation. Dysbiosis of the gut microbial composition has been linked to numerous diseases and there is a need to have a better grasp on what makes a 'good' gut microbiome. Caenorhabditis elegans (C. elegans) model organism is considered as a well-suited in-vivo model system and, is at the frontline of probiotic research because of its well-defined characteristics and prolific nature. Most importantly, C. elegans feeds on bacteria, which speeds up manipulations and investigations in probiotics research tremendously. With its unique salient features of short lifespan, and ease of propagation, different unknown probiotics biological roles can be measured at an organism level with precision in the form of worm's stress responses, survivability, and lifespan. In this review, new insights on the different mechanisms underlying the establishment of probiotics regulations of conserved signalling pathways such as p38 MAPK/SKN-1, DAF-2/DAF-16, and JNK-1/DAF-16 is highlighted based on information obtained from C. elegans studies. Along with the current state of knowledge and the uniqueness of C. elegans as a model organism, explorations of its future contribution and scope in synthetic biology and probiotics engineering strains are also addressed. This is expected to strengthen our understanding of probiotics roles and to facilitate novel discovery and applications, for specific therapeutics against age-related disorders and various pathophysiological conditions.
Collapse
|
15
|
Leuconostoc mesenteroides Strains Isolated from Carrots Show Probiotic Features. Microorganisms 2021; 9:microorganisms9112290. [PMID: 34835416 PMCID: PMC8618143 DOI: 10.3390/microorganisms9112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria (LAB) share several beneficial effects on human organisms, such as bioactive metabolites’ release, pathogens’ competition and immune stimulation. This study aimed at determining the probiotic potential of autochthonous lactic acid bacteria isolated from carrots. In particular, the work reported the characterization at the species level of four LAB strains deriving from carrots harvested in Fucino highland, Abruzzo (Italy). Ribosomal 16S DNA analysis allowed identification of three strains belonging to Leuconostoc mesenteroides and a Weissella soli strain. In vitro and in vivo assays were performed to investigate the probiotic potential of the different isolates. Among them, L. mesenteroides C2 and L. mesenteroides C7 showed high survival percentages under in vitro simulated gastro-intestinal conditions, antibiotic susceptibly and the ability to inhibit in vitro growth against Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus pathogens. In parallel, the simple model Caenorhabditis elegans was used for in vivo screenings. L. mesenteroides C2 and L. mesenteroides C7 strains significantly induced pro-longevity effects, protection from pathogens’ infection and innate immunity stimulation. Overall, these results showed that some autochthonous LAB from vegetables such as carrots have functional features to be considered as novel probiotic candidates.
Collapse
|
16
|
Udayakumar P, Das R, Kannadasan A. Significance of probiotics in remodeling the gut consortium to enhance the immunity of Caenorhabditis elegans. Genesis 2021; 59:e23454. [PMID: 34664387 DOI: 10.1002/dvg.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022]
Abstract
In the recent past, Caenorhabditis elegans has emerged as one of the leading nematode models for studying host-microbe interactions on molecular, cellular, or organismal levels. In general, morphological and functional similarities of the gut of C. elegans with respect to that of human has brought in speculations on the study of the intestinal microbiota. On the other hand, probiotics have proved their efficacy in metabolism, development, and pathogenesis thereby inducing an immune response in C. elegans. Nurturing C. elegans with probiotics has led to immunomodulatory effects in the intestinal microbiota, proposing C. elegans as one of the in vivo screening criteria to select potential probiotic bacteria for host health-promoting factors. The major prospect of these probiotics is to exert longevity toward the host in diverse environmental conditions. The extent of research on probiotic metabolism has shed light on mechanisms of the immunomodulatory effect exerted by the nematode model. This review discusses various aspects of the effects of probiotics in improving the health and mechanisms involved in conferring immunity in C. elegans.
Collapse
Affiliation(s)
- Prithika Udayakumar
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Reena Das
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Anandbabu Kannadasan
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
17
|
Schifano E, Cicalini I, Pieragostino D, Heipieper HJ, Del Boccio P, Uccelletti D. In vitro and in vivo lipidomics as a tool for probiotics evaluation. Appl Microbiol Biotechnol 2020; 104:8937-8948. [PMID: 32875367 DOI: 10.1007/s00253-020-10864-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The probiotic bacteria are helpful for nutritional and therapeutic purposes, and they are commercially available in various forms, such as capsules or powders. Increasing pieces of evidence indicate that different growth conditions and variability in manufacturing processes can determine the properties of probiotic products. In recent years, the lipidomic approach has become a useful tool to evaluate the impact that probiotics induce in host physiology. In this work, two probiotic formulations with identical species composition, produced in two different sites, the USA and Italy, were utilized to feed Caenorhabditis elegans, strains and alterations in lipid composition in the host and bacteria were investigated. Indeed, the multicellular organism C. elegans is considered a simple model to study the in vivo effects of probiotics. Nematodes fat metabolism was assessed by gene expression analysis and by mass spectrometry-based lipidomics. Lipid droplet analysis revealed a high accumulation of lipid droplets in worms fed US-made products, correlating with an increased expression of genes involved in the fatty acid synthesis. We also evaluated the lifespan of worms defective in genes involved in the insulin/IGF-1-mediated pathway and monitored the nuclear translocation of DAF-16. These data demonstrated the involvement of the signaling in C. elegans responses to the two diets. Lipidomics analysis of the two formulations was also conducted, and the results indicated differences in phosphatidylglycerol (PG) and phosphatidylcholine (PC) contents that, in turn, could influence nematode host physiology. Results demonstrated that different manufacturing processes could influence probiotics and host properties in terms of lipid composition. KEY POINTS: • Probiotic formulations impact on Caenorhabditis elegans lipid metabolism; • Lipidomic analysis highlighted phospholipid abundance in the two products; • Phosphocholines and phosphatidylglycerols were analyzed in worms fed the two probiotic formulations.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Ilaria Cicalini
- Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Damiana Pieragostino
- Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
18
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
19
|
Kumar A, Baruah A, Tomioka M, Iino Y, Kalita MC, Khan M. Caenorhabditis elegans: a model to understand host-microbe interactions. Cell Mol Life Sci 2020; 77:1229-1249. [PMID: 31584128 PMCID: PMC11104810 DOI: 10.1007/s00018-019-03319-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Host-microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host-microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India
| | - Aiswarya Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India.
| |
Collapse
|
20
|
Bianchi L, Laghi L, Correani V, Schifano E, Landi C, Uccelletti D, Mattei B. A Combined Proteomics, Metabolomics and In Vivo Analysis Approach for the Characterization of Probiotics in Large-Scale Production. Biomolecules 2020; 10:biom10010157. [PMID: 31963736 PMCID: PMC7022454 DOI: 10.3390/biom10010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022] Open
Abstract
The manufacturing processes of commercial probiotic strains may be affected in different ways in the attempt to optimize yield, costs, functionality, or stability, influencing gene expression, protein patterns, or metabolic output. Aim of this work is to compare different samples of a high concentration (450 billion bacteria) multispecies (8 strains) formulation produced at two different manufacturing sites, United States of America (US) and Italy (IT), by applying a combination of functional proteomics, metabolomics, and in vivo analyses. Several protein-profile differences were detected between IT- and US-made products, with Lactobacillus paracasei, Streptococcus thermophilus, and Bifidobacteria being the main affected probiotics/microorganisms. Performing proton nuclear magnetic spectroscopy (1H-NMR), some discrepancies in amino acid, lactate, betaine and sucrose concentrations were also reported between the two products. Finally, we investigated the health-promoting and antiaging effects of both products in the model organism Caenorhabditis elegans. The integration of omics platforms with in vivo analysis has emerged as a powerful tool to assess manufacturing procedures.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (C.L.)
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 40126 Cesena, Italy;
| | - Virginia Correani
- Department of Biochemical Sciences, Sapienza University, 00185 Roma, Italy;
| | - Emily Schifano
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, 00185 Rome, Italy;
| | - Claudia Landi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (C.L.)
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, 00185 Rome, Italy;
- Correspondence:
| | | |
Collapse
|
21
|
Schifano E, Ficociello G, Vespa S, Ghosh S, Cipollo JF, Talora C, Lotti LV, Mancini P, Uccelletti D. Pmr-1 gene affects susceptibility of Caenorhabditis elegans to Staphylococcus aureus infection through glycosylation and stress response pathways' alterations. Virulence 2019; 10:1013-1025. [PMID: 31771413 PMCID: PMC6930020 DOI: 10.1080/21505594.2019.1697118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signaling can elicit different pathways involved in an extreme variety of biological processes. Calcium levels must be tightly regulated in a spatial and temporal manner in order to be efficiently and properly utilized in the host physiology. The Ca2+-ATPase, encoded by pmr-1 gene, was first identified in yeast and localized to the Golgi and it appears to be involved in calcium homeostasis. PMR-1 function is evolutionary conserved from yeast to human, where mutations in the orthologous gene ATP2C1 cause Hailey-Hailey disease. In this work, we used the Caenorhabditis elegans model system to gain insight into the downstream response elicited by the loss of pmr-1 gene. We found that pmr-1 knocked down animals not only showed defects in the oligosaccharide structure of glycoproteins at the cell surface but also were characterized by reduced susceptibility to bacterial infection. Although increased resistance to the infection might be related to lack of regular recognition of C. elegans surface glycoproteins by microbial agents, we provide genetic evidence that pmr-1 interfered nematodes mounted a stronger innate immune response to Gram-positive bacterial infection. Thus, our observations indicate pmr-1 as a candidate gene implicated in mediating the worm's innate immune response.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Graziella Ficociello
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Simone Vespa
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Salil Ghosh
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| |
Collapse
|
22
|
Poupet C, Saraoui T, Veisseire P, Bonnet M, Dausset C, Gachinat M, Camarès O, Chassard C, Nivoliez A, Bornes S. Lactobacillus rhamnosus Lcr35 as an effective treatment for preventing Candida albicans infection in the invertebrate model Caenorhabditis elegans: First mechanistic insights. PLoS One 2019; 14:e0216184. [PMID: 31693670 PMCID: PMC6834333 DOI: 10.1371/journal.pone.0216184] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
The increased recurrence of Candida albicans infections is associated with greater resistance to antifungal drugs. This involves the establishment of alternative therapeutic protocols, such as probiotic microorganisms whose antifungal potential has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding the mechanisms of action of probiotic microorganisms has become a strategic need for the development of new therapeutics for humans. In this study, we investigated the prophylactic anti-C. albicans properties of Lactobacillus rhamnosus Lcr35® using the in vitro Caco-2 cell model and the in vivo Caenorhabditis elegans model. In Caco-2 cells, we showed that the strain Lcr35® significantly inhibited the growth (~2 log CFU.mL-1) and adhesion (150 to 6,300 times less) of the pathogen. Moreover, in addition to having a pro-longevity activity in the nematode (+42.9%, p = 3.56.10-6), Lcr35® protects the animal from the fungal infection (+267% of survival, p < 2.10-16) even if the yeast is still detectable in its intestine. At the mechanistic level, we noticed the repression of genes of the p38 MAPK signalling pathway and genes involved in the antifungal response induced by Lcr35®, suggesting that the pathogen no longer appears to be detected by the worm immune system. However, the DAF-16/FOXO transcription factor, implicated in the longevity and antipathogenic response of C. elegans, is activated by Lcr35®. These results suggest that the probiotic strain acts by stimulating its host via DAF-16 but also by suppressing the virulence of the pathogen.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | - Taous Saraoui
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | | | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | | | | | - Olivier Camarès
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| |
Collapse
|
23
|
Lipid Droplets: A Significant but Understudied Contributor of Host⁻Bacterial Interactions. Cells 2019; 8:cells8040354. [PMID: 30991653 PMCID: PMC6523240 DOI: 10.3390/cells8040354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid droplets (LDs) are cytosolic lipid storage organelles that are important for cellular lipid metabolism, energy homeostasis, cell signaling, and inflammation. Several bacterial, viral and protozoal pathogens exploit host LDs to promote infection, thus emphasizing the importance of LDs at the host–pathogen interface. In this review, we discuss the thus far reported relation between host LDs and bacterial pathogens including obligate and facultative intracellular bacteria, and extracellular bacteria. Although there is less evidence for a LD–extracellular bacterial interaction compared to interactions with intracellular bacteria, in this review, we attempt to compare the bacterial mechanisms that target LDs, the host signaling pathways involved and the utilization of LDs by these bacteria. Many intracellular bacteria employ unique mechanisms to target host LDs and potentially obtain nutrients and lipids for vacuolar biogenesis and/or immune evasion. However, extracellular bacteria utilize LDs to either promote host tissue damage or induce host death. We also identify several areas that require further investigation. Along with identifying LD interactions with bacteria besides the ones reported, the precise mechanisms of LD targeting and how LDs benefit pathogens should be explored for the bacteria discussed in the review. Elucidating LD–bacterial interactions promises critical insight into a novel host–pathogen interaction.
Collapse
|
24
|
The Foodborne Strain Lactobacillus fermentum MBC2 Triggers pept-1-Dependent Pro-Longevity Effects in Caenorhabditis elegans. Microorganisms 2019; 7:microorganisms7020045. [PMID: 30736484 PMCID: PMC6406943 DOI: 10.3390/microorganisms7020045] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) are involved in several food fermentations and many of them provide strain-specific health benefits. Herein, the probiotic potential of the foodborne strain Lactobacillus fermentum MBC2 was investigated through in vitro and in vivo approaches. Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity and anti-aging effects. L. fermentum MBC2 showed a high gut colonization capability compared to E. coli OP50 (OP50) or L.rhamnosus GG (LGG). Moreover, analysis of pumping rate, lipofuscin accumulation, and body bending showed anti-aging effects in L. fermentum MBC2-fed worms. Studies on PEPT-1 mutants demonstrated that pept-1 gene was involved in the anti-aging processes mediated by this bacterial strain through DAF-16, whereas the oxidative stress protection was PEPT-1 independent. Moreover, analysis of acid tolerance, bile tolerance, and antibiotic susceptibility were evaluated. L. fermentum MBC2 exerted beneficial effects on nematode lifespan, influencing energy metabolism and oxidative stress resistance, resulted in being tolerant to acidic pH and able to adhere to Caco-2 cells. Overall, these findings provide new insight for application of this strain in the food industry as a newly isolated functional starter. Furthermore, these results will also shed light on C. elegans molecular players involved in host-microbe interactions.
Collapse
|
25
|
Schifano E, Marazzato M, Ammendolia MG, Zanni E, Ricci M, Comanducci A, Goldoni P, Conte MP, Uccelletti D, Longhi C. Virulence behavior of uropathogenic Escherichia coli strains in the host model Caenorhabditis elegans. Microbiologyopen 2018; 8:e00756. [PMID: 30381890 PMCID: PMC6562141 DOI: 10.1002/mbo3.756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Although a number of bacteria can cause UTIs, most cases are due to infection by uropathogenic Escherichia coli (UPEC). UPEC are a genetically heterogeneous group that exhibit several virulence factors associated with colonization and persistence of bacteria in the urinary tract. Caenorhabditis elegans is a tiny, free-living nematode found worldwide. Because many biological pathways are conserved in C. elegans and humans, the nematode has been increasingly used as a model organism to study virulence mechanisms of microbial infections and innate immunity. The virulence of UPEC strains, characterized for antimicrobial resistance, pathogenicity-related genes associated with virulence and phylogenetic group belonging was evaluated by measuring the survival of C. elegans exposed to pure cultures of these strains. Our results showed that urinary strains can kill the nematode and that the clinical isolate ECP110 was able to efficiently colonize the gut and to inhibit the host oxidative response to infection. Our data support that C. elegans, a free-living nematode found worldwide, could serve as an in vivo model to distinguish, among uropathogenic E. coli, different virulence behavior.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, National Institute of Health, Rome, Italy
| | - Elena Zanni
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Marta Ricci
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Antonella Comanducci
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Paola Goldoni
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University, Rome, Italy
| |
Collapse
|
26
|
Guantario B, Zinno P, Schifano E, Roselli M, Perozzi G, Palleschi C, Uccelletti D, Devirgiliis C. In Vitro and in Vivo Selection of Potentially Probiotic Lactobacilli From Nocellara del Belice Table Olives. Front Microbiol 2018; 9:595. [PMID: 29643848 PMCID: PMC5882814 DOI: 10.3389/fmicb.2018.00595] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value.
Collapse
Affiliation(s)
- Barbara Guantario
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Paola Zinno
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Marianna Roselli
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Giuditta Perozzi
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Claudio Palleschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Chiara Devirgiliis
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
27
|
GERBABA TEKLUK, GREEN-HARRISON LUKE, BURET ANDREG. Modeling Host-Microbiome Interactions in Caenorhabditis elegans. J Nematol 2018. [DOI: 10.21307/jofnem-2017-082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Gerbaba TK, Green-Harrison L, Buret AG. Modeling Host-Microbiome Interactions in Caenorhabditis elegans. J Nematol 2017; 49:348-356. [PMID: 29353922 PMCID: PMC5770281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 06/07/2023] Open
Abstract
The microbiome influences host processes including nutritional availability, development, immunity, and behavioral responses. Caenorhabditis elegans is a powerful model to study molecular mechanisms of host-microbial interactions. Recent efforts have been made to profile the natural microbiome of C. elegans, laying a foundation for mechanistic studies of host-microbiome interactions in this genetically tractable model system. Studies using single-species microbes, multi-microbial systems, and humanized worm-microbiome interaction studies reveal metabolic and microbial-microbial interactions relevant in higher organisms. This article discusses recent developments in modeling the effects of host-microbiome interactions in C. elegans.
Collapse
Affiliation(s)
- Teklu K Gerbaba
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Luke Green-Harrison
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Roselli M, Devirgiliis C, Zinno P, Guantario B, Finamore A, Rami R, Perozzi G. Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. GENES AND NUTRITION 2017; 12:25. [PMID: 29043005 PMCID: PMC5628415 DOI: 10.1186/s12263-017-0583-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
Abstract
Background Obesity is a complex pathology associated with dysbiosis, metabolic alterations, and low-grade chronic inflammation promoted by immune cells, infiltrating and populating the adipose tissue. Probiotic supplementation was suggested to be capable of counteracting obesity-associated immune and microbial alterations, based on its proven immunomodulatory activity and positive effect on gut microbial balance. Traditional fermented foods represent a natural source of live microbes, including environmental strains with probiotic features, which could transiently colonise the gut. The aim of our work was to evaluate the impact of supplementation with a complex foodborne bacterial consortium on obesity-associated inflammation and gut microbiota composition in a mouse model. Methods C57BL/6J mice fed a 45% high fat diet (HFD) for 90 days were supplemented with a mixture of foodborne lactic acid bacteria derived from the traditional fermented dairy product “Mozzarella di Bufala Campana” (MBC) or with the commercial probiotic GG strain of Lactobacillus rhamnosus (LGG). Inflammation was assessed in epididymal white adipose tissue (WAT) following HFD. Faecal microbiota composition was studied by next-generation sequencing. Results Significant reduction of epididymal WAT weight was observed in MBC-treated, as compared to LGG and control, animals. Serum metabolic profiling showed correspondingly reduced levels of triglycerides and higher levels of HDL cholesterol, as well as a trend toward reduction of LDL-cholesterol levels. Analysis of the principal leucocyte subpopulations in epididymal WAT revealed increased regulatory T cells and CD4+ cells in MBC microbiota-supplemented mice, as well as decreased macrophage and CD8+ cell numbers, suggesting anti-inflammatory effects. These results were associated with lower levels of pro-inflammatory cytokines and chemokines in WAT explants. Faecal bacterial profiling demonstrated increased Firmicutes/Bacteroidetes ratio in all mice groups following HFD. Conclusions Taken together, these results indicate a protective effect of MBC microbiota supplementation toward HFD-induced fat accumulation and triglyceride and cholesterol levels, as well as inflammation, suggesting a stronger effect of a mixed microbial consortium vs single-strain probiotic supplementation. The immunomodulatory activity exerted by the MBC microbiota could be due to synergistic interactions within the microbial consortium, highlighting the important role of dietary microbes with yet uncharacterised probiotic effect. Electronic supplementary material The online version of this article (10.1186/s12263-017-0583-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianna Roselli
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Paola Zinno
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Barbara Guantario
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Alberto Finamore
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Rita Rami
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Giuditta Perozzi
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
30
|
Chen Y, Ding H, Sun S. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO₂. NANOMATERIALS 2017; 7:nano7080217. [PMID: 28796157 PMCID: PMC5575699 DOI: 10.3390/nano7080217] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022]
Abstract
In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite.
Collapse
Affiliation(s)
- Ying Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Hao Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Sijia Sun
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
31
|
Zanni E, Schifano E, Motta S, Sciubba F, Palleschi C, Mauri P, Perozzi G, Uccelletti D, Devirgiliis C, Miccheli A. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties. Front Microbiol 2017; 8:1206. [PMID: 28702021 PMCID: PMC5487477 DOI: 10.3389/fmicb.2017.01206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.
Collapse
Affiliation(s)
- Elena Zanni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Sara Motta
- Institute of Biomedical Technologies, National Research CouncilMilan, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of RomeRome, Italy
| | - Claudio Palleschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, National Research CouncilMilan, Italy
| | - Giuditta Perozzi
- Food and Nutrition Research Center, Council for Agricultural Research and EconomicsRome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Chiara Devirgiliis
- Food and Nutrition Research Center, Council for Agricultural Research and EconomicsRome, Italy
| | | |
Collapse
|
32
|
Medkour Y, Svistkova V, Titorenko VI. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:259-97. [PMID: 26811290 DOI: 10.1016/bs.ircmb.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|