1
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
2
|
Kimani CN, Reuter H, Kotzé SH, Venter P, Ramharack P, Muller CJF. Pancreatic beta cell regenerative potential of Zanthoxylum chalybeum Engl. Aqueous stem bark extract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117374. [PMID: 37944876 DOI: 10.1016/j.jep.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum chalybeum Engl. is endemic to Africa and has been used traditionally to treat diabetes mellitus. Moreover, its pharmacological efficacy has been confirmed experimentally using in vitro and in vivo models of diabetes. However, the effects of Z. chalybeum extracts and its major constituent compounds on beta cell and islet regeneration are not clear. Further, the mechanisms associated with observed antidiabetic effects at the beta cell level are not fully elucidated. AIM OF THE STUDY We determined the beta cell regenerative efficacy of Z. chalybeum aqueous stem bark extract, identified the chemical compounds in Z. chalybeum aqueous stem bark extracts and explored their putative mechanisms of action. MATERIALS AND METHODS Phytochemical profiling of the Z. chalybeum extract was achieved using ultra high-performance liquid chromatography hyphenated to high-resolution mass spectrometry. Thereafter, molecular interactions of the compounds with beta cell regeneration targets were evaluated via molecular docking. In vitro, effects of the extract on cell viability, proliferation, apoptosis and oxidative stress were investigated in RIN-5F beta cells exposed to palmitate or streptozotocin. In vivo, pancreas tissue sections from streptozotocin-induced diabetic male Wistar rats treated with Z. chalybeum extract were stained for insulin, glucagon, pancreatic duodenal homeobox protein 1 (Pdx-1) and Ki-67. RESULTS Based on ligand target and molecular docking interactions diosmin was identified as a dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitor. In vitro, Z. chalybeum augmented cell viability and cell proliferation while in palmitate-pre-treated cells, the extract significantly increased cell activity after 72 h. In vivo, although morphometric analysis showed decreased islet and beta cell size and density, observation of increased Pdx-1 and Ki-67 immunoreactivity in extract-treated islets suggests that Z. chalybeum extract has mild beta cell regenerative potential mediated by increased cell proliferation. CONCLUSIONS Overall, the mitogenic effects observed in vitro, were not robust enough to elicit sufficient recovery of functional beta cell mass in our in vivo model, in the context of a sustained diabetic milieu. However, the identification of diosmin as a potential Dyrk1A inhibitor merits further inquiry into the attendant molecular interactions.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Department of Non-communicable Diseases, Institute of Primate Research, PO Box 24481, Karen, Nairobi, Kenya.
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, PO Box 334, Basseterre, Saint Kitts and Nevis
| | - Pieter Venter
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Christo John Frederick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
3
|
Goswami K, Badruddeen, Arif M, Akhtar J, Khan MI, Ahmad M. Flavonoids, Isoflavonoids and others Bioactives for Insulin Sensitizations. Curr Diabetes Rev 2024; 20:e270423216247. [PMID: 37102490 DOI: 10.2174/1573399819666230427095200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
Diabetes is a chronic condition that has an impact on a huge part of the world. Both animals and humans have been demonstrated to benefit from natural goods, and organisms (animals, or microbes). In 2021, approximately 537 million adults (20-79 years) are living with diabetes, making it the one of the biggest cause of death worldwide. Various phytoconstituent preserved β- cells activity helps to prevent the formation of diabetes problems. As a result, β-cells mass and function are key pharmaceutical targets. The purpose of this review is to provide an overview of flavonoids' effects on pancreatic β-cells. Flavonoids have been demonstrated to improve insulin release in cell lines of isolated pancreatic islets and diabetic animal models. Flavonoids are thought to protect β-cells by inhibiting nuclear factor-κB (NF-κB) signaling, activating the phosphatidylinositol 3-kinase (PI3K) pathway, inhibiting nitric oxide production, and lowering reactive oxygen species levels. Flavonoids boost β-cells secretory capacity by improving mitochondrial bioenergetic function and increasing insulin secretion pathways. Some of the bioactive phytoconstituents such as S-methyl cysteine sulfoxides stimulate insulin synthesis in the body and increase pancreatic output. The berberine increased insulin secretion in the HIT-T15 and Insulinoma 6 (MIN6) mouse cell line. Epigallocatechin-3-Gallate protects against toxicity accrued by cytokines, reactive oxygen species (ROS), and hyperglycemia. Quercetin has been proven to boost insulin production by Insulinoma 1 (INS-1) cells and also protect cell apoptosis. Overall flavonoids have beneficial effects on β-cells by prevented their malfunctioning or degradation and improving synthesis or release of insulin from β-cells.
Collapse
Affiliation(s)
- Kushagra Goswami
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Muhammad Arif
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| |
Collapse
|
4
|
Rohani, Febrina E, Wahyuni IS, Levita J. Pharmacological and Clinical Studies of Medicinal Plants That Inhibit Dipeptidyl Peptidase-IV. Drug Des Devel Ther 2023; 17:3473-3491. [PMID: 38024536 PMCID: PMC10680473 DOI: 10.2147/dddt.s426870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) is an enzyme responsible for the degradation of the incretin hormone glucagon-like peptide-1 (GLP-1). DPP-IV plays a significant role in regulating blood glucose levels by modulating the activity of GLP-1. In the context of diabetes, DPP-IV inhibitors effectively block the activity of DPP-IV, hence mitigating the degradation of GLP-1. This, in turn, leads to an extension of GLP-1's duration of action, prolongs gastric emptying, enhances insulin sensitivity, and ultimately results in the reduction of blood glucose levels. Nonetheless, reported adverse events of DPP-IV inhibitors on T2DM patients make it essential to understand the activity and mechanism of these drugs, particularly viewed from the perspective of finding the effective and safe add-on medicinal plants, to be implemented in clinical practice. This review is intended to bring forth a thorough overview of plants that work by reducing DPP-IV activity, from computational technique, enzymatic study, animal experiments, and studies in humans. The articles were searched on PubMed using "Plants", "DPP-IV", "DPP-IV inhibitor", "GLP-1", "Type 2 diabetes", "diabetes", "in silico", "in vitro", "in vivo", "studies in human", "clinical study" as the query words, and filtered for ten years of publication period. Eighteen plants showed inhibition against DPP-IV as proven by in silico, in vitro, and in vivo studies; however, only ten plants were reported for efficacy in clinical studies. Several plant-based DPP-IV inhibitors, eg, Allium sativum, Morus Alba, Curcuma longa, Pterocarpus marsupium, and Taraxacum officinale, have established their functional role in inhibiting DPP-IV and have proven their effectiveness through studies in humans earning them a prominent place in therapeutic discovery.
Collapse
Affiliation(s)
- Rohani
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Indah Suasani Wahyuni
- Department of Oral Medicine, Faculty of Dentistry, Padjadjaran University, Sumedang, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
5
|
Masnoon J, Ishaque A, Khan I, Salim A, Kabir N. Effect of lawsone-preconditioned mesenchymal stem cells on the regeneration of pancreatic β cells in Type 1 diabetic rats. Cell Biochem Funct 2023; 41:833-844. [PMID: 37814478 DOI: 10.1002/cbf.3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 10/11/2023]
Abstract
Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic β cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate β cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of β cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and β cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of βcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.
Collapse
Affiliation(s)
- Javeria Masnoon
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aisha Ishaque
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nurul Kabir
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
7
|
Jadhav S, Yadav A. Phytoconstituents Based Nanomedicines for the Management of Diabetes: A Review. Pharm Nanotechnol 2023; 11:217-237. [PMID: 36654462 DOI: 10.2174/2211738511666230118095936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus (DM) is a life-threatening multifactorial metabolic syndrome that is still one of the most difficult unsolved health concerns. Different herbal drugs have been proposed to be useful in treating diabetes and its associated complications. Two major obstacles in plant extracts are their limited solubility and bioavailability of lipophilic bioactive components. Applying nanotechnology has opened new avenues to improve solubility, bioavailability, compliance, and efficacy by overcoming the pharmacokinetic and biopharmaceutical obstacles associated with herbal extracts and phytochemicals. Herbal nanomedicines can overcome the drawbacks of conventional therapy of DM, its complications like delayed wound healing, and also decrease the side effects of synthetic drugs. The targeted delivery of herbal nanoparticles employing nano-pumps, nanorobots, smart cells, and nanosized herbal medications is recognized today as one of the most far-reaching discoveries in the therapy of DM. This paper focuses on using nanotechnology and herbal therapies to manage diabetes effectively. The review provides a detailed and up-to-date overview of phytonanoformulations in treating diabetes and its consequences.
Collapse
Affiliation(s)
- Shailaja Jadhav
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Karad, 415004, India
| | - Adhikarao Yadav
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Karad, 415004, India
| |
Collapse
|
8
|
Mazraesefidi M, Mahmoodi M, Hajizadeh M. Effects of silibinin on apoptosis and insulin secretion in rat RINm5F pancreatic β-cells. Biotech Histochem 2023; 98:201-209. [PMID: 36762428 DOI: 10.1080/10520295.2022.2154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
We investigated whether silibinin, a flavonoid, might be useful for treating diabetes mellitus by treating five groups of rat RINm5F β-insulinemia cells as follows: control streptozotocin (STZ) group administered citrate buffer and dimethyl sulfoxide; STZ group administered 20 mM STZ; silibinin group administered 50 µM silibinin; pre-silibinin group administered 50 µM silibinin 5 h before administering 20 mM STZ; simultaneous group administered 50 µM silibinin at the same time as 20 mM STZ. For all groups, MTT assay and flow cytometry were used to evaluate cell viability and necrosis, respectively. Glucose-stimulated insulin secretion (GSIS) and insulin cell content were determined using enzyme-linked immunosorbent assay. Also, expression of genes, pancreatic and duodenal homeobox 1 (pdx1), neuronal differentiation 1 (neurod1), v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (mafa), glucose transporter 2 (glut2)) was determined using the real-time polymerase chain reaction. We found that silibinin improved the viability of RINm5F cells and increased GSIS and cellular insulin under glucotoxic conditions. Silibinin increased the expression of neurod1, mafa and glut2, but reduced pdx1 expression. Our findings suggest that silibinin might increase glucose sensitivity and insulin synthesis under glucotoxic conditions, which could be useful for diabetes treatment.
Collapse
Affiliation(s)
- Maryam Mazraesefidi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammadreza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
9
|
Zarasvand SA, Mullins AP, Arjmandi B, Haley-Zitlin V. Antidiabetic properties of mango in animal models and humans: A systematic review. Nutr Res 2023; 111:73-89. [PMID: 36841190 DOI: 10.1016/j.nutres.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/25/2022] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
Mango has long been an attractive source of nutrition and pharmacological therapeutics. The mango plant (Mangifera indica L.) contains bioactive compounds that may have antidiabetic properties. This systematic review investigated the evidence for antidiabetic properties of the different parts of the mango plant in managing type 2 diabetes mellitus in animal models and humans. The electronic databases PubMed, FSTA, Web of Science, CINAHL, MEDLINE, and Cochrane Library were systematically searched to identify articles with clear objectives and methodologies available in the English language with publication date limits up to December 2020. Twenty-eight of 1001 animal and human studies met the inclusion criteria that investigated antidiabetic properties of mango from leaf (31%), flesh (38%), seed-kernel (7%), peel (14%), stem-bark (7%), and by-product (3%). Results support the glucose-lowering properties of mango in both animals and human. Proposed antidiabetic mechanisms of action include inhibition of α-amylase and α-glucosidase, improved antioxidant status, improved insulin sensitivity, facilitated glucose uptake, and gene regulation of glucose transporter type 4, insulin receptor substrate 1, and phosphoinositide 3-kinase. The animal and randomized control trial findings suggest that mango may be beneficial as an antidiabetic agent. Although these studies hold promise, additional observational studies and randomized control trials are required because human studies are significantly fewer in number, use mango flesh almost exclusively, and had modest blood glucose effects. Additional research gaps include identifying the mechanisms of action for the different components of the mango plant.
Collapse
Affiliation(s)
| | - Amy P Mullins
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; Department of Family and Consumer Sciences-Leon County Extension Services, University of Florida Institute of Food and Agricultural Sciences, Tallahassee, FL 32301, USA.
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, USA.
| |
Collapse
|
10
|
Zheng M, Wang L, Sun Y, Pi X, Zhang W, Gao P, Lu S, Liu W. Hypoglycemic effect of the Phellinus baumii extract with α-glucosidase-inhibited activity and its modulation to gut microbiota in diabetic patients. Biomed Pharmacother 2023; 158:114130. [PMID: 36577329 DOI: 10.1016/j.biopha.2022.114130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Phellinus baumii extract (PBE) possesses considerable α-glucosidase-inhibited activity. This study investigated the hypoglycemic effect in vitro and in vivo using a glucose consumption assay in HepG2 cells, intragastric administration for ten weeks in STZ-induced mice, and intestinal flora fermentation in patients with type 2 diabetes to reveal the possible underlying mechanisms. PBE was prepared, including α-glucosidase-inhibited ethanol extract (EE) and aqueous extract (AE). In vitro, PBE promoted glucose consumption and enhanced glycogen content and hexokinase activity but lowered phosphoenolpyruvate carboxylase kinase activity in HepG2 cells. In vivo, PBE treatment significantly reduced the body weight (p < 0.05) and fasting blood glucose levels of diabetic mice (p < 0.01), with the lowest blood glucose level observed in the EE+AE group. Furthermore, the serum insulin levels and insulin resistance index (HOMA) of PBE-treated groups decreased significantly (p < 0.01). Moreover, gene expression levels of the IRS-1/PI3K/AKT pathway were significantly upregulated by PBE treatment (p < 0.01). In vitro fermentation demonstrated that EE significantly inhibited the production of H2S and NH3 in the intestinal flora fermentation model in diabetic patients (p < 0.05). In addition, the ratio of Firmicutes to Bacteroidetes was reduced, the growth of Lactobacillus and Prevotella 9 was promoted, and Pseudomonas aeruginosa was inhibited. This study provides new insights and clues for using PBE as a functional food and clinical drug for glycemic control.
Collapse
Affiliation(s)
- Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing Sun
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenjuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pu Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
11
|
UPLC-ESI-QTOF-MS Profiling of Phenolic Compounds from Eriocephalus africanus: In Vitro Antioxidant, Antidiabetic, and Anti-Inflammatory Potentials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248912. [PMID: 36558046 PMCID: PMC9782900 DOI: 10.3390/molecules27248912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The present study investigated phenolic compounds, antioxidant, antidiabetic, and the anti-inflammatory potentials of methanolic and chloroform extracts of Eriocephalus africanus. The methanolic extract included, polyphenols (112 ± 2.81 mg gallic acid equivalent (GAE)/g), flavonols (76.12 ± 7.95 mg quercetin equivalents (QE)/g); antioxidant capacity (Ferric Reducing Antioxidant Power (FRAP) (752.64 ± 89.0 μmol of ascorbic acid equivalents (AAE) per g dry weight (µmol AAE/g), 2,2-dyphenyl-1-picrylhydrazyl (DPPH) (812.18 ± 51.12 Trolox equivalents per gram of dry mass of plant extracts (μmol TE/g), TEAC (631.63 ± 17.42 µmol TE/g)), while the chloroform extract included polyphenols (39.93 ± 1.36 mg GAE/g), flavonols (44.81 ± 3.74 mg QE/g); antioxidant capacity, DPPH (58.70 ± 5.18 µmol TE/g), TEAC (118.63 ± 3.74 µmol TE/g) and FRAP (107.10 ± 2.41 µmol AAE/g). The phytochemicals profiling performed by UPLC-ESI-QTOF-MS revealed some important polyphenols, predominantly flavonoids, that could be responsible for the antioxidant capacity and biological effects. Both extracts demonstrated a dose-dependent manner of the alpha-glucosidase inhibition with an IC50 between 125 and 250 μg/mL for methanolic extract, while the chloroform extract was at 250 μg/mL. In the L6 myoblasts and C3A hepatocytes, the methanolic extract slightly increased the utilization of glucose, and both extracts exhibited a dose-dependent increase in the glucose uptake in both cell types without significantly increasing the cytotoxicity. Furthermore, both extracts exhibited an anti-inflammatory potential and the findings from the present study could serve as a baseline for further research in the development of pharmaceutical agents.
Collapse
|
12
|
Antidiabetic Potential of Commonly Available Fruit Plants in Bangladesh: Updates on Prospective Phytochemicals and Their Reported MoAs. Molecules 2022; 27:molecules27248709. [PMID: 36557843 PMCID: PMC9782115 DOI: 10.3390/molecules27248709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
Collapse
|
13
|
Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022; 27:molecules27134278. [PMID: 35807526 PMCID: PMC9268530 DOI: 10.3390/molecules27134278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-1323-879720
| | - Samia Akther
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Nusrat Jahan Nujat
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | | |
Collapse
|
14
|
Khalid W, Maqbool Z, Arshad MS, Kousar S, Akram R, Siddeeg A, Ali A, Qin H, Aziz A, Saeed A, Rahim MA, Zubair Khalid M, Ali H. Plant-derived functional components: prevent from various disorders by regulating the endocrine glands. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Safura Kousar
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ramish Akram
- Department of Rehabilitation Sciences, The University of Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, China
| | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | | | | - Hina Ali
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
15
|
Swargiary A, Roy MK, Mahmud S. Phenolic compounds as α-glucosidase inhibitors: a docking and molecular dynamics simulation study. J Biomol Struct Dyn 2022; 41:3862-3871. [PMID: 35362358 DOI: 10.1080/07391102.2022.2058092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolic compounds possess significant biological activity. Several pieces of research emphasize the medicinal importance of phenolic compounds, including diabetes. The present study investigated the α-glucosidase inhibitory activity of phenolic compounds reported from several plants. The phenolic compounds reported in different literature were collected. Molecular docking was carried out using AutoDock Vina. Various physicochemical properties such as size, LogP, molecular complexity, hydrogen bonding properties of phenolic compounds were correlated with the binding affinities. Furthermore, MD simulation was carried out to study the structural stability of the docking complexes. A total of 155 phenolic compounds were reported from different plants. Amentoflavone showed the strongest binding affinity with α-glucosidase, much more potent than reference acarbose. The binding energy showed a good correlation with the molecular complexity, hydrogen bond donor and acceptor property and heavy atom counts of the compounds. The polarity of the surface area also showed a positive correlation with the binding affinity of the compounds. The best docking phenolic compound, amentoflavone, showed stable binding affinity and conformation during the simulation period compared to apoprotein and acarbose-docking complex. The top ten phenolic compounds, including amentoflavone, showed considerable drug-likeness properties with fewer toxicity effects. The study suggests that the amentoflavone could be a potential therapeutic drug as an α-glucosidase inhibitor and help control postprandial hyperglycemia.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananta Swargiary
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Mritunjoy Kumar Roy
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
16
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Rahaman MS, Islam F, Ahmed M, Mitra S, Khandaker MU, Idris AM, Chidambaram K, Emran TB, Cavalu S. The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022; 27:1713. [PMID: 35268815 PMCID: PMC8911649 DOI: 10.3390/molecules27051713] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people's lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.E.H.); (M.S.R.); (F.I.); (M.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia;
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
17
|
Vedasree N, Peddanna K, Rajasekhar A, ParthaSarathi C, Munirajeswari P, Sireesha Y, Chippada AR. Efficacy of Cyanotis tuberosa (Roxb.) Schult. &Schult. f. root tubers' active fraction as anti-diabetic, antihyperlipidemic and antioxidant in Streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114856. [PMID: 34808300 DOI: 10.1016/j.jep.2021.114856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyanotis tuberosa (Roxb.) Schult. &Schult.f. is traditionally used as ethnomedicine for curing several ailments like diabetes, liver problems, ulcers, etc. OBJECTIVE: The present study was designed to evaluate the anti-diabetic potential of Cyanotis tuberosa root tubers (CTRT)in Streptozotocin (STZ) induced diabetic rats. MATERIALS AND METHODS Anti-hyperglycemic activity of hexane extract of CTRT was investigated in diabetic rats. Silica gel chromatography was used to fractionate the hexane extract and the fraction's antihyperglycemic activity was checked in diabetic rats. Effects of long-term (30 days) treatment with an active fraction (CTAF) were evaluated in diabetic rats for 30 days by measurement of body weights, glycemic control, insulin levels, HbA1c, and serum and tissue lipid profiles. Lipid peroxide levels and antioxidant status were measured in the liver and kidney. Hepatic and Renal functional markers were also measured. Phytochemical characterization of CTAF was carried out by LC-ESI-MS/MS analysis. RESULTS Hexane extract of CTRT at a dose of 750 mg/kg b.w produced significant antihyperglycemic activity in diabetic rats whereas CTAF has produced maximum antihyperglycemic activity at the dose of 75 mg/kg b.w. Following long-term treatment with CTAF in diabetic rats, significant improvement in glycemic control, (HbA1c) along with decreased insulin resistance (HOMA-IR), increase in body weights, and plasma insulin were observed. Also, CTAF ameliorated the serum and tissue lipid profiles. In addition, CTAF suppressed lipid peroxidation and restored the activities of antioxidant enzymes in the liver and kidney to normal levels. Further, CTAF reversed the liver and kidney functional markers to normalcy. LC-ESI-MS/MS analysis revealed the presence of 7 different phytoconstituents. CONCLUSION This study confirmed that CTAF exerts antidiabetic effects in diabetic rats by improving insulin secretion, glycemic control, and restoring functional activities of the liver and kidney. Our results suggest that root tubers of Cyanotis tuberosa can be used as a complementary or alternative agent for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Nalluri Vedasree
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Kotha Peddanna
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Allagadda Rajasekhar
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | | | - Yallanki Sireesha
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Appa Rao Chippada
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
| |
Collapse
|
18
|
Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne) 2022; 13:800714. [PMID: 35282429 PMCID: PMC8907382 DOI: 10.3389/fendo.2022.800714] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes, a chronic physiological dysfunction affecting people of different age groups and severely impairs the harmony of peoples' normal life worldwide. Despite the availability of insulin preparations and several synthetic oral antidiabetic drugs, there is a crucial need for the discovery and development of novel antidiabetic drugs because of the development of resistance and side effects of those drugs in long-term use. On the contrary, plants or herbal sources are getting popular day by day to the scientists, researchers, and pharmaceutical companies all over the world to search for potential bioactive compound(s) for the discovery and development of targeted novel antidiabetic drugs that may control diabetes with the least unwanted effects of conventional antidiabetic drugs. In this review, we have presented the prospective candidates comprised of either isolated phytochemical(s) and/or extract(s) containing bioactive phytoconstituents which have been reported in several in vitro, in vivo, and clinical studies possessing noteworthy antidiabetic potential. The mode of actions, attributed to antidiabetic activities of the reported phytochemicals and/or plant extracts have also been described to focus on the prospective phytochemicals and phytosources for further studies in the discovery and development of novel antidiabetic therapeutics.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | | | | | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, ALCRI (Arid Lands Cultivation Research Institute), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shah Alam Khan
- College of Pharmacy, National University of Science & Technology, Muscat, Oman
| | - Isa Naina Mohamed
- Pharmacology Department, Medicine Faculty, Universiti Kebangsaan Malaysia (The National University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Ramasubramanian B, Griffith C, Hanson M, Bunquin LE, Reddy AP, Hegde V, Reddy PH. Protective Effects of Chaya against Mitochondrial and Synaptic Toxicities in the Type 2 Diabetes Mouse Model TallyHO. Cells 2022; 11:cells11040744. [PMID: 35203393 PMCID: PMC8870610 DOI: 10.3390/cells11040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/06/2022] Open
Abstract
The purpose of our study is to determine the protective effects of the chaya leaf against mitochondrial abnormalities and synaptic damage in the Type 2 diabetes (T2D) mouse model, TallyHO (TH). The TH mouse is a naturally occurring polygenic mouse model of diabetes that mimics many characteristics of human Type 2 diabetes. Only male TH mice develop hyperglycemia and moderate obesity. Female mice display moderate obesity but do not manifest overt diabetes. In this study, we evaluated three groups of mice over a period of 11 weeks: (1) the experimental group of TH diabetic mice fed with chaya chow; (2) a diabetic control group of TH diabetic mice fed with regular chow; and (3) a non-diabetic control group of SWR/J mice fed with regular chow. Body mass and fasting blood glucose were assessed weekly. Brain and other peripheral tissues were collected. Using qRT-PCR and immunoblotting analyses, we measured the mRNA abundance and protein levels of mitochondrial biogenesis, mitochondrial dynamics, autophagy/mitophagy, and synaptic genes. Using immunofluorescence analysis, we measured the regional immunoreactivities of mitochondrial and synaptic proteins. Using biochemical methods, we assessed mitochondrial function. We found increased body mass and fasting glucose levels in the TH diabetic mice relative to the non-diabetic control SWRJ mice. In chaya chow-fed TH diabetic mice, we found significantly reduced body mass and fasting glucose levels. Mitochondrial fission genes were increased and fusion, biogenesis, autophagy/mitophagy, and synaptic genes were reduced in the TH mice; however, in the chaya chow-fed TH diabetic mice, mitochondrial fission genes were reduced and fusion, biogenesis, autophagy/mitophagy, and synaptic genes were increased. Mitochondrial function was defective in the diabetic TH mice; however, it was rescued in the chaya chow-fed TH mice. These observations strongly suggest that chaya chow reduces the diabetic properties, mitochondrial abnormalities, and synaptic pathology in diabetic, TH male mice. Our data strongly indicates that chaya can be used as natural supplemental diet for prediabetic and diabetic subjects and individuals with metabolic disorders.
Collapse
Affiliation(s)
- Bhagavathi Ramasubramanian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
| | - Cameron Griffith
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
- Department of Sociology, Anthropology, and Social Work, Texas Tech University, Lubbock, TX 79409, USA
| | - Madison Hanson
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
| | - Lloyd E. Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; (A.P.R.); (V.H.)
| | - Vijay Hegde
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; (A.P.R.); (V.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3194
| |
Collapse
|
20
|
García-Aguilar A, Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front Endocrinol (Lausanne) 2022; 13:1052317. [PMID: 36465657 PMCID: PMC9712222 DOI: 10.3389/fendo.2022.1052317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is a very complex disease which is characterized by the appearance of insulin resistance that is primarily compensated by an increase in pancreatic beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells die by apoptosis appearing in the second phase of the disease, and characterized by hypoinsulinemia. There are multiple conditions that can alter pancreatic beta cell homeostasis and viability, being the most relevant ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress, mitochondrial dysfunction, inflammation and alterations in autophagy/mitophagy flux. In addition, the possible effects that different polyphenols could exert in the modulation of these mechanisms and regulating pancreatic beta cell viability are analyzed. It is necessary a profound analysis and understanding of all the possible mechanisms involved in the control and maintenance of pancreatic beta cell viability to develop more accurate and target treatments for controlling beta cell homeostasis and preventing or even reversing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Guillén
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Carlos Guillén,
| |
Collapse
|
21
|
Oyenihi OR, Cerf ME, Matsabisa MG, Brooks NL, Oguntibeju OO. Effect of kolaviron on islet dynamics in diabetic rats. Saudi J Biol Sci 2022; 29:324-330. [PMID: 35002425 PMCID: PMC8716911 DOI: 10.1016/j.sjbs.2021.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 10/25/2022] Open
Abstract
Kolaviron, a biflavonoid isolated from the edible seeds of Garcinia kola, lowers blood glucose in experimental models of diabetes; however, the underlying mechanisms are not yet fully elucidated. The objective of the current study was to assess the effects of kolaviron on islet dynamics in streptozotocin-induced diabetic rats. Using double immunolabeling of glucagon and insulin, we identified insulin-producing β- and glucagon-producing α-cells in the islets of diabetic and control rats and determined the fractional β-cell area, α-cell area and islet number. STZ challenged rats presented with islet hypoplasia and reduced β-cell area concomitant with an increase in α-cell area. Kolaviron restored some islet architecture in diabetic rats through the increased β-cell area. Overall, kolaviron-treated diabetic rats presented a significant (p < 0.05) increase in the number of large and very large islets compared to diabetic control but no difference in islet number and α-cell area. The β-cell replenishment potential of kolaviron and its overall positive effects on glycemic control suggest that it may be a viable target for diabetes treatment.
Collapse
Affiliation(s)
- Omolola R Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Marlon E Cerf
- Grants, Innovation and Product Development, South African Medical Research Council, Tygerberg, South Africa.,Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Motlalepula G Matsabisa
- Pharmacology Department, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Nicole L Brooks
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
22
|
Thomas A, Bankar N, Nagore D, Kothapalli L, Chitlange S. Herbal Oils for Treatment of Chronic and Diabetic Wounds: A Systematic Review. Curr Diabetes Rev 2022; 18:e220321192406. [PMID: 34225631 DOI: 10.2174/1573399817666210322151700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/29/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the present scenario, diabetes is a growing health challenge, and its occurrence is growing across the globe. Diabetes, with its complications like diabetic wounds, vasculopathy, neuropathy, wound infections, and oxidative stress, is a serious cause of mortality worldwide. INTRODUCTION Among the various complications, treatment of diabetic foot and ulcers is one of the major concerns in patients who are suffering from diabetes. The causative factors for this condition include increased oxidative stress, high blood glucose levels, vascular insufficiency, and microbial infections, and many a time, if left untreated, it may even lead to amputations of the lower extremities. The present therapy for the treatment of diabetic wounds mainly involves the use of synthetic moieties and other biotechnology-derived biomolecules, including growth factors. Few plant products are also useful in the treatment of wounds. METHODS Essential oils derived from various herbs are reported to possess significant wound healing potential and promote blood clotting, help to fight infections, and accelerate the wound healing process. Hence, the present review is a systematic analysis of all the available data on the use of the natural oils with their biological source, active phytochemical constituents present, and the probable mechanism of action for the treatment of chronic and diabetic wounds in suitable animal models. A methodical collection of data was performed, and information was searched up to April 2020 in entirety. Key phrases used for the data search include the pathophysiology of wounds, diabetic foot wound and its complications, natural oils for chronic and diabetic wound treatment. RESULTS This review summarizes the natural oils which are reported in the literature to be beneficial in the treatment of chronic wounds, while some oils have been specifically also studied against wounds in diabetic rats. Essential oils are said to interact with the body pharmacologically, physiologically and psychologically and help in rapid wound healing. However, the majority of the literature studies have demonstrated wound healing activity only in animal models (preclinical data), and further clinical studies are necessary. CONCLUSION This review provides a platform for further studies on the effective utilization of natural oils in the treatment of chronic and diabetic wounds, especially if oils are to receive credibility in the management of chronic wounds.
Collapse
Affiliation(s)
- Asha Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Nilam Bankar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Dheeraj Nagore
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Lata Kothapalli
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS, India
| |
Collapse
|
23
|
Chhabria S, Mathur S, Vadakan S, Sahoo DK, Mishra P, Paital B. A review on phytochemical and pharmacological facets of tropical ethnomedicinal plants as reformed DPP-IV inhibitors to regulate incretin activity. Front Endocrinol (Lausanne) 2022; 13:1027237. [PMID: 36440220 PMCID: PMC9691845 DOI: 10.3389/fendo.2022.1027237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder resulting from impaired insulin secretion and resistance. Dipeptidyl peptidase (DPP)-IV is an enzyme known to trigger the catalysis of insulinotropic hormones, further abating the endogenous insulin levels and elevating the glucose levels in blood plasma. In the field of drug development, DPP-IV inhibitors have opened up numerous opportunities for leveraging this target to generate compounds as hypoglycemic agents by regulating incretin activity and subsequently decreasing blood glucose levels. However, the practice of synthetic drugs is an apparent choice but poses a great pharmacovigilance issue due to their incessant undesirable effects. The ideology was set to inventively look upon different ethnomedicinal plants for their anti-diabetic properties to address these issues. To date, myriads of phytochemicals are characterized, eliciting an anti-diabetic response by targeting various enzymes and augmenting glucose homeostasis. Antioxidants have played a crucial role in alleviating the symptoms of diabetes by scavenging free radicals or treating the underlying causes of metabolic disorders and reducing free radical formation. Plant-based DPP-IV inhibitors, including alkaloids, phenolic acid, flavonoids, quercetin, and coumarin, also possess antioxidant capabilities, providing anti-diabetic and antioxidative protection. This review article provides a new gateway for exploring the ability of plant-based DPP-IV inhibitors to withstand oxidative stress under pathological conditions related to diabetes and for reforming the strategic role of ethnomedicinal plants as potent DPP-IV inhibitors through the development of polyherbal formulations and nanophytomedicines to regulate incretin activity.
Collapse
Affiliation(s)
- Srishti Chhabria
- Department of Biochemistry and Biotechnology, St Xavier’s College, Ahmedabad, India
- Department of Biotechnology, Gujarat University, Ahmedabad, India
| | - Shivangi Mathur
- Department of Biotechnology, Gujarat University, Ahmedabad, India
- Department of Biotechnology, President Science College, Ahmedabad, India
| | - Sebastian Vadakan
- Department of Biochemistry and Biotechnology, St Xavier’s College, Ahmedabad, India
- Department of Biotechnology, Gujarat University, Ahmedabad, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Biswaranjan Paital, ; Dipak Kumar Sahoo, ;
| | - Pragnyashree Mishra
- Department of Horticulture, College of Agriculture, Odisha University of Agriculture and Technology, Chipilima, Sambalpur, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
- *Correspondence: Biswaranjan Paital, ; Dipak Kumar Sahoo, ;
| |
Collapse
|
24
|
Salvia Officinalis Protects Pancreatic Beta-cells Against Streptozotocin-Induced Damage; A Stereological Study. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a chronic disease, progressing due to inadequate secretion of insulin by pancreas. Salvia officinalis (SVO) has anti-inflammatory and anti-oxidative potentials, which may be beneficial in regulating underlying causes of DM. Objectives: In this study, we aimed to estimate the protective effects of SVO against Streptozotocin (STZ)-induced pancreatic injury in rat models of DM. Methods: Forty-eight male Sprague-Dawley rats were randomly divided into four groups (n = 12); C1: normal group with no treatment, C2: diabetic group with no treatment, E1: diabetic group treated with 200 mg/kg of the SVO extract, and E2: diabetic group treated with 400 mg/kg of the SVO extract. All groups received a single dose of STZ on day 7 except C1. Pancreas volume, shrinkage, volume densities of the islets, numerical densities, and volume of the beta cells were measured using stereological methods. Results: Blood sugar (BS) levels were significantly lower in SVO-treated groups comparing to C2 group. Also, volume densities and total number of islets and beta cells in E1 and E2 groups were higher than C2 (P < 0.05), but lower than C1 (P < 0.05). Volume densities of the islets and beta cells, and total number of beta cells in E1, and volume densities of the islets and beta cells in E2 groups were considerably higher than C2 group (P < 0.05). Conclusions: Our result showed the beneficial effects of SVO extract regarding pancreatic damage. We concluded that SVO might be prescribed as a therapeutic food supplement for patients with diabetes.
Collapse
|
25
|
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021; 26:molecules26144333. [PMID: 34299610 PMCID: PMC8307461 DOI: 10.3390/molecules26144333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.
Collapse
|
26
|
Wickramasinghe ASD, Kalansuriya P, Attanayake AP. Herbal Medicines Targeting the Improved β-Cell Functions and β-Cell Regeneration for the Management of Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2920530. [PMID: 34335803 PMCID: PMC8298154 DOI: 10.1155/2021/2920530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
There is an increasing trend of investigating natural bioactive compounds targeting pancreatic β-cells for the prevention/treatment of diabetes mellitus (DM). With the exploration of multiple mechanisms by which β-cells involve in the pathogenesis of DM, herbal medicines are gaining attention due to their multitasking ability as evidenced by traditional medicine practices. This review attempts to summarize herbal medicines with the potential for improvement of β-cell functions and regeneration as scientifically proven by in vivo/in vitro investigations. Furthermore, attempts have been made to identify the mechanisms of improving the function and regeneration of β-cells by herbal medicines. Relevant data published from January 2009 to March 2020 were collected by searching electronic databases "PubMed," "ScienceDirect," and "Google Scholar" and studied for this review. Single herbal extracts, polyherbal mixtures, and isolated compounds derived from approximately 110 medicinal plants belonging to 51 different plant families had been investigated in recent years and found to be targeting β-cells. Many herbal medicines showed improvement of β-cell function as observed through homeostatic model assessment-β-cell function (HOMA-β). Pancreatic β-cell regeneration as observed in histopathological and immunohistochemical studies in terms of increase of size and number of functional β-cells was also prominent. Increasing β-cell mass via expression of genes/proteins related to antiapoptotic actions and β-cell neogenesis/proliferation, increasing glucose-stimulated insulin secretion via activating glucose transporter-2 (GLUT-2) receptors, and/or increasing intracellular Ca2+ levels were observed upon treatment of some herbal medicines. Some herbal medicines acted on various insulin signaling pathways. Furthermore, many herbal medicines showed protective effects on β-cells via reduction of oxidative stress and inflammation. However, there are many unexplored avenues. Thus, further investigations are warranted in elucidating mechanisms of improving β-cell function and mass by herbal medicines, their structure-activity relationship (SAR), and toxicities of these herbal medicines.
Collapse
Affiliation(s)
| | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
27
|
Putra AMP, Sari RP, Musiam S. Combination of Bawang Dayak Extract and Acarbose against Male White Rat Glucose Levels. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetes is a chronic metabolic disease with signs of increased blood glucose levels. Type 2 diabetes is common diabetes in adults. Bawang dayak is one of the plants believed to have the efficacy of curing various types of diseases. The purpose of this study was to find out the comparison of hypoglycemic effects between combinations of bawang dayak extract and acarbose with single acarbose. This study was an experimental study using 32 white mice divided into two groups. Group one was given a combination of bawang dayak at a dose of 100 mg/kg BW and acarbose at a dose of 40 mg/100 g BW, while group two was given acarbose at a dose of 40 mg/100 g BW. Treatment is administered after the test animal is induced with dexamethasone at a 1 mg/kg BW dose dissolved in NaCl 0.9% subcutaneously for 12 days. Measurement of glucose levels was carried out using a glucometer. Data retrieval was carried out every three days for 15 days after previously fulfilled for +10 hours. Blood glucose level data were analyzed with the General Linear Model test. The combination of bawang dayak-acarbose onion extract had a greater decrease in blood glucose levels than single acarbose. Average reduction in blood glucose levels for D+3; D+6; D+9; D+12; and D+15 was 187.31; 168.56; 140.81; 119.81; and 102.56 mg/dl, respectively. The General Linear Model test results showed a p <0.05 value that significantly impacted blood glucose levels between groups.
Collapse
|
28
|
Haile T, Cardoso SM, de Oliveira Raphaelli C, Pereira OR, Pereira EDS, Vizzotto M, Nora L, Asfaw AA, Periasamy G, Karim A. Chemical Composition, Antioxidant Potential, and Blood Glucose Lowering Effect of Aqueous Extract and Essential Oil of Thymus Serrulatus Hochst. Ex Benth. Front Pharmacol 2021; 12:621536. [PMID: 33995021 PMCID: PMC8116798 DOI: 10.3389/fphar.2021.621536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Thymus serrulatus, an endemic plant of Ethiopia, is traditionally used to cure various diseases and as a food ingredient. In the Ethiopian folk medicine, the decoction is orally taken as a remedy to treat diabetes and high blood pressure. The purpose of the present study was to evaluate the antioxidant and antihyperglycemic effects of the aqueous extract and of the essential oil of Thymus serrulatus. The chemical composition of the aqueous extract was determined by LC-MS and the essential oil was characterized by GC-MS analysis. Radical scavenging assays, namely scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH•), hydroxyl (•OH), and nitric oxide (•NO), were used as a first approach to screen the potential antioxidant abilities of the samples. Alpha-amylase and α-glucosidase inhibitory studies were also employed to evaluate the in vitro antihyperglycemic potential of the plant. The in vivo blood glucose lowering effect of the extracts was assessed using hypoglycemic activity and the oral glucose tolerance test in normal and in streptozotocin induced diabetic mice. When compared to the aqueous extract, the essential oil showed superior radical scavenging activity, particularly for •NO, as well as greater inhibitory potency against α-amylase and α-glucosidase (IC50 = 0.01 mg/ml and 0.11 mg/ml, respectively). Both tested samples showed a statistically significant antihyperglycemic effect. The aqueous extract at 600 mg/kg exerted maximum antihyperglycemic activity (44.14%), followed by the essential oil (30.82%). Body weight and glucose tolerance parameters were also improved by the samples both in normal and diabetic mice. The findings of this study support the hypothesis that aqueous extract and essential oil of T. serrulatus are promising therapeutic agents.
Collapse
Affiliation(s)
- Tesfay Haile
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Chirle de Oliveira Raphaelli
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Olívia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Elisa dos Santos Pereira
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Leonardo Nora
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adissu Alemayehu Asfaw
- Department of Pharmaceutical Analysis and Quality Control, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gomathi Periasamy
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Aman Karim
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
29
|
Jiao X, Liu H, Lu Q, Wang Y, Zhao Y, Liu X, Liu F, Zuo Y, Wang W, Li Y. Study on the Mechanism of Prunella Vulgaris L on Diabetes Mellitus Complicated with Hypertension Based on Network Pharmacology and Molecular Docking Analyses. J Diabetes Res 2021; 2021:9949302. [PMID: 34692849 PMCID: PMC8536441 DOI: 10.1155/2021/9949302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
The role of traditional Chinese medicine Prunella vulagaris L in the treatment of tumors and inflammation has been widely confirmed. We found that some signaling pathways of Prunella vulgaris L action can also regulate diabetes and hypertension, so we decided to study the active ingredients, potential targets and signaling pathway of Prunrlla vulgaris L, and explore the "multi-target, multi-pathway" molecular mechanism of Prunella vulgaris L on diabetes mellitus complicated with hypertension(DH). Methods. Based on TCMSP(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and CNKI(China National Knowledge Infrastructure), the components and action targets related to Prunella vulgaris L were screened. The OMIM(Online Mendelian Inheritance in Man) and GeneCards (The human gene database) were used to search for targets related to DH. The "gene - drug - disease" relationship map was drawn by Cytoscape_v3.7.2 plug-in. The target was amplified by the STRING platform, and the "protein - protein" interaction relationship (PPI) network of the interacting target was obtained by the STRING online analysis platform and the Cytoscape_v3.7.2 plug-in. Finally, GO enrichment analysis and KEGG pathway enrichment analysis were conducted on David and Metascape platform to study the co-acting targets. Results. 11 active components, 41 key targets and 16 significant signaling pathways were identified from Prunella vulgaris L. The main active components of Prunella vulgaris L against DH were quercetin and kaumferol, etc, and potential action targets were IL-6 and INS, etc and signaling pathways were AGE-RAGE signaling pathway, TNF signaling pathway, MAPK signaling pathway, PI3K-AKT signaling pathway, etc. It involves in biological processes such as cell proliferation, apoptosis and inflammatory response. Conclusions. The main molecular mechanism of Prunella vulgaris L against DH is that sterols and flavonoids play an active role by affecting TNF signaling pathway, AGE-RAGE signaling pathway, MAPK pathway, PI3K-Akt pathway related targets such as IL-6 and INS.
Collapse
Affiliation(s)
- Xinyi Jiao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haiying Liu
- ChaYeKou Town Health Center of LaiWu District, Jinan, China
| | - Qinan Lu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Zhao
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuemei Liu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Liu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaoyao Zuo
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenbo Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujie Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|
31
|
Lu K, Chen S, Lin Y, Wu H, Chao P. An antidiabetic nutraceutical combination of red yeast rice ( Monascus purpureus), bitter gourd ( Momordica charantia), and chromium alleviates dedifferentiation of pancreatic β cells in db/db mice. Food Sci Nutr 2020; 8:6718-6726. [PMID: 33312555 PMCID: PMC7723183 DOI: 10.1002/fsn3.1966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 10/10/2020] [Indexed: 11/13/2022] Open
Abstract
Antidiabetic properties of red yeast rice, bitter gourd, and chromium have gained scientific support. This study aimed to test whether a nutraceutical combination of these 3 materials prevented dedifferentiation of pancreatic β cells. Male db/db mice (8 weeks of age) were allocated into four groups (DB, DB/L, DB/M, and DB/H; n = 8-10) and fed a high-fat diet containing 0%, 0.2%, 0.4%, or 1% nutraceutical, respectively, whereas wild-type mice receiving a standard diet served as a healthy control (C; n = 10). The nutraceutical contained 10 mg/g monacolin K, 165 µg/g chromium, and 300 mg/g bitter gourd. After 8-weeks dietary treatment, diabetic syndromes (including hyperglycemia, hyperphagia, excessive drinking, polyuria, glucosuria, albuminuria, and glucose intolerance), were improved by the nutraceutical in a dose-dependent fashion. Decreased insulin and increased glucagon in serum and pancreatic islets in db/db mice were abolished in the DB/H group. Furthermore, supplementation curtailed dedifferentiation of β cells, as evidenced by decreasing the dedifferentiation marker (Aldh1a3) and increasing β-cell-enriched genes and transcription factors (Ins1, Ins2, FOXO1, and NKX6.1), as well as nuclear localization of NKX6.1 in pancreatic islets when compared to the DB group. We concluded that this nutraceutical, a combination of Monascus purpureus, Momordica charantia, and chromium, could be used as an adjunct for type 2 diabetes treatment and delay disease progression by sustaining β-cell function.
Collapse
Affiliation(s)
- Ke‐Ying Lu
- Department of NutritionChina Medical UniversityTaichungTaiwan
- Lishui Municipal Central HospitalLishuiChina
| | - Szu‐Han Chen
- Department of NutritionChina Medical UniversityTaichungTaiwan
| | - Yu‐Shun Lin
- Department of NutritionChina Medical UniversityTaichungTaiwan
| | - Hai‐Ping Wu
- Department of NutritionChina Medical UniversityTaichungTaiwan
| | - Pei‐Min Chao
- Department of NutritionChina Medical UniversityTaichungTaiwan
| |
Collapse
|
32
|
Jeevanandam J, Chan YS, Danquah MK. Cytotoxicity and insulin resistance reversal ability of biofunctional phytosynthesized MgO nanoparticles. 3 Biotech 2020; 10:489. [PMID: 33123456 DOI: 10.1007/s13205-020-02480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
33
|
Semwal DK, Kumar A, Aswal S, Chauhan A, Semwal RB. Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic β-cells and restoring their dysfunction. Phytother Res 2020; 35:1218-1229. [PMID: 32987447 DOI: 10.1002/ptr.6885] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/31/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a growing public health concern and an increasing interest has been raised to search for new compounds with therapeutic effects on β-cells. There are chronic insulin resistance and loss of β-cell mass in the case of type-2 diabetes which covers about 90% of total diabetic patients. This work aims to critically review the protective and regenerative effects of various antidiabetic natural products on pancreatic β-cells. A thorough literature survey was conducted on the natural molecules and extracts having a protective, regenerative, and repairing effect on β-cells. The primary source of the literature was online scientific databases such as PubMed, Scopus, and Google Scholar. Besides, selected relevant textbooks were also consulted. Various natural molecules including berberine, curcumin, mangiferin, stevioside and capsaicin, and extracts obtained from the plants like Capsicum annum, Gymnema sylvestre, Stevia rebaudiana and Nymphaea stellate, were found to produce regenerative and anti-apoptosis effects on β-cells. These natural products were also found to increase insulin secretion by stimulating β-cells. The present review concluded that a large number of molecules and extracts, abundantly found in nature, possess antidiabetic effect via targeting β-cells. Further research is warranted to use these agents as a drug against diabetes.
Collapse
Affiliation(s)
- Deepak Kumar Semwal
- Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Ankit Kumar
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Sonali Aswal
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Ashutosh Chauhan
- Department of Biotechnology, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Ruchi Badoni Semwal
- Department of Chemistry, Pt. Lalit Mohan Sharma Government Postgraduate College, Rishikesh, India
| |
Collapse
|
34
|
Medicinal plants in the adjunctive treatment of patients with type-1 diabetes: a systematic review of randomized clinical trials. J Diabetes Metab Disord 2020; 19:1917-1929. [PMID: 33520869 DOI: 10.1007/s40200-020-00633-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022]
Abstract
Propose This study aims to systematically review the randomized controlled trials that address the effectiveness and safety of herbal medicine in patients with type 1 diabetes. Methods The Cochrane Library (latest issue); MEDLINE (until recent); EMBASE (until recent); AMED (Allied and Complementary Medicine Database) (until recent); and CINHAL (until recent) were searched electronically for the identification of trials until October 2019. Articles were initially screened based on title and abstract and then by full text by two independent authors. References of retrieved studies were hand-searched for further studies. Risk of bias was assessed according to the Cochrane handbook of systematic reviews of interventions. The results were summarized into GRADE (grading of recommendations, assessment, development and evaluation) tables. No meta-analysis was applicable as only one study was found for each intervention. Results Four RCTs were finally included in the systematic review with an overall moderate quality of conduct and low quality of reporting. The sample sizes were very small. The results of these RCTs show that cinnamon pills and Berberine/Silymarine compound capsules may decrease blood glucose indices from baseline, while fenugreek seeds and fig leaf decoction do not show any statistically significant effect. Conclusions The evidence is scarce and no recommendations can be made based on current evidence. Further trials with more rigorous methodology and stronger quality of reporting are needed to make conclusions.
Collapse
|
35
|
Lee D, Lee JS, Sezirahiga J, Kwon HC, Jang DS, Kang KS. Bioactive Phytochemicals Isolated from Akebia quinata Enhances Glucose-Stimulated Insulin Secretion by Inducing PDX-1. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1087. [PMID: 32847055 PMCID: PMC7570369 DOI: 10.3390/plants9091087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022]
Abstract
Chocolate vine (Akebia quinata) is consumed as a fruit and is also used in traditional medicine. In order to identify the bioactive components of A. quinata, a phytosterol glucoside stigmasterol-3-O-β-d-glucoside (1), three triterpenoids maslinic acid (2), scutellaric acid (3), and hederagenin (4), and three triterpenoidal saponins akebia saponin PA (5), hederacoside C (6), and hederacolchiside F (7) were isolated from a 70% EtOH extract of the fruits of A. quinata (AKQU). The chemical structures of isolates 1-7 were determined by analyzing the 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data. Here, we evaluated the effects of AKQU and compounds 1-7 on insulin secretion using the INS-1 rat pancreatic β-cell line. Glucose-stimulated insulin secretion (GSIS) was evaluated in INS-1 cells using the GSIS assay. The expression levels of the proteins related to pancreatic β-cell function were detected by Western blotting. Among the isolates, stigmasterol-3-O-β-d-glucoside (1) exhibited strong GSIS activity and triggered the overexpression of pancreas/duodenum homeobox protein-1 (PDX-1), which is implicated in the regulation of pancreatic β-cell survival and function. Moreover, isolate 1 markedly induced the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), insulin receptor substrate-2 (IRS-2), phosphoinositide 3-kinase (PI3K), and Akt, which regulate the transcription of PDX-1. The results of our experimental studies indicated that stigmasterol-3-O-β-d-glucoside (1) isolated from the fruits of A. quinata can potentially enhance insulin secretion, and might alleviate the reduction in GSIS during the development of T2DM.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Jin Su Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Jurdas Sezirahiga
- College of Medicine and Health Sciences, University of Rwanda, Kigali 3286, Rwanda;
| | - Hak Cheol Kwon
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Korea;
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
36
|
Macho-González A, López-Oliva ME, Merino JJ, García-Fernández RA, Garcimartín A, Redondo-Castillejo R, Bastida S, Sánchez-Muniz FJ, Benedí J. Carob fruit extract-enriched meat improves pancreatic beta-cell dysfunction, hepatic insulin signaling and lipogenesis in late-stage type 2 diabetes mellitus model. J Nutr Biochem 2020; 84:108461. [PMID: 32739787 DOI: 10.1016/j.jnutbio.2020.108461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
The inclusion of functional bioactive compounds of dietary fiber in meat products has been demonstrated to exert a significant impact on human health. Carob fruit extract (CFE) is a dietary fiber rich in proanthocyanidins with known antioxidant, hypolipidemic and hypoglycemic effects. Consumption of CFE-enriched meat (CFE-RM) may provide interesting benefits in late-stage type 2 diabetes mellitus (T2DM). To explore the antidiabetic mechanisms of CFE-RM, we used a model of late-stage T2DM in Wistar rats fed a high-saturated-fat/high-cholesterol diet (Chol-diet) and injected streptozotocin plus nicotinamide (D group). The effects of CFE-RM were tested by incorporating it into the diet as preventive strategy (ED group) or curative treatment (DE group). CFE-RM had a positive effect on glycemia, enhancing hepatic insulin sensitivity and improving pancreatic β-cell regeneration in both ED and DE groups. Western blotting and immunohistochemistry suggested that CFE-RM increased levels of insulin receptor β and phosphatidylinositol-3-kinase, as well as the downstream target phospho-Akt (at Ser473). CFE-RM also up-regulated glucose transporter 2, which improves the insulin-mediated glucose uptake by the liver, and promoted phosphorylation of glycogen synthesis kinase-3βprotein (at ser9), consequently increasing the hepatic glycogen content. In addition, CFE-RM decreased fatty liver by suppressing de novo lipogenesis activation due to down-regulation of liver X receptor-α/β, sterol regulatory element binding protein-1c and carbohydrate-response element-binding protein transcription factors. Our findings suggest that the consumption of CFE-RM included in the diet as a functional food should be considered as a suitable nutritional strategy to prevent or manage late-stage T2DM.
Collapse
Affiliation(s)
- Adrián Macho-González
- Departamento de Nutrición y Ciencia de los Alimentos (Nutrición), Facultad de Farmacia, Universidad Complutense, Madrid, España
| | - M Elvira López-Oliva
- Sección Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, España
| | - José J Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, España
| | - Rosa A García-Fernández
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, España
| | - Alba Garcimartín
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, España.
| | - Rocío Redondo-Castillejo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, España
| | - Sara Bastida
- Departamento de Nutrición y Ciencia de los Alimentos (Nutrición), Facultad de Farmacia, Universidad Complutense, Madrid, España
| | - Francisco J Sánchez-Muniz
- Departamento de Nutrición y Ciencia de los Alimentos (Nutrición), Facultad de Farmacia, Universidad Complutense, Madrid, España
| | - Juana Benedí
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, España
| |
Collapse
|
37
|
Nair ANS, Nair RVR, Nair APR, Nair AS, Thyagarajan S, Johnson AJ, Baby S. Antidiabetes constituents, cycloartenol and 24-methylenecycloartanol, from Ficus krishnae. PLoS One 2020; 15:e0235221. [PMID: 32584888 PMCID: PMC7316276 DOI: 10.1371/journal.pone.0235221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Ficus krishnae stem bark and leaves are used for diabetes treatment in traditional medicines. Stem bark of F. krishnae was sequentially extracted with hexane, methanol and water, and these extracts were tested for their antihyperglyceamic activity by oral glucose tolerance test (OGTT) in overnight fasted glucose loaded normal rats. Hexane extract showed significant glucose lowering activity in OGTT, and the triterpene alcohols (cycloartenol+24-methylenecycloartanol) (CA+24-MCA) were isolated together from it by activity guided isolation and characterized by NMR and mass spectroscopy. The ratio of the chemical constituents CA and 24-MCA in (CA+24-MCA) was determined as 2.27:1.00 by chemical derivatization and gas chromatographic quantification. (CA+24-MCA) in high fat diet-streptozotocin induced type II diabetic rats showed significant antidiabetes activity at 1 mg/kg and ameliorated derailed blood glucose and other serum biochemical parameters. Cytoprotective activity of (CA+24-MCA) from glucose toxicity was evaluated in cultured RIN-5F cells by MTT assay and fluorescent microscopy. (CA+24-MCA) in in vitro studies showed enhanced cell viability in RIN-5F cells and significant protection of beta cells from glucose toxicity. Both in in vivo and in vitro studies (CA+24-MCA) showed enhancement in insulin release from the beta cells. In short term toxicity studies in mice (CA+24-MCA) did not show any conspicuous toxic symptoms. The combination of the phytosterols (CA+24-MCA) obtained through activity guided isolation of the stem bark of F. krishnae showed significant activity, and therefore is a promising candidate for new generation antidiabetes drug development.
Collapse
Affiliation(s)
- Ajikumaran Nair Sadasivan Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Reshma Vijayakumari Raveendran Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Aroma Prasanna Rajendran Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Akhila Sasikumar Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Sabu Thyagarajan
- Garden Management Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Anil John Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
- * E-mail: ,
| |
Collapse
|
38
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
39
|
Targeting Mitochondrial Calcium Uptake with the Natural Flavonol Kaempferol, to Promote Metabolism/Secretion Coupling in Pancreatic β-cells. Nutrients 2020; 12:nu12020538. [PMID: 32093050 PMCID: PMC7071504 DOI: 10.3390/nu12020538] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
Pancreatic β-cells secrete insulin to lower blood glucose, following a meal. Maintenance of β-cell function is essential to preventing type 2 diabetes. In pancreatic β-cells, mitochondrial matrix calcium is an activating signal for insulin secretion. Recently, the molecular identity of the mitochondrial calcium uniporter (MCU), the transporter that mediates mitochondrial calcium uptake, was revealed. Its role in pancreatic β-cell signal transduction modulation was clarified, opening new perspectives for intervention. Here, we investigated the effects of a mitochondrial Ca2+-targeted nutritional intervention strategy on metabolism/secretion coupling, in a model of pancreatic insulin-secreting cells (INS-1E). Acute treatment of INS-1E cells with the natural plant flavonoid and MCU activator kaempferol, at a low micromolar range, increased mitochondrial calcium rise during glucose stimulation, without affecting the expression level of the MCU and with no cytotoxicity. Enhanced mitochondrial calcium rises potentiated glucose-induced insulin secretion. Conversely, the MCU inhibitor mitoxantrone inhibited mitochondrial Ca2+ uptake and prevented both glucose-induced insulin secretion and kaempferol-potentiated effects. The kaempferol-dependent potentiation of insulin secretion was finally validated in a model of a standardized pancreatic human islet. We conclude that the plant product kaempferol activates metabolism/secretion coupling in insulin-secreting cells by modulating mitochondrial calcium uptake.
Collapse
|
40
|
Younis AM, Abdel-Aziz MM, Yosri M. Evaluation of Some Biological Applications of Pleurotus citrinopileatus and Boletus edulis Fruiting Bodies. Curr Pharm Biotechnol 2020; 20:1309-1320. [PMID: 31483226 DOI: 10.2174/1389201020666190904162403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mushrooms are deemed as a special delicacy in many countries. They are considered an important cuisine due to their bioactive ingredients and possible health benefits. METHODS Herein, we measured selected biological properties of methanol extracts of Pleurotus citrinopileatus and Boletus edulis fruiting bodies including; in vitro antimicrobial activity, anti-α- glucosidase activity, antioxidant activity, anti-lipase activity and cytotoxic activity against different cancer cells and normal cells. RESULTS B. edulis methanol extracts showed high antimicrobial and anti-α-glucosidase activity. In contrast, P. citrinopileatus methanol extracts showed superior antioxidant activity indicated by (1,1- diphenyl-2-picrylhydrazyl) DPPH radical scavenging with half maximal inhibitory concentration of IC50 37.4 µg/ml, anti-lipase activities with IC50 65.2 µg/ml and high cytotoxicity activity against HepG2 and HeLa cell lines with IC50 22.8 and 36.7 µg/ml, respectively. Flow cytometric analysis of the cell cycle was used to show apoptotic effects of methanol extracts against HepG2 and HeLa cells. CONCLUSION P. citrinopileatus and B. edulis methanolic extracts appear to contain biologically active compounds that might be used to treat some common human diseases.
Collapse
Affiliation(s)
- Ahmed M Younis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States.,Department of Microbiology, Faculty of Science, Al Azhar University, Nasr City, Cairo 11841, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Mohamed Yosri
- The Regional Center for Mycology and Biotechnology, Al Azhar University, 11787 Nasr City, Cairo, Egypt.,Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| |
Collapse
|
41
|
Oyebode OA, Erukainure OL, Sanni O, Islam M. Crassocephalum rubens(Juss. Ex Jacq.) S. Moore improves pancreatic histology, insulin secretion, liver and kidney functions and ameliorates oxidative stress in fructose-streptozotocin induced type 2 diabetic rats. Drug Chem Toxicol 2020; 45:481-490. [DOI: 10.1080/01480545.2020.1716783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Ochuko L. Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
- Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria
| | - Olakunle Sanni
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Md.Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
42
|
Oyedemi SO, Nwaogu G, Chukwuma CI, Adeyemi OT, Matsabisa MG, Swain SS, Aiyegoro OA. Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular interaction of quercetin with hexokinase and catalase. J Food Biochem 2019; 44:e13127. [PMID: 31876980 DOI: 10.1111/jfbc.13127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/19/2019] [Accepted: 11/17/2019] [Indexed: 11/28/2022]
Abstract
Quercetin was assessed for its antihyperglycemic effect in fructose-streptozotocin (STZ) induced diabetic rats. The oral administration of quercetin at the dosage of 25 and 50 mg/kg for 28 days remarkably reduced the level of blood glucose, glycosylated hemoglobin (Hb), and hepatic glycogen but enhanced plasma Hb concentration. The altered activities of glucose-6-phosphatase and hexokinase in diabetic rats were significantly improved upon quercetin treatment. Furthermore, the antioxidant activity of pancreatic superoxide dismutase, catalase (CAT), and reduced glutathione was effectively increased while the value for thiobarbituric acid reactive species was decreased. A significant reduction of glycemia was observed in the glucose tolerance test, 120 min after the glucose pulse. Also, the damage caused by fructose-STZ in the liver and pancreas of diabetic animals were restored to near normal. Molecular docking of quercetin showed a high affinity for hexokinase and CAT with a binding energy of -7.82 and -9.83 kcal/mol, respectively, more elevated than the standard drugs. PRACTICAL APPLICATIONS: Functional foods and nutraceuticals have increasingly interested the consumers in terms of health benefits and have started focussing on the prevention or cure of disease by the foods and their health-enhancing phytochemicals. Quercetin is one of the most potent naturally occurring antioxidants within the flavonoid subclasses, mostly distributed as a secondary metabolite in fruits, vegetables, and black tea. Based on the results exhibited in the present study, we proposed that the consumption of foods rich in quercetin could be a cheap and affordable nutraceutical that can be developed for the treatment of T2DM and its complications. Further studies on the safety aspects of quercetin in long-term usage are strongly recommended before implementing for the treatment of human diseases.
Collapse
Affiliation(s)
- Sunday O Oyedemi
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.,Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Godswill Nwaogu
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Chika I Chukwuma
- Department of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Olaoluwa T Adeyemi
- Department of Biochemistry, Benjamin S. (Snr.) Carson School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Motlalepula G Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Olayinka A Aiyegoro
- GI Microbiology and Biotechnology Unit, Agricultural Research Council, Animal Production Institute, Pretoria, South Africa
| |
Collapse
|
43
|
Patel O, Muller CJF, Joubert E, Rosenkranz B, Taylor MJC, Louw J, Awortwe C. Pharmacokinetic Interaction of Green Rooibos Extract With Atorvastatin and Metformin in Rats. Front Pharmacol 2019; 10:1243. [PMID: 31708777 PMCID: PMC6822546 DOI: 10.3389/fphar.2019.01243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
An aspalathin-rich green rooibos extract (Afriplex GRT™) has demonstrated anti-diabetic and hypolipidemic properties, while also moderately inhibiting CYP3A4 activity, suggesting a potential for herb-drug interaction. The present study, therefore, evaluated the effects of orally administered GRT on the pharmacokinetics of atorvastatin and metformin in Wistar rats. Wistar rats were orally treated with GRT (50 mg/kg BW), atorvastatin (40 mg/kg BW) or metformin (150 mg/kg BW) alone or 50 mg/kg BW GRT in combination with 40 mg/kg BW atorvastatin or 150 mg/kg BW metformin. Blood samples were collected at 0, 10, and 30 min and 1, 2, 4, 6, and 8 h and plasma samples obtained for Liquid chromatography-mass spectrometry (LC-MS/MS) analyses. Non-compartment and two-compartment pharmacokinetic parameters of atorvastatin and metformin in the presence or absence of GRT were determined by PKSolver version 2.0 software. Membrane transporter proteins, ATP-binding cassette sub-family C member 2 (Abcc2), solute carrier organic anion transporter family, member 1b2 (Slco1b2), ATP-binding cassette, sub-family B (MDR/TAP), member 1A (Abcb1a), and organic cation transporter 1 (Oct1) mRNA expression were determined using real-time PCR expression data normalized to β-actin and hypoxanthine-guanine phosphoribosyltransferase (HPRT), respectively. Co-administration of GRT with atorvastatin substantially increased the maximum plasma concentration (Cmax) and area of the plasma concentration-time curve (AUC0-8) of atorvastatin by 5.8-fold (p = 0.03) and 5.9-fold (p = 0.02), respectively. GRT had no effect on the plasma levels of metformin. GRT increased Abcc2 expression and metformin downregulated Abcb1a expression while the combination of GRT with atorvastatin or metformin did not significantly alter the expression of Slco1b1 or Oct1 did not significantly alter the expression of Sclo1b2 or Oct1. Co-administration of GRT with atorvastatin in rats may lead to higher plasma concentrations and, therefore, to an increase of the exposure to atorvastatin.
Collapse
Affiliation(s)
- Oelfah Patel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Matieland, South Africa
| | - Bernd Rosenkranz
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Malcolm J C Taylor
- Central Analytical Facility, Mass Spectrometry Unit, Matieland, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Charles Awortwe
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| |
Collapse
|
44
|
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. PLANT METHODS 2019; 15:105. [PMID: 31516543 PMCID: PMC6731622 DOI: 10.1186/s13007-019-0487-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|
45
|
Heikkilä E, Hermant A, Thevenet J, Bermont F, Kulkarni SS, Ratajczak J, Santo-Domingo J, Dioum EH, Canto C, Barron D, Wiederkehr A, De Marchi U. The plant product quinic acid activates Ca 2+ -dependent mitochondrial function and promotes insulin secretion from pancreatic beta cells. Br J Pharmacol 2019; 176:3250-3263. [PMID: 31166006 DOI: 10.1111/bph.14757] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/07/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Quinic acid (QA) is an abundant natural compound from plant sources which may improve metabolic health. However, little attention has been paid to its effects on pancreatic beta-cell functions, which contribute to the control of metabolic health by lowering blood glucose. Strategies targeting beta-cell signal transduction are a new approach for diabetes treatment. This study investigated the efficacy of QA to stimulate beta-cell function by targeting the basic molecular machinery of metabolism-secretion coupling. EXPERIMENTAL APPROACH We measured bioenergetic parameters and insulin exocytosis in a model of insulin-secreting beta-cells (INS-1E), together with Ca2+ homeostasis, using genetically encoded sensors, targeted to different subcellular compartments. Islets from mice chronically infused with QA were also assessed. KEY RESULTS QA triggered transient cytosolic Ca2+ increases in insulin-secreting cells by mobilizing Ca2+ from intracellular stores, such as endoplasmic reticulum. Following glucose stimulation, QA increased glucose-induced mitochondrial Ca2+ transients. We also observed a QA-induced rise of the NAD(P)H/NAD(P)+ ratio, augmented ATP synthase-dependent respiration, and enhanced glucose-stimulated insulin secretion. QA promoted beta-cell function in vivo as islets from mice infused with QA displayed improved glucose-induced insulin secretion. A diet containing QA improved glucose tolerance in mice. CONCLUSIONS AND IMPLICATIONS QA modulated intracellular Ca2+ homeostasis, enhancing glucose-stimulated insulin secretion in both INS-1E cells and mouse islets. By increasing mitochondrial Ca2+ , QA activated the coordinated stimulation of oxidative metabolism, mitochondrial ATP synthase-dependent respiration, and therefore insulin secretion. Bioactive agents raising mitochondrial Ca2+ in pancreatic beta-cells could be used to treat diabetes.
Collapse
Affiliation(s)
- Eija Heikkilä
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Aurelie Hermant
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Flavien Bermont
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | - El Hadji Dioum
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | |
Collapse
|
46
|
Lee D, Choi P, Hwang BS, Kim T, Kim Y, Kim JC, Song JH, Park JS, Hwang GS, Yamabe N, Kang KS, Ham J. Protective effect of hypoxylonol C and 4,5,4',5'-tetrahydroxy-1,1'-binaphthyl isolated from Annulohypoxylon annulatum against streptozotocin-induced damage in INS-1 cells. Bioorg Chem 2019; 90:103053. [PMID: 31220671 DOI: 10.1016/j.bioorg.2019.103053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
We evaluated the protective effects of hypoxylonol C and 4,5,4',5'-tetrahydroxy-1,1'-binaphthyl (BNT) isolated from Annulohypoxylon annulatum on pancreatic β-cell apoptosis, using the β-cell toxin streptozotocin (STZ). Hypoxylonol C and BNT restored the STZ-induced decrease in INS-1 cell viability in a dose-dependent manner. In addition, treatment of INS-1 cells with 50 μM STZ resulted in an increase in apoptotic cell death, which was observed as annexin V fluorescence intensity. Apoptotic cell death was decreased by co-treatment with 100 μM hypoxylonol C and 100 μM BNT. Similarly, STZ caused a marked increase in the expression of cleaved caspase-8, caspase-3, Bax, and poly (ADP-ribose) polymerase (PARP), as well as a decrease in the expression of B-cell lymphoma 2 (Bcl-2), which was reversed by co-treatment with 100 μM hypoxylonol C and 100 μM BNT. These findings suggest that hypoxylonol C and BNT play an important role in protecting pancreatic β-cells against apoptotic damage.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pilju Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; Natural Products Research Institute, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Buyng Su Hwang
- Natural Products Research Institute, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Taejung Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Youngseok Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Ji Hoon Song
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jung Sik Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| | - Jungyeob Ham
- Natural Products Research Institute, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
47
|
Effects of Hydroalcoholic Flower Extract of Marigold (Calendula officinalis) on the Biochemical and Histological Parameters in STZ-Induced Diabetic Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.55456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
48
|
Sagbo IJ, van de Venter M, Koekemoer T, Bradley G. In Vitro Antidiabetic Activity and Mechanism of Action of Brachylaena elliptica (Thunb.) DC. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4170372. [PMID: 30108655 PMCID: PMC6077518 DOI: 10.1155/2018/4170372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
In South Africa, the number of people suffering from diabetes is believed to be rising steadily and the current antidiabetic therapies are frequently reported to have adverse side effects. Ethnomedicinal plant use has shown promise for the development of cheaper, cost-effective antidiabetic agents with fewer side effects. The aim of this study was to investigate the antidiabetic activity and mechanism of action of aqueous leaf extract prepared from Brachylaena elliptica. The potential of the extract for cytotoxicity was evaluated using MTT assay in HepG2 cells. The effects of the plant extract on glucose utilization in HepG2 cells and L6 myotubes, triglyceride accumulation in 3T3-L1, INS-1 proliferation, glucose metabolism in INS-1 cells, and NO production in RAW macrophages were also investigated using cell culture procedures. The inhibitory effects of the extract on the activities of different enzymes including alpha-amylase, alpha-glucosidase, pancreatic lipase, dipeptidyl peptidase IV (DPP-IV), collagenase, and CYP3A4 enzymes were evaluated. The extract also tested against protein glycation using standard published procedure. The plant extract displayed low level of toxicity, where both concentrations tested did not induce 50% cell death. The extract caused a significant increase in glucose uptake in HepG2 liver cells, with efficacy significantly higher than the positive control, berberine. The crude extract also displayed no significant effect on muscle glucose uptake, triglyceride accumulation in 3T3-L1, glucose metabolism in INS-1 cells, alpha-amylase, alpha-glucosidase, DPP-IV, lipase, protein glycation, and collagenase compared to the respective positive controls. The extract displayed a proliferative effect on INS-1 cells at 25 μg/ml when compared to the negative control. The plant also produced a concentration-dependent reduction in NO production in RAW macrophages and also demonstrated weak significant inhibition on CYP3A4 activity. The findings provide evidence that B. elliptica possess antidiabetic activity and appear to exact its hypoglycemic effect independent of insulin.
Collapse
Affiliation(s)
- Idowu Jonas Sagbo
- Plant Stress Group, Department of Biochemistry and Microbiology, University of Fort Hare, P.O. Box X1314, Alice, South Africa
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031, South Africa
| | - Trevor Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031, South Africa
| | - Graeme Bradley
- Plant Stress Group, Department of Biochemistry and Microbiology, University of Fort Hare, P.O. Box X1314, Alice, South Africa
| |
Collapse
|
49
|
Widhiantara IG, Arunngam P, Milas Siswanto F. Ethanolic Extract of Caesalpinia bonducella f. Seed Ameliorates Diabetes Phenotype of Streptozotocin- Nicotinamide-Induced Type 2 Diabetes Rat. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Caesalpinia bonducella F. (Leguminosae) is widely used medicinal plant which contains flavonoid, tannin, saponin, and a potent antioxidant activity. However, the antihyperglycemic effect of the seed of C. bonducella is remained to be evaluated. This study used 24 male Wistar albino rats that were induced for type 2 diabetes with streptozotocin (STZ) and nicotinamide (NA). The rats were divided into three groups: the distilled water-treated group (NC group), glibenclamide-treated group (10 mg/kg/d, oral; PC group), and C. bonducella seed extract-treated group (500 mg/kg/d, oral; T group). Blood glucose and plasma insulin measurements were done after 14 days of treatment. The results showed that the postprandial blood glucose (PPBG) level of both PC and T groups were decreased significantly (p < 0.01 for both), whereas in NC group, the PPBG level was rising (p < 0.01). Glibenclamide was found to be more effective to decrease the PPBG level than C. bonducella seed extract (p < 0.01). The post-test fasting insulin level of T group was higher than other groups (p < 0.05). In summary, our results suggest that ethanolic extract of C. bonducella seed possesses antidiabetic activity against experimentally-induced type 2 diabetes.
Collapse
Affiliation(s)
- I. Gede Widhiantara
- Department of Biology, Faculty of Health, Science and Technology, Dhyana Pura University, Badung, Indonesia
| | - Pakajiraporn Arunngam
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Ferbian Milas Siswanto
- Department of Biology, Faculty of Health, Science and Technology, Dhyana Pura University, Badung, Indonesia
| |
Collapse
|
50
|
Omotuyi OI, Nash O, Inyang OK, Ogidigo J, Enejoh O, Okpalefe O, Hamada T. Flavonoid-rich extract of Chromolaena odorata modulate circulating GLP-1 in Wistar rats: computational evaluation of TGR5 involvement. 3 Biotech 2018; 8:124. [PMID: 29450114 DOI: 10.1007/s13205-018-1138-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chromolaena odorata is a major bio-resource in folkloric treatment of diabetes. In the present study, its anti-diabetic component and underlying mechanism were investigated. A library containing 140 phytocompounds previously characterized from C. odorata was generated and docked (Autodock Vina) into homology models of dipeptidyl peptidase (DPP)-4, Takeda-G-protein-receptor-5 (TGR5), glucagon-like peptide 1 (GLP1) receptor, renal sodium dependent glucose transporter (SGLUT)-1/2 and nucleotide-binding oligomerization domain (NOD) proteins 1&2. GLP-1 gene (RT-PCR) modulation and its release (EIA) by C. odorata were confirmed in vivo. From the docking result above, TGR5 was identified as a major target for two key C. odorata flavonoids (5,7-dihydroxy-6-4-dimethoxyflavanone and homoesperetin-7-rutinoside); sodium taurocholate and C. odorata powder included into the diet of the animals both raised the intestinal GLP-1 expression versus control (p < 0.05); When treated with flavonoid-rich extract of C. odorata (CoF) or malvidin, circulating GLP-1 increased by 130.7% in malvidin-treated subjects (0 vs. 45 min). CoF treatment also resulted in 128.5 and 275% increase for 10 and 30 mg/kg b.w., respectively. CONCLUSIONS The results of this study support that C. odorata flavonoids may modulate the expression of GLP-1 and its release via TGR5. This finding may underscore its anti-diabetic potency.
Collapse
Affiliation(s)
- Olaposi Idowu Omotuyi
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Oyekanmi Nash
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Olumide Kayode Inyang
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Joyce Ogidigo
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Ojochenemi Enejoh
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Okiemute Okpalefe
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Tsuyoshi Hamada
- 3Advanced Computing Centre, Nagasaki University, Nagasaki, Japan
| |
Collapse
|