1
|
Roy AA, Pandey A, Dhas N, Hegde MM, Parekh HS, Andugulapati SB, Nandakumar K, Satish Rao BS, Mutalik S. The Confluence of Nanotechnology and Heat Shock Protein 70 in Pioneering Glioblastoma Multiforme Therapy: Forging Pathways Towards Precision Targeting and Transformation. Adv Pharmacol Pharm Sci 2025; 2025:1847197. [PMID: 40313865 PMCID: PMC12045689 DOI: 10.1155/adpp/1847197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/01/2025] [Indexed: 05/03/2025] Open
Abstract
Heat-shock protein 70 (HSP70) and nanotechnology have emerged as promising avenues in glioblastoma multiforme (GBM) therapy, addressing the critical challenges posed by its aggressive nature and therapeutic resistance. HSP70's dual role in cellular stress response and tumour survival emphasises its potential as both a biomarker and therapeutic target. This review explores the innovative integration of HSP70 with nanotechnology, emphasising advancements in imaging, drug delivery and combination therapies. Nanoparticles, including SPIONs, liposomes, gold nanoparticles and metal-organic frameworks, demonstrate enhanced targeting and therapeutic efficacy through HSP70 modulation. Functionalized nanocarriers exploit HSP70's tumour-specific overexpression to improve drug delivery, minimise off-target effects and overcome the blood-brain barrier. Emerging strategies such as chemophototherapy, immunotherapy and photothermal therapy leverage HSP70's interactions within the tumour microenvironment, enabling synergistic treatment modalities. The review also highlights translational challenges, including heterogeneity of GBM, regulatory hurdles and variability in the enhanced permeability and retention (EPR) effect. Integrating computational modelling, personalised approaches and adaptive trial designs is crucial for clinical translation. By bridging nanotechnology and molecular biology, HSP70-targeted strategies hold transformative potential to redefine GBM diagnosis and treatment, offering hope for improved survival and quality of life. Trial Registration: ClinicalTrials.gov identifier: NCT00054041 and NCT04628806.
Collapse
Affiliation(s)
- Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad 500081, Telangana, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manasa Manjunath Hegde
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Harendra S. Parekh
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, Telangana, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
2
|
Mulens-Arias V, Portilla Y, Pérez-Yagüe S, Ferreras-Martín R, Martín ME, González VM, Barber DF. An electrostatically conjugated-functional MNK1 aptamer reverts the intrinsic antitumor effect of polyethyleneimine-coated iron oxide nanoparticles in vivo in a human triple-negative cancer xenograft. Cancer Nanotechnol 2023; 14:64. [DOI: 10.1186/s12645-023-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 12/12/2024] Open
Abstract
Abstract
Background
Triple-negative breast cancer (TNBC) remains a difficult breast cancer subtype to treat as it exhibits a particularly aggressive behavior. The dysregulation of distinct signaling pathways underlies this aggressive behavior, with an overactivation of MAP kinase interacting kinases (MNKs) promoting tumor cell behavior, and driving proliferation and migration. Therefore, MNK1 is an excellent target to impair the progression of TNBC and indeed, an MNK1-specific aptamer has proved to be efficient in inhibiting TBNC cell proliferation in vitro. Although polyethyleneimine-coated iron oxide nanoparticles (PEI–IONPs) have been used as transfection and immunomodulating agents, no study has yet addressed the benefits of using these nanoparticles as a magnetic carrier for the delivery of a functional aptamer.
Results
Here, we tested the antitumor effect of a PEI–IONP complexed to the functional MNK1b-specific aptamer in vitro and in vivo. We demonstrated that these apMNKQ2@PEI–IONP nanoconjugates delivered three times more apMNKQ2 to MDA-MB-231 cells than the aptamer alone, and that this enhanced intracellular delivery of the aptamer had consequences for MNK1 signaling, reducing the amount of MNK1 and its target the phospho(Ser209)-eukaryotic initiation factor 4E (eIF4E). As a result, a synergistic effect of the apMNKQ2 and PEI–IONPs was observed that inhibited MDA-MB-231 cell migration, probably in association with an increase in the serum and glucocorticoid-regulated kinase-1 (SGK1) and the phospho(Thr346)-N-myc down-regulated gene 1 (NDRG1). However, intravenous administration of the apMNKQ2 alone did not significantly impair tumor growth in vivo, whereas the PEI–IONP alone did significantly inhibit tumor growth. Significantly, tumor growth was not inhibited when the apMNKQ2@PEI–IONP nanocomplex was administered, possibly due to fewer IONPs accumulating in the tumor. This apMNKQ2-induced reversion of the intrinsic antitumor effect of the PEI–IONPs was abolished when an external magnetic field was applied at the tumor site, promoting IONP accumulation.
Conclusions
Electrostatic conjugation of the apMNKQ2 aptamer with PEI–IONPs impedes the accumulation of the latter in tumors, which appears to be necessary for PEI–IONPs to exert their antitumor activity.
Graphical Abstract
Collapse
|
3
|
Nadukkandy AS, Ganjoo E, Singh A, Dinesh Kumar L. Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, unique and comprehensive cancer treatment has ushered new hope in the holistic management of the disease. Cancer immunotherapy, which harnesses the immune system of the patient to attack the cancer cells in a targeted manner, scores over others by being less debilitating compared to the existing treatment strategies. Significant advancements in the knowledge of immune surveillance in the last few decades have led to the development of several types of immune therapy like monoclonal antibodies, cancer vaccines, immune checkpoint inhibitors, T-cell transfer therapy or adoptive cell therapy (ACT) and immune system modulators. Intensive research has established cancer immunotherapy to be a safe and effective method for improving survival and the quality of a patient’s life. However, numerous issues with respect to site-specific delivery, resistance to immunotherapy, and escape of cancer cells from immune responses, need to be addressed for expanding and utilizing this therapy as a regular mode in the clinical treatment. Development in the field of nanotechnology has augmented the therapeutic efficiency of treatment modalities of immunotherapy. Nanocarriers could be used as vehicles because of their advantages such as increased surface areas, targeted delivery, controlled surface and release chemistry, enhanced permeation and retention effect, etc. They could enhance the function of immune cells by incorporating immunomodulatory agents that influence the tumor microenvironment, thus enabling antitumor immunity. Robust validation of the combined effect of nanotechnology and immunotherapy techniques in the clinics has paved the way for a better treatment option for cancer than the already existing procedures such as chemotherapy and radiotherapy. In this review, we discuss the current applications of nanoparticles in the development of ‘smart’ cancer immunotherapeutic agents like ACT, cancer vaccines, monoclonal antibodies, their site-specific delivery, and modulation of other endogenous immune cells. We also highlight the immense possibilities of using nanotechnology to accomplish leveraging the coordinated and adaptive immune system of a patient to tackle the complexity of treating unique disease conditions and provide future prospects in the field of cancer immunotherapy.
Collapse
|
4
|
Chu TH, Vo MC, Lakshmi TJ, Ahn SY, Kim M, Song GY, Yang DH, Ahn JS, Kim HJ, Jung SH, Lee JJ. Novel IL-15 dendritic cells have a potent immunomodulatory effect in immunotherapy of multiple myeloma. Transl Oncol 2022; 20:101413. [PMID: 35413499 PMCID: PMC9006865 DOI: 10.1016/j.tranon.2022.101413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Culture DCs with GM-CSF + IL-4 + IL-15 (IL-15 DCs) can be shortened for 6 days. IL-15 DCs showed high expression levels of costimulatory receptors, IFN-γ and IL-12p70. IL-15 DCs showed strong stimulation toward T, CIK and NK cells. The activated lymphocytes showed high cytotoxicity against myeloma cells.
Dendritic cells (DCs) are the most potent antigen-presenting cells, and have thus been used in clinical cancer vaccines. However, the effects of DC vaccines are still limited, leading researchers to explore novel ways to make them effective. In this study, we investigated whether human monocyte-derived DCs generated via the addition of interleukin 15 (IL-15) had a higher capacity to induce antigen-specific T cells compared to conventional DCs. We isolated CD14+ monocytes from peripheral blood from multiple myeloma (MM) patients, and induced immature DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 in the presence or absence of IL-15 for 4–6 days. Then we generated mature DCs (mDCs) with lipopolysaccharide for another 2 days [IL-15 mDCs (6 days), IL-15 mDCs (8 days), and conventional mDCs (8 days)]. IL-15 mDCs (6 days) showed higher expression of MHC I and II, CD40, CD86, and CCR7, and the secretion of IFN-γ was significantly higher compared to conventional mDCs. IL-15 mDCs (6 days) showed superior polarization of naïve T cells toward Th1 cells and a higher proportion of activated T cells, cytokine-induced killer (CIK) cells, and natural killer (NK) cells for inducing strong cytotoxicity against myeloma cells, and lower proportion of regulatory T cells compared to conventional mDCs. These data imply that novel multipotent mDCs generated by the addition of IL-15, which can be cultivated in 6 days, resulted in outstanding activation of T cells, CIK cells and NK cells, and may facilitate cellular immunotherapy for cancer patients.
Collapse
|
5
|
Zhou H, Sun C, Li C, Hua S, Li F, Li R, Cai D, Zou Y, Cai Y, Jiang X. The MicroRNA-106a/20b Strongly Enhances the Antitumour Immune Responses of Dendritic Cells Pulsed with Glioma Stem Cells by Targeting STAT3. J Immunol Res 2022; 2022:9721028. [PMID: 36157880 PMCID: PMC9499788 DOI: 10.1155/2022/9721028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Evaluate the effect of the miRNA-106a/20b on the efficacy of DCs pulsed with GSCs in activating GSC-specific T cell responses. METHODS We cultured GSCs and prepared GSC antigen lysates by apoptosis. Then, immature DCs were pulsed with GSC antigen lysates in vitro. STAT3 levels in DCs were assessed by Western blotting, and the expression of CD80, CD86, and MHC-II was tested by fluorescence-activated cell sorting. The production and secretion of the cytokines IL-6, IL-12, TNF-α, and IL-10 in DCs induced by GSCs were determined by enzyme-linked immunosorbent assay. Finally, the cytotoxic functions of T cells stimulated by GSC-DC fusion cells transfected with a miR-106a/20b mimic in vitro and the antitumour activity in vivo were detected. RESULTS We found that the levels of miR-106a/20b were downregulated, but the expression of STAT3 was significantly upregulated. Simultaneously, the inhibition of STAT3 in the fusion cells by STAT3-specific siRNA caused significant upregulation of the expression of CD80, CD86, and MHC-II, and the secretion of the cytokines IL-6 and IL-12 was substantially increased, IL-10 was markedly decreased. These findings revealed that STAT3 is an important regulator of DC maturation. Furthermore, the interactional binding sites between the 3'-untranslated region (3'-UTR) of STAT3 mRNA and miR-106a/20b were predicted by bioinformatics and verified by a dual-luciferase assay. Moreover, the reduction in STAT3 levels in GSC-DCs enhanced the generation of CD8+ T cells and reduced the generation of Foxp3+ regulatory T cells. Meanwhile, the secretion of the T cell cytokine IFN-γ was significantly increased. Further research showed that DCs after miR-106a/20b-mimics transfection could promote the inhibition of GSC proliferation by T cells in vitro and suppress tumour growth in vivo. CONCLUSIONS This study indicted that the miR-106a/20b activation could be one of the important molecular mechanisms leading to enhance antitumour immune responses of GSC-mediated DCs, which downregulated the expression of STAT3 to alleviate its the inhibitory effect.
Collapse
Affiliation(s)
- Hui Zhou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Chengmei Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Cong Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Shiting Hua
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Dongpeng Cai
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging - An Immune Perspective. Front Immunol 2021; 12:688927. [PMID: 34211476 PMCID: PMC8239972 DOI: 10.3389/fimmu.2021.688927] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) bear big hopes in nanomedicine due to their (potential) applications in tumor therapy, drug delivery or bioimaging. However, as foreign entities, such particles may be recognized by the immune system and, thus, lead to inflammation, hypersensitivity or anaphylactic shock. In addition, an overload with iron is known to cause oxidative stress. In this short review, we summarize the biological effects of such particles with a major focus on IONP-formulations used for bioimaging purposes and their effects on the human immune system. We conclude that especially the characteristics of the particles (size, shape, surface charge, coating, etc.) as well as the presence of bystander substances, such as bacterial endotoxin are important factors determining the resulting biological and immunological effects of IONPs. Further studies are needed in order to establish clear structure-activity relationships.
Collapse
Affiliation(s)
- Mark Geppert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
7
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. NANOSCALE ADVANCES 2020; 2:5046-5089. [PMID: 36132021 PMCID: PMC9418019 DOI: 10.1039/d0na00478b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/22/2020] [Indexed: 05/04/2023]
Abstract
Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.
Collapse
Affiliation(s)
- Vincent Lenders
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Xanthippi Koutsoumpou
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| |
Collapse
|
9
|
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1816. [PMID: 32932957 PMCID: PMC7559083 DOI: 10.3390/nano10091816] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.
Collapse
Affiliation(s)
- Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Maria Claudia Castellanos
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
10
|
El-Sherbiny IM, El-Sayed M, Reda A. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Multifunctional Cancer Theranostics. MAGNETIC NANOHETEROSTRUCTURES 2020. [DOI: 10.1007/978-3-030-39923-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
12
|
Mulens-Arias V, Rojas JM, Sanz-Ortega L, Portilla Y, Pérez-Yagüe S, Barber DF. Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102063. [DOI: 10.1016/j.nano.2019.102063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/12/2018] [Accepted: 07/10/2019] [Indexed: 01/08/2023]
|
13
|
Vo MC, Lakshmi TJ, Jung SH, Cho D, Park HS, Chu TH, Lee HJ, Kim HJ, Kim SK, Lee JJ. Cellular immunotherapy in multiple myeloma. Korean J Intern Med 2019; 34:954-965. [PMID: 30754964 PMCID: PMC6718748 DOI: 10.3904/kjim.2018.325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
In multiple myeloma (MM), the impaired function of several types of immune cells favors the tumor's escape from immune surveillance and, therefore, its growth and survival. Tremendous improvements have been made in the treatment of MM over the past decade but cellular immunotherapy using dendritic cells, natural killer cells, and genetically engineered T-cells represent a new therapeutic era. The application of these treatments is growing rapidly, based on their capacity to eradicate MM. In this review, we summarize recent progress in cellular immunotherapy for MM and its future prospects.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Ju Lee
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
- Correspondence to Je-Jung Lee, M.D. Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 58128, Korea Tel: +82-61-379-7638, Fax: +82-61-379-7628, E-mail:
| |
Collapse
|
14
|
Musielak M, Piotrowski I, Suchorska WM. Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies. Rep Pract Oncol Radiother 2019; 24:307-314. [PMID: 31193459 DOI: 10.1016/j.rpor.2019.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 04/20/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past two decades nanotechnology has become an important part of novel medical research. Researchers have made great progress in developing nanotechnology applications used for detecting and treating oncological diseases. Recently, many research groups have focused on the use of superparamagnetic iron oxide nanoparticles (SPIONs) in cancer treatment. Due to the range of therapeutic properties and possibilities of various modifications, SPIONs are a promising and multifunctional tool in various cancer therapies and may help to overcome the limitations of conventional therapies. Moreover, it is still necessary to develop new methods of treatment with expected properties, such as lower toxicity, long-lasting effectiveness and higher selectivity. Analyzing the literature data, we found that currently SPIONs are used in the transport of drugs, immunotherapy and hyperthermia. The main aim of this review is to present various cancer treatment therapies utilizing SPIONs, the importance of the experiments carried out by research groups and further perspectives in the nanotechnological use of SPIONs.
Collapse
Affiliation(s)
- Marika Musielak
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland.,Department of Electroradiology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Wiktoria M Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznań, Poland.,Department of Electroradiology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
15
|
Mulens-Arias V, Nicolás-Boluda A, Gehanno A, Balfourier A, Carn F, Gazeau F. Polyethyleneimine-assisted one-pot synthesis of quasi-fractal plasmonic gold nanocomposites as a photothermal theranostic agent. NANOSCALE 2019; 11:3344-3359. [PMID: 30724952 DOI: 10.1039/c8nr09849b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles have been thoroughly used in designing thermal ablative therapies and in photoacoustic imaging in cancer treatment owing to their unique and tunable plasmonic properties. While the plasmonic properties highly depend on the size and structure, controllable aggregation of gold nanoparticles can trigger a plasmonic coupling of adjacent electronic clouds, henceforth leading to an increase of light absorption within the near-infrared (NIR) window. Polymer-engraftment of gold nanoparticles has been investigated to achieve the plasmonic coupling phenomenon, but complex chemical steps are often needed to accomplish a biomedically relevant product. An appealing and controllable manner of achieving polymer-based plasmon coupling is a template-assisted Au+3 reduction that ensures in situ gold reduction and coalescence. Among the polymers exploited as reducing agents are polyethyleneimines (PEI). In this study, we addressed the PEI-assisted synthesis of gold nanoparticles and their further aggregation to obtain fractal NIR-absorbent plasmonic nanoaggregates for photothermal therapy and photoacoustic imaging of colorectal cancer. PEI-assisted Au+3 reduction was followed up by UV-visible light absorption, small-angle X-ray scattering (SAXS), and photo-thermal conversion. The reaction kinetics, stability, and the photothermal plasmonic properties of the as-synthesized nanocomposites tightly depended on the PEI : Au ratio. We defined a PEI-Au ratio range (2.5-5) for the one-pot synthesis of gold nanoparticles that self-arrange into fractal nanoaggregates with demonstrated photo-thermal therapeutic and imaging efficiency both in vitro and in vivo in a colorectal carcinoma (CRC) animal model.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Laboratoire Matière et Systèmes Complexes, UMR 7075, CNRS and Université Paris Diderot, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
| | | | | | | | | | | |
Collapse
|
16
|
Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive Nanoparticles for Cancer Immunotherapy. Int J Mol Sci 2018; 19:E3877. [PMID: 30518139 PMCID: PMC6321368 DOI: 10.3390/ijms19123877] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/18/2022] Open
Abstract
Currently, immunotherapy is considered to be one of the effective treatment modalities for cancer. All the developments and discoveries in this field up to the recent Nobel Prize add to the interest for research into this vast area of study. Targeting tumor environment as well as the immune system is a suitable strategy to be applied for cancer treatment. Usage of nanoparticle systems for delivery of immunotherapeutic agents to the body being widely studied and found to be a promising area of research to be considered and investigated further. Nanoparticles for immunotherapy would be one of the effective treatment options for cancer therapy in the future due to their high specificity, efficacy, ability to diagnose, imaging, and therapeutic effect. Among the many nanoparticle systems, polylactic-co-glycolic acid (PLGA) nanoparticles, liposomes, micelles, gold nanoparticles, iron oxide, dendrimers, and artificial exosomes are widely used for immunotherapy of cancer. Moreover, the combination therapy found to be the more effective way of treating the tumor. Here, we review the current trends in nanoparticle therapy and efficiency of these nanosystems in delivering antigens, adjuvants, therapeutic drugs, and other immunotherapeutic agents. This review summarizes the currently available bioactive nanoparticle systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| |
Collapse
|
17
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
18
|
Vo MC, Yang S, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS, Kim HJ, Lee JJ. Synergistic Antimyeloma Activity of Dendritic Cells and Pomalidomide in a Murine Myeloma Model. Front Immunol 2018; 9:1798. [PMID: 30123221 PMCID: PMC6085413 DOI: 10.3389/fimmu.2018.01798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/20/2018] [Indexed: 01/14/2023] Open
Abstract
We have previously shown that immunization with tumor antigen-loaded dendritic cells (DCs) and the immunomodulating drug, lenalidomide, synergistically potentiates the enhancing antitumor immunity in a myeloma mouse model. In this study, we investigated the immunogenicity of DCs combined with pomalidomide and dexamethasone in a myeloma mouse model. MOPC-315 cells were injected subcutaneously to establish myeloma-bearing mice. Four test groups were used to mimic clinical protocol: (1) PBS control, (2) DCs, (3) pomalidomide + dexamethasone, and (4) DCs + pomalidomide + dexamethasone. The combination of DCs plus pomalidomide and dexamethasone displayed greater inhibition of tumor growth compared to the other groups. This effect was closely related with reduced numbers of immune suppressor cells including myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells, with the induction of immune effector cells such as CD4+ and CD8+ T cells, memory T cells, natural killer (NK) cells, and M1 macrophages, and with the activation of T lymphocytes and NK cells in the spleen. Moreover, the level of the immunosuppressive factor vascular endothelial growth factor was significantly reduced in the tumor microenvironment. The collective findings in the murine myeloma model suggest that tumor antigen-loaded DCs combined with pomalidomide and dexamethasone synergistically enhance antitumor immunity by skewing the immune-suppressive status toward an immune-supportive status.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Seoyun Yang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyun-Ju Lee
- Vaxcell-Bio Therapeutics, Hwasun, South Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Vaxcell-Bio Therapeutics, Hwasun, South Korea
| |
Collapse
|
19
|
Vo MC, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS, Kim HJ, Rhee JH, Lee JJ. Lenalidomide and Programmed Death-1 Blockade Synergistically Enhances the Effects of Dendritic Cell Vaccination in a Model of Murine Myeloma. Front Immunol 2018; 9:1370. [PMID: 29967612 PMCID: PMC6015916 DOI: 10.3389/fimmu.2018.01370] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/01/2018] [Indexed: 01/22/2023] Open
Abstract
The therapeutic efficacy of dendritic cell (DC)-based immunotherapy may be potentiated in combination with other anticancer therapies that enhance DC function by modulating immune responses and the tumor microenvironment. In this study, we investigated the efficacy of DC vaccination in combination with lenalidomide and programmed death (PD)-1 blockade in a model of murine myeloma. MOPC-315 cell lines were injected subcutaneously to establish myeloma-bearing mice and the following five test groups were established: PBS control, DCs, DCs + lenalidomide, DCs + PD-1 blockade, and DCs + lenalidomide + PD-1 blockade. The combination of DCs plus lenalidomide and PD-1 blockade more potently inhibited tumor growth compared to the other groups. This effect was associated with a reduction in immune suppressor cells (such as myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells) and an increase in immune effector cells [such as CD4+ and CD8+ T cells, natural killer (NK) cells, and M1 macrophages] in the spleen. Functional activities of cytotoxic T lymphocytes and NK cells were also enhanced by the triple combination. Levels of immunosuppressive cytokines, such as TGF-β and IL-10, were significantly reduced in the tumor microenvironment. These findings suggest that the combination of DCs plus lenalidomide and PD-1 blockade synergistically establishes a robust anti-myeloma immunity through a two-way mechanism, which inhibits immunosuppressive cells while activating effector cells with superior polarization of the Th1/Th2 balance in favor of the tumor immune response. This result should provide an experimental ground for incorporating check point inhibitors to existing immunotherapeutic modalities against multiple myeloma.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyun-Ju Lee
- Research Institute, VaxCell-Bio Therapeutics, Hwasun, South Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea
| | - Joon Haeng Rhee
- Research Institute, VaxCell-Bio Therapeutics, Hwasun, South Korea.,Department of Microbiology and Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun, South Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea.,Research Institute, VaxCell-Bio Therapeutics, Hwasun, South Korea
| |
Collapse
|
20
|
Vo MC, Nguyen-Pham TN, Lee HJ, Jung SH, Choi NR, Hoang MD, Kim HJ, Lee JJ. Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells. Oncotarget 2018; 8:46047-46056. [PMID: 28512265 PMCID: PMC5542247 DOI: 10.18632/oncotarget.17517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC)-based vaccines are considered useful in cancer immuno-therapy, and the interactions of DC and dying tumor cells are important and promising for cancer immunotherapy. We investigated whether chaetocin could be used to induce death of myeloma cells, for loading onto DCs can affect DCs function. In this study, we show that the dying myeloma cells treated with chaetocin resulted in the induction of heat shock protein (HSP) 90, which was inhibited by antioxidant N-acetyl cysteine, and showed an increase in the expression of MAGE-A3 and MAGE-C1/CT7. DCs loaded with chaetocin-treated dying myeloma cells produced low levels of IL-10 and enhanced the cross presentation of DCs. Additionally, these DCs most potently inhibited regulatory T cells, induced Th1 polarization and activated myeloma-specific cytotoxic T lymphocytes compared with DCs loaded with UVB-irradiated dying myeloma cells. These results suggest that the pretreatment of myeloma cells with chaetocin can enhance DC function through the up-regulation of HSP90 and cancer testis antigens in dying myeloma cells and can potently induce the Th1 polarization of DCs and myeloma-specific cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nu-Ri Choi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - My-Dung Hoang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
21
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
22
|
Vo MC, Nguyen-Pham TN, Lee HJ, Jaya Lakshmi T, Yang S, Jung SH, Kim HJ, Lee JJ. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget 2018; 8:27252-27262. [PMID: 28460478 PMCID: PMC5432332 DOI: 10.18632/oncotarget.15917] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20. The tumor antigen-loaded DCs plus lenalidomide combination treatment exhibited a significant inhibition of tumor growth compared with the other groups. These effects were associated with a reduction in immune suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, with the induction of immune effector cells, such as natural killer cells, CD4+ T cells and CD8+ T cells in spleen, and with the activation of cytotoxic T lymphocytes and NK cells. This study suggests that a combination of tumor antigen-loaded DC vaccination and lenalidomide synergistically enhanced antitumor immune response in the murine colon cancer model, by inhibiting the generation of immune suppressive cells and recovery of effector cells, and demonstrated superior polarization of Th1/Th2 balance in favor of Th1 immune response. This combination approach with DCs and lenalidomide may provide a new therapeutic option to improve the treatment of colon cancer.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Seoyun Yang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
23
|
Scarabel L, Perrone F, Garziera M, Farra R, Grassi M, Musiani F, Russo Spena C, Salis B, De Stefano L, Toffoli G, Rizzolio F, Tonon F, Abrami M, Chiarappa G, Pozzato G, Forte G, Grassi G, Dapas B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2017; 14:797-810. [PMID: 28266887 DOI: 10.1080/17425247.2017.1292247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
Abstract
hepatocellular carcinoma (hcc) is the predominant form of primary liver cancer and the second leading cause of cancer-associated mortality worldwide. available therapies for hcc have limited efficacy due to often late diagnosis and the general resistance of hcc to anti-cancer agents; therefore, the development of novel therapeutics is urgently required. small-interfering rna (sirna) molecules are short, double-stranded rnas that specifically recognize and bind the mrna of a target gene to inhibit gene expression. despite the great therapeutic potential of sirnas towards many human tumors including hcc, their use is limited by suboptimal delivery. Areas covered: In this review, we outline the current data regarding the therapeutic potential of siRNAs in HCC and describe the development of effective siRNA delivery systems. We detail the key problems associated with siRNA delivery and discuss the possible solutions. Finally, we provide examples of the various siRNA delivery strategies that have been employed in animal models of HCC and in human patients enrolled in clinical trials. Expert opinion: Despite the existing difficulties in siRNA delivery for HCC, the increasing scientific attention and breakthrough studies in this field is facilitating the design of novel and efficient technical solutions that may soon find practical applications.
Collapse
Affiliation(s)
- Lucia Scarabel
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Francesca Perrone
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| | - Marica Garziera
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Rossella Farra
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Mario Grassi
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Francesco Musiani
- d Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Concetta Russo Spena
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Barbara Salis
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Lucia De Stefano
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Flavio Rizzolio
- a Experimental and Clinical Pharmacology Unit , C.R.O. National Cancer Institute , Aviano , Italy
| | - Federica Tonon
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Michela Abrami
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| | - Gianluca Chiarappa
- c Department of Engineering and Architecture , University of Trieste , Trieste , Italy
| | - Gabriele Pozzato
- e Department of 'Scienze Mediche, Chirurgiche e della Salute' , Cattinara University Hospital, University of Trieste , Trieste , Italy
| | - Giancarlo Forte
- f Center for Translational Medicine, International Clinical Research Center , St. Anne's University Hospital , Brno , Czech Republic
| | - Gabriele Grassi
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
- e Department of 'Scienze Mediche, Chirurgiche e della Salute' , Cattinara University Hospital, University of Trieste , Trieste , Italy
| | - Barbara Dapas
- b Department of Life Sciences, Cattinara University Hospital , University of Trieste , Trieste , Italy
| |
Collapse
|
24
|
Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 2016; 299:78-89. [PMID: 26739622 PMCID: PMC4811709 DOI: 10.1016/j.taap.2015.12.022] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, USA.
| | - Michael Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Anna A Shvedova
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|