1
|
Akat A, Karaöz E. A systematic review of cell therapy modalities and outcomes in cerebral palsy. Mol Cell Biochem 2025; 480:891-922. [PMID: 39033213 DOI: 10.1007/s11010-024-05072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Cerebral palsy is widely recognized as a condition that results in significant physical and cognitive disabilities. Interventions aim to improve the quality of life and reduce disability. Despite numerous treatments and significant advancements, cerebral palsy remains incurable due to its diverse origins. This review evaluated clinical trials, studies, and case reports on various cell therapy approaches for cerebral palsy. It assessed the clinical outcomes of applying different cell types, including mesenchymal stem cells, olfactory ensheathing cells, neural stem/progenitor cells, macrophages, and mononuclear cells derived from peripheral blood, cord blood, and bone marrow. In 60 studies involving 1474 CP patients, six major adverse events (0.41%) and 485 mild adverse events (32.9%) were reported. Favorable therapeutic effects were observed in 54 out of 60 cell therapy trials, indicating a promising potential for cell treatments in cerebral palsy. Intrathecal MSC and BM-MNC applications revealed therapeutic benefits, with MSC studies being generally safer than other cell therapies. However, MSC and BM-MNC trials have shown inconsistent results, with some demonstrating superior efficacy for certain outcomes. Cell dosage, transplantation route, and frequency of administration can affect the efficacy of these therapies. Our findings highlight the promise of cell therapies for improving cerebral palsy treatment and stress the need for ongoing research to refine treatment protocols and enhance safety. To establish conclusive evidence on the comparative effectiveness of various cell types in treating cerebral palsy, randomized, double-blind clinical trials are essential.
Collapse
Affiliation(s)
- Ayberk Akat
- Yıldız Technical University, Davutpaşa Caddesi No.127, Esenler, 34210, Istanbul, Turkey.
| | - Erdal Karaöz
- Liv Hospital Ulus, Regenerative Medicine and Stem Cell Center, Istanbul, Turkey
| |
Collapse
|
2
|
Chavan C, Ray S, Kumar CM. Stem cell therapy approaches for non-malignant diseases & non-haematological diseases in India: A systematic review. Indian J Med Res 2024; 160:411-427. [PMID: 39737504 DOI: 10.25259/ijmr_2141_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/01/2024] [Indexed: 01/01/2025] Open
Abstract
Background & objectives Our study aims to provide the diversity of stem cell use for non-malignant, non-haematological diseases in India through the lens of clinical trials. Methods A PRISMA approach was used to evaluate the safety and efficacy of stem cell use for the period 2001-2021 in India. The outcomes were measured using each disease category, types of stem cells, the origin of stem cells, safety, and efficacy. Results Of the 9206 studies screened, 61 studies that were relevant to stem cell use for non-malignant diseases were included for analysis. Autologous stem cells (75%) were used predominantly compared to allogenic stem cells (18.33%), followed by mixed type (6.67%). Use of bone marrow-derived stem cells (51%) was dominant, followed by melanocytes (19%), adipose (7%), haematopoietic (12%), and (11%) other types of stem cells. The study revealed 37 randomized clinical trial studies conducted in the government research hospital compared to the non-government. Interpretation & conclusions Maintaining the gold standard for stem cell therapy requires randomized clinical trials with large sample sizes, control groups, failures, adverse effects, etc. It is important to have a monitoring and regulation system in stem cell clinical research activities with enough preclinical data and repeated exchanges between the bench and the bedside.
Collapse
Affiliation(s)
- Chandrashekhar Chavan
- Department of Inclusive Health, CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Suman Ray
- Department of Inclusive Health, CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Chandra Mohan Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
3
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
4
|
Fenov DM, Salcher R, Kludt E, Lesinski-Schiedat A, Harre J, Lenarz T, Giesemann A, Warnecke A. Long-term experience with biohybrid cochlear implants in human neurosensory restoration. Cochlear Implants Int 2024; 25:171-181. [PMID: 39159131 DOI: 10.1080/14670100.2024.2379124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
OBJECTIVE The implantation of biohybrid electrodes was introduced a few years ago in our clinic. These electrodes coated with autologous mononuclear cells releasing anti-inflammatory and neuroprotective factors are thought to reduce insertion trauma and maintain the vitality of surviving spiral ganglion neurons. The clinical feasibility of this approach has already been demonstrated. In the present retrospective study, the four-year results of the two sides (classical electrode and biohybrid electrode) in the bilaterally implanted patients were compared in order to investigate possible adverse long-term effects. METHODS All patients received a complete audiological diagnosis which also included a speech audiogram and impedance measurement. The measurements were carried out 1 month, 3 months, 6 months, 1 year, 2 years, 3 years and 4 years after implantation. The hearing results were assessed by pure tone audiometry. RESULTS All patients showed satisfactory speech understanding and similar impedances on both sides although they had a long-term deafness before implantation of the side provided with a biohybrid electrode array. The results of speech understanding and impedance measurements were stable for years. Cone beam computed tomography was performed in 4 patients three years after implantation and could rule out cochlear ossification. Other complications were also not registered in any of the patients. CONCLUSION Due to satisfactory outcomes and lack of complications, the biohybrid electrode is considered to be a safe option in cochlear implantation. The simplicity of application of autologous cells as a source of anti-inflammatory and neuroprotective factors via a biohybrid electrode array is a key step for cell-based, regenerative therapies for deafness.
Collapse
Affiliation(s)
- Dragana Mitovska Fenov
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Rolf Salcher
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Eugen Kludt
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Anke Lesinski-Schiedat
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| | - Thomas Lenarz
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| | - Anja Giesemann
- Department for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 'Hearing for All', German Research Foundation, Bonn, Germany
| |
Collapse
|
5
|
Boyalı O, Kabatas S, Civelek E, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Allogeneic mesenchymal stem cells may be a viable treatment modality in cerebral palsy. World J Clin Cases 2024; 12:1585-1596. [PMID: 38576742 PMCID: PMC10989435 DOI: 10.12998/wjcc.v12.i9.1585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) describes a group of disorders affecting movement, balance, and posture. Disturbances in motor functions constitute the main body of CP symptoms. These symptoms surface in early childhood and patients are affected for the rest of their lives. Currently, treatment involves various pharmacotherapies for different types of CP, including antiepileptics for epilepsy and Botox A for focal spasticity. However, none of these methods can provide full symptom relief. This has prompted researchers to look for new treatment modalities, one of which is mesenchymal stem cell therapy (MSCT). Despite being a promising tool and offering a wide array of possibilities, mesenchymal stem cells (MSCs) still need to be investigated for their efficacy and safety. AIM To analyze the efficacy and safety of MSCT in CP patients. METHODS Our sample consists of four CP patients who cannot stand or walk without external support. All of these cases received allogeneic MSCT six times as 1 × 106/kg intrathecally, intravenously, and intramuscularly using umbilical cord-derived MSCs (UC-MSC). We monitored and assessed the patients pre- and post-treatment using the Wee Functional Independence Measure (WeeFIM), Gross Motor Function Classification System (GMFCS), and Manual Ability Classification Scale (MACS) instruments. We utilized the Modified Ashworth Scale (MAS) to measure spasticity. RESULTS We found significant improvements in MAS scores after the intervention on both sides. Two months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; four months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; 12 months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046. However, there was no significant difference in motor functions based on WeeFIM results (P > 0.05). GMFCS and MACS scores differed significantly at 12 months after the intervention (P = 0.046, P = 0.046). Finally, there was no significant change in cognitive functions (P > 0.05). CONCLUSION In light of our findings, we believe that UC-MSC therapy has a positive effect on spasticity, and it partially improves motor functions.
Collapse
Affiliation(s)
- Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34360, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, İstanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Turkey
| |
Collapse
|
6
|
Li X, Li M, Qin X, Li Y, Wang Y, Han C, Ni S, Sun X, Dong P, Liu J. Providing holistic care to children with cerebral palsy treated with transnasal neural stem cell transplantation. Front Pediatr 2024; 11:1297563. [PMID: 38250587 PMCID: PMC10796742 DOI: 10.3389/fped.2023.1297563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Objective Holistic care is a key element in nursing care. Aiming at the heterogeneous disease of cerebral palsy, researchers focused on children with cerebral palsy who received transnasal transplantation of neural stem cells as a specific group. Based on establishing a multidisciplinary team, comprehensive care is carried out for this type of patient during the perioperative period to improve the effectiveness and safety of clinical research and increase the comfort of children. Methods Between January 2018 and June 2023, 22 children with cerebral palsy underwent three transnasal transplants of neural stem cells. Results No adverse reactions related to immune rejection were observed in the 22 children during hospitalization and follow-up. All children tolerated the treatment well, and the treatment was superior. One child developed nausea and vomiting after sedation; three had a small amount of bleeding of nasal mucosa after transplantation. Two children had a low fever (≤38.5°C), and one had a change in the type and frequency of complex partial seizures. Moreover, 3 children experienced patch shedding within 4 h of patch implantation into the nasal cavity. Conclusion The project team adopted nasal stem cell transplantation technology. Based on the characteristics of transnasal transplantation of neural stem cells in the treatment of neurological diseases in children, a comprehensive and novel holistic care plan is proposed. It is of great significance to guide caregivers of children to complete proper care, further improve the safety and effectiveness of treatment, and reduce the occurrence of complications.
Collapse
Affiliation(s)
- Xiaoyan Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Mengyao Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xixian Qin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ying Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Yachen Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Shiwei Ni
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Xuna Sun
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Peipei Dong
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Motavaf M, Dehghan S, Ghajarzadeh M, Ebrahimi N, Zali A, Safari S, Mirmosayyeb O. Stem Cell Treatment and Cerebral Palsy: A Systematic Review and Meta-Analysis. Curr Stem Cell Res Ther 2024; 19:210-219. [PMID: 36464870 DOI: 10.2174/1574888x18666221201114756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We designed this systematic review and meta-analysis to estimate the pooled efficacy and safety profile of different types of stem cells in treating patients with cerebral palsy (CP). METHODS We systematically searched PubMed, Scopus, EMBASE, Web of Science, Google Scholar, and also gray literature, including references of the included studies which were published before November 2021. We extracted data regarding the total number of participants, first author, publication year, country of origin, mean age, cell type, cell dose, cell source, method of transplantation, duration of follow-up, Gross motor function, Ashworth scale, and adverse events. RESULTS We found 2073 articles by literature search; after deleting duplicates, 1194 remained. Nine articles remained for meta-analysis. The SMD of GMF-66 score (after-before) treatment was 1.5 (95% CI:0.7-2.3) (I2 = 89.9%, P < 0.001). The pooled incidence of Gastrointestinal (GI) complications after transplantation was 21% (95% CI:9-33%) (I2 = 56%, P = 0.08). The pooled incidence of fever after transplantation was 18 % (95% CI:6-30%) (I2 = 87.9%, P = 0.08 < 0.001) Conclusion: The result of this systematic review and meta-analysis show that stem cell therapy in cerebral palsy has neuroprotective properties from anti-inflammatory and anti-apoptotic activities. Stem cell therapy seems to be a promising adjunct to traditional therapies for cerebral palsy patients.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem cell and Regeneration Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghajarzadeh
- Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Ebrahimi
- School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of medical sciences, Isfahan, Iran
| |
Collapse
|
8
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 PMCID: PMC11410020 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
9
|
Nguyen KT, Hoang NTM, Nguyen HP, Nguyen Thanh L. The density of bone marrow mononuclear cells and CD34+ cells in patients with three neurologic conditions. BMC Neurol 2023; 23:37. [PMID: 36690963 PMCID: PMC9869514 DOI: 10.1186/s12883-023-03071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND This study aimed to identify the density of mononuclear cells (MNCs) and CD34+ cells in the bone marrow of patients with three neurologic conditions. METHODS The study included 88 patients with three neurologic conditions: 40 with cerebral palsy (CP) due to oxygen deprivation (OD), 23 with CP related to neonatal icterus (NI), and 25 with neurological sequelae after traumatic brain injury. Bone marrow aspiration was conducted from the patients' bilateral anterior iliac crest under general anesthesia in an operating theater. MNCs were isolated by Ficoll gradient centrifugation and then infused intrathecally. RESULTS There was a significant difference in the average MNC per ml and percentage of CD34+ cells by the type of disease, age group, and infusion time (p value < 0.05). The multivariable regression model showed the percentage of CD34+ association with the outcome (gross motor function 88 items- GMFM-88) in patients with CP. CONCLUSIONS The density of MNCs was 5.22 million cells per mL and 5.03% CD34+ cells in patients with three neurologic conditions. The highest density of MNCs in each ml of bone marrow was found in patients with CP due to OD, whereas the percentage of CD34+ cells was the highest among patients with CP related to NI.
Collapse
Affiliation(s)
- Kien Trung Nguyen
- grid.489359.a0000 0004 6334 3668Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- grid.267852.c0000 0004 0637 2083University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- grid.489359.a0000 0004 6334 3668Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- grid.489359.a0000 0004 6334 3668Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi, Vietnam ,grid.507915.f0000 0004 8341 3037College of Health Science, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi, Vietnam
| |
Collapse
|
10
|
Yousif NG, Yousif MG, Mohsen AAU, El-Bakaa HS, Younise MH, Altimimi AN, Nöth UA, Hassan AM. PROSPECTIVE SINGLE CENTER ANALYSIS OF OUTCOME STEM CELLS TRANSPLANTS IN PATIENTS WITH CEREBRAL PALSY. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:339-345. [PMID: 37756453 DOI: 10.36740/merkur202304107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Aim: To evaluate efficacy and safety of autologous bone marrow-derived mononuclear stem cell transplantation intrathecal in children with cerebral palsy. PATIENTS AND METHODS Materials and Methods: 35 children have levels I-V cerebral palsy aged 8-months to 8-years-old were enrolled from September (2021-2022) at Iraqi private hospital. Gross Motor Function was assessed by a pediatrician and neurologist specialist, 5 mcg/kg/day of G-CSF subcutaneous single injection daily for three consecutive days. Bone marrow harvested from posterior iliac crest under light general anesthesia. Bone marrow mononuclear cells (BMMNCs) separation was performed using density gradient centrifugation with Ficoll, the cell viability checked by propidium iodide dye in a TALI machine (Invitrogen) in average 98%. The viable BMMNCs injected intrathecal in L4-L5 over a period of 5-10 min. RESULTS Results: Males accounted for 57.14% (20/35) while female 42.86% (15/35), and main neurological symptoms included spastic disorder spastic disorder (quadriplegia 24 (68.6), tetraplegia 2 (5.7), diplegia 5 (14.28), hemiplegia4 (11.42)). Gross Motor Function Classification System and Gross Motor Function Measure-66 (GMFM-66) showed II 10 (28.58), III 11(31.42) and IV 14 (40). On mean follow-up of 3 months post-stem cell transplant improvement was observed in 80% cases. The improvement showed in gross motor function (6/8) p=0.01, and speech (2/4) p=0.04, neck holding (5/5) p=0.0003, sitting balance (4/4) p=0.04, postural tone (5/5) p=0.0003, as well as significant reduction in seizure frequency (2/3) p=0.04 and improvement in cognition (6/7) p=0.01 were observed. CONCLUSION Conclusion: Stem cell therapy for cerebral palsy shows a significant positive effect on the gross motor function, without long adverse effects.
Collapse
Affiliation(s)
- Nasser Ghaly Yousif
- DEPARTMENT OF MEDICINE, MEDICAL COLLEGE, AL MUTHANNA UNIVERSITY, SAMAWAH, IRAQ
| | - Maitham G Yousif
- DEPARTMENT OF BIOLOGY, COLLEGE OF SCIENCE, AL-QADISIYAH UNIVERSITY, IRAQ
| | - Ahmed Abd Ulhadi Mohsen
- DEPARTMENT OF PEDIATRIC, COLLEGE OF MEDICINE, JABIR IBN HAYYAN MEDICAL UNIVERSITY, KUFA, IRAQ
| | | | | | - Ahmed N Altimimi
- DEPARTMENT OF BIOLOGY, ALHAKEEM HOSPITAL, MINISTRY OF HEALTH, AL NAJAF, IRAQ
| | - Ulrich Aran Nöth
- DEPARTMENT OF REGENERATIVE RESEARCH, COLLEGE OF MEDICINE, COLORADO UNIVERSITY, AURORA, USA
| | - Alaa Manea Hassan
- DEPARTMENT OF DRUG CONTROL AND RESEARCH LABORATORY (DCRL), MINISTRY OF HEALTH, AL NAJAF, IRAQ
| |
Collapse
|
11
|
Finch-Edmondson M, Paton MCB, Honan I, Karlsson P, Stephenson C, Chiu D, Reedman S, Griffin AR, Morgan C, Novak I. Are We Getting It Right? A Scoping Review of Outcomes Reported in Cell Therapy Clinical Studies for Cerebral Palsy. J Clin Med 2022; 11:7319. [PMID: 36555936 PMCID: PMC9786692 DOI: 10.3390/jcm11247319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cell therapies are an emergent treatment for cerebral palsy (CP) with promising evidence demonstrating efficacy for improving gross motor function. However, families value improvements in a range of domains following intervention and the non-motor symptoms, comorbidities and complications of CP can potentially be targeted by cell therapies. We conducted a scoping review to describe all outcomes that have been reported in cell therapy studies for CP to date, and to examine what instruments were used to capture these. Through a systematic search we identified 54 studies comprising 2066 participants that were treated with a range of cell therapy interventions. We categorized the reported 53 unique outcome instruments and additional descriptive measures into 10 categories and 12 sub-categories. Movement and Posture was the most frequently reported outcome category, followed by Safety, however Quality of Life, and various prevalent comorbidities and complications of CP were infrequently reported. Notably, many outcome instruments used do not have evaluative properties and thus are not suitable for measuring change following intervention. We provide a number of recommendations to ensure that future trials generate high-quality outcome data that is aligned with the priorities of the CP community.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ingrid Honan
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Petra Karlsson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Candice Stephenson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Darryl Chiu
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sarah Reedman
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Alexandra R. Griffin
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Catherine Morgan
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
12
|
Sharma A, Kulkarni R, Sane H, Awad N, Bopardikar A, Joshi A, Baweja S, Joshi M, Vishwanathan C, Gokulchandran N, Badhe P, Khan M, Paranjape A, Kulkarni P, Methal AK. Phase 1 clinical trial for intravenous administration of mesenchymal stem cells derived from umbilical cord and placenta in patients with moderate COVID-19 virus pneumonia: results of stage 1 of the study. AMERICAN JOURNAL OF STEM CELLS 2022; 11:37-55. [PMID: 35873716 PMCID: PMC9301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Mesenchymal stem cells can serve as a therapeutic option for COVID-19. Their immunomodulatory and anti-inflammatory properties can regulate the exaggerated inflammatory response and promote recovery of lung damage. METHOD Phase-1, single-centre open-label, prospective clinical trial was conducted to evaluate the safety and efficacy of intravenous administration of mesenchymal stem cells derived from umbilical cord and placenta in moderate COVID-19. The study was done in 2 stages with total 20 patients. Herein, the results of stage 1 including first 10 patients receiving 100 million cells on day 1 and 4 with a follow up of 6 months have been discussed. RESULTS No adverse events were recorded immediately after the administration of MSCs or on follow up. There was no deterioration observed in clinical, laboratory and radiological parameters. All symptoms of the study group resolved within 10 days. Levels of inflammatory biomarkers such as NLR, CRP, IL6, ferritin and D-dimer improved in all patients after intervention along with improved oxygenation demonstrated by improvement in the SpO2/FiO2 ratio and PaO2/FiO2 ratio. None of the patients progressed to severe stage. 9 out of 10 patients were discharged within 9 days of their admission. Improvements were noted in chest x-ray and chest CT scan scores at day 7 in most patients. No post-covid fibrosis was observed on chest CT 28 days after intervention and Chest X ray after 6 months of the intervention. CONCLUSION Administration of 100 million mesenchymal stem cells in combination with standard treatment was found to be safe and resulted in prevention of the cytokine storm, halting of the disease progression and acceleration of recovery in moderate COVID-19. This clinical trial has been registered with the Clinical Trial Registry- India (CTRI) as CTRI/2020/08/027043. http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=43175.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Neurosurgery, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | | | - Hemangi Sane
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Nilkanth Awad
- Department of Pulmonary Medicine, LTMG Hospital and LTM Medical CollegeSion, Mumbai, Maharashtra, India
| | | | - Anagha Joshi
- Department of Radiology, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Sujata Baweja
- Department of Microbiology, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Mohan Joshi
- Dean, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | | | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Prerna Badhe
- Department of Regenerative Laboratory, NeuroGen Brain and Spine InstituteSeawoods, Navi Maharashtra, India
| | - Mazhar Khan
- Department of Neurosurgery, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Amruta Paranjape
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Pooja Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Arjun K Methal
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| |
Collapse
|
13
|
Zarrabi M, Akbari MG, Amanat M, Majmaa A, Moaiedi AR, Montazerlotfelahi H, Nouri M, Hamidieh AA, Badv RS, Karimi H, Rabbani A, Mohebbi A, Rahimi-Dehgolan S, Rahimi R, Dehghan E, Vosough M, Abroun S, Shamsabadi FM, Tavasoli AR, Alizadeh H, Pak N, Zamani GR, Mohammadi M, Javadzadeh M, Ghofrani M, Hassanpour SH, Heidari M, Taghdiri MM, Mohseni MJ, Noparast Z, Masoomi S, Goudarzi M, Mohamadpour M, Shodjaee R, Samimi S, Mohammad M, Gholami M, Vafaei N, Koochakzadeh L, Valizadeh A, Malamiri RA, Ashrafi MR. The safety and efficacy of umbilical cord blood mononuclear cells in individuals with spastic cerebral palsy: a randomized double-blind sham-controlled clinical trial. BMC Neurol 2022; 22:123. [PMID: 35351020 PMCID: PMC8966246 DOI: 10.1186/s12883-022-02636-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The current multi-center, randomized, double-blind study was conducted among children with cerebral palsy (CP) to assess the safety and efficacy of umbilical cord blood mononuclear cell (UCB-MNC). We performed the diffusion tensor imaging to assess the changes in the white matter structure. METHODS Males and females aged 4 to 14 years old with spastic CP were included. Eligible participants were allocated in 4:1 ratio to be in the experimental or control groups; respectively. Individuals who were assigned in UCB-MNC group were tested for human leukocyte antigen (HLA) and fully-matched individuals were treated with UCB-MNCs. A single dose (5 × 106 /kg) UCB-MNCs were administered via intrathecal route in experimental group. The changes in gross motor function measure (GMFM)-66 from baseline to one year after treatment were the primary endpoints. The mean changes in modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also evaluated and compared between groups. The mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR) were the secondary endpoints. Adverse events were safety endpoint. RESULTS There were 72 included individuals (36 cases in each group). The mean GMFM-66 scores increased in experimental group; compared to baseline (+ 9.62; 95%CI: 6.75, 12.49) and control arm (β: 7.10; 95%CI: 2.08, 12.76; Cohen's d: 0.62) and mean MAS reduced in individuals treated with UCB-MNCs compared to the baseline (-0.87; 95%CI: -1.2, -0.54) and control group (β: -0.58; 95%CI: -1.18, -0.11; Cohen's d: 0.36). The mean PEDI scores and mean CP-QoL scores in two domains were higher in the experimental group compared to the control. The imaging data indicated that mean FA increased and MD decreased in participants of UCB-MNC group indicating improvements in white matter structure. Lower back pain, headaches, and irritability were the most common adverse events within 24 h of treatment that were related to lumbar puncture. No side effects were observed during follow-up. CONCLUSIONS This trial showed that intrathecal injection of UCB-MNCs were safe and effective in children with CP. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov ( NCT03795974 ).
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Man Amanat
- Division of Neurogenetics and Neuroscience, The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Anahita Majmaa
- Pediatrics Center of Excellence, Pediatric Intensive Unit, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Moaiedi
- Department of Pediatric Neurology, Clinical Research Development Center of Children Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hadi Montazerlotfelahi
- Department of Pediatrics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Nouri
- R & D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatrics Center of Excellence Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Karimi
- Neurorehabilitation Research Center University of Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Rabbani
- Pediatrics Center of Excellence Pediatric Endocrinology Department, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Pediatrics Center of Excellence, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rahimi-Dehgolan
- Physical Medicine and Rehabilitation Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Rosa Rahimi
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | - Ensieh Dehghan
- Transplantation Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Reza Tavasoli
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Alizadeh
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Javadzadeh
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghofrani
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Hassanpour
- Department of Pediatric Neurology, Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Taghdiri
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Javad Mohseni
- Pediatric Urology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noparast
- Department of Pediatric Nephrology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Safdar Masoomi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Goudarzi
- Department of Pediatric Anesthesiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Mohamadpour
- Pediatrics Center of Excellence, Pediatric Intensive Unit, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Shodjaee
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Solaleh Samimi
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | | | - Mona Gholami
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | - Nahid Vafaei
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyli Koochakzadeh
- Pediatrics Center of Excellence Pediatric Hematology, Department of Hematology & Oncology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Valizadeh
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Reza Ashrafi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Lyu H, Sun DM, Ng CP, Cheng WS, Chen JF, He YZ, Lam SY, Zheng ZY, Huang GD, Wang CC, Young W, Poon WS. Umbilical Cord Blood Mononuclear Cell Treatment for Neonatal Rats With Hypoxic Ischemia. Front Cell Neurosci 2022; 16:823320. [PMID: 35308119 PMCID: PMC8924590 DOI: 10.3389/fncel.2022.823320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) occurs when an infant’s brain has not received adequate oxygen and blood supply, resulting in ischemic and hypoxic damage. Currently, supportive care and hypothermia therapy have been the standard treatment for HIE. However, there are still over 20% of treated infants died and 19–30% survived with significant disability. HIE animal model was first established by Rice et al., involving the ligation of one common carotid artery followed by hypoxia. In this study, we investigated human umbilical cord blood (HUCB) and its two components mononuclear cell (MNC) and red cell fraction (RCF) in both short and long term study using a modified HIE rat model. Methods In this modified HIE model, both common carotid arteries were occluded, breathing 8% oxygen in a hypoxic chamber for 60-min, followed by the release of the common carotid arteries ligature, mimicking reperfusion injury. For cell therapeutic study, cells were intravenously injected to HIE rat pups, and both behavioral and histological changes were assessed at selected time points. Result Statistically significant behavioral improvements were demonstrated on Day 7 and 1 month between saline treated HIE rats and UCB/MNC treated rats. However, at 3 months, the therapeutic improvements were only showed between saline treated HIE animals and MNC treated HIE rats. For histological analysis 1 month after cell injection, the number of functional neurons were statistically increased between saline treated HIE and UCB/MNC/RCF treated HIE rats. At 3 months, the significant increase in functional neurons was only present in MNC treated HIE rats. Conclusion We have used a bilateral temporary occlusion of 60 min, a moderately brain damaged model, for cell therapeutic studies. HUCB mononuclear cell (MNC) therapy showed benefits in neonatal HIE rats in both short and long term behavioral and histological assessments.
Collapse
Affiliation(s)
- Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dong Ming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Chi Ping Ng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wendy S. Cheng
- Mononuclear Therapeutics Limited, Hong Kong, Hong Kong SAR, China
| | - Jun Fan Chen
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yu Zhong He
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Neurosurgery, Hainan Hospital of People’s Liberation Army General Hospital, Sanya, China
| | - Guo Dong Huang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Shatin, Hong Kong SAR, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Wise Young,
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Wise Young,
| |
Collapse
|
15
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Nguyen Thanh L, Hoang VT, Le Thu H, Nguyen PAT, Hoang DM, Ngo DV, Cao Vu H, Nguyen Thi Bich V, Heke M. Human Umbilical Cord Mesenchymal Stem Cells for Severe Neurological Sequelae due to Anti- N-Methyl-d-Aspartate Receptor Encephalitis: First Case Report. Cell Transplant 2022; 31:9636897221110876. [PMID: 35815930 PMCID: PMC9277426 DOI: 10.1177/09636897221110876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is caused by altered patient immune reactions. This study reports the first patient with severe neurologic sequelae after NMDA receptor encephalitis treated with allogeneic umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs). A 5-year-old girl was diagnosed with NMDA receptor encephalitis and treated with immunosuppressive medicaments and intravenous immunoglobulin (IVIG). Despite intensive therapy, the patient's condition worsened so that allogenic UC-MSC therapy was contemplated. The patient received three intrathecal infusions of xeno- and serum-free cultured UC-MSCs at a dose of 106 cells/kg. At baseline and after each UC-MSC administration, the patient was examined by the German Coma Recovery Scale (CRS), the Gross Motor Function Classification System (GMFCS), the Gross Motor Function Measure-88 (GMFM-88), the Manual Ability Classification System (MACS), the Modified Ashworth Scale, and the Denver II test. Before cell therapy, she was in a permanent vegetative state with diffuse cerebral atrophy. Her cognition and motor functions improved progressively after three UC-MSC infusions. At the last visit, she was capable of walking, writing, and counting numbers. Control of urinary and bowel functions was completely recovered. Cerebral atrophy was reduced on brain magnetic resonance imaging (MRI). Overall, the outcomes of this patient suggest a potential cell therapy for autoimmune encephalitis and its neurological consequences.
Collapse
Affiliation(s)
- Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam.,College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | | | | | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | | | - Hung Cao Vu
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | | | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Paprocka J, Kaminiów K, Kozak S, Sztuba K, Emich-Widera E. Stem Cell Therapies for Cerebral Palsy and Autism Spectrum Disorder-A Systematic Review. Brain Sci 2021; 11:1606. [PMID: 34942908 PMCID: PMC8699362 DOI: 10.3390/brainsci11121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
Autism spectrum disorder (ASD) and cerebral palsy (CP) are some of the most common neurodevelopmental diseases. They have multifactorial origin, which means that each case may manifest differently from the others. In patients with ASD, symptoms associated with deficits in social communication and characteristic, repetitive types of behaviors or interests are predominant, while in patients with CP, motor disability is diagnosed with accompanying cognitive impairment of various degrees. In order to minimize their adverse effects, it is necessary to promptly diagnose and incorporate appropriate management, which can significantly improve patient quality of life. One of the therapeutic possibilities is stem cell therapy, already known from other branches of medicine, with high hopes for safe and effective treatment of these diseases. Undoubtedly, in the future we will have to face the challenges that will arise due to the still existing gaps in knowledge and the heterogeneity of this group of patients. The purpose of this systematic review is to summarize briefly the latest achievements and advances in stem cell therapy for ASD and CP.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Karolina Sztuba
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
18
|
Sharova O, Smiyan O, Borén T. Immunological effects of cerebral palsy and rehabilitation exercises in children. Brain Behav Immun Health 2021; 18:100365. [PMID: 34704080 PMCID: PMC8522480 DOI: 10.1016/j.bbih.2021.100365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Abstract
Cerebral palsy (CP) is a group of motor disorders caused by non-progressive lesions of the premature brain with lifelong pathophysiological consequences that include dysregulation of innate immunity. Persistent inflammation with increased levels of circulating pro-inflammatory tumor necrosis factor alpha (TNF-a) is negatively associated with rehabilitation outcome in children with CP. Because of the crosstalk between innate and adaptive immunity, we investigated the effect of CP and rehabilitation exercises on the adaptive immune system in children with CP by measuring the levels of CD3+, CD4+, CD8+ Т-cells, and CD22+ B-cells and the levels of immunoglobulins. Children with CP had higher levels of CD3+, CD4+, CD8+ Т-cells, and CD22+ B-cells compared to healthy children, and the rehabilitation exercise programs produced better outcomes in terms of increased gains in motor function at an earlier age. Rehabilitation exercises performed over a month resulted in significantly decreased levels of IgA in serum and reduced numbers of B-lymphocytes and reduced IgM levels. Our study suggests that rehabilitation programs with a focus on neuroplasticity and physical exercises in children with CP can reduce both cellular and humoral immune responses. Children with CP demonstrate increased levels of T and B cells. Rehabilitation exercises helped balance immune responses.
Collapse
Affiliation(s)
- Oleksandra Sharova
- Department of Pediatrics, Sumy State University, 40031, Sumy, Ukraine
- Corresponding author.
| | - Oleksandr Smiyan
- Department of Pediatrics, Sumy State University, 40031, Sumy, Ukraine
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
19
|
Amanat M, Majmaa A, Zarrabi M, Nouri M, Akbari MG, Moaiedi AR, Ghaemi O, Zamani F, Najafi S, Badv RS, Vosough M, Hamidieh AA, Salehi M, Montazerlotfelahi H, Tavasoli AR, Heidari M, Mohebi H, Fatemi A, Garakani A, Ashrafi MR. Clinical and imaging outcomes after intrathecal injection of umbilical cord tissue mesenchymal stem cells in cerebral palsy: a randomized double-blind sham-controlled clinical trial. Stem Cell Res Ther 2021; 12:439. [PMID: 34362453 PMCID: PMC8343813 DOI: 10.1186/s13287-021-02513-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study assessed the safety and efficacy of intrathecal injection of umbilical cord tissue mesenchymal stem cells (UCT-MSC) in individuals with cerebral palsy (CP). The diffusion tensor imaging (DTI) was performed to evaluate the alterations in white-matter integrity. METHODS Participants (4-14 years old) with spastic CP were assigned in 1:1 ratio to receive either UCT-MSC or sham procedure. Single-dose (2 × 107) cells were administered in the experimental group. Small needle pricks to the lower back were performed in the sham-control arm. All individuals were sedated to prevent awareness. The primary endpoints were the mean changes in gross motor function measure (GMFM)-66 from baseline to 12 months after procedures. The mean changes in the modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also assessed. Secondary endpoints were the mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR). RESULTS There were 36 participants in each group. The mean GMFM-66 scores after 12 months of intervention were significantly higher in the UCT-MSC group compared to baseline (10.65; 95%CI 5.39, 15.91) and control (β 8.07; 95%CI 1.62, 14.52; Cohen's d 0.92). The increase was also seen in total PEDI scores (vs baseline 8.53; 95%CI 4.98, 12.08; vs control: β 6.87; 95%CI 1.52, 12.21; Cohen's d 0.70). The mean change in MAS scores after 12 months of cell injection reduced compared to baseline (-1.0; 95%CI -1.31, -0.69) and control (β -0.72; 95%CI -1.18, -0.26; Cohen's d 0.76). Regarding CP-QoL, mean changes in domains including friends and family, participation in activities, and communication were higher than the control group with a large effect size. The DTI analysis in the experimental group showed that mean FA increased (CST 0.032; 95%CI 0.02, 0.03. PTR 0.024; 95%CI 0.020, 0.028) and MD decreased (CST -0.035 × 10-3; 95%CI -0.04 × 10-3, -0.02 × 10-3. PTR -0.045 × 10-3; 95%CI -0.05 × 10-3, -0.03 × 10-3); compared to baseline. The mean changes were significantly higher than the control group. CONCLUSIONS The UCT-MSC transplantation was safe and may improve the clinical and imaging outcomes. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov ( NCT03795974 ).
Collapse
Affiliation(s)
- Man Amanat
- Department of Science and Research Branch, AJA University of Medical Sciences, Tehran, Iran
| | - Anahita Majmaa
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Moaiedi
- Department of Pediatric Neurology, Clinical Research Development Center of Children Hospital, Hormozgan University of Medical Sciences, Bandar Abass, Iran
| | - Omid Ghaemi
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zamani
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharif Najafi
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatrics Center of Excellence Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Salehi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Montazerlotfelahi
- Department of Pediatrics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohebi
- Department of Pediatric Neurology, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Amir Garakani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahmoud Reza Ashrafi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Menarim BC, MacLeod JN, Dahlgren LA. Bone marrow mononuclear cells for joint therapy: The role of macrophages in inflammation resolution and tissue repair. World J Stem Cells 2021; 13:825-840. [PMID: 34367479 PMCID: PMC8316866 DOI: 10.4252/wjsc.v13.i7.825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease causing major disability and medical expenditures. Synovitis is a central feature of OA and is primarily driven by macrophages. Synovial macrophages not only drive inflammation but also its resolution, through a coordinated, simultaneous expression of pro- and anti-inflammatory mechanisms that are essential to counteract damage and recover homeostasis. Current OA therapies are largely based on anti-inflammatory principles and therefore block pro-inflammatory mechanisms such as prostaglandin E2 and Nuclear factor-kappa B signaling pathways. However, such mechanisms are also innately required for mounting a pro-resolving response, and their blockage often results in chronic low-grade inflammation. Following minor injury, macrophages shield the damaged area and drive tissue repair. If the damage is more extensive, macrophages incite inflammation recruiting more macrophages from the bone marrow to maximize tissue repair and ultimately resolve inflammation. However, sustained damage and inflammation often overwhelms pro-resolving mechanisms of synovial macrophages leading to the chronic inflammation and related tissue degeneration observed in OA. Recently, experimental and clinical studies have shown that joint injection with autologous bone marrow mononuclear cells replenishes inflamed joints with macrophage and hematopoietic progenitors, enhancing mechanisms of inflammation resolution, providing remarkable and long-lasting effects. Besides creating an ideal environment for resolution with high concentrations of interleukin-10 and anabolic growth factors, macrophage progenitors also have a direct role in tissue repair. Macrophages constitute a large part of the early granulation tissue, and further transdifferentiate from myeloid into a mesenchymal phenotype. These cells, characterized as fibrocytes, are essential for repairing osteochondral defects. Ongoing “omics” studies focused on identifying key drivers of macrophage-mediated resolution of joint inflammation and those required for efficient osteochondral repair, have the potential to uncover ways for developing engineered macrophages or off-the-shelf pro-resolving therapies that can benefit patients suffering from many types of arthropaties, not only OA.
Collapse
Affiliation(s)
- Bruno C Menarim
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, United States
| |
Collapse
|
21
|
Nguyen Thanh L, Nguyen H, Duy Ngo M, Bui VA, Dam PT, Thi Phuong Bui H, Van Ngo D, Tran KT, Thi Thanh Dang T, Duc Duong B, Anh Thi Nguyen P, Forstyth N, Heke M. In Reply. Stem Cells Transl Med 2021; 10:827-828. [PMID: 34010520 PMCID: PMC8133348 DOI: 10.1002/sctm.20-0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG)HanoiVietnam
| | - Hoang‐Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG)HanoiVietnam
| | - Minh Duy Ngo
- Vinmec Times City International HospitalHanoiVietnam
| | - Viet Anh Bui
- Vinmec Hightech Center, Vinmec Health Care SystemHanoiVietnam
| | - Phuong T.M. Dam
- Vinmec Hightech Center, Vinmec Health Care SystemHanoiVietnam
| | | | - Doan Van Ngo
- Vinmec Times City International HospitalHanoiVietnam
| | - Kien Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG)HanoiVietnam
| | | | | | | | | | - Michael Heke
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
22
|
Abstract
Cerebral palsy is the most common disease in children associated with lifelong disability in many countries. Clinical research has demonstrated that traditional physiotherapy and rehabilitation therapies cannot alone cure cerebral palsy. Stem cell transplantation is an emerging therapy that has been applied in clinical trials for a variety of neurological diseases because of the regenerative and unlimited proliferative capacity of stem cells. In this review, we summarize the design schemes and results of these clinical trials. Our findings reveal great differences in population characteristics, stem cell types and doses, administration methods, and evaluation methods among the included clinical trials. Furthermore, we also assess the safety and efficacy of these clinical trials. We anticipate that our findings will advance the rational development of clinical trials of stem cell therapy for cerebral palsy and contribute to the clinical application of stem cells.
Collapse
Affiliation(s)
- Zhong-Yue Lv
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
23
|
Sharma AK, Gokulchandran N, Kulkarni PP, Sane HM, Sharma R, Jose A, Badhe PB. Cell transplantation as a novel therapeutic strategy for autism spectrum disorders: a clinical study. AMERICAN JOURNAL OF STEM CELLS 2020; 9:89-100. [PMID: 33489466 PMCID: PMC7811933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND Autism spectrum disorders [ASD] is a lifelong disability mainly affecting the development, communication, social interaction and behavior of an individual. Cell transplantation is emerging as a potential therapeutic strategy for ASD. Our previously published proof of concept study showed beneficial effects of cell transplantation in ASD. This study shows effect of cell transplantation in a larger sample size of ASD patients. METHODS 254 patients diagnosed with ASD on DSM V criteria were enrolled in this open label non-randomized study. The intervention included intrathecal transplantation of autologous bone marrow mononuclear cells and neurorehabilitation. On mean follow up of 7.50 months, percentage analysis was performed on all symptomatic changes. Changes in outcome measures, Indian Scale for Assessment of Autism [ISAA] and Childhood Autism Rating Scale [CARS], were analyzed statistically using Wilcoxon Signed-Rank Test. Comparative analysis of Positron Emission Tomography [PET CT] scan brain, performed before and 6 months after intervention, was done in 86 patients to monitor the outcome at cellular level. Change in the standardized uptake values was statistically evaluated using T-Test [P≤0.05]. RESULTS Improvements were observed in eye contact, attention and concentration, hyperactivity, sitting tolerance, social interaction, stereotypical behavior, aggressiveness, communication, speech, command following and self-stimulatory behavior. Statistically significant improvement was observed in scores of ISAA and CARS after intervention. A significantly better outcome of the intervention was found in patients at younger age and with shorter duration of disease [<5 years from time of diagnosis]. 86 patients who underwent a repeat PET CT scan showed improved brain metabolism after intervention in areas which correlated to the symptomatic changes. No major procedure related adverse events were recorded. However, 5 patients, with history of seizure and abnormal EEG, had an episode of seizure which was managed using medications. Outcome of intervention in these patients was not affected by seizures as improvements were observed in them. CONCLUSION The results of this study indicate that autologous bone marrow mononuclear cells in combination with neurorehabilitation are a safe and effective treatment modality for ASD. It improves the quality of life of patients and helps them to integrate in mainstream lifestyle.
Collapse
Affiliation(s)
- Alok K Sharma
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteMumbai, India
| | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteMumbai, India
| | - Pooja P Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine InstituteMumbai, India
| | - Hemangi M Sane
- Department of Research & Development, NeuroGen Brain & Spine InstituteMumbai, India
| | - Ridhima Sharma
- Department of Neurorehabilitation, NeuroGen Brain & Spine InstituteMumbai, India
| | - Alitta Jose
- Department of Research & Development, NeuroGen Brain & Spine InstituteMumbai, India
| | - Prerna B Badhe
- Department of Regenerative Laboratory Services, NeuroGen Brain & Spine InstituteMumbai, India
| |
Collapse
|
24
|
Huang H, Chen L, Mao G, Sharma HS. Clinical neurorestorative cell therapies: Developmental process, current state and future prospective. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Clinical cell therapies (CTs) for neurological diseases and cellular damage have been explored for more than 2 decades. According to the United States Food and Drug Administration, there are 2 types of cell categories for therapy, namely stem cell-derived CT products and mature/functionally differentiated cell-derived CT products. However, regardless of the type of CT used, the majority of reports of clinical CTs from either small sample sizes based on single-center phase 1 or 2 unblinded trials or retrospective clinical studies showed effects on neurological improvement and the ability to either partially or temporarily thwart the deteriorating cellular processes of the neurodegenerative diseases. There have been only a few prospective, multicenter, randomized, double- blind placebo-control clinical trials of CTs so far in this developing novel area that have shown negative results, and more clinical trials are needed. This will expand our knowledge in exploring the type of cells that yield promising results and restore damaged neurological structure and functions of the central nervous system based on higher level evidence-based medical data. In this review, we briefly introduce the developmental process, current state, and future prospective for clinical neurorestorative CT.
Collapse
|
25
|
Thanh LN, Trung KN, Duy CV, Van DN, Hoang PN, Phuong ANT, Ngo MD, Thi TN, Viet AB. Improvement in gross motor function and muscle tone in children with cerebral palsy related to neonatal icterus: an open-label, uncontrolled clinical trial. BMC Pediatr 2019; 19:290. [PMID: 31438885 PMCID: PMC6704727 DOI: 10.1186/s12887-019-1669-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background Although stem cell transplantation has been successfully performed for cerebral palsy (CP) related to oxygen deprivation, clinical trials involving the use of stem cell transplantation for CP related to neonatal icterus have not been reported. The aim of this study was to evaluate the effectiveness of transplantation of autologous bone marrow mononuclear cell (BMMC) for improving gross motor function and muscle tone in children with CP related to neonatal icterus. Methods This open-label, uncontrolled clinical trial, which included 25 patients with CP related to neonatal icterus who had a Gross Motor Function Classification System (GMFCS) score between level II and level V, was conducted between July 2014 and July 2017 at Vinmec International Hospital (Vietnam). BMMC were harvested from the patients’ iliac crests. Two procedures involving BMMC transplantation via the intrathecal route were performed: the first transplantation was performed at baseline, and the second transplantation was performed 6 months after the first transplantation. Gross motor function and muscle tone were measured at three time points (baseline, 6 months, and 12 months) using the Gross Motor Function Measure (GMFM) and the Modified Ashworth Scale. Results In this trial, we observed significant improvement in gross motor function and a significant decrease in muscle tone values. Total score on the 88-item GMFM (GMFM-88), scores on each GMFM-88 domain, and the 66-item GMFM (GMFM-66) percentile were significantly enhanced at 6 months and 12 months after the first transplantation compared with the corresponding baseline measurements (p-values < 0.05). In addition, a significant reduction was observed in muscle tone score after the transplantations (p-value < 0.05). Conclusion Autologous BMMC transplantation can improve gross motor function and muscle tone in children with CP related to neonatal icterus. Trial registration ClinicalTrials.gov identifier: NCT03123562. Retrospectively registered on December 26, 2017. Electronic supplementary material The online version of this article (10.1186/s12887-019-1669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.
| | - Kien Nguyen Trung
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Chinh Vu Duy
- Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| | - Doan Ngo Van
- Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| | | | | | - Minh Duy Ngo
- Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| | - Thinh Nguyen Thi
- Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| | - Anh Bui Viet
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| |
Collapse
|
26
|
Mesenchymal Stem Cells Therapy Improved the Streptozotocin-Induced Behavioral and Hippocampal Impairment in Rats. Mol Neurobiol 2019; 57:600-615. [DOI: 10.1007/s12035-019-01729-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
27
|
Boruczkowski D, Zdolińska-Malinowska I. Wharton's Jelly Mesenchymal Stem Cell Administration Improves Quality of Life and Self-Sufficiency in Children with Cerebral Palsy: Results from a Retrospective Study. Stem Cells Int 2019; 2019:7402151. [PMID: 31191683 PMCID: PMC6525822 DOI: 10.1155/2019/7402151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this paper was to describe the outcome of the therapeutic administration of allogenic mesenchymal stem cells obtained from Wharton's jelly (WJ-MSCs) in children with cerebral palsy (CP) during a medical therapeutic experiment. We retrospectively analyzed the records of 109 patients recruited in daily clinical practice. Each patient received 1-10 injections and was examined by the same neurologist (study investigator (SI)) on the day of each infusion. The SI used a 6-point Likert scale to assess the quality of life (QoL) and self-sufficiency of the patients on the basis of the neurological examination. Children with >50% follow-ups after this administration were included into the quantitative analysis. In addition, the assessments of the parents and other health care professionals were obtained for 23 patients and compared with those of the SI. Forty-eight of 54 analyzed patients (88.9%) achieved some improvement in health status. Forty-eight (88.9%) patients experienced an increase in their QoL, and 21 patients (38.9%) achieved an increase in their self-sufficiency level. Improvement was achieved in 17 areas. Adverse events were mild and temporary except one case of epilepsy deterioration leading to treatment discontinuation. Age, body mass, and cell dose were not significant predictors of QoL response, contrary to epilepsy; developmental breakthrough was dose-dependent.
Collapse
Affiliation(s)
- Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A./FamiCord Group (Polish Stem Cell Bank), Jana Pawła II 29, Warsaw, Poland
| | | |
Collapse
|
28
|
Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, Lu H. A Randomized, Placebo-Controlled Trial of Human Umbilical Cord Blood Mesenchymal Stem Cell Infusion for Children With Cerebral Palsy. Cell Transplant 2019; 27:325-334. [PMID: 29637820 PMCID: PMC5898688 DOI: 10.1177/0963689717729379] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cerebral palsy (CP) is a common disability which results in permanent chronic motor disability appearing in early childhood. Recently human umbilical cord blood mesenchymal stem cell (hUCB-MSC) infusion has emerged as a promising therapeutic strategy for CP, and the treatment efficacy remains to be confirmed by clinical trials. All 54 patients received basic rehabilitation as a background treatment. The infusion group comprising 27 patients received 4 infusions of hUCB-MSCs (intravenous infusions at a fixed dose of 5 × 107) and basic rehabilitation treatment, whereas 27 patients in the control group received 0.9% normal saline and basic rehabilitation treatment. Several indices were tested from baseline up to 24 months posttreatment regarding efficacy and safety evaluations, including the gross motor function measurement 88 (GMFM-88) scores, the comprehensive function assessment (CFA), lab tests, electroencephalogram (EEG), routine magnetic resonance imaging (MRI), and adverse events. The changes in the total proportion of GMFM-88 and total scores of CFA in the hUCB-MSC infusion group were significantly higher than that in control group at 3, 6, 12, 24 months posttreatment. Less diffuse slow waves were noticed after hUCB-MSC infusion in patients with slowing of EEG background rhythms at baseline. Based on the routine MRI exams, improvements in cerebral structures were rare after treatment. Serious adverse events were not observed during the whole study period. The results of the study indicated that hUCB-MSC infusion with basic rehabilitation was safe and effective in improving gross motor and comprehensive functions in children with CP.
Collapse
Affiliation(s)
- Li Huang
- 1 Institute of Neurobiology and Department of Human Anatomy & Histoembriology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shanxi, People Republic of China.,2 Taihe Hospital Affiliated to Hubei Medical College, Shiyan, Hubei, People Republic of China
| | - Che Zhang
- 2 Taihe Hospital Affiliated to Hubei Medical College, Shiyan, Hubei, People Republic of China.,3 Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, People Republic of China
| | - Jiaowei Gu
- 2 Taihe Hospital Affiliated to Hubei Medical College, Shiyan, Hubei, People Republic of China
| | - Wei Wu
- 2 Taihe Hospital Affiliated to Hubei Medical College, Shiyan, Hubei, People Republic of China
| | - Zhujun Shen
- 2 Taihe Hospital Affiliated to Hubei Medical College, Shiyan, Hubei, People Republic of China
| | - Xihui Zhou
- 3 Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, People Republic of China
| | - Haixia Lu
- 1 Institute of Neurobiology and Department of Human Anatomy & Histoembriology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shanxi, People Republic of China
| |
Collapse
|
29
|
Review of the Current Knowledge on the Role of Stem Cell Transplantation in Neurorehabilitation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3290894. [PMID: 30931325 PMCID: PMC6413404 DOI: 10.1155/2019/3290894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
The management involving stem cell (SC) therapy along with physiotherapy offers tremendous chance for patients after spinal cord injury (SCI), traumatic brain injury (TBI), stroke, etc. However, there are still only a limited number of reports assessing the impact of stem cells (SCs) on the rehabilitation process and/or the results of the simultaneous use of SC and rehabilitation. Additionally, since there is still not enough convincing evidence about the effect of SCT on humans, e.g., in stroke, there have been no studies conducted concerning rehabilitation program formation and expected outcomes. It has been shown that bone marrow-derived mesenchymal stem cell (BMSCs) transplantation in rats combined with hyperbaric oxygen therapy (HBO) can promote the functional recovery of hind limbs after SCI. An anti-inflammatory effect has been shown. One case study showed that, after the simultaneous use of SCT and rehabilitation, an SCI patient progressed from ASIA Grade A to ASIA Grade C. Such promising data in the case of complete tetraplegia could be a breakthrough in the treatment of neurologic disorders in humans. Although SCT appears as a promising method for the treatment of neurological conditions, e.g., complete tetraplegia, much work should be done towards the development of rehabilitation protocols.
Collapse
|
30
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
31
|
Liem NT, Huyen TL, Huong LT, Doan NV, Anh BV, Anh NTP, Tung DT. Outcomes of Bone Marrow Mononuclear Cell Transplantation for Neurological Sequelae Due to Intracranial Hemorrhage Incidence in the Neonatal Period: Report of Four Cases. Front Pediatr 2019; 7:543. [PMID: 32039110 PMCID: PMC6993568 DOI: 10.3389/fped.2019.00543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
Aim: The aim of this study was to present primary outcomes of autologous bone marrow mononuclear cell (BMMNC) transplantation to improve neurological sequelae in four children with intracranial hemorrhage (ICH) incidence during the neonatal period. Methods: GMFM88 and modified Ashworth score were used to assess motor function and muscle spasticity before BMMNC transplantation and after transplantation. Brain MRI was performed to evaluate brain morphology before and after BMMNC transplantation. Bone marrow were harvested from anterior iliac crest puncture and BMMNCs were isolated using Ficoll gradient centrifugation. The microbiological testing, cell counting, and hematopoietic stem cell (hHSC CD34+ cell) analysis were performed, following which BMMNCs were infused intrathecally. Results: Improvement in motor function was observed in all patients after transplantation. In addition, muscle spasticity was reduced in all four patients. Conclusion: Autologous BMMNC transplantation may improve motor function and reduce muscle spasticity in children with ICH incidence during the neonatal period.
Collapse
Affiliation(s)
- Nguyen Thanh Liem
- Cellular Manufacturing Department, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Truong Linh Huyen
- Cellular Manufacturing Department, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Le Thu Huong
- Vinmec Times City General Hospital, Hanoi, Vietnam
| | - Ngo Van Doan
- Vinmec Times City General Hospital, Hanoi, Vietnam
| | - Bui Viet Anh
- Cellular Manufacturing Department, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | | | | |
Collapse
|
32
|
Sato Y, Ueda K, Kondo T, Hattori T, Mikrogeorgiou A, Sugiyama Y, Suzuki T, Yamamoto M, Hirata H, Hirakawa A, Nakanishi K, Tsuji M, Hayakawa M. Administration of Bone Marrow-Derived Mononuclear Cells Contributed to the Reduction of Hypoxic-Ischemic Brain Injury in Neonatal Rats. Front Neurol 2018; 9:987. [PMID: 30559704 PMCID: PMC6284369 DOI: 10.3389/fneur.2018.00987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background/Objective: Perinatal hypoxic-ischemia (HI) causes neonatal death and permanent neurological deficits. Cell therapy using various cell sources has been recently identified as a novel therapy for perinatal HI. Among the available types of cell sources, bone marrow-derived mononuclear cells (BMMNCs) have unique features for clinical application. For example, stem cells can be collected after admission, thus enabling us to perform autologous transplantation. This study aimed to investigate whether the administration of BMMNCs ameliorated HI brain injury in a neonatal rat model. Methods: Seven-day-old rats underwent left carotid artery ligation and were exposed to 8% oxygen for 60 min. BMMNCs were collected from the femurs and tibias of juvenile rats using the Ficoll-Hypaque technique and injected intravenously 24 h after the insult (1 × 105 cells). Active caspase-3, as an apoptosis marker, and ED1, as an activated microglia/macrophage marker, were evaluated immunohistochemically 48 h after the insult (vehicle, n = 9; BMMNC, n = 10). Behavioral assessments using the rotarod treadmill, gait analysis, and active avoidance tests were initiated 3 weeks after the insult (sham, n = 9, vehicle, n = 8; BMMNC, n = 8). After these behavioral tests (6 weeks after the insult), we evaluated the volumes of their hippocampi, cortices, thalami, striata, and globus pallidus. Results: The mean cell densities of the sum of four parts that were positive for active caspase-3 significantly decreased in the BMMNC group (p < 0.05), whereas in the hippocampi, cortices, thalami, and striata cell densities decreased by 42, 60, 56, and 47%, respectively, although statistical significance was not attained. The number of ED1 positive cells for the sum of the four parts also significantly decreased in the BMMNC group compared to the vehicle group (p < 0.05), whereas in each of the four parts the decrease was 35, 39, 47, and 36%, respectively, although statistical significance was not attained. In gait analysis, the BMMNC normalized the contact area of the affected hind paw widened by HI. The volumes of the affected striata and globus pallidus were significantly larger in the BMMNC group than in the control group. Conclusion: These results indicated that the injection of BMMNCs ameliorated HI brain injury in a neonatal rat model.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Taiki Kondo
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuo Hattori
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Alkisti Mikrogeorgiou
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Aichi Human Service Center, Institute for Developmental Research, Aichi, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
33
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Sharma A, Sane H, Gokulchandran N, Pai S, Kulkarni P, Ganwir V, Maheshwari M, Sharma R, Raichur M, Nivins S, Badhe P. An open-label proof-of-concept study of intrathecal autologous bone marrow mononuclear cell transplantation in intellectual disability. Stem Cell Res Ther 2018; 9:19. [PMID: 29386049 PMCID: PMC5793399 DOI: 10.1186/s13287-017-0748-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 11/12/2022] Open
Abstract
Background The underlying pathophysiology in intellectual disability (ID) involves abnormalities in dendritic branching and connectivity of the neuronal network. This limits the ability of the brain to process information. Conceptually, cellular therapy through its neurorestorative and neuroregenerative properties can counteract these pathogenetic mechanisms and improve neuronal connectivity. This improved networking should exhibit as clinical efficacy in patients with ID. Methods To assess the safety and efficacy of cellular therapy in patients with ID, we conducted an open-label proof-of-concept study from October 2011 to December 2015. Patients were divided into two groups: intervention group (n = 29) and rehabilitation group (n = 29). The intervention group underwent cellular transplantation consisting of intrathecal administration of autologous bone marrow mononuclear cells and standard neurorehabilitation. The rehabilitation group underwent only standard neurorehabilitation. The results of the symptomatic outcomes were compared between the two groups. In the intervention group analysis, the outcome measures used were the intelligence quotient (IQ) and the Wee Functional Independence Measure (Wee-FIM). To compare the pre-intervention and post-intervention results, statistical analysis was done using Wilcoxon’s matched-pairs test for Wee-FIM scores and McNemar’s test for symptomatic improvements and IQ. The effect of age and severity of the disorder were assessed for their impact on the outcome of intervention. Positron emission tomography-computed tomography (PET-CT) brain scan was used as a monitoring tool to study effects of the intervention. Adverse events were monitored for the safety of cellular therapy. Results On symptomatic analysis, greater improvements were seen in the intervention group as compared to the rehabilitation group. In the intervention group, the symptomatic improvements, IQ and Wee-FIM were statistically significant. A significantly better outcome of the intervention was found in the paediatric age group (<18 years) and patients with milder severity of ID. Repeat PET-CT scan in three patients of the intervention group showed improved metabolism in the frontal, parietal cortex, thalamus, mesial temporal structures and cerebellum. No major adverse events were witnessed. Conclusions Cellular transplantation with neurorehabilitation is safe and effective for the treatment of underlying brain deficits in ID. Trial registration ClinicalTrials.gov NCT02245724. Registered 12 September 2014.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Medical Services, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Hemangi Sane
- Department of Research and Development, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Nandini Gokulchandran
- Department of Medical Services, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Suhasini Pai
- Department of Research and Development, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Pooja Kulkarni
- Department of Research and Development, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India.
| | - Vaishali Ganwir
- Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Maitree Maheshwari
- Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Ridhima Sharma
- Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Meenakshi Raichur
- Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Samson Nivins
- Department of Research and Development, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| | - Prerna Badhe
- Department of Medical Services, NeuroGen Brain and Spine Institute, Plot No. 19, Sector 40, Opp Rail Vihar, Next to Seawood Station (w), Navi Mumbai, 400706, India
| |
Collapse
|
35
|
Nabetani M, Shintaku H, Hamazaki T. Future perspectives of cell therapy for neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2018; 83:356-363. [PMID: 29016557 DOI: 10.1038/pr.2017.260] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022]
Abstract
Neonatal ischemic brain injury causes permanent motor-deficit cerebral palsy. Hypoxic-ischemic encephalopathy (HIE) is a very serious condition that can result in death and disability. In 1997, we reported that irreversible neuronal cell damage is induced by the elevation of intracellular Ca ion concentration that has occurred in sequence after excess accumulation of the excitatory neurotransmitter glutamate during ischemia. We also reported that hypothermia was effective in treating ischemic brain damage in rats by suppressing energy loss and raising intracellular Ca ion concentration. Following the 2010 revised International Liaison Committee on Resuscitation guideline, our group developed the Guideline for the treatment of Hypothermia in Japan, and we started online case registry in January 2012. However, therapeutic hypothermia must be initiated within the first 6 h after birth. By contrast, cell therapy may have a much longer therapeutic time window because it might reduce apoptosis/oxidative stress and enhance the regenerative process. In 2014, we administered autologous umbilical cord blood stem cell (UCBC) therapy for neonatal HIE, for the first time in Japan. We enrolled five full-term newborns with moderate-to-severe HIE. Our autologous UCBC therapy is leading to new protocols for the prevention of ischemic brain damage.
Collapse
Affiliation(s)
- Makoto Nabetani
- Department of Pediatrics, Yodogawa Christian Hospital, Osaka, Japan.,Department of Pediatrics, Faculty of Medicine, Osaka City University 1-4-3 Asahi-cho, Abeno-ku, Osaka, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Faculty of Medicine, Osaka City University 1-4-3 Asahi-cho, Abeno-ku, Osaka, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Faculty of Medicine, Osaka City University 1-4-3 Asahi-cho, Abeno-ku, Osaka, Japan
| |
Collapse
|
36
|
Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, Majka M. Multiple Autologous Bone Marrow-Derived CD271 + Mesenchymal Stem Cell Transplantation Overcomes Drug-Resistant Epilepsy in Children. Stem Cells Transl Med 2017; 7:20-33. [PMID: 29224250 PMCID: PMC5746144 DOI: 10.1002/sctm.17-0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
There is a need among patients suffering from drug‐resistant epilepsy (DRE) for more efficient and less toxic treatments. The objective of the present study was to assess the safety, feasibility, and potential efficacy of autologous bone marrow cell transplantation in pediatric patients with DRE. Two females and two males (11 months to 6 years) were enrolled and underwent a combined therapy consisting of autologous bone marrow nucleated cells (BMNCs) transplantation (intrathecal: 0.5 × 109; intravenous: 0.38 × 109–1.72 × 109) followed by four rounds of intrathecal bone marrow mesenchymal stem cells (BMMSCs) transplantation (18.5 × 106–40 × 106) every 3 months. The BMMSCs used were a unique population derived from CD271‐positive cells. The neurological evaluation included magnetic resonance imaging, electroencephalography (EEG), and cognitive development assessment. The characteristics of BMMSCs were evaluated. Four intravenous and 20 intrathecal transplantations into the cerebrospinal fluid were performed. There were no adverse events, and the therapy was safe and feasible over 2 years of follow‐up. The therapy resulted in neurological and cognitive improvement in all patients, including a reduction in the number of epileptic seizures (from 10 per day to 1 per week) and an absence of status epilepticus episodes (from 4 per week to 0 per week). The number of discharges on the EEG evaluation was decreased, and cognitive improvement was noted with respect to reactions to light and sound, emotions, and motor function. An analysis of the BMMSCs' characteristics revealed the expression of neurotrophic, proangiogenic, and tissue remodeling factors, and the immunomodulatory potential. Our results demonstrate the safety and feasibility of BMNCs and BMMSCs transplantations and the considerable neurological and cognitive improvement in children with DRE. stemcellstranslationalmedicine2018;7:20–33
Collapse
Affiliation(s)
- Olga Milczarek
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Danuta Jarocha
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Anna Starowicz-Filip
- Department of Medical Psychology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Stanislaw Kwiatkowski
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Bogna Badyra
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Marcin Majka
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
37
|
Warnecke A, Mellott AJ, Römer A, Lenarz T, Staecker H. Advances in translational inner ear stem cell research. Hear Res 2017; 353:76-86. [PMID: 28571616 DOI: 10.1016/j.heares.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022]
Abstract
Stem cell research is expanding our understanding of developmental biology as well as promising the development of new therapies for a range of different diseases. Within hearing research, the use of stem cells has focused mainly on cell replacement. Stem cells however have a broad range of other potential applications that are just beginning to be explored in the ear. Mesenchymal stem cells are an adult derived stem cell population that have been shown to produce growth factors, modulate the immune system and can differentiate into a wide variety of tissue types. Potential advantages of mesenchymal/adult stem cells are that they have no ethical constraints on their use. However, appropriate regulatory oversight seems necessary in order to protect patients from side effects. Disadvantages may be the lack of efficacy in many preclinical studies. But if proven safe and efficacious, they are easily translatable to clinical trials. The current review will focus on the potential application on mesenchymal stem cells for the treatment of inner ear disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ariane Römer
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA.
| |
Collapse
|
38
|
Nguyen LT, Nguyen AT, Vu CD, Ngo DV, Bui AV. Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial. BMC Pediatr 2017; 17:104. [PMID: 28403842 PMCID: PMC5389089 DOI: 10.1186/s12887-017-0859-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Stem cell therapy has emerged as a promising method for improving motor function of patients with cerebral palsy. The aim of this study is to assess the safety and effectiveness of autologous bone marrow mononuclear stem cell transplantation in patients with cerebral palsy related to oxygen deprivation. Methods An open label uncontrolled clinical trial was carried out at Vinmec International Hospital. The intervention consisted of two administrations of stem cells, the first at baseline and the second 3 months later. Improvement was monitored at 3 months and 6 months after the first administration of stem cells, using the Gross Motor Function Measure (GMFM) and Modified Ashworth Score which measures muscle tone. Results No severe complications were recorded during the study. After transplantation, 12 patients encountered fever without infections and 9 patients experienced vomiting which was easily managed with medications. Gross motor function was markedly improved 3 months or 6 months after stem cell transplantation than at baseline. The post-transplantation GMFM-88 total score, each of its domains and the GMFM-66 percentile were all significantly higher (p-value < 0.001). Muscle spasticity also reduced significantly after transplantation (p-value < 0.001). The therapy was equally effective regardless of sex, age and GMFCS level (p-value > 0.05). Conclusion Autologous bone marrow mononuclear cell transplantation appears to be a safe and effective therapy for patients with cerebral palsy. Trial registration ClinicalTrials.gov Identifier: NCT02569775. Retrospectively registered on October 15, 2015. Electronic supplementary material The online version of this article (doi:10.1186/s12887-017-0859-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liem Thanh Nguyen
- Stem cells and Gene Technology Research Center, Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam.
| | - Anh Tuan Nguyen
- Stem cells and Gene Technology Research Center, Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| | - Chinh Duy Vu
- Department of Rehabilitation, Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| | - Doan V Ngo
- Department of Diagnostic Imaging, Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| | - Anh V Bui
- Stem cells and Gene Technology Research Center, Vinmec International Hospital, 458 Minh Khai Street, Hanoi, Vietnam
| |
Collapse
|
39
|
Park KI, Lee YH, Rah WJ, Jo SH, Park SB, Han SH, Koh H, Suh JY, Um JS, Choi EH, Park UJ, Kim MJ. Effect of Intravenous Infusion of G-CSF-Mobilized Peripheral Blood Mononuclear Cells on Upper Extremity Function in Cerebral Palsy Children. Ann Rehabil Med 2017; 41:113-120. [PMID: 28289643 PMCID: PMC5344812 DOI: 10.5535/arm.2017.41.1.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the effect of intravenous infusion of peripheral blood mononuclear cells (mPBMC) mobilized by granulocyte-colony stimulating factor (G-CSF) on upper extremity function in children with cerebral palsy (CP). Methods Fifty-seven children with CP were enrolled. Ten patients were excluded due to follow-up loss. In total, 47 patients (30 males and 17 females) were analyzed. All patients' parents provided signed consent before the start of the study. After administration of G-CSF for 5 days, mPBMC was collected and cryopreserved. Patients were randomized into two groups 1 month later. Twenty-two patients were administered mPBMC and 25 patients received normal saline as placebo. Six months later, the two groups were switched, and administered mPBMC and placebo, respectively. Quality of Upper Extremity Skills Test (QUEST) and the Manual Ability Classification System (MACS) were used to evaluate upper motor function. Results All subdomain and total scores of QUEST were significantly improved after mPBMC and placebo infusion, without significant differences between mPBMC and placebo groups. A month after G-CSF, all subdomain and total scores of QUEST were improved. The level of MACS remained unchanged in both mPBMC and placebo groups. Conclusion In this study, intravenously infused mPBMC showed no significant effect on upper extremity function in children with CP, as compared to placebo. The effect of mPBMC was likely masked by the effect of G-CSF, which was used in both groups and/or G-CSF itself might have other neurotrophic potentials in children with CP.
Collapse
Affiliation(s)
- Kyeong Il Park
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Korea
| | - Wee-Jin Rah
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Korea
| | - Seung Hwi Jo
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Si-Bog Park
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Hoon Han
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hani Koh
- Department of Translational Medicine, Graduate School of Biomedical Engineering, Hanyang University, Seoul, Korea.; Blood & Marrow Transplantation Center, Hanyang University Medical Center, Seoul, Korea
| | - Jin Young Suh
- Blood & Marrow Transplantation Center, Hanyang University Medical Center, Seoul, Korea
| | - Jang Soo Um
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Eun Hye Choi
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Un Jin Park
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Mi Jung Kim
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Liu X, Fu X, Dai G, Wang X, Zhang Z, Cheng H, Zheng P, An Y. Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. J Transl Med 2017; 15:48. [PMID: 28235424 PMCID: PMC5324263 DOI: 10.1186/s12967-017-1149-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMMSCs) and bone marrow mononuclear cells (BMMNCs) are both used to treat spastic cerebral palsy. However, the differences in therapeutic effect remain unknown. Methods A total of 105 patients with spastic cerebral palsy were enrolled and randomly assigned to three groups: the BMMSC group, the BMMNC group and the control group. Patients in both transplantation groups received four intrathecal cell injections. Patients in the control group received Bobath therapy. The gross motor function measure (GMFM) and the fine motor function measure (FMFM) were used to evaluate the therapeutic efficacy before transplantation and 3, 6, and 12 months after transplantation. Results Three months after cell transplantation, scores in the A dimension of GMFM and the A and C dimensions of FMFM scores in the BMMSC group are all higher than those of the BMMNC and the control groups (P < 0.05). Six months after cell transplantation, scores in the A, B dimensions of GMFM and the A, B, C, D, and E dimensions of FMFM scores in the BMMSC group are higher than those of the BMMNC and the control groups (P < 0.05). Twelve months after cell transplantation, scores in the A, B, and C dimensions of GMFM and the A, B, C, D, and E dimensions of FMFM scores in the BMMSC group are all higher than those of the BMMNC and the control groups (P < 0.05). No obvious adverse effects were investigated during follow-up. Conclusions BMMSC transplantation for the treatment of cerebral palsy is safe and feasible, and can improve gross motor and fine motor function significantly. In addition, compared with BMMNC, the motor function of children improved significantly in terms of gross motor and fine motor functions. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1149-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuebin Liu
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China
| | - Xiaojun Fu
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China
| | - Guanghui Dai
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China
| | - Xiaodong Wang
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China
| | - Zan Zhang
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China
| | - Hongbin Cheng
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China
| | - Pei Zheng
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China
| | - Yihua An
- Department of Cell Transplantation, General Hospital of Chinese people's Armed Police Forces, Beijing, 100039, China.
| |
Collapse
|
41
|
Roemer A, Staecker H, Sasse S, Lenarz T, Warnecke A. [Biological therapies in otology. German version]. HNO 2017; 65:571-585. [PMID: 28204850 DOI: 10.1007/s00106-016-0304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
42
|
Progressive increase in brain glucose metabolism after intrathecal administration of autologous mesenchymal stromal cells in patients with diffuse axonal injury. Cytotherapy 2016; 19:88-94. [PMID: 27816409 DOI: 10.1016/j.jcyt.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Cell therapy in neurological disability after traumatic brain injury (TBI) is in its initial clinical stage. We describe our preliminary clinical experience with three patients with diffuse axonal injury (DAI) who were treated with intrathecal administration of autologous mesenchymal stromal cells (MSCs). METHODS Three patients with established neurological sequelae due to DAI received intrathecally autologous MSCs. The total number of MSCs administered was 60 × 106 (one patient), 100 × 106 (one patient) and 300 × 106 (one patient). RESULTS All three patients showed improvement after cell therapy, and subsequent studies with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) showed a diffuse and progressive increase in brain glucose metabolism. CONCLUSION Our present results suggest benefit of intrathecal administration of MSCs in patients with DAI, as well as a relationship between this type of treatment and increase in brain glucose metabolism. These preliminary findings raise the question of convenience of assessing the potential benefit of intrathecal administration of MSCs for brain diseases in which a decrease in glucose metabolism represents a crucial pathophysiological finding, such as Alzheimer's disease (AD) and other dementias.
Collapse
|
43
|
Roemer A, Köhl U, Majdani O, Klöß S, Falk C, Haumann S, Lenarz T, Kral A, Warnecke A. Biohybrid cochlear implants in human neurosensory restoration. Stem Cell Res Ther 2016; 7:148. [PMID: 27717379 PMCID: PMC5055669 DOI: 10.1186/s13287-016-0408-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions. METHODS Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients. RESULTS Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration. CONCLUSION This is the first report of the use of autologous cell transplantation to the human inner ear. Due to the simplicity of this procedure, we hope to initiate its widespread utilization in various fields.
Collapse
Affiliation(s)
- Ariane Roemer
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrike Köhl
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Omid Majdani
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stephan Klöß
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christine Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sabine Haumann
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrej Kral
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|