1
|
Skoupá K, Bátik A, Tošnerová K, Št'astný K, Sládek Z. The Effect of Testosterone, Nandrolone and Their Combination on the Structure and Ultrastructure of Muscle Fibres and Myofibrils in Pigs. Anat Histol Embryol 2025; 54:e70033. [PMID: 40105053 DOI: 10.1111/ahe.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
There is increasing pressure on meat producers worldwide due to the need for higher yields and improved meat quality. This is why anabolic androgenic steroids (AAS) have been widely used in most countries, due to their ability to accelerate animal muscle growth. However, out of concern for their side effects, EU states have banned their use and implemented control mechanisms. But they are reaching their limits, and therefore, it is necessary to look for new ways and investigate the mechanism of action of AAS on muscle tissue. This study replicated the administration of banned AAS (testosterone, nandrolone and their combination) and observed their effect on pig muscle. The pig model was purposely chosen for the study, as no such research has been carried out on this species. At the same time, pork is one of the most consumed meats in Europe. It focused on histological changes in muscle structure, specifically the size of muscle fibres and the number of satellite cells per muscle fibre. Furthermore, ultrastructural changes in muscle fibres, the diameter of myofibrils, the number of myofibrils per area, the distance between myofibrils and the size of sarcomeres were examined. The results using the techniques of histology, fluorescent labelling and transmission electron microscopy showed that, after the application of AAS, there is an increase in the diameter of muscle fibres, an increase in the diameter of myofibrils, a decrease in the number of myofibrils per surface area and, in the case of testosterone, an increase in the distance between myofibrils and an increase in the length of sarcomeres. There was also a significant increase in the number of satellite cells per muscle fibre. The detected statistically significant differences between control and experimental groups provide evidence that selected histological parameters could be additional mechanisms for detecting the presence of AAS in pork meat in the future.
Collapse
Affiliation(s)
- Kristýna Skoupá
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrej Bátik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Kristína Tošnerová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute in Brno, Brno, Czech Republic
| | - Kamil Št'astný
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute in Brno, Brno, Czech Republic
| | - Zbyšek Sládek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Olenic M, Deelkens C, Heyman E, De Vlieghere E, Zheng X, van Hengel J, De Schauwer C, Devriendt B, De Smet S, Thorrez L. Review: Livestock cell types with myogenic differentiation potential: Considerations for the development of cultured meat. Animal 2025; 19 Suppl 1:101242. [PMID: 39097434 DOI: 10.1016/j.animal.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024] Open
Abstract
With the current environmental impact of large-scale animal production and societal concerns about the welfare of farm animals, researchers are questioning whether we can cultivate animal cells for the purpose of food production. This review focuses on a pivotal aspect of the cellular agriculture domain: cells. We summarised information on the various cell types from farm animals currently used for the development of cultured meat, including mesenchymal stromal cells, myoblasts, and pluripotent stem cells. The review delves into the advantages and limitations of each cell type and considers factors like the selection of the appropriate cell source, as well as cell culture conditions that influence cell performance. As current research in cultured meat seeks to create muscle fibers to mimic the texture and nutritional profile of meat, we focused on the myogenic differentiation capacity of the cells. The most commonly used cell type for this purpose are myoblasts or satellite cells, but given their limited proliferation capacity, efforts are underway to formulate myogenic differentiation protocols for mesenchymal stromal cells and pluripotent stem cells. The multipotent character of the latter cell types might enable the creation of other tissues found in meat, such as adipose and connective tissues. This review can help guiding the selection of a cell type or culture conditions in the context of cultured meat development.
Collapse
Affiliation(s)
- M Olenic
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C Deelkens
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - E Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E De Vlieghere
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Belgium
| | - X Zheng
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - J van Hengel
- Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - C De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium.
| |
Collapse
|
3
|
Stevens BT, Hatley ME. Developmental Heterogeneity of Rhabdomyosarcoma. Cold Spring Harb Perspect Med 2025; 15:a041583. [PMID: 38772705 PMCID: PMC11694754 DOI: 10.1101/cshperspect.a041583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric embryonal solid tumor and the most common pediatric soft tissue sarcoma. The histology and transcriptome of RMS resemble skeletal muscle progenitor cells that have failed to terminally differentiate. Thus, RMS is typically thought to arise from corrupted skeletal muscle progenitor cells during development. However, RMS can occur in body regions devoid of skeletal muscle, suggesting the potential for nonmyogenic cells of origin. Here, we discuss the interplay between RMS driver mutations and cell(s) of origin with an emphasis on driving location specificity. Additionally, we discuss the mechanisms governing RMS transformation events and tumor heterogeneity through the lens of transcriptional networks and epigenetic control. Finally, we reimagine Waddington's developmental landscape to include a plane of transformation connecting distinct lineage landscapes to more accurately reflect the phenomena observed in pediatric cancers.
Collapse
Affiliation(s)
- Bradley T Stevens
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, Tennessee 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
4
|
Lee DY, Park J, Han D, Choi Y, Kim JS, Mariano E, Lee J, Yun SH, Lee SY, Park S, Bhang SH, Hur SJ. Analysis of current technology status for the industrialization of cultured meat. Crit Rev Food Sci Nutr 2024; 65:2506-2537. [PMID: 38764334 DOI: 10.1080/10408398.2024.2345817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Cultured meat is expected to become an important material for future food production; however, contrary to initial expectations, the full-scale industrialization of cultured meat is slow and the actual level and opened technology amount is very limited. This study reviews the publicly available technologies of cultured meat and suggests future developmental directions and research agenda. As a result of analyzing papers, patents, and press releases published over the past 10 years, it was found that cultured meat production technology is still at the prototype production level. This is because most papers published are about culture medium and scaffold development, culture conditions, and there is almost no research on finished cultured meat products. Worldwide, most of the filed patents are for producing cultured meat principles; most of them do not use food-grade materials and are not economically feasible for industrialization. Therefore, future research on the industrialization of cultured meat should focus on effective acquisition technologies for satellite cells; cell lineage and undifferentiated state maintenance technologies; the development of serum-free media and culture devices; the prevention of genetic modification, safety verification, and mass production. Furthermore, basic research on mechanisms and influencing factors related to cultured meat production is warranted.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seung Yun Lee
- Division of Animal Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| |
Collapse
|
5
|
Rahman NIA, Lam CL, Sulaiman N, Abdullah NAH, Nordin F, Ariffin SHZ, Yazid MD. PAX7, a Key for Myogenesis Modulation in Muscular Dystrophies through Multiple Signaling Pathways: A Systematic Review. Int J Mol Sci 2023; 24:13051. [PMID: 37685856 PMCID: PMC10487808 DOI: 10.3390/ijms241713051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Muscular dystrophy is a heterogenous group of hereditary muscle disorders caused by mutations in the genes responsible for muscle development, and is generally defined by a disastrous progression of muscle wasting and massive loss in muscle regeneration. Pax7 is closely associated with myogenesis, which is governed by various signaling pathways throughout a lifetime and is frequently used as an indicator in muscle research. In this review, an extensive literature search adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was performed to identify research that examined signaling pathways in living models, while quantifying Pax7 expression in myogenesis. A total of 247 articles were retrieved from the Web of Science (WoS), PubMed and Scopus databases and were thoroughly examined and evaluated, resulting in 19 articles which met the inclusion criteria. Admittedly, we were only able to discuss the quantification of Pax7 carried out in research affecting various type of genes and signaling pathways, rather than the expression of Pax7 itself, due to the massive differences in approach, factor molecules and signaling pathways analyzed across the research. However, we highlighted the thorough evidence for the alteration of the muscle stem cell precursor Pax7 in multiple signaling pathways described in different living models, with an emphasis on the novel approach that could be taken in manipulating Pax7 expression itself in dystrophic muscle, towards the discovery of an effective treatment for muscular dystrophy. Therefore, we believe that this could be applied to the potential gap in muscle research that could be filled by tuning the well-established marker expression to improve dystrophic muscle.
Collapse
Affiliation(s)
- Nor Idayu A. Rahman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Chung Liang Lam
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Nur Atiqah Haizum Abdullah
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Fazlina Nordin
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Shahrul Hisham Zainal Ariffin
- Centre of Biotechnology & Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| |
Collapse
|
6
|
Skoupá K, Bátik A, Št'astný K, Sládek Z. Structural Changes in the Skeletal Muscle of Pigs after Long-Term Administration of Testosterone, Nandrolone and a Combination of the Two. Animals (Basel) 2023; 13:2141. [PMID: 37443939 DOI: 10.3390/ani13132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Anabolic steroid hormones (AASs) are used in most countries of the world to accelerate the growth of animals, increase the volume of their muscles and thereby increase meat production. However, there is a strict ban on the use of AASs in the fattening of all animals in all countries of the European Union, and there must therefore be effective methods of detection and control of these substances. Methods based on chromatography and mass spectrometry may no longer be completely effective when faced with new synthetic steroids of unknown chemical structures and low concentrations. Therefore, there is an effort to develop new methods of AAS detection, based primarily on the monitoring of biological changes at the level of gene expression or changes in metabolism or structure at the cellular level. More detailed knowledge of the mechanisms of action of AASs on tissues is essential for these methods, and histological changes are one of them. In this study, we report histological changes in muscle structure after AAS application, specifically in the size of muscle fibers, the amount of endomysium and the number of nuclei and satellite cells in muscle fibers. A pig model was also intentionally used for the study, as no such study has been carried out on this species, and at the same time, pork is one of the most consumed meats across Europe. The results of histology and fluorescent antibody labeling showed that AASs increased the diameter and surface area of muscle fibers and also significantly increased the number of satellite cells on the fiber surface. The evident correlations between the number of satellite cells, all nuclei and the diameters of muscle fibers between some experimental groups provide evidence that the selected histological parameters could be additional detection mechanisms for screening a large number of samples and indicate the possibility of the presence of AASs in pork meat in the future.
Collapse
Affiliation(s)
- Kristýna Skoupá
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrej Bátik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Kamil Št'astný
- Veterinary Research Institute in Brno, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Zbyšek Sládek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| |
Collapse
|
7
|
Su Y, Gao X, Wang Y, Li X, Zhang W, Zhao J. Astragalus polysaccharide promotes sheep satellite cell differentiation by regulating miR-133a through the MAPK/ERK signaling pathway. Int J Biol Macromol 2023; 239:124351. [PMID: 37023880 DOI: 10.1016/j.ijbiomac.2023.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Astragalus polysaccharide (APS) possesses extensive biological activities, pharmacological effects, and anti-fatigue function. MiR-133a is a specifically expressed miRNA in skeletal muscle that participates in the regulation of myoblast proliferation and differentiation. However, little is known about the role of APS in the development of sheep skeletal muscle. In this study, we aimed to investigate the underlying mechanism of APS and miR-133a on the differentiation of sheep skeletal muscle satellite cells (SMSCs) and the regulatory relationship between APS and miR-133a. The results suggested that APS plays a positive regulatory role in the proliferation and differentiation of sheep SMSCs. Moreover, miR-133a significantly promotes SMSC differentiation and the activity of the MAPK/ERK signaling pathway. Importantly, we found that APS function requires the mediation of miR-133a in the differentiation of sheep SMSCs. Taken together, our results indicate that APS accelerates SMSC differentiation by regulating miR-133a via the MAPK/ERK signaling pathway in sheep.
Collapse
Affiliation(s)
- Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xuyang Gao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yu Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xuying Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Weipeng Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
8
|
Park J, Choi H, Shim K. Inhibition of GSK3β Promotes Proliferation and Suppresses Apoptosis of Porcine Muscle Satellite Cells. Animals (Basel) 2022; 12:ani12233328. [PMID: 36496849 PMCID: PMC9738253 DOI: 10.3390/ani12233328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
As the global population increases, interest in cultured meat (a new research field) is gradually increasing. The main raw material for the production of cultured meat is muscle stem cells called satellite cells isolated from livestock. However, how to mass proliferate and maintain satellite cells in vitro without genetic manipulation remains unclear. In the present study, we isolated and purified porcine muscle satellite cells (PMSCs) from the femur of a 1-day-old piglet and cultured PMSCs by treating them with an inhibitor (XAV939, Tankyrase (TNKS) inhibitor) or an activator (CHIR99021, glycogen synthase kinase 3 beta (GSK3β) inhibitor) of Wnt signaling. The CHIR group treated with 3 μM CHIR99021 showed a significantly increased proliferation rate of PMSCs compared to the SC group (control), whereas the XAV group treated with 1 μM XAV939 showed a significantly decreased proliferation rate of PMSCs. CHIR99021 also inhibited the differentiation of PMSCs by reducing the expression of MyoD while maintaining the expression of Pax7 and suppressed apoptosis by regulating the expression of apoptosis-related proteins and genes. RNA sequencing was performed to obtain gene expression profiles following inhibition or activation of the Wnt signaling pathway and various signaling mechanisms related to the maintenance of satellite cells were identified. Our results suggest that inhibition of GSK3β could dramatically improve the maintenance and mass proliferation ability of PMSCs in vitro by regulating the expression of myogenic markers and the cell cycle.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: ; Tel.: +82-063-270-2609
| |
Collapse
|
9
|
Alfaqih MS, Tarawan VM, Sylviana N, Goenawan H, Lesmana R, Susianti S. Effects of Vitamin D on Satellite Cells: A Systematic Review of In Vivo Studies. Nutrients 2022; 14:4558. [PMID: 36364820 PMCID: PMC9657163 DOI: 10.3390/nu14214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.
Collapse
Affiliation(s)
- Muhammad Subhan Alfaqih
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof Eyckman No.38, Bandung 45363, Indonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
10
|
Faustino D, Brinkmeier H, Logotheti S, Jonitz-Heincke A, Yilmaz H, Takan I, Peters K, Bader R, Lang H, Pavlopoulou A, Pützer BM, Spitschak A. Novel integrated workflow allows production and in-depth quality assessment of multifactorial reprogrammed skeletal muscle cells from human stem cells. Cell Mol Life Sci 2022; 79:229. [PMID: 35396689 PMCID: PMC8993739 DOI: 10.1007/s00018-022-04264-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
Skeletal muscle tissue engineering aims at generating biological substitutes that restore, maintain or improve normal muscle function; however, the quality of cells produced by current protocols remains insufficient. Here, we developed a multifactor-based protocol that combines adenovector (AdV)-mediated MYOD expression, small molecule inhibitor and growth factor treatment, and electrical pulse stimulation (EPS) to efficiently reprogram different types of human-derived multipotent stem cells into physiologically functional skeletal muscle cells (SMCs). The protocol was complemented through a novel in silico workflow that allows for in-depth estimation and potentially optimization of the quality of generated muscle tissue, based on the transcriptomes of transdifferentiated cells. We additionally patch-clamped phenotypic SMCs to associate their bioelectrical characteristics with their transcriptome reprogramming. Overall, we set up a comprehensive and dynamic approach at the nexus of viral vector-based technology, bioinformatics, and electrophysiology that facilitates production of high-quality skeletal muscle cells and can guide iterative cycles to improve myo-differentiation protocols.
Collapse
Affiliation(s)
- Dinis Faustino
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hande Yilmaz
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Isil Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany. .,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany.
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
11
|
Lemon Myrtle ( Backhousia citriodora) Extract and Its Active Compound, Casuarinin, Activate Skeletal Muscle Satellite Cells In Vitro and In Vivo. Nutrients 2022; 14:nu14051078. [PMID: 35268053 PMCID: PMC8912364 DOI: 10.3390/nu14051078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is an age-related skeletal muscle atrophy. Exercise is effective in improving sarcopenia via two mechanisms: activation of skeletal muscle satellite cells (SCs) and stimulation of muscle protein synthesis. In contrast, most nutritional approaches for improving sarcopenia focus mainly on muscle protein synthesis, and little is known about SC activation. Here, we investigated the effect of lemon myrtle extract (LM) on SC activation both in vitro and in vivo. Primary SCs or myoblast cell lines were treated with LM or its derived compounds, and incorporation of 5-bromo-2′-deoxyuridine, an indicator of cell cycle progression, was detected by immunocytochemistry. We found that LM significantly activated SCs (p < 0.05), but not myoblasts. We also identified casuarinin, an ellagitannin, as the active compound in LM involved in SC activation. The structure−activity relationship analysis showed that rather than the structure of each functional group of casuarinin, its overall structure is crucial for SC activation. Furthermore, SC activation by LM and casuarinin was associated with upregulation of interleukin-6 mRNA expression, which is essential for SC activation and proliferation. Finally, oral administration of LM or casuarinin to rats showed significant activation of SCs in skeletal muscle (p < 0.05), suggesting that LM and casuarinin may serve as novel nutritional interventions for improving sarcopenia through activating SCs.
Collapse
|
12
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
13
|
Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021; 10:cells10082112. [PMID: 34440881 PMCID: PMC8394675 DOI: 10.3390/cells10082112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.
Collapse
|
14
|
Zhao Y, Albrecht E, Stange K, Li Z, Schregel J, Sciascia QL, Metges CC, Maak S. Glutamine supplementation stimulates cell proliferation in skeletal muscle and cultivated myogenic cells of low birth weight piglets. Sci Rep 2021; 11:13432. [PMID: 34183762 PMCID: PMC8239033 DOI: 10.1038/s41598-021-92959-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
Muscle growth of low birth weight (LBW) piglets may be improved with adapted nutrition. This study elucidated effects of glutamine (Gln) supplementation on the cellular muscle development of LBW and normal birth weight (NBW) piglets. Male piglets (n = 144) were either supplemented with 1 g Gln/kg body weight or an isonitrogeneous amount of alanine (Ala) between postnatal day 1 and 12 (dpn). Twelve piglets per group were slaughtered at 5, 12 and 26 dpn, one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Muscle samples were collected and myogenic cells were isolated and cultivated. Expression of muscle growth related genes was quantified with qPCR. Proliferating, BrdU-positive cells in muscle sections were detected with immunohistochemistry indicating different cell types and decreasing proliferation with age. More proliferation was observed in muscle tissue of LBW-GLN than LBW-ALA piglets at 5 dpn, but there was no clear effect of supplementation on related gene expression. Cell culture experiments indicated that Gln could promote cell proliferation in a dose dependent manner, but expression of myogenesis regulatory genes was not altered. Overall, Gln supplementation stimulated cell proliferation in muscle tissue and in vitro in myogenic cell culture, whereas muscle growth regulatory genes were barely altered.
Collapse
Affiliation(s)
- Yaolu Zhao
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany.
| | - Katja Stange
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Zeyang Li
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Johannes Schregel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Quentin L Sciascia
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Steffen Maak
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| |
Collapse
|
15
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Norizadeh Abbariki T, Gonda Z, Kemler D, Urbanek P, Wagner T, Litfin M, Wang ZQ, Herrlich P, Kassel O. The LIM domain protein nTRIP6 modulates the dynamics of myogenic differentiation. Sci Rep 2021; 11:12904. [PMID: 34145356 PMCID: PMC8213751 DOI: 10.1038/s41598-021-92331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
The process of myogenesis which operates during skeletal muscle regeneration involves the activation of muscle stem cells, the so-called satellite cells. These then give rise to proliferating progenitors, the myoblasts which subsequently exit the cell cycle and differentiate into committed precursors, the myocytes. Ultimately, the fusion of myocytes leads to myofiber formation. Here we reveal a role for the transcriptional co-regulator nTRIP6, the nuclear isoform of the LIM-domain protein TRIP6, in the temporal control of myogenesis. In an in vitro model of myogenesis, the expression of nTRIP6 is transiently up-regulated at the transition between proliferation and differentiation, whereas that of the cytosolic isoform TRIP6 is not altered. Selectively blocking nTRIP6 function results in accelerated early differentiation followed by deregulated late differentiation and fusion. Thus, the transient increase in nTRIP6 expression appears to prevent premature differentiation. Accordingly, knocking out the Trip6 gene in satellite cells leads to deregulated skeletal muscle regeneration dynamics in the mouse. Thus, dynamic changes in nTRIP6 expression contributes to the temporal control of myogenesis.
Collapse
Affiliation(s)
- Tannaz Norizadeh Abbariki
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Zita Gonda
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Denise Kemler
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Pavel Urbanek
- Leibniz Institute for Age Research (Fritz Lipmann Institute, FLI), Jena, Germany
| | - Tabea Wagner
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Margarethe Litfin
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research (Fritz Lipmann Institute, FLI), Jena, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research (Fritz Lipmann Institute, FLI), Jena, Germany
| | - Olivier Kassel
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
17
|
Isesele PO, Mazurak VC. Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol 2021; 12:682091. [PMID: 34149458 PMCID: PMC8209368 DOI: 10.3389/fphys.2021.682091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is composed of multinuclear cells called myofibres, which are formed by the fusion of myoblasts during development. The size of the muscle fiber and mass of skeletal muscle are altered in response to several pathological and physiological conditions. Skeletal muscle regeneration is primarily mediated by muscle stem cells called satellite cells (SCs). In response to injury, these SCs replenish myogenic progenitor cells to form new myofibers to repair damaged muscle. During myogenesis, activated SCs proliferate and differentiate to myoblast and then fuse with one another to form muscle fibers. A reduced number of SCs and an inability to undergo myogenesis may contribute to skeletal muscle disorders such as atrophy, cachexia, and sarcopenia. Myogenic regulatory factors (MRF) are transcription factors that regulate myogenesis and determines whether SCs will be in the quiescent, activated, committed, or differentiated state. Mitochondria oxidative phosphorylation and oxidative stress play a role in the determination of the fate of SCs. The potential activation and function of SCs are also affected by inflammation during skeletal muscle regeneration. Omega-3 polyunsaturated fatty acids (PUFAs) show promise to reduce inflammation, maintain muscle mass during aging, and increase the functional capacity of the muscle. The aim of this critical review is to highlight the role of omega-3 PUFAs on the myogenic differentiation of SCs and pathways affected during the differentiation process, including mitochondrial function and inflammation from the current body of literature.
Collapse
Affiliation(s)
- Peter O Isesele
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera C Mazurak
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Guan X, Lei Q, Yan Q, Li X, Zhou J, Du G, Chen J. Trends and ideas in technology, regulation and public acceptance of cultured meat. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
F Almeida C, Bitoun M, Vainzof M. Satellite cells deficiency and defective regeneration in dynamin 2-related centronuclear myopathy. FASEB J 2021; 35:e21346. [PMID: 33715228 DOI: 10.1096/fj.202001313rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.,INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Marc Bitoun
- INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Leung C, Murad KBA, Tan ALT, Yada S, Sagiraju S, Bode PK, Barker N. Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation. Cell Rep 2020; 33:108535. [PMID: 33357435 DOI: 10.1016/j.celrep.2020.108535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Regeneration of adult skeletal muscle is driven largely by resident satellite cells, a stem cell population increasingly considered to display a high degree of molecular heterogeneity. In this study, we find that Lgr5, a receptor for Rspo and a potent mediator of Wnt/β-catenin signaling, marks a subset of activated satellite cells that contribute to muscle regeneration. Lgr5 is found to be rapidly upregulated in purified myogenic progenitors following acute cardiotoxin-induced injury. In vivo lineage tracing using our Lgr5-2ACreERT2R26tdTomatoLSL reporter mouse model shows that Lgr5+ cells can reconstitute damaged muscle fibers following muscle injury, as well as replenish the quiescent satellite cell pool. Moreover, conditional mutation in Lgr52ACreERT2;KrasG12D;Trp53flox/flox mice drives undifferentiated pleomorphic sarcoma formation in adult mice, thereby substantiating Lgr5+ cells as a cell of origin of sarcomas. Our findings provide the groundwork for developing Rspo/Wnt-signaling-based therapeutics to potentially enhance regenerative outcomes of skeletal muscles in degenerative muscle diseases.
Collapse
Affiliation(s)
- Carly Leung
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Katzrin Bte Ahmad Murad
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Adelyn Liang Thing Tan
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Swathi Yada
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Sowmya Sagiraju
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Peter Karl Bode
- Department of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Nick Barker
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore; Cancer Research Institute, Kanazawa University, Kakuma-machi Kanazawa 920-1192, Japan; School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
21
|
Yang P, Li C, Lee M, Marzvanyan A, Zhao Z, Ting K, Soo C, Zheng Z. Photopolymerizable Hydrogel-Encapsulated Fibromodulin-Reprogrammed Cells for Muscle Regeneration. Tissue Eng Part A 2020; 26:1112-1122. [PMID: 32323608 PMCID: PMC7580647 DOI: 10.1089/ten.tea.2020.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 02/05/2023] Open
Abstract
A central challenge in tissue engineering is obtaining a suitable cell type with a capable delivery vehicle to replace or repair damaged or diseased tissues with tissue mimics. Notably, for skeletal muscle tissue engineering, given the inadequate availability and regenerative capability of endogenous myogenic progenitor cells as well as the tumorigenic risks presented by the currently available pluri- and multipotent stem cells, seeking a safe regenerative cell source is urgently demanded. To conquer this problem, we previously established a novel reprogramming technology that can generate multipotent cells from dermal fibroblasts using a single protein, fibromodulin (FMOD). The yield FMOD-reprogrammed (FReP) cells exhibit exceeding myogenic capability without tumorigenic risk, making them a promising and safe cell source for skeletal muscle establishment. In addition to using the optimal cell for implantation, it is equally essential to maintain cellular localization and retention in the recipient tissue environment for critical-sized muscle tissue establishment. In this study, we demonstrate that the photopolymerizable methacrylated glycol chitosan (MeGC)/type I collagen (ColI)-hydrogel provides a desirable microenvironment for encapsulated FReP cell survival, spreading, extension, and formation of myotubes in the hydrogel three-dimensionally in vitro, without undesired osteogenic, chondrogenic, or tenogenic differentiation. Furthermore, gene profiling revealed a paired box 7 (PAX7) → myogenic factor 5 (MYF5) → myogenic determination 1 (MYOD1) → myogenin (MYOG) → myosin cassette elevation in the encapsulated FReP cells during myogenic differentiation, which is similar to that of the predominant driver of endogenous skeletal muscle regeneration, satellite cells. These findings constitute the evidence that the FReP cell-MeGC/ColI-hydrogel construct is a promising tissue engineering mimic for skeletal muscle generation in vitro, and thus possesses the extraordinary potential for further in vivo validation.
Collapse
Affiliation(s)
- Pu Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Anna Marzvanyan
- A. T. Still University School of Osteopathic Medicine in Arizona, Mesa, Arizona, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Chia Soo
- UCLA Division of Plastic Surgery, Department of Orthopaedic Surgery, The Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
22
|
Sameri S, Samadi P, Dehghan R, Salem E, Fayazi N, Amini R. Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review. Curr Stem Cell Res Ther 2020; 15:362-378. [DOI: 10.2174/1574888x15666200213105155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Aging is considered as inevitable changes at different levels of genome, cell, and organism.
From the accumulation of DNA damages to imperfect protein homeostasis, altered cellular communication
and exhaustion of stem cells, aging is a major risk factor for many prevalent diseases, such as
cancer, cardiovascular disease, pulmonary disease, diabetes, and neurological disorders. The cells are
dynamic systems, which, through a cycle of processes such as replication, growth, and death, could
replenish the bodies’ organs and tissues, keeping an entire organism in optimal working order. In many
different tissues, adult stem cells are behind these processes, replenishing dying cells to maintain normal
tissue function and regenerating injured tissues. Therefore, adult stem cells play a vital role in preventing
the aging of organs and tissues, and can delay aging. However, during aging, these cells also
undergo some detrimental changes such as alterations in the microenvironment, a decline in the regenerative
capacity, and loss of function. This review aimed to discuss age-related changes of stem cells in
different tissues and cells, including skin, muscles, brain, heart, hair follicles, liver, and lung.
Collapse
Affiliation(s)
- Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dehghan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Salem
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Yanay N, Rabie M, Nevo Y. Impaired Regeneration in Dystrophic Muscle-New Target for Therapy. Front Mol Neurosci 2020; 13:69. [PMID: 32523512 PMCID: PMC7261890 DOI: 10.3389/fnmol.2020.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle stem cells (MuSCs), known as satellite cells (SCs) have an incredible ability to regenerate, which enables the maintenance and growth of muscle tissue. In response to damaging stimuli, SCs are activated, proliferate, differentiate, and fuse to repair or generate a new muscle fiber. However, dystrophic muscles are characterized by poor muscle regeneration along with chronic inflammation and fibrosis. Indications for SC involvement in muscular dystrophy pathologies are accumulating, but their contribution to muscle pathophysiology is not precisely understood. In congenital muscular dystrophy type 1A (LAMA2-CMD), mutations in Lama2 gene cause either complete or partial absence in laminin-211 protein. Laminin-211 functions as a link between muscle extracellular matrix (ECM) and two adhesion systems in the sarcolemma; one is the well-known dystrophin-glycoprotein complex (DGC), and the second is the integrin complex. Because of its protein interactions and location, laminin-211 has a crucial role in muscle function and survival by maintaining sarcolemma integrity. In addition, laminin-211 is expressed in SCs and suggested to have a role in SC proliferation and differentiation. Downstream to the primary defect in laminin-211, several secondary genes and pathways accelerate disease mechanism, while at the same time there are unsuccessful attempts to regenerate as compensation for the dystrophic process. Lately, next-generation sequencing platforms have advanced our knowledge about the secondary events occurring in various diseases, elucidate the pathophysiology, and characterize new essential targets for development of new treatment strategies. This review will mainly focus on SC contribution to impaired regeneration in muscular dystrophies and specifically new findings suggesting SC involvement in LAMA2-CMD pathology.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
24
|
Rajasekaran NS, Shelar SB, Jones DP, Hoidal JR. Reductive stress impairs myogenic differentiation. Redox Biol 2020; 34:101492. [PMID: 32361680 PMCID: PMC7199008 DOI: 10.1016/j.redox.2020.101492] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and impairs SM regeneration in C57/Bl6 mice. Here, we investigated whether the activation of intracellular Nrf2 signaling favors antioxidant transcription and promotes myoblast differentiation. Satellite cell-like C2C12 myoblasts were treated with sulforaphane (SF; 1.0 & 5.0 μM) to activate Nrf2/antioxidant signaling during proliferation and differentiation (i.e. formation of myotubes/myofibers). SF-mediated Nrf2 activation resulted in increased expression of Nrf2-antioxidants (e.g. GCLC and G6PD) and augmented the production of reduced glutathione (GSH) leading to a reductive redox state. Surprisingly, this resulted in significant inhibition of myoblast differentiation, as observed from morphological changes and reduced expression of MyoD, Pax7, and Myh2, due to reductive stress (RS). Furthermore, supplementation of N-acetyl-cysteine (NAC) or GSH-ester or genetic knock-down of Keap1 (using siRNA) also resulted in RS-driven inhibition of differentiation. Interestingly, withdrawing Nrf2 activation rescued differentiation potential and formation of myotubes/myofibers from C2C12 myoblasts. Thus, abrogation of physiological ROS signaling through over-activation of Nrf2 (i.e. RS) and developing RS hampers differentiation of muscle satellite cells. Sulforaphane activates Nrf2 and establishes reductive stress (RS) in C2C12 myoblasts. RS abolishes basal ROS and significantly impede the differentiation of myoblasts. Augmentation of glutathione using pharmacological agents (NAC and GSH-ester) promotes RS and impairs differentiation. Precluding RS restores the myoblast differentiation process.
Collapse
Affiliation(s)
- Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sandeep Balu Shelar
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - John R Hoidal
- Division of Pulmonary, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Fernandes SA, Almeida CF, Souza LS, Lazar M, Onofre-Oliveira P, Yamamoto GL, Nogueira L, Tasaki LY, Cardoso RR, Pavanello RCM, Silva HCA, Ferrari MFR, Bigot A, Mouly V, Vainzof M. Altered in vitro muscle differentiation in X-linked myopathy with excessive autophagy. Dis Model Mech 2020; 13:dmm.041244. [PMID: 31826868 PMCID: PMC6994946 DOI: 10.1242/dmm.041244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022] Open
Abstract
X-linked myopathy with excessive autophagy (XMEA) is a genetic disease associated with weakness of the proximal muscles. It is caused by mutations in the VMA21 gene, coding for a chaperone that functions in the vacuolar ATPase (v-ATPase) assembly. Mutations associated with lower content of assembled v-ATPases lead to an increase in lysosomal pH, culminating in partial blockage of macroautophagy, with accumulation of vacuoles of undigested content. Here, we studied a 5-year-old boy affected by XMEA, caused by a small indel in the VMA21 gene. Detection of sarcoplasmic Lc3 (also known as MAP1LC3B)-positive vacuoles in his muscle biopsy confirmed an autophagy defect. To understand how autophagy is regulated in XMEA myogenesis, we used patient-derived muscle cells to evaluate autophagy during in vitro muscle differentiation. An increase in lysosomal pH was observed in the patient's cells, compatible with predicted functional defect of his mutation. Additionally, there was an increase in autophagic flux in XMEA myotubes. Interestingly, we observed that differentiation of XMEA myoblasts was altered, with increased myotube formation observed through a higher fusion index, which was not dependent on lysosomal acidification. Moreover, no variation in the expression of myogenic factors nor the presence of regenerating fibers in the patient's muscle were observed. Myoblast fusion is a tightly regulated process; therefore, the uncontrolled fusion of XMEA myoblasts might generate cells that are not as functional as normal muscle cells. Our data provide new evidence on the reason for predominant muscle involvement in the context of the XMEA phenotype. This article has an associated First Person interview with the first author of the paper. Summary: Here, we show that in X-linked myopathy with excessive autophagy there is increased fusion of myoblasts, which is not caused by the primary lysosomal acidification defect.
Collapse
Affiliation(s)
- Stephanie A Fernandes
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Camila F Almeida
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Lucas S Souza
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Monize Lazar
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Paula Onofre-Oliveira
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Guilherme L Yamamoto
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Letícia Nogueira
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Letícia Y Tasaki
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Rafaela R Cardoso
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Rita C M Pavanello
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Helga C A Silva
- Department of Neurology and Neurosurgery, Division of Neuromuscular Disorders, Federal University of São Paulo, 04023-062 São Paulo, Brazil
| | - Merari F R Ferrari
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Mariz Vainzof
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, 05508-900 São Paulo, Brazil
| |
Collapse
|
26
|
Savikj M, Ruby MA, Kostovski E, Iversen PO, Zierath JR, Krook A, Widegren U. Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals. Physiol Rep 2019; 6:e13739. [PMID: 29906337 PMCID: PMC6003643 DOI: 10.14814/phy2.13739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the well‐known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord‐injured and six able‐bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer‐based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able‐bodied and spinal cord‐injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord‐injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord‐injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt‐mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord‐injured individuals was unchanged (P > 0.05) compared to able‐bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy.
Collapse
Affiliation(s)
- Mladen Savikj
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Science Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maxwell A Ruby
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Emil Kostovski
- Science Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per O Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Widegren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases. Cells 2019; 8:cells8090988. [PMID: 31461973 PMCID: PMC6769629 DOI: 10.3390/cells8090988] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle formation and maintenance. As myogenic stem cells, skeletal muscle satellite cells have the ability to proliferate, differentiate and self-renew, and are involved in muscle formation and muscle injury repair. Accumulating evidence suggests that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are widely involved in the regulation of gene expression during skeletal muscle myogenesis, and their abnormal expression is associated with a variety of muscle diseases. From the perspective of the molecular mechanism and mode of action of ncRNAs in myogenesis, this review aims to summarize the role of ncRNAs in skeletal muscle satellite cells’ myogenic differentiation and in muscle disease, and systematically analyze the mechanism of ncRNAs in skeletal muscle development. This work will systematically summarize the role of ncRNAs in myogenesis and provide reference targets for the treatment of various muscle diseases, such as muscle dystrophy, atrophy and aberrant hypertrophy.
Collapse
|
28
|
Ribeiro AF, Souza LS, Almeida CF, Ishiba R, Fernandes SA, Guerrieri DA, Santos ALF, Onofre-Oliveira PCG, Vainzof M. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci Rep 2019; 9:11842. [PMID: 31413358 PMCID: PMC6694188 DOI: 10.1038/s41598-019-48156-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
Satellite cells (SCs) are the main muscle stem cells responsible for its regenerative capacity. In muscular dystrophies, however, a failure of the regenerative process results in muscle degeneration and weakness. To analyze the effect of different degrees of muscle degeneration in SCs behavior, we studied adult muscle of the dystrophic strains: DMDmdx, Largemyd, DMDmdx/Largemyd, with variable histopathological alterations. Similar results were observed in the dystrophic models, which maintained normal levels of PAX7 expression, retained the Pax7-positive SCs pool, and their proliferation capacity. Moreover, elevated expression of MYOG, an important myogenic factor, was also observed. The ability to form new fibers was verified by the presence of dMyHC positive regenerating fibers. However, those fibers had incomplete maturation characteristics, such as small and homogenous fiber caliber, which could contribute to their dysfunction. We concluded that dystrophic muscles, independently of their degeneration degree, retain their SCs pool with proliferating and regenerative capacities. Nonetheless, the maturation of these new fibers is incomplete and do not prevent muscle degeneration. Taken together, these results suggest that the improvement of late muscle regeneration should better contribute to therapeutic approaches.
Collapse
Affiliation(s)
- Antonio F Ribeiro
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Lucas S Souza
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Camila F Almeida
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Renata Ishiba
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Stephanie A Fernandes
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Danielle A Guerrieri
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - André L F Santos
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Paula C G Onofre-Oliveira
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Mariz Vainzof
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
29
|
Papanikolaou K, Draganidis D, Chatzinikolaou A, Laschou VC, Georgakouli K, Tsimeas P, Batrakoulis A, Deli CK, Jamurtas AZ, Fatouros IG. The redox-dependent regulation of satellite cells following aseptic muscle trauma (SpEED): study protocol for a randomized controlled trial. Trials 2019; 20:469. [PMID: 31366396 PMCID: PMC6668149 DOI: 10.1186/s13063-019-3557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/05/2019] [Indexed: 01/10/2023] Open
Abstract
Background Muscle satellite cells (SCs) are crucial for muscle regeneration following muscle trauma. Acute skeletal muscle damage results in inflammation and the production of reactive oxygen species (ROS) which may be implicated in SCs activation. Protection of these cells from oxidative damage is essential to ensure sufficient muscle regeneration. The aim of this study is to determine whether SCs activity under conditions of aseptic skeletal muscle trauma induced by exercise is redox-dependent. Methods/design Based on the SCs content in their vastus lateralis skeletal muscle, participants will be classified as either high or low respondents. In a randomized, double-blind, crossover, repeated-measures design, participants will then receive either placebo or N-acetylcysteine (alters redox potential in muscle) during a preliminary 7-day loading phase, and for eight consecutive days following a single bout of intense muscle-damaging exercise. In both trials, blood samples and muscle biopsies will be collected, and muscle performance and soreness will be measured at baseline, pre-exercise, 2 and 8 days post exercise. Biological samples will be analyzed for redox status and SCs activity. Between trials, a 4-week washout period will be implemented. Discussion This study is designed to investigate the impact of redox status on SCs mobilization and thus skeletal muscle potential for regeneration under conditions of aseptic inflammation induced by exercise. Findings of this trial should provide insight into (1) molecular pathways involved in SCs recruitment and muscle healing under conditions of aseptic skeletal muscle trauma present in numerous catabolic conditions and (2) whether skeletal muscle’s potential for regeneration depends on its basal SCs content. Trial registration ClinicalTrials.gov, ID: NCT03711838. Registered on 19 Oct 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3557-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Dimitrios Draganidis
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Chatzinikolaou
- School of Physical Education and Sport Sciences, Democritus University of Thrace, 69100, Komotini, Greece
| | - Vassiliki C Laschou
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Kalliopi Georgakouli
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Panagiotis Tsimeas
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Alexios Batrakoulis
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Chariklia K Deli
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Ioannis G Fatouros
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece.
| |
Collapse
|
30
|
Al Jaam B, Heu K, Pennarubia F, Segelle A, Magnol L, Germot A, Legardinier S, Blanquet V, Maftah A. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice. Open Biol 2017; 6:rsob.160211. [PMID: 27628322 PMCID: PMC5043585 DOI: 10.1098/rsob.160211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice.
Collapse
Affiliation(s)
- Bilal Al Jaam
- Univ. Limoges, INRA, UMR 1061, UGMA, 87060 Limoges, France
| | - Katy Heu
- Univ. Limoges, INRA, UMR 1061, UGMA, 87060 Limoges, France
| | | | | | | | - Agnès Germot
- Univ. Limoges, INRA, UMR 1061, UGMA, 87060 Limoges, France
| | | | | | | |
Collapse
|
31
|
Mucke HA. Drug Repurposing Patent Applications January–March 2017. Assay Drug Dev Technol 2017; 15:127-132. [DOI: 10.1089/adt.2017.29057.pq1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
32
|
Chung H, Multhaupt HAB, Oh ES, Couchman JR. Minireview: Syndecans and their crucial roles during tissue regeneration. FEBS Lett 2016; 590:2408-17. [PMID: 27383370 DOI: 10.1002/1873-3468.12280] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans, with roles in development, tumorigenesis and inflammation, and growing evidence for involvement in tissue regeneration. This is a fast developing field with the prospect of utilizing tissue engineering and biomaterials in novel therapies. Syndecan receptors are not only ubiquitous in mammalian tissues, regulating cell adhesion, migration, proliferation, and differentiation through independent signaling but also working alongside other receptors. Their importance is highlighted by an ability to interact with a diverse array of ligands, including extracellular matrix glycoproteins, growth factors, morphogens, and cytokines that are important regulators of regeneration. We also discuss the potential for syndecans to regulate stem cell properties, and suggest that understanding these proteoglycans is relevant to exploiting cell, tissue, and materials technologies.
Collapse
Affiliation(s)
- Heesung Chung
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Eok-Soo Oh
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| |
Collapse
|