1
|
Liu L, Zhao Y, Huang Z, Long Z, Qin H, Lin H, Zhou S, Kong L, Ma J, Lin Y, Li Z. Dietary supplementation of Lycium barbarum polysaccharides alleviates soybean meal-induced enteritis in spotted sea bass Lateolabrax maculatus. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:1-22. [PMID: 39949731 PMCID: PMC11815959 DOI: 10.1016/j.aninu.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 10/24/2024] [Indexed: 02/16/2025]
Abstract
The aim of this experiment was to investigate the effect of Lycium barbarum polysaccharides (LBP) on alleviating soybean meal-induced enteritis (SBMIE) in spotted sea bass Lateolabrax maculatus. The diet with 44% fishmeal (FM) content was used as a blank control, and soybean meal (SM) was used to replace 50% FM as an experimental control to induce enteritis. Then, on the basis of experimental control, 0.10%, 0.15%, and 0.20% LBP were added as experimental diets. A total of 225 spotted sea bass (44.52 ± 0.24 g) were randomly divided into 5 groups and fed the corresponding diets for 52 d. The results showed that 0.15% LBP decreased serum D-lactic acid (D-LA) content and diamine oxidase (DAO) activity (P < 0.05). In addition, in all LBP supplementation groups, the intestinal tissue morphology was significantly improved (P < 0.05); the intestinal microbial structure gradually recovered to a level close to that without adding SM; and the microbial species richness and diversity were significantly increased (P < 0.05). Through transcriptomic and metabolomic analysis, it was found that the expression of proinflammatory factors such as interleukin-1β (IL-1β), interleukin-12 (IL-12), nuclear factor kappa B subunit 2 (NF-κB2), and Toll-like receptor 2 (TLR2) were significantly down-regulated in the mitogen-activated protein kinase (MAPK) and Toll-like receptor signaling pathways (P < 0.05), and the important tight junction protein gene Occludin was up-regulated (P < 0.05). In addition, LBP down-regulated saponin metabolites and up-regulated amino acid metabolites (P < 0.05). In conclusion, LBP demonstrated a significant alleviating effect on SBMIE of spotted sea bass L. maculatus.
Collapse
Affiliation(s)
- Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yanbo Zhao
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| |
Collapse
|
2
|
Gong T, Wang D, Wang J, Huang Q, Zhang H, Liu C, Liu X, Ye H. Study on the mechanism of plant metabolites to intervene oxidative stress in diabetic retinopathy. Front Pharmacol 2025; 16:1517964. [PMID: 39974734 PMCID: PMC11835683 DOI: 10.3389/fphar.2025.1517964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Diabetic retinopathy is the main microvascular complication of diabetes and the first blinding eye disease in the working-age population. Oxidative stress is an important pathogenesis of diabetic retinopathy. Plant metabolites can be divided into two types: primary metabolites and secondary metabolites, secondary metabolites are the main active components and important sources for developing new drugs. It has unique effect in the treatment of diabetic retinopathy. However, the research on the intervention mechanism of plant metabolites in diabetic retinopathy are still relatively shallow, which limit the application of plant metabolites. With the deepening of research, more and more plant metabolites have been reported to play a role in treating diabetic retinopathy through anti-oxidative stress, including polyphenols, polysaccharides, saponins, alkaloids, etc. Therefore, this article reviewed the potential of plant metabolites in the treatment of diabetic retinopathy in the last 10 years and elucidated their mechanism of action. We hope to provide some references for the application of plant metabolites and provide valuable resources for the research and development of new drugs for diabetic retinopathy.
Collapse
Affiliation(s)
- Tianyao Gong
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongmei Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmeng Liu
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinglin Liu
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hejiang Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Bhupesh S, Chauhan N, Jyoti V, Ankit K, Sonia S, Bhupendra S. A Narrative Review of Signaling Pathway and Treatment Options for Diabetic Nephropathy. Curr Mol Med 2025; 25:113-131. [PMID: 37497682 DOI: 10.2174/1566524023666230727093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Diabetic nephropathy is a progressive kidney disease that frequently results in end-stage renal disorders and is characterized by proteinuria, albuminuria, decreased filtration, and renal fibrosis. Despite the fact that there are a number of therapeutic alternatives available, DN continues to be the main contributor to end-stage renal disease. Therefore, significant innovation is required to enhance outcomes in DN patients. METHODS Information was collected from online search engines like, Google Scholar, Web of Science, PubMed, Scopus, and Sci-Hub databases using keywords like diabetes, nephropathy, kidney disease, autophagy, etc. Results: Natural compounds have anti-inflammatory and antioxidant properties and impact various signaling pathways. They ameliorate kidney damage by decreasing oxidative stress, inflammatory process, and fibrosis and enhance the antioxidant system, most likely by activating and deactivating several signaling pathways. This review focuses on the role of metabolic memory and various signaling pathways involved in the pathogenesis of DN and therapeutic approaches available for the management of DN. Special attention is given to the various pathways modulated by the phytoconstituents.
Collapse
Affiliation(s)
- Semwal Bhupesh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Neha Chauhan
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Verma Jyoti
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Kumar Ankit
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Sonia
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Bhupendra
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
4
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Mohd Nasir S, Ismail AF, Tuan Ismail TS, Wan Abdul Rahman WF, Wan Ahmad WAN, Tengku Din TADAA, Sirajudeen KNS. Hepatic and renal effects of oral stingless bee honey in a streptozotocin-induced diabetic rat model. World J Exp Med 2024; 14:91271. [PMID: 38590306 PMCID: PMC10999067 DOI: 10.5493/wjem.v14.i1.91271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Diabetes is known damage the liver and kidney, leading to hepatic dysfunction and kidney failure. Honey is believed to help in lowering the blood glucose levels of diabetic patients and reducing diabetic complications. However, the effect of stingless bee honey (SBH) administration in relieving liver and kidney damage in diabetes has not been well-studied. AIM To investigate the effect of SBH administration on the kidney and liver of streptozotocin-induced (STZ; 55 mg/kg) diabetic Sprague Dawley rats. METHODS The rats were grouped as follows (n = 6 per group): non-diabetic (ND), untreated diabetic (UNT), metformin-treated (MET), and SBH+metformin-treated (SBME) groups. After successful diabetic induction, ND and UNT rats were given normal saline, whereas the treatment groups received SBH (2.0 g/kg and/or metformin (250 mg/kg) for 12 d. Serum biochemical parameters and histological changes using hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were evaluated. RESULTS On H&E and PAS staining, the ND group showed normal architecture and cellularity of Bowman's capsule and tubules, whereas the UNT and MET groups had an increased glomerular cellularity and thickened basement membrane. The SBH-treated group showed a decrease in hydropic changes and mild cellularity of the glomerulus vs the ND group based on H&E staining, but the two were similar on PAS staining. Likewise, the SBME-treated group had an increase in cellularity of the glomerulus on H&E staining, but it was comparable to the SBH and ND groups on PAS staining. UNT diabetic rats had tubular hydropic tubules, which were smaller than other groups. Reduced fatty vacuole formation and dilated blood sinusoids in liver tissue were seen in the SBH group. Conversely, the UNT group had high glucose levels, which subsequently increased MDA levels, ultimately leading to liver damage. SBH treatment reduced this damage, as evidenced by having the lowest fasting glucose, serum alanine transaminase, aspartate transaminase, and alkaline phosphatase levels compared to other groups, although the levels of liver enzymes were not statistically significant. CONCLUSION The cellularity of the Bowman's capsule, as well as histological alteration of kidney tubules, glomerular membranes, and liver tissues in diabetic rats after oral SBH resembled those of ND rats. Therefore, SBH exhibited a protective hepatorenal effect in a diabetic rat model.
Collapse
Affiliation(s)
- Suriati Mohd Nasir
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Anis Farihan Ismail
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Tuan Salwani Tuan Ismail
- Endocrinology Laboratory, Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | | | | |
Collapse
|
6
|
Sharifi‐Rad J, Quetglas‐Llabrés MM, Sureda A, Mardones L, Villagran M, Sönmez Gürer E, Živković J, Ezzat SM, Zayed A, Gümüşok S, Sibel Kılıç C, Fasipe B, Laher I, Martorell M. Supercharging metabolic health with Lycium barbarum L.: A review of the therapeutic potential of this functional food for managing metabolic syndrome. FOOD FRONTIERS 2024; 5:420-434. [DOI: 10.1002/fft2.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractMetabolic syndrome (MetS) is a common disorder involving a cluster of metabolic abnormalities, such as abdominal obesity, hypertension, dyslipidemia, insulin resistance, and atherogenic profile. MetS is characterized by an increase in oxidative stress and a chronic proinflammatory state, which are directly related to the development and progression of this pathology. It has been seen how a healthy lifestyle and good dietary practices are key to improving the different metabolic parameters and, therefore, play a fundamental role in reducing the risk of developing diabetes. The present review focuses on the research evidence related to the therapeutic properties of Lycium barbarum L. in MetS gathered in the last years. Several preclinical studies suggest that L. barbarum extracts are a good dietary supplement for the prevention of cardiovascular diseases in people with MetS. This compound has been used for years in traditional Chinese medicine for the treatment of atrophic gastritis, problems related to the lungs, kidneys, and liver, and as a supplement for eye health. In addition, different in vitro and in vivo studies have been carried out that support the properties attributed to metabolites derived from L. barbarum, such as polysaccharides that have been shown diverse biological activities. In conclusion, L. barbarum extracts have multiple benefits to increase general well‐being and immune function. However, there are a limited number of studies related to effect of L. barbarum in MetS, but they demonstrated effectiveness in the treatment of obesity, diabetes mellitus type 2, and prevention of diabetes mellitus type 2 complication.
Collapse
Affiliation(s)
| | - Maria Magdalena Quetglas‐Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition) Instituto de Salud Carlos III Madrid Spain
| | - Lorena Mardones
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
| | - Marcelo Villagran
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
- Scientific‐Technological Center for the Sustainable Development of the Coastline Universidad Católica de la Santísima Concepción Concepción Chile
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy Sivas Cumhuriyet University Sivas Turkey
| | - Jelena Živković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1 Belgrade Serbia
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Pharmacognosy, Faculty of Pharmacy October University for Modern Science and Arts (MSA) 6th of October Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy Tanta University, College of Pharmacy Tanta Egypt
| | - Safa Gümüşok
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Babatunde Fasipe
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics Bowen University Iwo Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics The University of British Columbia Vancouver British Columbia Canada
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living University of Concepción Concepción Chile
| |
Collapse
|
7
|
Zhao J, Wang S, Li X, Zhang G, Xu Y, Zheng X, Guo J, Zhang Z. A Prospective, Multicentered, Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Keluoxin Capsules in the Treatment of Microalbuminuria in Patients with Type 2 Early Diabetic Kidney Disease. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:185-195. [PMID: 37733303 PMCID: PMC10884549 DOI: 10.1089/jicm.2022.0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Background: To evaluate the efficacy and safety of Keluoxin (KLX) capsules and provide validated evidence for the application of KLX in the treatment of diabetic kidney disease (DKD). Methods: A multicenter, randomized, double-blind, placebo-controlled trial design was used to screen 129 patients with DKD (urinary albumin-to-creatinine ratio [UACR]: male, 2.5-30 mg/mmol; female, 3.5-30 mg/mmol) and with Qi and Yin deficiency and blood stasis symptoms. Written informed consent was obtained from all patients. The patients were randomly divided into KLX and control groups. The KLX group was orally administered KLX (6 g/day) and irbesartan tablets (150 mg/day), whereas the control group was administered KLX placebo (6 g/day) and irbesartan tablets (150 mg/day). Patients were observed for 24 weeks to evaluate the natural logarithm of the UACR (log-UACR), the odds ratio (OR) for a sustained increase in the UACR of at least 30% and 40%, estimated glomerular filtration rate (eGFR), changes in symptoms and quality-of-life scores, and adverse events. Results: The changes of the natural log-UACR during the 24 weeks compared with baseline in the KLX group were better than those in the control group (LS mean ± standard error, -0.26 ± 0.10 vs. 0.01 ± 0.09, p = 0.0292). The incidence of a sustained increase in the UACR of at least 30% and 40% was found to be significantly lower in the KLX group (OR, 0.26; 95% confidence interval [CI], 0.09-0.75; OR, 0.29; 95% CI, 0.10-0.82). Changes in symptoms and quality-of-life scores in the KLX group were better than those in the control group. There was no statistically significant difference in eGFR or the incidence of adverse events between the groups. Conclusions: Overall, these results suggest that KLX capsules combined with irbesartan can reduce microalbuminuria, relieve the symptoms, and improve the quality of life for patients with type 2 early DKD compared with the use of irbesartan alone. Trial registration: Chinese Clinical Trial Registry, registration number: ChiCTR2100052764.
Collapse
Affiliation(s)
- Jinxi Zhao
- Department of Nephropathy and Endocrinology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Shidong Wang
- Department of Nephropathy and Endocrinology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoran Li
- Department of Nephropathy and Endocrinology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Guangde Zhang
- Department of Endocrinology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of TCM Diabetes, China-Japan Friendship Hospital, Beijing, China
| | - Xianling Zheng
- Department of Endocrinology, Handan Central Hospital, Handan, China
| | - Jian Guo
- Department of Endocrine and Metabolic Diseases, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zhenxian Zhang
- Diabetes Clinic, Luohe Hospital of Traditional Chinese Medicine, Luohe, China
| |
Collapse
|
8
|
Wei J, Chahel AA, Ni Y, Wei X, Zhao Y, Wang Y, Zeng S. Lycium RIN negatively modulate the biosynthesis of kukoamine A in hairy roots through decreasing thermospermine synthase expression. Int J Biol Macromol 2023; 252:126246. [PMID: 37567520 DOI: 10.1016/j.ijbiomac.2023.126246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Root bark (Lycii cortex) of Lycium contains high contents of characteristic bioactive compounds, including kukoamine A (KuA) and kukoamine B (KuB). RIPENING INHIBITOR (RIN) is well known as a master regulator of Solanaceaous fruit ripening. However, the role of RIN in the biosynthetic pathway of KuA in Lycium remains unclear. In this study, integrated transcriptomic, metabolomic analyses and hairy root system are used to characterize the role of RIN in KuA biosynthesis in Lycium. The ultra performance liquid chromatography electrospray ionization tandem mass spectrometry analysis revealed that KuA was significantly induced in LrRIN1 RNAi lines and not detected in overexpression lines. A total of 20,913 differentially expressed genes (DEGs) and 60 differentially accumulated metabolites (DAMs) were detected in LrRIN1 transgenic hairy roots, which were used for weighted gene co-expression network analysis. Our result reveals a high association between KuA and structural genes in the phenolamide pathway, which shows a negative correlation with LrRIN1. In addition, overexpression of the polyamine pathway gene thermospermine synthase LcTSPMS, a potential target gene of Lycium RIN, increased the contents of both KuA and KuB in L. chinense hairy root, indicating that TSPMS is responsible for KuA biosynthesis and is also the common upstream biosynthetic gene for both KuA and KuB. Our results lay a solid foundation for uncovering the biosynthetic pathway of KuA, which will facilitate the molecular breeding and genetic improvement of Lycium species.
Collapse
Affiliation(s)
- Jinrong Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Aysha Arif Chahel
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuan Ni
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300000, PR China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuling Zhao
- Jinghe County Goji Industrial Development Center, Jinghe County, the Xinjiang Uygur Autonomous Region, 833300, PR China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
9
|
Potential role of plant polysaccharides as immunostimulants in aquaculture: a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
Aquaculture is one of the primary food-producing sectors in the world that ensures human nourishment. However, aqua farmers are facing serious problems due to disease out breaks and development of antimicrobial resistance. Until now, chemical or antibiotic based strategies has been applied to control disease related concern in aquaculture. Frequent usage of antibiotics in feed or usage of disinfectant to overcome the disease may end up with negative impacts to the environment and human. Utilization of plant derived polysaccharides has been drastically increased due to their effective roles and could serve as a best replacement for chemical agents and antibiotics. In addition, plant derived compounds and plant extracts was utilized to improve the immunity, intestinal health and growth performance of aquaculturable organisms. In addition, large number of plant-based polysaccharides was utilized as immunostimulants in aquaculture. Hence, this review aims to highlight the multifunctional properties of plant-based polysaccharides in aquaculture. Moreover, advantages and different concentration of plant polysaccharides as a feed additives in aquaculture sector has been discussed herein.
Collapse
|
10
|
Niu Y, Zhang G, Sun X, He S, Dou G. Distinct Role of Lycium barbarum L. Polysaccharides in Oxidative Stress-Related Ocular Diseases. Pharmaceuticals (Basel) 2023; 16:215. [PMID: 37259363 PMCID: PMC9966716 DOI: 10.3390/ph16020215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is an imbalance between the increased production of reactive species and reduced antioxidant activity, which can cause a variety of disturbances including ocular diseases. Lycium barbarum polysaccharides (LBPs) are complex polysaccharides isolated from the fruit of L. barbarum, showing distinct roles in antioxidants. Moreover, it is relatively safe and non-toxic. In recent years, the antioxidant activities of LBPs have attracted remarkable attention. In order to illustrate its significance and underlying therapeutic value for vision, we comprehensively review the recent progress on the antioxidant mechanisms of LBP and its potential applications in ocular diseases, including diabetic retinopathy, hypertensive neuroretinopathy, age-related macular degeneration, retinitis pigmentosa, retinal ischemia/reperfusion injury, glaucoma, dry eye syndrome, and diabetic cataract.
Collapse
Affiliation(s)
- Yali Niu
- College of Life Sciences, Northwestern University, Xi’an 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
11
|
Wang XF, Chen X, Tang Y, Wu JM, Qin DL, Yu L, Yu CL, Zhou XG, Wu AG. The Therapeutic Potential of Plant Polysaccharides in Metabolic Diseases. Pharmaceuticals (Basel) 2022; 15:1329. [PMID: 36355500 PMCID: PMC9695998 DOI: 10.3390/ph15111329] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
Plant polysaccharides (PPS) composed of more than 10 monosaccharides show high safety and various pharmacological activities, including immunoregulatory, antitumor, antioxidative, antiaging, and other effects. In recent years, emerging evidence has indicated that many PPS are beneficial for metabolic diseases, such as cardiovascular disease (CVD), diabetes, obesity, and neurological diseases, which are usually caused by the metabolic disorder of fat, sugar, and protein. In this review, we introduce the common characteristics and functional activity of many representative PPS, emphasize the common risks and molecular mechanism of metabolic diseases, and discuss the pharmacological activity and mechanism of action of representative PPS obtained from plants including Aloe vera, Angelica sinensis, pumpkin, Lycium barbarum, Ginseng, Schisandra chinensis, Dioscorea pposite, Poria cocos, and tea in metabolic diseases. Finally, this review will provide directions and a reference for future research and for the development of PPS into potential drugs for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Xue Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, College of Pharmacy, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
12
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [PMID: 35940747 DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
13
|
Song Q, Yong HM, Yang LL, Liang YQ, Liu ZX, Niu DS, Bai ZG. Lycium barbarum polysaccharide protects against osteonecrosis of femoral head via regulating Runx2 expression. Injury 2022; 53:1361-1367. [PMID: 35082056 DOI: 10.1016/j.injury.2021.12.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteonecrosis of femoral head (ONFH) is a pathological state caused by lack of blood supply in femoral head. This study aimed to explore the function of Lycium barbarum polysaccharide (LBP), an antioxidant agent extracted from L. barbarum, on ONFH. METHODS Osteonecrosis rat model was generated using lipopolysaccharide (LPS) and methylprednisolone followed by examination of body weight, blood glucose, morphology, and BMSC osteoblast differentiation. The effect and underlying mechanism of LBP on the proliferation, apoptosis, and osteoblast differentiation of BMSC were determined with or without LPS or hypoxia treatment using CCK-8. Alizarin Red S staining, flow cytometry, and western blot, respectively. RESULT LBP could protect against glucocorticoid-induced ONFH in rats, resulting in improved sparse trabecular bone, empty lacunae and bone cell coagulation. Moreover, LBP promoted the proliferation and osteoblast differentiation of bone mesenchymal-derived stem cells (BMSCs) in a dose-dependent manner. Furthermore, LBP enhanced osteoblast differentiation of BMSCs under hypoxia condition. Mechanistically, we found that LBP treatment enhanced Runx2 and ALP expression in BMSCs. LBP restored the expression of Runx2 and ALP under hypoxia, suggesting that LBP might be involved in regulating Runx2/ALP expression and contributed to osteoblast differentiation. Knockdown of Runx2 significantly inhibited BMSCs proliferation, while LBP treatment did not rescue the osteoblast differentiation ability of BMSCs with Runx2 knockdown. CONCLUSION Our findings suggested that LBP protects against ONFH via regulating Runx2 expression, which could be utilized to treat patients suffering ONFH.
Collapse
Affiliation(s)
- Qiang Song
- People's Hospital of Ningxia Hui Autonomous Region, No.301 Zhengyuan North Street, Yinchuan, Ningxia 750021, China
| | - Hai-Ming Yong
- People's Hospital of Ningxia Hui Autonomous Region, No.301 Zhengyuan North Street, Yinchuan, Ningxia 750021, China
| | - Lv-Lin Yang
- People's Hospital of Ningxia Hui Autonomous Region, No.301 Zhengyuan North Street, Yinchuan, Ningxia 750021, China
| | - Yu-Qi Liang
- People's Hospital of Ningxia Hui Autonomous Region, No.301 Zhengyuan North Street, Yinchuan, Ningxia 750021, China
| | - Ze-Xin Liu
- People's Hospital of Ningxia Hui Autonomous Region, No.301 Zhengyuan North Street, Yinchuan, Ningxia 750021, China
| | - Dong-Sheng Niu
- People's Hospital of Ningxia Hui Autonomous Region, No.301 Zhengyuan North Street, Yinchuan, Ningxia 750021, China
| | - Zhi-Gang Bai
- People's Hospital of Ningxia Hui Autonomous Region, No.301 Zhengyuan North Street, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
14
|
Khutami C, Sumiwi SA, Khairul Ikram NK, Muchtaridi M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int J Mol Sci 2022; 23:ijms23042056. [PMID: 35216172 PMCID: PMC8875143 DOI: 10.3390/ijms23042056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor that leads to the development of other diseases such as dyslipidemia and diabetes. These three metabolic disorders can occur simultaneously, hence, the treatment requires many drugs. Antioxidant compounds have been reported to have activities against obesity, dyslipidemia and diabetes via several mechanisms. This review aims to discuss the antioxidant compounds that have activity against obesity, dyslipidemia and diabetes together with their molecular signaling mechanism. The literature discussed in this review was obtained from the PUBMED database. Based on the collection of literature obtained, antioxidant compounds having activity against the three disorders (obesity, dyslipidemia and diabetes) were identified. The activity is supported by various molecular signaling pathways that are influenced by these antioxidant compounds, further study of which would be useful in predicting drug targets for a more optimal effect. This review provides insights on utilizing one of these antioxidant compounds as opposed to several drugs. It is hoped that in the future, the number of drugs in treating obesity, dyslipidemia and diabetes altogether can be minimized consequently reducing the risk of side effects.
Collapse
Affiliation(s)
- Chindiana Khutami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia
- Correspondence:
| |
Collapse
|
15
|
Wan F, Ma F, Wu J, Qiao X, Chen M, Li W, Ma L. Effect of Lycium barbarum Polysaccharide on Decreasing Serum Amyloid A3 Expression through Inhibiting NF- κB Activation in a Mouse Model of Diabetic Nephropathy. Anal Cell Pathol (Amst) 2022; 2022:7847135. [PMID: 35132370 PMCID: PMC8817866 DOI: 10.1155/2022/7847135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
Lycium barbarum polysaccharide (LBP) as one of the main bioactive constituents of the fruit of Lycium barbarum L. (LBL.) has many pharmacological activities, but its antihyperglycemic activity is not fully understood yet. This study investigated the hypoglycemic and renal protective effects of LBP on high-fat diet/streptozotocin- (HFD/STZ-) induced diabetic nephropathy (DN) in mice. Blood glucose was assessed before and after 8-week administration of LBP, and the homeostasis model assessment-insulin resistance (HOMA-IR) index was calculated for evaluating the antidiabetic effect of LBP. Additionally, serum creatinine (sCr), blood urea nitrogen (BUN), and urine microalbumin were tested to evaluate the renal function. HE and PAS stainings were performed to evaluate the morphology and injury of the kidney. The results showed that LBP significantly reduces the glucose level and ameliorates the insulin resistance of diabetic mice. Importantly, LBP improves renal function by lowering the levels of sCr, BUN, and microalbumin in diabetic mice and relieves the injury in the renal glomeruli and tubules of the DN mice. Furthermore, LBP attenuates renal inflammation as evidenced by downregulating the mRNA levels of TNFα, IL1 β, IL6, and SAA3 in the renal cortex, as well as reducing the elevated circulating level and protein depositions of SAA3 in the kidney. In addition, our western blot results showed that NF-κB p65 nuclear translocation and the degradation of inhibitory κB-α (IκBα) occurred during the progress of inflammation, and such activated signaling was restrained by LBP. In conclusion, our findings suggest that LBP is a potential antidiabetic agent, which ameliorates the inflammation in DN through inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Fengqi Wan
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Fulin Ma
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Jiaxin Wu
- School of Pharmacy, Lanzhou University, No. 99 Donggang West Road, Lanzhou 730000, China
| | - Xinyu Qiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Minxue Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liang Ma
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
16
|
Li Y, Li X, Li X, Zeng Z, Strang N, Shu X, Tan Z. Non-neglectable therapeutic options for age-related macular degeneration: A promising perspective from traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114531. [PMID: 34474141 DOI: 10.1016/j.jep.2021.114531] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Age-related macular degeneration (AMD) is a chronic neurodegenerative disease which causes irreversible central vision loss among the elderly population. Traditional Chinese Medicine (TCM), including formulas, acupuncture and herbs, has been used in the treatment of AMD for thousands of years and is currently used by many AMD patients around the world. AIM OF THE REVIEW A comprehensive, in-depth literature review examining the use of TCM in the treatment of AMD has yet to be compiled. This review will improve current knowledge relating to the use of TCM and will open new avenues of exploration in developing new drugs for the treatment of AMD. METHODS A literature search of the PubMed database, Web of Science, Google Scholar and China National Knowledge Infrastructure (CNKI) was performed using relevant terms and keywords related to TCM in the treatment of AMD. Related books, PhD and master's theses were also researched. RESULTS The TCM-based interpretation of AMD has been used to establish a theoretical foundation for understanding the effect of TCM formulas and acupuncture on AMD. The possible mechanism of action of common Chinese herbs has also been discussed in detail. CONCLUSION TCM is a promising treatment option of AMD patients. However, lack of rigorous scientific evidence has limited the impact and uptake of TCM therapy. Future research should focus on improving understanding of the mechanism of action and bioactive components of TCM therapies.
Collapse
Affiliation(s)
- Yuli Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, PR China
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, 422000, PR China; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
17
|
Goji Berry (Lycium barbarum) Supplementation during Pregnancy Influences Insulin Sensitivity in Rabbit Does but Not in Their Offspring. Animals (Basel) 2021; 12:ani12010039. [PMID: 35011145 PMCID: PMC8749738 DOI: 10.3390/ani12010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
This study investigated the effects of Goji berry (Lycium barbarum) dietary supplementation during pregnancy on insulin sensitivity of rabbit does and their offspring. Starting from two months before the artificial insemination, 75 New Zealand White does were fed only commercial standard diet (C) or supplemented with 1% (G1) and 3% (G3) of Goji berries. Their offspring received a standard diet but kept the nomenclature of the mother’s group. Fasting and intravenous glucose tolerance test-derived indices were estimated at 21 days of pregnancy on rabbit does and at 90 days of age on the offspring. No difference was found in the fasting indices, while the diet modulated the response to glucose load of rabbit does. In particular, G3 group had the lowest glucose concentrations 5 min after the bolus administration (p < 0.05) and, as a result, differed in the parameters calculated during the elimination phase such as the elimination rate constant (Kel), the half-life of the exogenous glucose load (t1/2), and apparent volume of distribution (Vd; for all, p < 0.05). The high dose of Goji supplementation could thus enhance the first-phase glucose-induced insulin secretion. Findings on the offspring were inconsistent and therefore a long-term effect of Goji supplementation during pregnancy could not be demonstrated. Further study on the effect of Goji on the secretory pathway of insulin could clarify its hypoglycaemic action, while different protocols are needed to investigate its potential effects on foetal programming.
Collapse
|
18
|
Pan H, Niu L, Wu Y, Chen L, Zhou X, Zhao Y. Lycium barbarum polysaccharide protects rats and cardiomyocytes against ischemia/reperfusion injury via Nrf2 activation through autophagy inhibition. Mol Med Rep 2021; 24:778. [PMID: 34498711 PMCID: PMC8436221 DOI: 10.3892/mmr.2021.12418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The irreversible loss of cardiomyocytes is mainly the result of ischemic/reperfusion (I/R) myocardial injury, leading to persistent heart dysfunction and heart failure. It has been reported that Lycium barbarum polysaccharide (LBP) has protective effects on cardiomyocytes, but the specific mechanism is still not completely understood. The present study examined the protective role of LBP in myocardial I/R injury. Rats were subjected to myocardial I/R injury and LBP treatment. Moreover, rat myocardial H9C2 cells exposed to hypoxia/reoxygenation (H/R) were used to simulate cardiac injury during myocardial I/R process and were exposed to LBP, rapamycin (an autophagy activator) or nuclear factor-erythroid factor 2-related factor 2 (Nrf2) transfection. Morphological examination, histopathological examination and echocardiography were used to determine the cardiac injury after I/R injury. Cell viability and apoptosis were determined via MTT and flow cytometry assays, respectively. The levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin T (cTnT), IL-1β, IL-6, TNF-α, malondialdehyde (MDA) and superoxidase dismutase (SOD) in rat serum, hearts and/or cells were assessed using ELISAs. The expression levels of Beclin 1, LC3II/LC3I, P62 and Nrf2 were analyzed via reverse transcription-quantitative PCR and western blotting. The results demonstrated that LBP improved heart function and repaired cardiomyocyte damage in I/R model rats, as well as reduced the production of cTnT, CK, LDH, IL-1β, IL-6 and TNF-α. The in vitro study results indicated that LBP increased cell viability, the apoptosis rate, and the levels of SOD and P62, as well as reduced the levels of LDH, CK, IL-1β, IL-6, TNF-α, MDA, Beclin 1 and LC3-II/LC3-I in H/R-injured H9C2 cells. Moreover, LBP promoted Nrf2 nuclear translocation, but decreased Nrf2 expression in the cytoplasm. Rapamycin exacerbated the aforementioned effects in H/R injured H9C2 cells, and partially reversed LBP-induced effects. Overexpressing Nrf2 counteracted I/R-induced effects and partially resisted rapamycin-induced effects. These findings demonstrated that LBP exhibited a cardiac protective effect on the ischemic myocardium of rats after reperfusion and attenuated myocardial I/R injury via autophagy inhibition-induced Nrf2 activation.
Collapse
Affiliation(s)
- Hao Pan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Lin Niu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yihao Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaowei Zhou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Zhao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
19
|
Xie W, Huang YY, Chen HG, Zhou X. Study on the Efficacy and Mechanism of Lycium barbarum Polysaccharide against Lead-Induced Renal Injury in Mice. Nutrients 2021; 13:nu13092945. [PMID: 34578823 PMCID: PMC8470764 DOI: 10.3390/nu13092945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lead is one of the most common heavy metal pollutants in the environment. Prolonged exposure to lead will induce oxidative stress, inflammation, and apoptosis in the kidneys, which in turn causes kidney injury. Lycium barbarum polysaccharide (LBP) is well known for its numerous pharmacological properties. This study aims to explore the efficacy and mechanism of LBP against lead-induced kidney damage in mice. Symptoms of renal injury were induced in mice by using 25 mg/kg lead acetate (PbAc2), and different doses of LBP (200, 400, and 600 mg/kg BW) were orally administrated to PbAc2-treated mice for five weeks. The results of the pharmacodynamics experiment showed that the renal pathological damages, serum creatinine (Cre), blood urea nitrogen (BUN), and kidney index of PbAc2-treated mice could be significantly alleviated by treatment with LBP. Further, LBP treatment significantly increased the weight and feed intake of PbAc2-treated mice. The dose effect results indicated that a medium dose of LBP was superior to high and low doses. The results of mechanistic experiments showed that LBP could attenuate oxidative stress, inflammation, and apoptosis in the kidneys of mice with lead toxicity by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
Collapse
Affiliation(s)
- Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Yuan-Yuan Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| |
Collapse
|
20
|
Fu J, Zhang LL, Li W, Zhang Y, Zhang Y, Liu F, Zou L. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem 2021; 367:130697. [PMID: 34365248 DOI: 10.1016/j.foodchem.2021.130697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
Metabolomics is an important branch of systems biology, which can detect changes in the body's metabolism before and after the intervention of functional foods, identify effective metabolites, and predict the interventional effects and the mechanism. This review summarizes the latest research outcomes regarding interventional effects of functional foods on metabolic diseases via metabolomics analysis. Since metabolomics approaches are powerful strategies for revealing the changes in bioactive compounds of functional foods during processing and storage, we also discussed the effects of these parameters on functional food metabolites using metabolomics approaches. To date, a number of endogenous metabolites related to the metabolic diseases after functional foods intervention have been discovered. Unfortunately, the mechanisms of metabolic disease-related molecules are still unclear and require further studies. The combination of metabolomics with other omics technologies could further promote its ability to fully understand the precise biological processes of functional food intervention on metabolic diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yan Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
21
|
Toh DWK, Xia X, Sutanto CN, Low JHM, Poh KK, Wang JW, Foo RSY, Kim JE. Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): A randomized controlled trial. Am J Clin Nutr 2021; 114:80-89. [PMID: 33964853 DOI: 10.1093/ajcn/nqab062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The consumption of wolfberry (Lycium barbarum), a rich source of carotenoids and bioactive polysaccharides, may serve as a potential dietary strategy for cardiovascular disease (CVD) risk management although limited studies examined its effects as whole fruits. OBJECTIVES To investigate the impact of wolfberry consumption as part of a healthy dietary pattern on vascular health-related outcomes and classical CVD risk factors in middle-aged and older adults in Singapore. METHODS This is a 16-week, parallel design, randomized controlled trial. All participants (n = 40) received dietary counselling to follow healthy dietary pattern recommendations with the wolfberry group given additional instructions to cook and consume 15 g/d whole, dried wolfberry with their main meals. Biomarkers of vascular function (flow-mediated dilation, plasma total nitrate/nitrite, endothelin-1, and intercellular adhesion molecule-1), vascular structure (carotid intima-media thickness) and vascular regeneration (endothelial progenitor cell count, plasma angiopoietin 1 and angiopoietin 2), were assessed at baseline and postintervention. Serum lipid-lipoproteins and blood pressure were evaluated every 4 weeks. RESULTS All participants showed an improved compliance toward the healthy dietary pattern. This was coupled with marked rises in total nitrate/nitrite concentrations (mean change wolfberry: 3.92 ± 1.73 nmol/mL; control: 5.01 ± 2.55 nmol/L) and reductions in endothelin-1 concentrations (wolfberry: -0.19 ± 0.06 pg/mL; control: -0.15 ± 0.08 pg/mL). Compared with the control which depicted no changes from baseline, the wolfberry group had a significantly higher HDL cholesterol (0.08 ± 0.04 mmol/L), as well as lower Framingham predicted long-term CVD risk (-0.8 ± 0.5%) and vascular age (-1.9 ± 1.0 y) postintervention. No differences were observed in the other vascular health-related outcomes. CONCLUSIONS In middle-aged and older adults, adherence to a healthy dietary pattern improves vascular tone. Incorporating wolfberry to the diet further improves blood lipid-lipoprotein profile and may lower long-term CVD risk. This study was registered at clinicatrials.gov as NCT03535844.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xuejuan Xia
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Clarinda Nataria Sutanto
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Sik-Yin Foo
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore, Singapore.,Genome Institute of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Xiao Z, Deng Q, Zhou W, Zhang Y. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacol Ther 2021; 229:107921. [PMID: 34174277 DOI: 10.1016/j.pharmthera.2021.107921] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Lycium barbarum is widely used as a functional food and medicinal herb to promote health and longevity in China and in some other Asian countries. In modern pharmacological and chemical studies, the most valuable and well-researched component of L. barbarum is a group of unique water-soluble glycoconjugates that are collectively termed Lycium barbarum polysaccharides (LBPs). Numerous modern pharmacological studies have revealed that LBPs possess antiaging, antidiabetic, antifibrotic, neuroprotective, and immunomodulation properties, while the immunomodulatory effect is primary and is involved in other activities. However, due to their structural heterogeneity and lack of chromophores, it has long been unclear how LBPs work on the immune system. A few studies have recently provided some insights into the proposed mode of action of LBPs, such as structure-activity relationships, receptor recognition, and gut microbiota modulation of LBPs. This review provides a comprehensive overview of the immunoregulating properties of LBPs and their related mechanisms of action.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Deng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| |
Collapse
|
23
|
Zhao M, Yu Y, Wang R, Chang M, Ma S, Qu H, Zhang Y. Mechanisms and Efficacy of Chinese Herbal Medicines in Chronic Kidney Disease. Front Pharmacol 2021; 11:619201. [PMID: 33854427 PMCID: PMC8039908 DOI: 10.3389/fphar.2020.619201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
As the current treatment of chronic kidney disease (CKD) is limited, it is necessary to seek more effective and safer treatment methods, such as Chinese herbal medicines (CHMs). In order to clarify the modern theoretical basis and molecular mechanisms of CHMs, we reviewed the knowledge based on publications in peer-reviewed English-language journals, focusing on the anti-inflammatory, antioxidative, anti-apoptotic, autophagy-mediated and antifibrotic effects of CHMs commonly used in kidney disease. We also discussed recently published clinical trials and meta-analyses in this field. Based on recent studies regarding the mechanisms of kidney disease in vivo and in vitro, CHMs have anti-inflammatory, antioxidative, anti-apoptotic, autophagy-mediated, and antifibrotic effects. Several well-designed randomized controlled trials (RCTs) and meta-analyses demonstrated that the use of CHMs as an adjuvant to conventional medicines may benefit patients with CKD. Unknown active ingredients, low quality and small sample sizes of some clinical trials, and the safety of CHMs have restricted the development of CHMs. CHMs is a potential method in the treatment of CKD. Further study on the mechanism and well-conducted RCTs are urgently needed to evaluate the efficacy and safety of CHMs.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Yu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Wang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Yao Q, Zhou Y, Yang Y, Cai L, Xu L, Han X, Guo Y, Li PA. Activation of Sirtuin1 by lyceum barbarum polysaccharides in protection against diabetic cataract. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113165. [PMID: 32730875 DOI: 10.1016/j.jep.2020.113165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lycium barbarum polysaccharide (LBP) extracted from the Lycium barbarum L. has been widely used to improve diabetes and its relative complications. However, the mechanisms have not fully understood. A recent study has demonstrated that LBP upregulates suituin 1 (SIRT1). OBJECTIVE This study was to define the role of Sirt1 and its downstream signaling pathways in diabetic cataract using in vitro and in vivo models. MATERIALS AND METHODS Human lens epithelial cell line SRA01/04 cells were cultured under high glucose (HG) medium with treatment of LBP or vehicle. Cell viability, apoptosis, protein and/or mRNA levels of Sirt1, BAX, Bcl-2, active-caspase-3, FOXO1, p27 and acetylated p53 were measured. SIRT1 upregulated- and knocked-down cells were generated and tested in high glucose culture. Diabetes mellitus was induced in rats by streptozotocin injection. Body weight, blood glucose levels, lens transparency and retinal function were assessed and SIRT1, as well as the aforementioned biomarkers were measured using Western blotting and qPCR in the animal lens samples. RESULTS The results showed that HG decreased cell viability and LBP prevented the decrease. The reduced viability in HG cultured SRA01/04 cells was associated with increased levels of BAX, active caspase 3, FOXO1, p27, and p53 and decreased levels of SIRT1 and Bcl-2. Further experiments using sirt1 gene modulated cells showed that upregulation of Sirt1 improved viability, increase cell division as reflected by an increased proportion of S phase in the cell cycle, reduced the number of apoptotic cell death and suppressed p53 acetylation and caspase 3 activation. Opposite results were observed in SIRT1 knock-down cells. Treating diabetic animals with LBP reduced body weight loss and blood glucose content in diabetic animals. Similarly, LBP hindered the development of cataract in lenses and improved retinal function. The beneficial effect of LBP on diabetic cataract was associated with the supression of p53, caspase 3, FOXO1, BAX, p27 and elevation of SIRT1 and Bcl-2, which were consistent with the in vitro findings. CONCLUSION Our findings showed that diabetes caused cataract is associated with suppression of SIRT1 and Bcl-2 and activation of other cell death related genes. LBP prevented diabetic cataract in animals by upregulating Sirt1 and Bcl-2 and suppressing cell death related genes.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cataract/enzymology
- Cataract/etiology
- Cataract/pathology
- Cataract/prevention & control
- Cell Line
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/enzymology
- Epithelial Cells/pathology
- Humans
- Lens, Crystalline/drug effects
- Lens, Crystalline/enzymology
- Lens, Crystalline/pathology
- Lycium/chemistry
- Male
- Rats, Sprague-Dawley
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China; Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, USA.
| | - Yue Zhou
- Department of Pharmacology, Tongji University, Shanghai, China
| | - Yanhui Yang
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Lianjun Cai
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Lihui Xu
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Xuebo Han
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Yu Guo
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
25
|
The Great Healing Potential Hidden in Plant Preparations of Antioxidant Properties: A Return to Nature? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8163868. [PMID: 33101592 PMCID: PMC7569450 DOI: 10.1155/2020/8163868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
The application of chemicals in industry and agriculture has contributed to environmental pollution and exposure of living organisms to harmful factors. The development of new pharmaceutical agents enabled successful therapy of various diseases, but their administration may be connected with side effects. Oxidative stress has been found to be involved into etiology of numerous diseases as well as harmful action of drugs and chemicals. For some time, plant origin substances have been studied as potential protective agents alleviating toxicity of various substances and symptoms of diseases. The aim of the current review was to present the diversity of the research performed during the last five years on animal models. The outcomes showed a huge protective potential inherent in plant preparations, including alleviating prooxidative processes, strengthening antioxidant defence, ameliorating immune parameters, and reversing histopathological changes. In many cases, plant origin substances were proved to be comparable or even better than standard drugs. Such findings let us suggest that in the future the plant preparations could make adjuvants or a replacement for pharmaceutical agents. However, the detailed research regarding dose and way of administration as well as the per se effects needs to be performed. In many studies, the last issue was not studied, and in some cases, the deleterious effects have been observed.
Collapse
|
26
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
27
|
Exosomal MicroRNA Expression Profiling Analysis of the Effects of Lycium Barbarum Polysaccharide on Gestational Diabetes Mellitus Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2953502. [PMID: 32802120 PMCID: PMC7414337 DOI: 10.1155/2020/2953502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
Objective Gestational diabetes mellitus (GDM) is a pathological condition, affecting an increasing number of pregnant women worldwide. Safe and effective treatment for GDM is very important for the public health. In this study, we utilized a high-fat diet-induced GDM model to evaluate the effects of LBP on GDM and examined the changes of exosomal microRNA expression profiling to decipher the potential underlying mechanism of LBP. Methods Female C57BL/6J mice were fed a control diet, HFD, or 150 mg/kg LBP-supplemented HFD for 6 weeks before conception and throughout gestation. Oral glucose tolerance test and plasma lipid levels were determined, and liver histopathology was assessed. Sequencing was used to define the microRNA expression profiling of plasma exosomes in the three groups of mice, and protein expression levels of the candidate target genes were analyzed. Results LBP significantly relieved glucose intolerance, abnormal plasma lipid levels, and pathomorphological changes of liver histopathology in HFD-induced GDM mice. Moreover, we found that this effect of LBP was mediated by downregulation of the increase of 6 miRNAs (miR-93-3p, miR-188-5p, miR-466k, miR-1188-5p, miR-7001-3p, and miR-7115-5p) and reversing the increase of the protein expression of CPT1A, which is the target gene of miR-188-5p. Conclusions Our findings provide novel insights into the biological activities of LBP in the treatment of GDM.
Collapse
|
28
|
Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112264. [PMID: 31600561 DOI: 10.1016/j.jep.2019.112264] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/03/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The global problem of diabetes, together with the limited access of large numbers of patients to conventional antidiabetic medicines, continues to drive the search for new agents. Ancient Asian systems such as traditional Chinese medicine, Japanese Kampo medicine, and Indian Ayurvedic medicine, as well as African traditional medicine and many others have identified numerous plants reported anecdotally to treat diabetes; there are probably more than 800 such plants for which there is scientific evidence for their activity, mostly from studies using various models of diabetes in experimental animals. AIM OF THE REVIEW Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward. METHODS In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies. FINDINGS Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes. CONCLUSION The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.
Collapse
Affiliation(s)
- Brian L Furman
- Strathclyde Institute of Pharmacy & Biomedical Sciences, 161, Cathedral Street Glasgow, G4 ORE, Scotland, UK.
| | - Mayuren Candasamy
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Sajesh K Veettil
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Mohamad HE, Asker ME, Keshawy MM, Abdel Aal SM, Mahmoud YK. Infliximab ameliorates tumor necrosis factor-alpha exacerbated renal insulin resistance induced in rats by regulating insulin signaling pathway. Eur J Pharmacol 2020; 872:172959. [PMID: 32004528 DOI: 10.1016/j.ejphar.2020.172959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
Infliximab (IFX), a monoclonal antibody for tumor necrosis factor-alpha (TNF-α), is known to restore blood glucose homeostasis. However, its effects on improving renal insulin resistance (IR) are not yet studied. So we investigate the impact of infliximab on renal insulin signaling pathway in IR rat model regarding to metformin (MET). The induced IR was confirmed by a high oral glucose tolerance test, an elevation of lipid profile and the homeostatic model assessment of insulin resistance 2 (HOMA-IR 2) values. Subsequently, IR rats were concurrently treated with either MET (100 mg/kg/day) or IFX (one dose 5 mg/kg) besides IR and normal control (NC) groups. Four weeks later, IR control rats displayed hyperglycemia, hyperinsulinemia and elevation in HOMA-IR 2, renal function markers and renal tissue TNF-α, interleukins-1β and 6 (Il-1β, IL-6) and suppressor of cytokines signaling 3 (SOCS3) contents as well as glomerulosclerosis when compared to NC group. Additionally, the phosphorylation of renal insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were markedly impaired. Treatment with either MET or IFX significantly improved IR and kidney functions. The effects of the drugs were achieved by the downregulation of renal inflammatory cytokines and SOCS3 levels and the amelioration of the renal IRS1/PI3K/Akt pathway. In conclusion, MET and IFX ameliorated the TNF-α worsening effect on IR in rat renal tissues by regulating insulin signaling. Interestingly, infliximab was superior to metformin in regulating insulin signaling pathway. Therefore, infliximab could be used as an adjuvant therapy in improving renal IR.
Collapse
Affiliation(s)
- Hoda E Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mervat E Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammed M Keshawy
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Ismailia, 41522, Suez Canal University, Egypt
| | - Sara M Abdel Aal
- Department of Histology& Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmin K Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
30
|
Wang J, Yao Y, Liu X, Wang K, Zhou Q, Tang Y. Protective effects of lycium barbarum polysaccharides on blood-retinal barrier via ROCK1 pathway in diabetic rats. Am J Transl Res 2019; 11:6304-6315. [PMID: 31737184 PMCID: PMC6834516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Lycium barbarum polysaccharides (LBP) is commonly known as a traditional Chinese medicine, which has protective effects against diabetic complications in clinic, such as diabetic retinopathy (DR). Previous studies have revealed that Rho/ROCK pathway play an important role in DR development. However, the mechanism between LBP and DR remains unknown. This study aims to explore the clear mechanism of the protective effect of LBP in diabetic retinopathy. In this study, streptozocin (STZ, 45 mg/kg) was administered for diabetic rats modeling. Weight, blood glucose levels and blood lipid were measured to assess the metabolic changes by LBP on diabetic rats. Evans blue (EB) extravasation was determined to assess blood-retinal barrier (BRB) disruption. Hematoxylin and Eosin (HE) staining and immunohistochemistry assay were applied for retina morphology exploration. The membranous disks of retina were examined by transmission electron microscope. Further, high glucose condition was induced in choroidal-retinal endothelial cells (RF/6A). Western blotting was performed for P-Occludin, ROCK1 and P-MLC protein expression. The results indicated that the blood glucose levels, blood lipid and EB infiltration capacity were decreased while the weight was increased in LBP-treated diabetic rats compared with model rats. Moreover, LBP could thicken the overall retina, prevent the disturbance of photoreceptor cell membranous disks and inhibit pathological angiogenesis in diabetes. In addition, the decreased expression of P-Occludin and increased expression of RhoA-associated protein kinase (ROCK) or phosphorylated myosin light chain (P-MLC) were observed in retinal tissue of diabetic rats and high glucose induced by RF/6A cells, which could be rescued by LBP and/or Fasudil. LBP has the protective effects on blood-retinal barrier by regulating the Rho/ROCK signaling pathway in diabetic rats. LBP may be served as a Rho/ROCK inhibitor for the treatment of DR.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| | - Yong Yao
- Department of Ophthalmology, Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Xuezheng Liu
- Department of Anatomy, Jinzhou Medical UniversityJinzhou 121001, Liaoning, China
| | - Kelei Wang
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| | - Qianqian Zhou
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| | - Ying Tang
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| |
Collapse
|
31
|
Ma J, Meng X, Kang SY, Zhang J, Jung HW, Park YK. Regulatory effects of the fruit extract of Lycium chinense and its active compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells. Biomed Pharmacother 2019; 118:109297. [PMID: 31404771 DOI: 10.1016/j.biopha.2019.109297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Our study was conducted to investigate the effects of the fruits of Lycium chinense Mill. (Lycii Fructus, LF) and its bioactive compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells. LF extract and betaine was analyzed by high-performance liquid chromatography (HPLC). The expression of myosin heavy chain (MyHC) and peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α), sirtuin-1(Sirt-1), nuclear respiratory factor-1 (NRF-1), transcription factor A, mitochondrial (TFAM) and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), were determined in cellular or mitochondrial levels by quantitative polymerase chain reaction (qPCR) or Western blot, respectively. The glucose levels and total ATP contents were measured by the glucose consumption in a culture medium, cellular glucose uptake and ATP assays. LF extract at 4 mg/ml and betaine at 2 and 5 mM significantly increased the expression of MyHC in C2C12 myotubes, compared with non-treated cells. LF extract and betaine significantly increased the expression of PGC-1α, Sirt-1, NRF-1 and TFAM mRNA and protein in the myotubes, as well as phosphorylation of AMPK and ACC. Furthermore, LF extract and betaine significantly increased the mitochondrial protein contents, as the TFAM and NRF-1 expressions were increased. LF extract and betaine also significantly increased the glucose uptake and ATP contents in the myotubes. The LF extract contained 3.18% betaine was quantitated by HPLC. LF extract and betaine enhanced muscle differentiation and energy metabolism through the up-regulation of mitochondrial biogenesis-regulating factors, suggesting that LF extract and betaine can help to prevent the dysfunction of skeletal muscle.
Collapse
Affiliation(s)
- Junnan Ma
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Xianglong Meng
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Seok Yong Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, 225001, China.
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| |
Collapse
|
32
|
Liu Q, Han Q, Lu M, Wang H, Tang F. Lycium barbarum polysaccharide attenuates cardiac hypertrophy, inhibits calpain-1 expression and inhibits NF-κB activation in streptozotocin-induced diabetic rats. Exp Ther Med 2019; 18:509-516. [PMID: 31258688 PMCID: PMC6566019 DOI: 10.3892/etm.2019.7612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiac hypertrophy is one of the key structural changes that occurs in diabetic cardiomyopathy. Previous studies have indicated that the activation of NF-κB by calpain-1, a Ca2+-dependent cysteine protease, serves an important role in cardiac hypertrophy. The aim of the present study was to assess the effect of 30 and 60 mg/kg Lycium barbarum polysaccharide (LBP) treatment, the major active ingredient extracted from Lycium barbarum, on cardiac hypertrophy in streptozotocin (STZ) induced diabetic rats. In addition, the present study examined the possible underlying mechanisms of this effect by assessing calpain-1 expression and the NF-κB pathway. The mRNA expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was determined by reverse transcription-quantitative PCR. Western blotting was used to detect the protein expressions of calpain-1, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and toll-like receptor-4 (TLR-4) in the heart tissue. The results revealed that compared with non-diabetic rats, diabetic rats exhibited cardiac hypertrophy. Cardiac hypertrophy was defined by the following: Dysfunction of the cardiac hemodynamics, an increase in the ratios of left ventricular weight/body weight and heart weight/body weight and the increased expressions of ANP and BNP, which serve as hypertrophic markers in cardiac tissue. However, all of these changes were attenuated in diabetic rats treated with LBP. In addition, the protein expression of calpain-1 was increased in the heart tissue of diabetic rats compared with that of non-diabetic rats, where it was inhibited by LBP. LBP also decreased the protein expression of certain inflammatory mediators, IL-6, TNF-α, ICAM-1, VCAM-1 and TLR-4 in diabetic heart tissue. Furthermore, LBP treatment reduced the production of reactive oxygen species, upregulated the protein expression of endothelial nitric oxide synthase and downregulated the protein expression of inducible nitric-oxide synthase. Additionally, LBP increased the protein expression of p65, the subunit of NF-κB and inhibitory protein кB-α in the cytoplasm and reduced p65 expression in the nucleus. In conclusion, LBP improves cardiac hypertrophy, inhibits the expression of calpain-1 and inhibits the activation of NF-κB in diabetic rats.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Qianqian Han
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
33
|
Xia H, Tang H, Wang F, Yang X, Wang Z, Liu H, Pan D, Yang C, Wang S, Sun G. An untargeted metabolomics approach reveals further insights of Lycium barbarum polysaccharides in high fat diet and streptozotocin-induced diabetic rats. Food Res Int 2019; 116:20-29. [PMID: 30716937 DOI: 10.1016/j.foodres.2018.12.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
Abstract
Lycium barbarum polysaccharide (LBP), as one bioactive macromolecular abstracted from goji berry, has shown an abundance of potential function. The present study aimed to evaluate the metabolic effects of LBP on the urine and liver metabolomics on a high-fat diet and streptozotocin-induced diabetic rat model. After 8 weeks of high-fat diet and streptozotocin induction of diabetes, 24 diabetic rats were randomly allocated to the diabetic control (DC) group, LBP low, moderate, and high dosage (LBP-L, LBP-M, LBP-H) groups and 6 non-diabetic rats were established as the non-diabetic control (NDC) group for 30 days' intervention. Metabolomics was performed on liver and urine. LBP positively regulated fasting blood glucose, hemoglobin-A1c, homeostasis model assessment for insulin resistance, liver glycogen and SOD levels significantly, as compared to the DC group. Liver metabolomics showed higher levels of myo-inositol and lower levels of L-malic acid, fumaric acid, D-arabitol, L-allothreonine 1, xylitol, O-phosphorylethanolamine, ribitol, 5-methoxytryptamine 2 and digitoxose 2 in the LBP-H group vs. the DC group, which indicates that LBP may regulate the citrate cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism. Urine metabolomics showed increased levels of creatinine, D-galacturonic acid 2, 2,3-dihydroxybutyric acid and citric acid, and decreased levels of methylmalonic acid, benzoic acid and xylitol between the LBP-H and DC groups. The present study exhibited the effects of LBP on the urine and liver metabolomics in a high-fat diet and streptozotocin-induced rat model, which not only provides a better understanding of the anti-diabetic effects of LBP but also supplies a useful database for further specific mechanism study.
Collapse
Affiliation(s)
- Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Huali Tang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Feng Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhaodan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
34
|
Lycium Barbarum Polysaccharides Improve Retinopathy in Diabetic Sprague-Dawley Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7943212. [PMID: 30581486 PMCID: PMC6276478 DOI: 10.1155/2018/7943212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) has become the most frequent cause of impaired visual acuity and blindness in working-age population in developed countries. Here we use diabetic rats to clarify the role of Lycium barbarum polysaccharides (LBP) on DR. We treated diabetic rats with LBP (400 mg/kg/d or 200 mg/kg/d) orally for 20 weeks. Electroretinogram (ERGs) and Laser Doppler blood flow were measured to assess the retinal function, routine histology and ultrastructural studies were performed to evaluate the morphological alterations, and immunohistochemistry, western blotting, and RT-PCR were conducted to detect the protein and mRNA levels of pro- and antiangiogenic factors. The results showed that diabetes suppressed the amplitudes of a-wave, b-wave, and oscillatory potential in ERG, reduced retinal blood flow, decreased the thickness of the retina, and increased the thickness of basement membrane of the retinal capillary. Furthermore, diabetes increased the mRNA and protein expressions of proangiogenic GFAP and VEGF and suppressed the levels of antiangiogenic PEDG. Treatment with LBP either completely or partially reversed the alterations caused by diabetes. It is concluded that the LBP protects retinal function and morphology in diabetic rats, probably through reinstallation of the balance between proangiogenic and antiangiogenic factors, which reduces neovascularization. LBP could be used as a therapeutic drug for DR.
Collapse
|
35
|
Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chem 2018; 254:377-389. [DOI: 10.1016/j.foodchem.2018.01.176] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/22/2017] [Accepted: 01/29/2018] [Indexed: 01/07/2023]
|
36
|
Lycium barbarum polysaccharide protects diabetic peripheral neuropathy by enhancing autophagy via mTOR/p70S6K inhibition in Streptozotocin-induced diabetic rats. J Chem Neuroanat 2018; 89:37-42. [DOI: 10.1016/j.jchemneu.2017.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022]
|
37
|
Manthey AL, Chiu K, So KF. Demystifying traditional Chinese medicines: Lycium barbarum as a model therapeutic. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The practice of Traditional Chinese Medicine (TCM) focuses on holistic treatment of the body. This often includes preparation and application of medicinal herbs, either alone or in combination with other supplements. Lycium barbarum (LB), for example, is a commonly used herbal supplement in many Asian countries, being most well-known for improving kidney, liver, and eye health. It is also one of the most widely scientifically researched TCMs and a large body of literature is available describing its effects on various tissues and organ systems. In this perspective, we briefly expand upon how LB can be used as a model TCM in the systematic study of other herbal medicines, highlighting two of the primary barriers to their use in modern medicine worldwide.
Collapse
Affiliation(s)
- Abby Leigh Manthey
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kin Chiu
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, P. R. China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kwok-Fai So
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, P. R. China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P. R. China
- Ministry of Education Joint International Research, Laboratory of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
38
|
New Insights into the Mechanisms of Chinese Herbal Products on Diabetes: A Focus on the "Bacteria-Mucosal Immunity-Inflammation-Diabetes" Axis. J Immunol Res 2017; 2017:1813086. [PMID: 29164155 PMCID: PMC5661076 DOI: 10.1155/2017/1813086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes, especially type 2, has been rapidly increasing all over the world. Although many drugs have been developed and used to treat diabetes, side effects and long-term efficacy are of great challenge. Therefore, natural health product and dietary supplements have been of increasing interest alternatively. In this regard, Chinese herbs and herbal products have been considered a rich resource of product development. Although increasing evidence has been produced from various scientific studies, the mechanisms of action are lacking. Here, we have proposed that many herbal monomers and formulae improve glucose homeostasis and diabetes through the BMID axis; B represents gut microbiota, M means mucosal immunity, I represents inflammation, and D represents diabetes. Chinese herbs have been traditionally used to treat diabetes, with minimal side and toxic effects. Here, we reviewed monomers such as berberine, ginsenoside, M. charantia extract, and curcumin and herbal formulae such as Gegen Qinlian Decoction, Danggui Liuhuang Decoction, and Huanglian Wendan Decoction. This review was intended to provide new perspectives and strategies for future diabetes research and product.
Collapse
|
39
|
Manthey AL, Chiu K, So KF. Effects of Lycium barbarum on the Visual System. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:1-27. [PMID: 28807155 DOI: 10.1016/bs.irn.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lycium barbarum (wolfberry, gogi berry, gouqizi, ) is one of the most widely used Chinese herbal medicines (CHMs) and is also one of the most scientifically studied. Indeed, the polysaccharide component of this berry (LBP) has been shown to have antioxidant, antiinflammatory, antiexcitotoxic, and antiapoptotic properties. These properties make it a particularly useful treatment option for the ocular environment. Although there are a handful of studies investigating the use of LBP to treat diseases affecting the lens, the vast majority of the published literature investigating LBP in the visual system focus on the retina. In this chapter, we have described what is currently understood concerning the effects of LBP treatment on various retinal diseases, including glaucoma, ischemia/reperfusion, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. We then describe the functions attributed to LBP using other cellular contexts to elucidate the full mechanisms this CHM utilizes in the retina. By making connections between what is known about the function of LBP in a variety of tissues and its function as a therapy for retinal degenerative diseases, we hope to further emphasize the continued use of this CHM in clinical medicine in addition to providing a platform for additional study.
Collapse
Affiliation(s)
| | - Kin Chiu
- The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | - Kwok-Fai So
- The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration and Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
40
|
Behl T, Kotwani A. Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol 2017; 69:223-235. [DOI: 10.1111/jphp.12683] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/26/2016] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
To explore the various pharmacological actions and the molecular mechanisms behind them by which Chinese herbs tend to lower the risk of developing microvascular diabetic complications in retina and prevent its further progression.
Key findings
Several Chinese herbs, indeed, elicit potent anti-inflammatory, antioxidant, anti-angiogenic, anti-apoptotic, peroxisome proliferator-activated receptor-gamma receptor agonistic, platelet-activating factor antagonistic, aldose reductase inhibitory and various other beneficial pharmacological activities, required to counteract the pathological conditions prevalent in retina during diabetes.
Summary
Chinese herbs can potentially be used for the treatment/prevention of diabetic retinopathy owing to the virtue of numerous properties by which they alleviate several hyperglycaemia-induced pathological occurrences in retina. This would provide a natural and safe therapy for diabetic retinopathy, which currently is clinically limited to destructive techniques like laser photocoagulation and vitrectomy.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|