1
|
Cheng YK, Chiang HS. The interrelationship between intestinal immune cells and enteric α-synuclein in the progression of Parkinson's disease. Neurol Sci 2025:10.1007/s10072-025-08114-w. [PMID: 40085320 DOI: 10.1007/s10072-025-08114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by motor impairment, resulting from the accumulation of α-synuclein and neuronal cell death in the substantia nigra of the midbrain. Emerging evidence suggests that α-synuclein aggregation may originate in the enteric nervous system (ENS) and subsequently propagate to the brain via the vagus nerve. Clinical observations, such as prodromal gastrointestinal dysfunction in PD patients and the increased incidence of PD among individuals with inflammatory bowel disease, support the hypothesis that abnormal intestinal inflammation may contribute to the onset of motor dysfunction and neuropathology in PD. This review examines recent findings on the interplay between intestinal immune cells and α-synuclein aggregation within the framework of gut-originated PD pathogenesis. It begins by discussing evidence linking dysbiosis and intestinal inflammation to α-synuclein aggregation in the ENS. Additionally, it explores the potential role of intestinal immune cells in influencing enteric neurons and α-synuclein aggregation, furthering the understanding of PD development.
Collapse
Affiliation(s)
- Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Cao X, Wu X, Zhao L, Zheng J, Jin X, Hao X, Winderickx J, Liu S, Chen L, Liu B. Maturation and detoxification of synphilin-1 inclusion bodies regulated by sphingolipids. eLife 2025; 12:RP92180. [PMID: 39927758 PMCID: PMC11810108 DOI: 10.7554/elife.92180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Due to proteostasis stress induced by aging or disease, misfolded proteins can form toxic intermediate species of aggregates and eventually mature into less toxic inclusion bodies (IBs). Here, using a yeast imaging-based screen, we identified 84 potential synphilin-1 (SY1) IB regulators and isolated the conserved sphingolipid metabolic components in the most enriched groups. Furthermore, we show that, in both yeast cells and mammalian cells, SY1 IBs are associated with mitochondria. Pharmacological inhibition of the sphingolipid metabolism pathway or knockout of its key genes results in a delayed IB maturation and increased SY1 cytotoxicity. We postulate that SY1 IB matures by association with the mitochondrion membrane, and that sphingolipids stimulate the maturation via their membrane-modulating function and thereby protecting cells from SY1 cytotoxicity. Our findings identify a conserved cellular component essential for IB maturation and suggest a mechanism by which cells may detoxify the pathogenic protein aggregates through forming mitochondrion-associated IBs.
Collapse
Affiliation(s)
- Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Xiang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Lei Zhao
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Ju Zheng
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Functional Biology, KU LeuvenLeuvenBelgium
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | | | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Lihua Chen
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Guangzhou National Laboratory, GuangzhouGuangdongChina
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
4
|
Ngo KJ, Paul KC, Wong D, Kusters CDJ, Bronstein JM, Ritz B, Fogel BL. Lysosomal genes contribute to Parkinson's disease near agriculture with high intensity pesticide use. NPJ Parkinsons Dis 2024; 10:87. [PMID: 38664407 PMCID: PMC11045791 DOI: 10.1038/s41531-024-00703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, develops sporadically, likely through a combination of polygenic and environmental factors. Previous studies associate pesticide exposure and genes involved in lysosomal function with PD risk. We evaluated the frequency of variants in lysosomal function genes among patients from the Parkinson's, Environment, and Genes (PEG) study with ambient pesticide exposure from agricultural sources. 757 PD patients, primarily of White European/non-Hispanic ancestry (75%), were screened for variants in 85 genes using a custom amplicon panel. Variant enrichment was calculated against the Genome Aggregation Database (gnomAD). Enriched exonic variants were prioritized by exposure to a cluster of pesticides used on cotton and severity of disease progression in a subset of 386 patients subdivided by race/ethnicity. Gene enrichment analysis identified 36 variants in 26 genes in PEG PD patients. Twelve of the identified genes (12/26, 46%) had multiple enriched variants and/or a single enriched variant present in multiple individuals, representing 61% (22/36) of the observed variation in the cohort. The majority of enriched variants (26/36, 72%) were found in genes contributing to lysosomal function, particularly autophagy, and were bioinformatically deemed functionally deleterious (31/36, 86%). We conclude that, in this study, variants in genes associated with lysosomal function, notably autophagy, were enriched in PD patients exposed to agricultural pesticides suggesting that altered lysosomal function may generate an underlying susceptibility for developing PD with pesticide exposure. Further study of gene-environment interactions targeting lysosomal function may improve understanding of PD risk in individuals exposed to pesticides.
Collapse
Affiliation(s)
- Kathie J Ngo
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Darice Wong
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cynthia D J Kusters
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Beate Ritz
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Wal P, Wal A, Vig H, Mahmood D, Khan MMU. Potential Applications of Mitochondrial Therapy with a Focus on Parkinson's Disease and Mitochondrial Transplantation. Adv Pharm Bull 2024; 14:147-160. [PMID: 38585467 PMCID: PMC10997929 DOI: 10.34172/apb.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/28/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Both aging and neurodegenerative illnesses are thought to be influenced by mitochondrial malfunction and free radical formation. Deformities of the energy metabolism, mitochondrial genome polymorphisms, nuclear DNA genetic abnormalities associated with mitochondria, modifications of mitochondrial fusion or fission, variations in shape and size, variations in transit, modified mobility of mitochondria, transcription defects, and the emergence of misfolded proteins associated with mitochondria are all linked to Parkinson's disease. Methods This review is a condensed compilation of data from research that has been published between the years of 2014 and 2022, using search engines like Google Scholar, PubMed, and Scopus. Results Mitochondrial transplantation is a one-of-a-kind treatment for mitochondrial diseases and deficits in mitochondrial biogenesis. The replacement of malfunctioning mitochondria with transplanted viable mitochondria using innovative methodologies has shown promising outcomes as a cure for Parkinson's, involving tissue sparing coupled with enhanced energy generation and lower oxidative damage. Numerous mitochondria-targeted therapies, including mitochondrial gene therapy, redox therapy, and others, have been investigated for their effectiveness and potency. Conclusion The development of innovative therapeutics for mitochondria-directed treatments in Parkinson's disease may be aided by optimizing mitochondrial dynamics. Many neurological diseases have been studied in animal and cellular models, and it has been found that mitochondrial maintenance can slow the death of neuronal cells. It has been hypothesized that drug therapies for neurodegenerative diseases that focus on mitochondrial dysfunction will help to delay the onset of neuronal dysfunction.
Collapse
Affiliation(s)
- Pranay Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Ankita Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Himangi Vig
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| |
Collapse
|
6
|
Gonçalves DF, Senger LR, Foletto JVP, Michelotti P, Soares FAA, Dalla Corte CL. Caffeine improves mitochondrial function in PINK1 B9-null mutant Drosophila melanogaster. J Bioenerg Biomembr 2023; 55:1-13. [PMID: 36494592 DOI: 10.1007/s10863-022-09952-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction plays a central role in Parkinson's disease (PD) and can be triggered by xenobiotics and mutations in mitochondrial quality control genes, such as the PINK1 gene. Caffeine has been proposed as a secondary treatment to relieve PD symptoms mainly by its antagonistic effects on adenosine receptors (ARs). Nonetheless, the potential protective effects of caffeine on mitochondrial dysfunction could be a strategy in PD treatment but need further investigation. In this study, we used high-resolution respirometry (HRR) to test caffeine's effects on mitochondrial dysfunction in PINK1B9-null mutants of Drosophila melanogaster. PINK1 loss-of-function induced mitochondrial dysfunction in PINK1B9-null flies observed by a decrease in O2 flux related to oxidative phosphorylation (OXPHOS) and electron transfer system (ETS), respiratory control ratio (RCR) and ATP synthesis compared to control flies. Caffeine treatment improved OXPHOS and ETS in PINKB9-null mutant flies, increasing the mitochondrial O2 flux compared to untreated PINKB9-null mutant flies. Moreover, caffeine treatment increased O2 flux coupled to ATP synthesis and mitochondrial respiratory control ratio (RCR) in PINK 1B9-null mutant flies. The effects of caffeine on respiratory parameters were abolished by rotenone co-treatment, suggesting that caffeine exerts its beneficial effects mainly by stimulating the mitochondrial complex I (CI). In conclusion, we demonstrate that caffeine may improve mitochondrial function by increasing mitochondrial OXPHOS and ETS respiration in the PD model using PINK1 loss-of-function mutant flies.
Collapse
Affiliation(s)
- Débora F Gonçalves
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Leahn R Senger
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - João V P Foletto
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Paula Michelotti
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Félix A A Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil
| | - Cristiane L Dalla Corte
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Camobi, 97105- 900, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Goiran T, Eldeeb MA, Zorca CE, Fon EA. Hallmarks and Molecular Tools for the Study of Mitophagy in Parkinson’s Disease. Cells 2022; 11:cells11132097. [PMID: 35805181 PMCID: PMC9265644 DOI: 10.3390/cells11132097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
The best-known hallmarks of Parkinson’s disease (PD) are the motor deficits that result from the degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic neurons are thought to be particularly susceptible to mitochondrial dysfunction. As such, for their survival, they rely on the elaborate quality control mechanisms that have evolved in mammalian cells to monitor mitochondrial function and eliminate dysfunctional mitochondria. Mitophagy is a specialized type of autophagy that mediates the selective removal of damaged mitochondria from cells, with the net effect of dampening the toxicity arising from these dysfunctional organelles. Despite an increasing understanding of the molecular mechanisms that regulate the removal of damaged mitochondria, the detailed molecular link to PD pathophysiology is still not entirely clear. Herein, we review the fundamental molecular pathways involved in PINK1/Parkin-mediated and receptor-mediated mitophagy, the evidence for the dysfunction of these pathways in PD, and recently-developed state-of-the art assays for measuring mitophagy in vitro and in vivo.
Collapse
|
8
|
Meléndez-Flórez MP, Valbuena DS, Cepeda S, Rangel N, Forero-Castro M, Martínez-Agüero M, Rondón-Lagos M. Profile of Chromosomal Alterations, Chromosomal Instability and Clonal Heterogeneity in Colombian Farmers Exposed to Pesticides. Front Genet 2022; 13:820209. [PMID: 35281828 PMCID: PMC8908452 DOI: 10.3389/fgene.2022.820209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Pesticides are a group of environmental pollutants widely used in agriculture to protect crops, and their indiscriminate use has led to a growing public awareness about the health hazards associated with exposure to these substances. In fact, exposure to pesticides has been associated with an increased risk of developing diseases, including cancer. In a study previously published by us, we observed the induction of specific chromosomal alterations and, in general, the deleterious effect of pesticides on the chromosomes of five individuals exposed to pesticides. Considering the importance of our previous findings and their implications in the identification of cytogenetic biomarkers for the monitoring of exposed populations, we decided to conduct a new study with a greater number of individuals exposed to pesticides. Considering the above, the aim of this study was to evaluate the type and frequency of chromosomal alterations, chromosomal variants, the level of chromosomal instability and the clonal heterogeneity in a group of thirty-four farmers occupationally exposed to pesticides in the town of Simijacá, Colombia, and in a control group of thirty-four unexposed individuals, by using Banding Cytogenetics and Molecular Cytogenetics (Fluorescence in situ hybridization). Our results showed that farmers exposed to pesticides had significantly increased frequencies of chromosomal alterations, chromosomal variants, chromosomal instability and clonal heterogeneity when compared with controls. Our results confirm the results previously reported by us, and indicate that occupational exposure to pesticides induces not only chromosomal instability but also clonal heterogeneity in the somatic cells of people exposed to pesticides. This study constitutes, to our knowledge, the first study that reports clonal heterogeneity associated with occupational exposure to pesticides. Chromosomal instability and clonal heterogeneity, in addition to reflecting the instability of the system, could predispose cells to acquire additional instability and, therefore, to an increased risk of developing diseases.
Collapse
Affiliation(s)
| | - Duvan Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sebastián Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
9
|
Abstract
Parkinson's disease (PD) is characterized by dysfunction of the nigrostriatal system, loss of dopamine neurons and intracellular aggregation of α-synuclein. Recently, both clinical and experimental studies have reported that neuroinflammation and oxidative stress markedly contribute to the etiology of PD. Current clinical pharmacotherapies only temporarily relieve the symptoms of PD, accompanied by many side effects. Hence, searching for natural anti-inflammatory, anti-oxidative and neuroprotective agents has received great attention. Polyunsaturated fatty acids (PUFAs), especially omega (n)-3, are essential lipid nutrients in the human diet and important components of cell membranes. Together by competing with the production of n-6 PUFAs, the precursors of inflammatory mediators, n-3 PUFAs can inhibit microglial activity and neuroinflammation, protect astrocyte function to produce neurotrophins, thereby normalizing neurotransmission and improving neurodegeneration. Thus, with regard to the hypotheses of PD, our and other's recent studies have demonstrated that n-3 PUFAs may improve PD by inhibiting proinflammatory cytokine release, promoting neurotrophic factor expression, recovering mitochondrial function and membrane fluidity, decreasing the levels of oxidant production, maintaining α-synuclein proteostasis, calcium homeostasis, axonal transport, and reducing endoplasmic reticulum stress. This review mainly introduces and analyzes the effect of n-3 PUFA treatments on PD-related behavioral and neuropathological abnormalities in clinical patients and different cellular and animal models of PD. Finally, the limitations and future work in n-3 PUFAs anti-PD area are discussed.
Collapse
Affiliation(s)
- Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, People's Republic of China
- Marine Medicine Research and Development Center of Shenzhen Institutes of Guangdong Ocean University, Shenzhen, People's Republic of China
| |
Collapse
|
10
|
Je G, Arora S, Raithatha S, Barrette R, Valizadeh N, Shah U, Desai D, Deb A, Desai S. Epidemiology of Parkinson's Disease in Rural Gujarat, India. Neuroepidemiology 2021; 55:188-195. [PMID: 33951636 DOI: 10.1159/000515030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In India, there have been only few published studies of Parkinson's disease (PD) showing a wide range of prevalence. We conducted this study to determine the prevalence of PD in the rural population of Gujarat, in the western region of India. METHODS This cross-sectional descriptive study was conducted in the villages of Anand, a district of Gujarat, India, between September 2019 and February 2020. This study used a multistep approach including a screening questionnaire and video recording followed by clinical examination by a neurologist, laboratory evaluation, and brain imaging to evaluate patients with PD. RESULTS A total population of 18,896 was screened. The overall crude prevalence of PD was 42.3 per 100,000, and the prevalence over the age of 60 was 308.9 per 100,000 which showed the trend of increasing disease prevalence with age. Their mean duration of illness was 39.3 ± 27.3 months, and more than half of patients with PD had multiple associated nonmotor symptoms and nearly one-third had comorbid anxiety or depression. Environmental factors are important in the pathogenesis of PD, but there was no clear association between patients with PD and certain variables including consumption of well water, exposure to pesticides or other toxins, smoking cigarettes, and drinking alcohol or coffee in our study. CONCLUSIONS The present study showed the current epidemiological data of PD from Gujarat, in western India. Further studies across different regions in India need to be encouraged for better understanding of PD prevalence in the Indian population.
Collapse
Affiliation(s)
- Goun Je
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Swati Arora
- Department of Extension Programmes, Charutar Arorgya Mandal, Shree Krishna Hospital, Bhaikaka University, Anand, India
| | - Shyamsundar Raithatha
- Department of Extension Programmes, Charutar Arorgya Mandal, Shree Krishna Hospital, Bhaikaka University, Anand, India.,Department of Community Medicine, Charutar Arorgya Mandal, Shree Krishna Hospital and Pramukhswami Medical College, Bhaikaka University, Anand, India
| | - Ryan Barrette
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Navid Valizadeh
- Department of Neurology, HonorHealth John C. Lincoln Medical Center, Phoenix, Arizona, USA
| | - Utkarsh Shah
- Department of Community Medicine, Charutar Arorgya Mandal, Shree Krishna Hospital and Pramukhswami Medical College, Bhaikaka University, Anand, India
| | - Devangi Desai
- Department of Medicine, Charutar Arorgya Mandal, Shree Krishna Hospital and Pramukhswami Medical College, Bhaikaka University, Anand, India
| | - Anindita Deb
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Soaham Desai
- Department of Neurology, Charutar Arorgya Mandal, Shree Krishna Hospital and Pramukhswami Medical College, Bhaikaka University, Anand, India
| |
Collapse
|
11
|
Costa MB, Farias IR, da Silva Monte C, Filho LIPF, de Paula Borges D, de Oliveira RTG, Ribeiro-Junior HL, Magalhães SMM, Pinheiro RF. Chromosomal abnormalities and dysregulated DNA repair gene expression in farmers exposed to pesticides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103564. [PMID: 33326828 DOI: 10.1016/j.etap.2020.103564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Exposure to pesticides is considered a major factor underlying increased risk of hematological disorders in agricultural workers due to its carcinogenic potential. However, genotoxic impact of pesticides in DNA integrity of bone marrow stem cells (BMSC) of farmers exposed is not yet well known. We evaluated presence of chromosomal abnormalities (CA) and mRNA expression of DNA repair targets (ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6, LIG4, CSA, CSB, XPA, XPC, XPG) in 90 bone marrow samples of farmers divided into three groups: commercial farming (CF), family farming (FF) and organic farming (OF). Our results showed that farmers in CF (72.7 %) and FF (27.3 %) groups had significantly higher values of CA when compared to OF group (0.0 %; p = 0.003). CF showed lower XPG (p = 0.008), CSA (p < 0.001), ATM (p = 0.036) and LIG4 (p = 0.004) mRNA expression than OF. FF presented lower XPG (p = 0.012) and LIG4 (p = 0.004) expression than OF. CF + FF individual with ≥12 years of exposure to pesticides showed decreased mRNA expression of XPC (p = 0.001), XPG (p = 0.010), CSB (p = 0.05), ATM (p = 0.030) and LIG4 (p = 0.044) than those who have been exposed for <12 years. CF + FF with CA showed a lower expression of BRCA2 when compared to CF + FF group without CA (p = 0.007). These results highlight that genotoxic exposure to pesticides negatively affects expression profile of important DNA repair genes in BMSC, favoring irreparable chromosomal lesions.
Collapse
Affiliation(s)
- Marilia Braga Costa
- Post-Graduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil; Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Izabelle Rocha Farias
- Post-Graduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil; Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiane da Silva Monte
- Post-Graduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil; Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Luiz Ivando Pires Ferreira Filho
- Post-Graduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil; Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Daniela de Paula Borges
- Post-Graduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil; Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Taiane Germano de Oliveira
- Post-Graduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil; Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Howard Lopes Ribeiro-Junior
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil; Post-Graduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Post-Graduate Program in Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil; Clinical Medicine Department, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil; Clinical Medicine Department, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Post-Graduate Program in Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
12
|
Pokusa M, Hajdúchová D, Menichová V, Evinová A, Hatoková Z, Kráľová-Trančíková A. Vulnerability of subcellular structures to pathogenesis induced by rotenone in SH-SY5Y cells. Physiol Res 2021; 70:89-99. [PMID: 33453717 DOI: 10.33549/physiolres.934477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Numerous pathological changes of subcellular structures are characteristic hallmarks of neurodegeneration. The main research has focused to mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomal networks as well as microtubular system of the cell. The sequence of specific organelle damage during pathogenesis has not been answered yet. Exposition to rotenone is used for simulation of neurodegenerative changes in SH-SY5Y cells, which are widely used for in vitro modelling of Parkinson´s disease pathogenesis. Intracellular effects were investigated in time points from 0 to 24 h by confocal microscopy and biochemical analyses. Analysis of fluorescent images identified the sensitivity of organelles towards rotenone in this order: microtubular cytoskeleton, mitochondrial network, endoplasmic reticulum, Golgi apparatus and lysosomal network. All observed morphological changes of intracellular compartments were identified before alphaS protein accumulation. Therefore, their potential as an early diagnostic marker is of interest. Understanding of subcellular sensitivity in initial stages of neurodegeneration is crucial for designing new approaches and a management of neurodegenerative disorders.
Collapse
Affiliation(s)
- M Pokusa
- Biomedical Center Martin, Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Wang B, Liu X, Xu S, Liu Z, Zhu Y, Zhang X, Xu R. Sporadic Parkinson's Disease Potential Risk Loci Identified in Han Ancestry of Chinese Mainland. Front Aging Neurosci 2021; 12:603793. [PMID: 33510632 PMCID: PMC7835639 DOI: 10.3389/fnagi.2020.603793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Recent investigations demonstrated that genetic factors might play an important role in sporadic Parkinson's disease (sPD). To clarify the specific loci susceptibility to sPD, we analyze the relationship between 30 candidate single nucleotide polymorphisms (SNPs) and sPD in the population of Han ancestry from Chinese mainland (HACM) by using genome-wide association study, sequenom massARRAY, DNA sequence, and biological information analysis. Results showed that the subjects carrying the T allele of rs863108 and rs28499371 exhibited a decreased risk for sPD. The subjects carrying the T allele of rs80315856 exhibited an increased risk for sPD. The A/T genotype of rs863108 and the C/T genotype of rs28499371 were a potential increased risk for sPD, and the G/T genotype of rs80315856 and T/T genotype of rs2270568 were a potential decreased risk for sPD. The minor allele frequency (MAF) of rs80315856 and rs2270568 was higher in sPD. The T allele of rs80315856 and rs2270568 might be a risk locus for sPD. Our data suggested that the alteration of these SNPs might play some roles through changing/affecting LINC01524/LOC105372666, DMRT2/SMARCA2, PLEKHN1, and FLJ23172/FNDC3B genes in the pathogenesis of sPD.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Liu
- Department of Neurology, Jiangxi Provincial People's Hospital, The Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Shengyuan Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Zheng Liu
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, The Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Xiong Zhang
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurology, Jiangxi Provincial People's Hospital, The Affiliated People's Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Currim F, Singh J, Shinde A, Gohel D, Roy M, Singh K, Shukla S, Mane M, Vasiyani H, Singh R. Exosome Release Is Modulated by the Mitochondrial-Lysosomal Crosstalk in Parkinson's Disease Stress Conditions. Mol Neurobiol 2021; 58:1819-1833. [PMID: 33404982 DOI: 10.1007/s12035-020-02243-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta region of the brain. The main pathological hallmark involves cytoplasmic inclusions of α-synuclein and mitochondrial dysfunction, which is observed in other part of the central nervous system other than SN suggesting the spread of pathogenesis to bystander neurons. The inter-neuronal communication through exosomes may play an important role in the spread of the disease; however, the mechanisms are not well elucidated. Mitochondria and its role in inter-organellar crosstalk with multivesicular body (MVB) and lysosome and its role in modulation of exosome release in PD is not well understood. In the current study, we investigated the mitochondria-lysosome crosstalk modulating the exosome release in neuronal and glial cells. We observed that PD stress showed enhanced release of exosomes in dopaminergic neurons and glial cells. The PD stress condition in these cells showed fragmented network and mitochondrial dysfunction which further leads to functional deficit of lysosomes and hence inhibition of autophagy flux. Neuronal and glial cells treated with rapamycin showed enhanced autophagy and inhibited the exosomal release. The results here suggest that maintenance of mitochondrial function is important for the lysosomal function and hence exosomal release which is important for the pathogenesis of PD.
Collapse
Affiliation(s)
- Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
15
|
Rare VPS35 A320V Variant in Taiwanese Parkinson's Disease Indicates Disrupted CI-MPR Sorting and Impaired Mitochondrial Morphology. Brain Sci 2020; 10:brainsci10110783. [PMID: 33120894 PMCID: PMC7692537 DOI: 10.3390/brainsci10110783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
Sequence variants in vacuolar protein sorting 35 (VPS35) have been reported to be associated with Parkinson’s disease (PD). To investigate if the genetic variants in VPS35 contribute to Taiwanese PD, VPS35 cDNA fragments from 62 patients with PD were sequenced. A cohort of PD (n = 560) and ethnically matched controls (n = 506) were further examined for the identified mutation. The effects of the mutation on cation-independent mannose-6-phosphate receptor (CI-MPR) sorting and mitochondrial morphology were further examined in 293T cells expressing the mutant VPS35. Here, a novel heterozygous A320V in the VPS35 gene was identified in two late-onset PD (LOPD) patients, which was absent in 506 normal controls. Expression of the A320V mutant in 293T cells demonstrated increased colocalization of VPS35 with CI-MPR and decreased CI-MPR and lysosomal-associated membrane protein 2 (LAMP2) levels. Decreased CI-MPR manifested in missorting of cathepsin D and decreased proteolysis of α-synuclein. A320V mutation also increased mitochondrial E3 ubiquitin protein ligase 1 (MUL1) and thus led to mitofusin 2 (MFN2) degradation. The results suggest that the expression of VPS35 A320V leads to disrupted CI-MPR sorting and impaired mitochondrial morphology, which may partly explain its action in PD.
Collapse
|
16
|
Parkinson's Disease-Induced Zebrafish Models: Focussing on Oxidative Stress Implications and Sleep Processes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1370837. [PMID: 32908622 PMCID: PMC7450359 DOI: 10.1155/2020/1370837] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The complex yet not fully understood pathophysiology of Parkinson's disease includes an important molecular component consisting of oxidative status changes, thus leading to oxidative stress occurrence. While no particular evidence has been reported that describes the relationship between oxidative stress and the molecular mechanisms behind Parkinson's disease development, animal model studies has shown that oxidative stress induction could modulate Parkinson's disease symptomatology. Despite the inability to perfectly replicate human disease in animals and despite that Parkinson's disease has not been reported in any animal species, animal modeling is one of the most important tools in understanding the complex mechanisms of human disorders. In this way, this study is aimed at detailing this particular relationship and describing the molecular mechanisms underlying Parkinson's disease in animal models, focusing on the potential advantages and disadvantages of zebrafish in this context. The information relevant to this topic was gathered using major scientific database research (PubMed, Google Scholar, Web of Science, and Scopus) based on related keywords and inclusion criteria. Thus, it was observed that oxidative stress possesses an important role in Parkinson's disease as shown by numerous animal model studies, many of which are based on rodent experimental models. However, an emerging impact of the zebrafish model was observed in the research of Parkinson's disease pathological mechanisms with regard to disease development factors and the cause-effect relationship between oxidative stress and comorbidities (such as depression, hyposmia, fatigue, sleep disturbances, and cognitive deficits) and also with regard to the pharmacological potential of antioxidant molecules in Parkinson's disease treatment.
Collapse
|
17
|
Pungpapong V, Zhang M, Zhang D. Integrating Biological Knowledge Into Case-Control Analysis Through Iterated Conditional Modes/Medians Algorithm. J Comput Biol 2020; 27:1171-1179. [PMID: 31692371 PMCID: PMC7398431 DOI: 10.1089/cmb.2019.0319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Logistic regression is an effective tool in case-control analysis. With the advanced high throughput technology, a quest to seek a fast and efficient method in fitting high-dimensional logistic regression has gained much interest. An empirical Bayes model for logistic regression is considered in this article. A spike-and-slab prior is used for variable selection purpose, which plays a vital role in building an effective predictive model while making model interpretable. To increase the power of variable selection, we incorporate biological knowledge through the Ising prior. The development of the iterated conditional modes/medians (ICM/M) algorithm is proposed to fit the logistic model that has computational advantage over Markov Chain Monte Carlo (MCMC) algorithms. The implementation of the ICM/M algorithm for both linear and logistic models can be found in R package icmm that is freely available on Comprehensive R Archive Network (CRAN). Simulation studies were carried out to assess the performances of our method, with lasso and adaptive lasso as benchmark. Overall, the simulation studies show that the ICM/M outperform the others in terms of number of false positives and have competitive predictive ability. An application to a real data set from Parkinson's disease study was also carried out for illustration. To identify important variables, our approach provides flexibility to select variables based on local posterior probabilities while controlling false discovery rate at a desired level rather than relying only on regression coefficients.
Collapse
Affiliation(s)
- Vitara Pungpapong
- Department of Statistics, Faculty of Commerce and Accountancy, Chulalongkorn University, Bangkok, Thailand
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, USA
| | - Dabao Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
De Miranda BR, Greenamyre JT. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:543-554. [PMID: 31996877 PMCID: PMC7941732 DOI: 10.1039/c9em00578a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organic solvents are common chemicals used in industry throughout the world, however, there is evidence for adverse health effects from exposure to these compounds. Trichloroethylene (TCE) is a halogenated solvent that has been used as a degreasing agent since the early 20th century. Due to its widespread use, TCE remains one of the most significant environmental contaminants in the US, and extensive research suggests TCE is a causative factor in a number of diseases, including cancer, fetal cardiac development, and neurotoxicity. TCE has also been implicated as a possible risk factor in the development of the most common neurodegenerative movement disorder, Parkinson's disease (PD). However, there is variable concordance across multiple occupational epidemiological studies assessing TCE (or solvent) exposure and risk for PD. In addition, there remains a degree of uncertainty about how TCE elicits toxicity to the dopaminergic system. To this end, we review the specific neurotoxic mechanisms of TCE in the context of selective vulnerability of dopaminergic neurons. In addition, we consider the complexity of combined risk factors that ultimately contribute to neurodegeneration and discuss the limitations of single-factor exposure assessments.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST-7045, Pittsburgh, 15260, Pennsylvania, USA.
| | | |
Collapse
|
19
|
Xenobiotics, Trace Metals and Genetics in the Pathogenesis of Tauopathies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041269. [PMID: 32079163 PMCID: PMC7068520 DOI: 10.3390/ijerph17041269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
Tauopathies are a disease group characterized by either pathological accumulation or release of fragments of hyperphosphorylated tau proteins originating from the central nervous system. The tau hypotheses of Parkinson’s and Alzheimer’s diseases contain a clinically diverse spectrum of tauopathies. Studies of case records of various tauopathies may reveal clinical phenotype characteristics of the disease. In addition, improved understanding of different tauopathies would disclose environmental factors, such as xenobiotics and trace metals, that can precipitate or modify the progression of the disorder. Important for diagnostics and monitoring of these disorders is a further development of adequate biomarkers, including refined neuroimaging, or proteomics. Our goal is to provide an in-depth review of the current literature regarding the pathophysiological roles of tau proteins and the pathogenic factors leading to various tauopathies, with the perspective of future advances in potential therapeutic strategies.
Collapse
|
20
|
Oluwole OG, Kuivaniemi H, Abrahams S, Haylett WL, Vorster AA, van Heerden CJ, Kenyon CP, Tabb DL, Fawale MB, Sunmonu TA, Ajose A, Olaogun MO, Rossouw AC, van Hillegondsberg LS, Carr J, Ross OA, Komolafe MA, Tromp G, Bardien S. Targeted next-generation sequencing identifies novel variants in candidate genes for Parkinson's disease in Black South African and Nigerian patients. BMC MEDICAL GENETICS 2020; 21:23. [PMID: 32019516 PMCID: PMC7001245 DOI: 10.1186/s12881-020-0953-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of Parkinson's disease (PD) is increasing in sub-Saharan Africa, but little is known about the genetics of PD in these populations. Due to their unique ancestry and diversity, sub-Saharan African populations have the potential to reveal novel insights into the pathobiology of PD. In this study, we aimed to characterise the genetic variation in known and novel PD genes in a group of Black South African and Nigerian patients. METHODS We recruited 33 Black South African and 14 Nigerian PD patients, and screened them for sequence variants in 751 genes using an Ion AmpliSeq™ Neurological Research panel. We used bcftools to filter variants and annovar software for the annotation. Rare variants were prioritised using MetaLR and MetaSVM prediction scores. The effect of a variant on ATP13A2's protein structure was investigated by molecular modelling. RESULTS We identified 14,655 rare variants with a minor allele frequency ≤ 0.01, which included 2448 missense variants. Notably, no common pathogenic mutations were identified in these patients. Also, none of the known PD-associated mutations were found highlighting the need for more studies in African populations. Altogether, 54 rare variants in 42 genes were considered deleterious and were prioritized, based on MetaLR and MetaSVM scores, for follow-up studies. Protein modelling showed that the S1004R variant in ATP13A2 possibly alters the conformation of the protein. CONCLUSIONS We identified several rare variants predicted to be deleterious in sub-Saharan Africa PD patients; however, further studies are required to determine the biological effects of these variants and their possible role in PD. Studies such as these are important to elucidate the genetic aetiology of this disorder in patients of African ancestry.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - William L Haylett
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alvera A Vorster
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Carel J van Heerden
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Colin P Kenyon
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - David L Tabb
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Michael B Fawale
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Taofiki A Sunmonu
- Neurology Unit, Department of Medicine, Federal Medical Centre, Owo, Nigeria
| | - Abiodun Ajose
- Department of Chemical Pathology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Matthew O Olaogun
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Anastasia C Rossouw
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, Walter Sisulu University, East London, South Africa
| | - Ludo S van Hillegondsberg
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, Walter Sisulu University, East London, South Africa
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Clinical Genomics, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Morenikeji A Komolafe
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa.
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa.
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
21
|
Sergi D, Renaud J, Simola N, Martinoli MG. Diabetes, a Contemporary Risk for Parkinson's Disease: Epidemiological and Cellular Evidences. Front Aging Neurosci 2019; 11:302. [PMID: 31787891 PMCID: PMC6856011 DOI: 10.3389/fnagi.2019.00302] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM), a group of diseases characterized by defective glucose metabolism, is the most widespread metabolic disorder affecting over 400 million adults worldwide. This pathological condition has been implicated in the pathogenesis of a number of central encephalopathies and peripheral neuropathies. In further support of this notion, recent epidemiological evidence suggests a link between DM and Parkinson’s disease (PD), with hyperglycemia emerging as one of the culprits in neurodegeneration involving the nigrostriatal pathway, the neuroanatomical substrate of the motor symptoms affecting parkinsonian patients. Indeed, dopaminergic neurons located in the mesencephalic substantia nigra appear to be particularly vulnerable to oxidative stress and degeneration, likely because of their intrinsic susceptibility to mitochondrial dysfunction, which may represent a direct consequence of hyperglycemia and hyperglycemia-induced oxidative stress. Other pathological pathways induced by increased intracellular glucose levels, including the polyol and the hexosamine pathway as well as the formation of advanced glycation end-products, may all play a pivotal role in mediating the detrimental effects of hyperglycemia on nigral dopaminergic neurons. In this review article, we will examine the epidemiological as well as the molecular and cellular clues supporting the potential susceptibility of nigrostriatal dopaminergic neurons to hyperglycemia.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, QC, Canada
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute for Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval and CHU Research Center, Québec, QC, Canada
| |
Collapse
|
22
|
Hartmann CJ, Fliegen S, Groiss SJ, Wojtecki L, Schnitzler A. An update on best practice of deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord 2019; 12:1756286419838096. [PMID: 30944587 PMCID: PMC6440024 DOI: 10.1177/1756286419838096] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
During the last 30 years, deep brain stimulation (DBS) has evolved into the clinical standard of care as a highly effective treatment for advanced Parkinson’s disease. Careful patient selection, an individualized anatomical target localization and meticulous evaluation of stimulation parameters for chronic DBS are crucial requirements to achieve optimal results. Current hardware-related advances allow for a more focused, individualized stimulation and hence may help to achieve optimal clinical results. However, current advances also increase the degrees of freedom for DBS programming and therefore challenge the skills of healthcare providers. This review gives an overview of the clinical effects of DBS, the criteria for patient, target, and device selection, and finally, offers strategies for a structured programming approach.
Collapse
Affiliation(s)
- Christian J Hartmann
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sabine Fliegen
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan J Groiss
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Daneshpour MS, Hedayati M, Sedaghati-Khayat B, Guity K, Zarkesh M, Akbarzadeh M, Javanrooh N, Zadeh-Vakili A, Azizi F. Genetic Identification for Non-Communicable Disease: Findings from 20 Years of the Tehran Lipid and Glucose Study. Int J Endocrinol Metab 2018; 16:e84744. [PMID: 30584432 PMCID: PMC6289296 DOI: 10.5812/ijem.84744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Tehran Lipid and Glucose Study (TLGS), a longitudinal family based cohort study, is the oldest and largest longitudinal family based study in Iran, aimed at investigating effects of environmental, social and biological factors on the health of Tehranians over time. Considering the importance of genetic studies in this aspect, here we present a summary of the important genetic findings, and the potentiality of their contributions to future related projects. EVIDENCE ACQUISITION For all related studies during the past 20 years the search sources were all prominent search engines such as PubMed, Scopus, and Google Scholar with the most proper Medical Subject Headings (MeSH). RESULTS This review summarizes associations of 6 binary phenotypes and 17 quantitative traits with genetic markers in 26 genes. Of the 47 genetic markers, studied most were related to cardio metabolic risk factors. Results of heritability and linkage analysis were also collected and the highest heritability was found to be related to HDL-C (0.5). CONCLUSION Considering the opportunity provided by large-scale cohort studies to investigate molecular effects of genetic variants on causality and different omics' data, genetic studies conducted on TLGS population have had a remarkable success in identifying genetic variants that facilitating a unique genetic database on Iranian populations. The results of genome wide association studies in this population are currently facilitating investigations to define the Iranian genetic differences with other population.
Collapse
Affiliation(s)
- Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Sedaghati-Khayat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Guity
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Javanrooh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P. O. Box: 19195-4763, Tehran, Iran. Tel: +98-2122432500, Fax: +98-2122416264,
| |
Collapse
|
24
|
Park JS, Davis RL, Sue CM. Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr Neurol Neurosci Rep 2018; 18:21. [PMID: 29616350 PMCID: PMC5882770 DOI: 10.1007/s11910-018-0829-3] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of Review Parkinson’s disease (PD) is a complex neurodegenerative disorder, the aetiology of which is still largely unknown. Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in PD pathophysiology. Here we review recent developments around mitochondrial dysfunction in familial and sporadic PD, with a brief overview of emerging therapies targeting mitochondrial dysfunction. Recent Findings Increasing evidence supports the critical role for mitochondrial dysfunction in the development of sporadic PD, while the involvement of familial PD-related genes in the regulation of mitochondrial biology has been expanded by the discovery of new mitochondria-associated disease loci and the identification of their novel functions. Summary Recent research has expanded knowledge on the mechanistic details underlying mitochondrial dysfunction in PD, with the discovery of new therapeutic targets providing invaluable insights into the essential role of mitochondria in PD pathogenesis and unique opportunities for drug development.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School-Northern, University of Sydney, St. Leonards, Sydney, NSW, 2065, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School-Northern, University of Sydney, St. Leonards, Sydney, NSW, 2065, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia. .,Sydney Medical School-Northern, University of Sydney, St. Leonards, Sydney, NSW, 2065, Australia. .,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia.
| |
Collapse
|
25
|
Hematological Abnormality, Oxidative Stress, and Genotoxicity Induction in the Greenhouse Pesticide Sprayers; Investigating the Role of NQO1 Gene Polymorphism. TOXICS 2018; 6:toxics6010013. [PMID: 29414880 PMCID: PMC5874786 DOI: 10.3390/toxics6010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/24/2023]
Abstract
The widespread use of pesticides in agriculture represents a threat to the human populations exposed to them. In this cross-sectional study, the hematological and biochemical parameters, plasma cholinesterase (PChE) activity, oxidative stress, genotoxicity, and NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism were measured in 100 greenhouse workers occupationally exposed to pesticide mixture and 104 normal healthy controls. There was a decrease in erythrocytes (5.45%, p = 0.026) and hemoglobin (3.26%, p = 0.025), and an increase in mean corpuscular hemoglobin (3.54%, p = 0.013) in the exposed workers. Sprayers showed a reduction in PChE (23%) and GSH (50%) levels, and an increase in lipid peroxidation (LPO) (55%), protein carbonyl (145%), Superoxide dismutase activity (61%), and total antioxidant capacity (35%) (p < 0.001 for all parameters but LPO: p = 0.009). Genotoxicity parameters were significantly high in the exposed cases (for all parameters: p < 0.001 but tail length: p = 0.002). There was a significant correlation between oxidative stress and genotoxicity parameters, and also between these biomarkers and PChE activity. The NQO1 C609T polymorphism was not significantly associated with studied biomarkers. The findings indicate that occupational exposure to a mixture of pesticides can induce hematotoxicity, oxidative stress, and genotoxicity in greenhouse workers.
Collapse
|
26
|
Cheng YH, Chou WC, Yang YF, Huang CW, How CM, Chen SC, Chen WY, Hsieh NH, Lin YJ, You SH, Liao CM. PBPK/PD assessment for Parkinson's disease risk posed by airborne pesticide paraquat exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5359-5368. [PMID: 29209972 DOI: 10.1007/s11356-017-0875-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Exposure to several specific pesticides has led to an increase of Parkinson's disease (PD) risk. However, it is difficult to quantify the PD population risk related to certain pesticides in regions where environmental exposure data are scarce. Furthermore, the time trend of the prevalence and incidence of PD embedded in the background relationship between PD risk and pesticide exposures has not been well characterized. It has been convincingly identified that a key pesticide associated significantly with an increased risk trend of PD is paraquat (PQ). Here, we present a novel, probabilistic population-based exposure-response approach to quantify the contribution from PQ exposure to prevalence risk of PD. We found that the largest PQ exposure contributions occurred in its positive trend during 2004-2011, with the PQ contributing nearly 21 and 24%, respectively, to the PD prevalence rates among the age groups of 70-79 and ≥ 80 years in Taiwan. We also employed the present population risk model to predict the PQ-induced PD prevalence based on the projected rates of increase in PQ exposure associated with age-specific population. The predicted outcome can be used as an early warning signal for public health authorities. We suggest that a mechanistic understanding of the contribution of a specific pesticide exposure to PD risk trends is crucial to enhance our insights into the perspective on the impacts of environmental exposure on the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Wei-Chun Chou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053, Taiwan, Republic of China
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan, Republic of China
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, Republic of China
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | - Shu-Han You
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053, Taiwan, Republic of China
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
27
|
Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 2018; 64:240-255. [PMID: 28595911 PMCID: PMC5736468 DOI: 10.1016/j.neuro.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse. This unique PD model recapitulates key features of the disease including progressive neurobehavioral changes and neuronal degeneration. We exposed MitoPark mice to a low dose of Mn (10mg/kg, p.o.) daily for 4 weeks starting at age 8 wks and then determined the behavioral, neurochemical and histological changes. Mn exposure accelerated the rate of progression of motor deficits in MitoPark mice when compared to the untreated MitoPark group. Mn also worsened olfactory function in this model. Most importantly, Mn exposure intensified the depletion of striatal dopamine and nigral TH neuronal loss in MitoPark mice. The neurodegenerative changes were accompanied by enhanced oxidative damage in the striatum and substantia nigra (SN) of MitoPark mice treated with Mn. Furthermore, Mn-treated MitoPark mice had significantly more oligomeric protein and IBA-1-immunoreactive microglia cells, suggesting Mn augments neuroinflammatory processes in the nigrostriatal pathway. To further confirm the direct effect of Mn on impaired mitochondrial function, we also generated a mitochondrially defective dopaminergic cell model by knocking out the TFAM transcription factor by using a CRISPR-Cas9 gene-editing method. Seahorse mitochondrial bioenergetic analysis revealed that Mn decreases mitochondrial basal and ATP-linked respiration in the TFAM KO cells. Collectively, our results reveal that Mn can augment mitochondrial dysfunction to exacerbate nigrostriatal neurodegeneration and PD-related behavioral symptoms. Our study also demonstrates that the MitoPark mouse is an excellent model to study the gene-environment interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the contribution of potential environmental toxicant interactions in a slowly progressive model of Parkinsonism.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
28
|
Lu JYD, Su P, Barber JEM, Nash JE, Le AD, Liu F, Wong AHC. The neuroprotective effect of nicotine in Parkinson's disease models is associated with inhibiting PARP-1 and caspase-3 cleavage. PeerJ 2017; 5:e3933. [PMID: 29062606 PMCID: PMC5651169 DOI: 10.7717/peerj.3933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022] Open
Abstract
Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD), but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP+) to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR) agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP+. Blocking α7 nAChR with methyllycaconitine (MLA) prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose) polymerase-1 (PARP-1) and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA) lesioned mice and in MPP+-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.
Collapse
Affiliation(s)
- Justin Y D Lu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James E M Barber
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Joanne E Nash
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Anh D Le
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Schlossmacher MG, Tomlinson JJ, Santos G, Shutinoski B, Brown EG, Manuel D, Mestre T. Modelling idiopathic Parkinson disease as a complex illness can inform incidence rate in healthy adults: the P R EDIGT score. Eur J Neurosci 2017; 45:175-191. [PMID: 27859866 PMCID: PMC5324667 DOI: 10.1111/ejn.13476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/16/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
Fifty-five years after the concept of dopamine replacement therapy was introduced, Parkinson disease (PD) remains an incurable neurological disorder. To date, no disease-modifying therapeutic has been approved. The inability to predict PD incidence risk in healthy adults is seen as a limitation in drug development, because by the time of clinical diagnosis ≥ 60% of dopamine neurons have been lost. We have designed an incidence prediction model founded on the concept that the pathogenesis of PD is similar to that of many disorders observed in ageing humans, i.e. a complex, multifactorial disease. Our model considers five factors to determine cumulative incidence rates for PD in healthy adults: (i) DNA variants that alter susceptibility (D), e.g. carrying a LRRK2 or GBA risk allele; (ii) Exposure history to select environmental factors including xenobiotics (E); (iii) Gene-environment interactions that initiate pathological tissue responses (I), e.g. a rise in ROS levels, misprocessing of amyloidogenic proteins (foremost, α-synuclein) and dysregulated inflammation; (iv) sex (or gender; G); and importantly, (v) time (T) encompassing ageing-related changes, latency of illness and propagation of disease. We propose that cumulative incidence rates for PD (PR ) can be calculated in healthy adults, using the formula: PR (%) = (E + D + I) × G × T. Here, we demonstrate six case scenarios leading to young-onset parkinsonism (n = 3) and late-onset PD (n = 3). Further development and validation of this prediction model and its scoring system promise to improve subject recruitment in future intervention trials. Such efforts will be aimed at disease prevention through targeted selection of healthy individuals with a higher prediction score for developing PD in the future and at disease modification in subjects that already manifest prodromal signs.
Collapse
Affiliation(s)
- Michael G. Schlossmacher
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- Division of NeurologyDepartment of MedicineThe Ottawa HospitalOttawaCanada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
- Faculty of MedicineUniversity of OttawaOttawaCanada
| | - Julianna J. Tomlinson
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
| | | | - Bojan Shutinoski
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
| | - Earl G. Brown
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- Faculty of MedicineUniversity of OttawaOttawaCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Douglas Manuel
- Faculty of MedicineUniversity of OttawaOttawaCanada
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaCanada
| | - Tiago Mestre
- Neuroscience ProgramOttawa Hospital Research Institute451 Smyth RoadRGH #1414OttawaONK1H 8M5Canada
- Division of NeurologyDepartment of MedicineThe Ottawa HospitalOttawaCanada
- University of Ottawa Brain & Mind Research InstituteOttawaCanada
- Faculty of MedicineUniversity of OttawaOttawaCanada
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaCanada
| |
Collapse
|
30
|
Guan Q, Wang X, Jiang Y, Zhao L, Nie Z, Jin L. RNA-Seq Expression Analysis of Enteric Neuron Cells with Rotenone Treatment and Prediction of Regulated Pathways. Neurochem Res 2016; 42:572-582. [PMID: 27900601 DOI: 10.1007/s11064-016-2112-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
Abstract
The enteric nervous system (ENS) is involved in the initiation and development of the pathological process of Parkinson's disease (PD). The effect of rotenone on the ENS may trigger the progression of PD through the central nervous system (CNS). In this study, we used RNA-sequencing (RNA-seq) analysis to examine differential expression genes (DEGs) and pathways induced by in vitro treatment of rotenone in the enteric nervous cells isolated from rats. We identified 45 up-regulated and 30 down-regulated genes. The functional categorization revealed that the DEGs were involved in the regulation of cell differentiation and development, response to various stimuli, and regulation of neurogenesis. In addition, the pathway and network analysis showed that the Mitogen Activated Protein Kinase (MAPK), Toll-like receptor, Wnt, and Ras signaling pathways were intensively involved in the effect of rotenone on the ENS. Additionally, the quantitative real-time polymerase chain reaction result for the selected seven DEGs matched those of the RNA-seq analysis. Our results present a significant step in the identification of DEGs and provide new insight into the progression of PD in the rotenone-induced model.
Collapse
Affiliation(s)
- Qiang Guan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanyan Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Lijuan Zhao
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Zhiyu Nie
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Lingjing Jin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|