1
|
Alcover S, López S, Ramos-Regalado L, Muñoz-García N, Gallinat A, Suades R, Badimon L, Vilahur G. Cardioprotection During Myocardial Infarction in Diabetic Cardiomyopathy. Diabetes 2025; 74:1021-1032. [PMID: 40080393 PMCID: PMC12097457 DOI: 10.2337/db24-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Patients with diabetes are at an increased risk of diabetic cardiomyopathy (DCM) and acute myocardial infarction (AMI). Protecting the heart against AMI is more challenging in DCM than in nondiabetic hearts. We investigated whether intravenous (i.v.) atorvastatin administration during AMI exerts cardioprotection in DCM as seen in nondiabetic hearts. Sprague-Dawley rats were divided into streptozotocin-induced DCM and normoglycemic control groups. Our model of DCM rats exhibited interstitial fibrosis and cardiac dysfunction at 5 weeks. At this time point, all animals underwent AMI induction (coronary ligation for 45 min), receiving i.v. atorvastatin or vehicle during ischemia. Animals were reperfused and sacrificed 24 h later for myocardial infarct size analysis and cardiac tissue sampling. Echocardiography was performed. DCM vehicle rats had larger infarcts than normoglycemic vehicle-treated animals at a comparable area-at-risk. Intravenous atorvastatin reduced infarct size and preserved systolic function in both groups. Compared with vehicle animals, i.v. atorvastatin inhibited RhoA membrane translocation, induced AMPK phosphorylation, prevented apoptosis execution, and improved cardiac remodelling in the infarcted heart of both groups, whereas innate immune cell infiltration was further reduced in i.v. atorvastatin-treated DCM animals. The proven cardioprotective effectiveness of this i.v. statin formulation in the presence of DCM warrants its further development into a clinically therapeutic option. ARTICLE HIGHLIGHTS Diabetic cardiomyopathy (DCM) significantly increases the risk of acute myocardial infarction and attenuates or abolishes the cardioprotective effects of several therapeutic approaches. Whether intravenous atorvastatin administration during ongoing acute myocardial infarction retains its cardioprotective potential in the presence of DCM was investigated. Intravenous atorvastatin during ischemia reduces infarct size and preserves cardiac function in DCM rats. The efficacy of this intravenous statin formulation in DCM supports its development as a viable therapeutic option for clinical use.
Collapse
Affiliation(s)
| | - Sergi López
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
| | | | | | - Alex Gallinat
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
| | - Rosa Suades
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
| | - Lina Badimon
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Sant Pau Research Institute (IR SANT PAU), Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2025; 39:595-613. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Hu D, Cheng S, Wei X, Man C. Purple-Grain Wheat Regulation of Blood Lipids and Blood Glucose in Diet-Induced Hyperlipidemic Mice and Type 2 Diabetic Mice. Nutrients 2025; 17:1310. [PMID: 40284176 PMCID: PMC12030340 DOI: 10.3390/nu17081310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Disorders of glucose and lipid metabolism can easily lead to metabolic diseases such as hyperlipidemia and diabetes mellitus, with multiple complications. This study evaluated the regulatory effect of purple-grain wheat on glycolipid metabolism. Methods: In this study, we established a hyperlipidemic mouse model by means of a high-fat diet and a type 2 diabetic mouse model using a high-fat and high-sugar diet combined with streptozotocin, and the mice were intervened with 15 g/(kg·d), 7.5 g/(kg·d), and 3.75 g/(kg·d) doses of purple-grain wheat paste (PWP) for 4 and 5 weeks, respectively. Results: The results revealed that PWP reversed the increase in body weight; increased serum high-density lipoprotein cholesterol; and decreased serum total cholesterol, triglycerides, and low-density lipoproteins. In addition, PWP reversed the decrease in body weight and alleviated the sustained increase in blood glucose in type 2 diabetic mice. Conclusions: PWP shows a significant ability to regulate glycolipid levels, which is related to its functional composition and its ability to act as a prebiotic. In conclusion, PWP can be considered a potential functional food for lowering blood glucose and blood lipids.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (D.H.)
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China;
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (D.H.)
| | - Xiaoyan Wei
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China;
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (D.H.)
| |
Collapse
|
4
|
Kakkar C, Sharma V, Mannan A, Gupta G, Singh S, Kumar P, Dua K, Kaur A, Singh S, Dhiman S, Singh TG. Diabetic Cardiomyopathy: An Update on Emerging Pathological Mechanisms. Curr Cardiol Rev 2025; 21:88-107. [PMID: 39501954 PMCID: PMC12060924 DOI: 10.2174/011573403x331870241025094307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Diabetic Cardiomyopathy (DCM) is a notable consequence of diabetes mellitus, distinguished by cardiac dysfunction that occurs separately from coronary artery disease or hypertension. A recent study has revealed an intricate interaction of pathogenic processes that contribute to DCM. Important aspects involve the dysregulation of glucose metabolism, resulting in heightened oxidative stress and impaired mitochondrial function. In addition, persistent high blood sugar levels stimulate inflammatory pathways, which contribute to the development of heart fibrosis and remodelling. Additionally, changes in the way calcium is managed and the presence of insulin resistance are crucial factors in the formation and advancement of DCM. This may be due to the involvement of many molecular mechanistic pathways such as NLRP3, NF-κB, PKC, and MAPK with their downstream associated signaling pathways. Gaining a comprehensive understanding of these newly identified pathogenic pathways is crucial in order to design precise therapy approaches that can enhance the results for individuals suffering from diabetes. In addition, this review offers an in-depth review of not just pathogenic pathways and molecular mechanistic pathways but also diagnostic methods, treatment options, and clinical trials.
Collapse
Affiliation(s)
- Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
| | - Sachin Singh
- Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
| | - Puneet Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
5
|
Fikry H, Saleh LA, Sadek DR, Alkhalek HAA. The possible protective effect of luteolin on cardiovascular and hepatic changes in metabolic syndrome rat model. Cell Tissue Res 2025; 399:27-60. [PMID: 39514020 DOI: 10.1007/s00441-024-03927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The metabolic syndrome, or MetS, is currently a global health concern. The anti-inflammatory, anti-proliferative, and antioxidant properties of luteolin are some of its advantageous pharmacological characteristics. This research was designed to establish a MetS rat model and investigate the possible protective effect of luteolin on cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. Forty adult male albino rats were split into four groups: a negative control group, a group treated with luteolin, a group induced MetS (fed 20% fructose), and a group treated with luteolin (fed 20% fructose and given luteolin). Following the experiment after 8 weeks, biochemical, histological (light and electron), and immunohistochemistry analyses were performed on liver and heart tissues. Serum levels of cTnI, CK-MB, and LDH were significantly elevated in response to the cardiovascular effect of MetS. Furthermore, compared to the negative control group, the MetS group showed a marked increase in lipid peroxidation in the cardiac and hepatic tissues, as evidenced by elevated levels of MDA and a decline in the antioxidant defense system, as demonstrated by lower activities of GSH and SOD. The fatty liver-induced group exhibited histological alterations, including disrupted hepatic architecture, dilated and congested central veins, blood sinusoids, and portal veins. In addition to nuclear structural alterations, most hepatocytes displayed varying degrees of cytoplasmic vacuolation, mitochondrial alterations, and endoplasmic reticulum dilatation. These alterations were linked to inflammatory cellular infiltrations, collagen fiber deposition, active hepatic stellate cells, and scattered hypertrophied Kupffer cells, as demonstrated by electron microscopy and validated by immunohistochemical analysis. It is interesting to note that eosinophils were seen between the liver cells and in dilated blood sinusoids. Moreover, the biochemical (hepatic and cardiac) and histological (liver) changes were significantly less severe in luteolin-treated rat on a high-fructose diet. These results suggested that luteolin protects against a type of metabolic syndrome that is produced experimentally.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Doaa Ramadan Sadek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| |
Collapse
|
6
|
Hassooni FRH, Aljubori E, Abbas GMA, Dheyab AYD, Abdulatif MQA, Sadeq Sadeq MA, Budair A, Alturshan A, Enad AH, Mohammed AJ, Hassan GA, Yaqoob ZQY, Prajjwal P, Jain H, Goyal A, Amir O. Advances in diabetic cardiomyopathy: current and potential management strategies and emerging biomarkers. Ann Med Surg (Lond) 2025; 87:224-233. [PMID: 40109623 PMCID: PMC11918745 DOI: 10.1097/ms9.0000000000002857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/28/2024] [Indexed: 03/22/2025] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a significant complication of diabetes mellitus (DM) and a major contributor to heart failure (HF). Despite its prevalence and impact, there is a notable lack of targeted therapies, highlighting the need for ongoing research into novel treatment strategies. Current management primarily involves blood sugar control, lifestyle modifications, and addressing risk factors. Conventional treatments, including Renin-angiotensin-aldosterone system (RAAS) inhibitors, angiotensin receptor/neprilysin inhibitor, beta-blockers, ivabradine, and vericiguat, are also employed. Methodology A comprehensive search was made using PubMed, Scopus, and Google Scholar for studies published. The search focused on DCM, therapeutic strategies, and emerging biomarkers. Articles were selected based on relevance, study quality, and inclusion criteria, which emphasized peer-reviewed studies on DCM management and biomarker identification. Results and discussion Our review reveals that targeting oxidative stress through these antioxidant therapies offers a promising approach for limiting DCM progression. Clinical trials provide evidence supporting the efficacy of these agents in reducing oxidative damage and improving cardiac function in diabetes-induced cardiomyopathy. Conclusion The current landscape of DCM management highlights the need for novel therapeutic strategies and early detection methods. Antioxidant therapies show potential for addressing the oxidative stress that underlies DCM, and ongoing research into emerging biomarkers may offer new avenues for early diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ahmed Budair
- Al-Zahraa Medical College, University of Basrah, Basrah, Iraq
| | - Ali Alturshan
- Al-Zahraa Medical College, University of Basrah, Basrah, Iraq
| | | | | | | | | | | | - Hritvik Jain
- All India Institute of Medical Sciences, Jodhpur, India
| | - Aman Goyal
- Seth GS Medical College and KEM Hospital, Mumbai, India
| | | |
Collapse
|
7
|
Xue J, Zhuang J, Wang X, Meng T, Wu J, Zhang X, Zhang G. Mechanisms and Therapeutic Strategies for Myocardial Ischemia-Reperfusion Injury in Diabetic States. ACS Pharmacol Transl Sci 2024; 7:3691-3717. [PMID: 39698288 PMCID: PMC11651189 DOI: 10.1021/acsptsci.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
In patients with myocardial infarction, one of the complications that may occur after revascularization is myocardial ischemia-reperfusion injury (IRI), characterized by a depleted myocardial oxygen supply and absence of blood flow recovery after reperfusion, leading to expansion of myocardial infarction, poor healing of myocardial infarction and reversal of left ventricular remodeling, and an increase in the risk for major adverse cardiovascular events such as heart failure, arrhythmia, and cardiac cell death. As a risk factor for cardiovascular disease, diabetes mellitus increases myocardial susceptibility to myocardial IRI through various mechanisms, increases acute myocardial infarction and myocardial IRI incidence, decreases myocardial responsiveness to protective strategies and efficacy of myocardial IRI protective methods, and increases diabetes mellitus mortality through myocardial infarction. This Review summarizes the mechanisms, existing therapeutic strategies, and potential therapeutic targets of myocardial IRI in diabetic states, which has very compelling clinical significance.
Collapse
Affiliation(s)
- Jing Xue
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jialu Zhuang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Xinyue Wang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Wu
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaoqian Zhang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Guiyang Zhang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
8
|
Singh AD, Chawda MB, Kulkarni YA. Cardioprotective Effects of 'Vasant Kusumakar Rasa,' a Herbo-metallic Formulation, in Type 2 Diabetic Cardiomyopathy in Rats. Cardiovasc Toxicol 2024; 24:942-954. [PMID: 39023814 DOI: 10.1007/s12012-024-09891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1β, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.
Collapse
Affiliation(s)
- Alok D Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mukesh B Chawda
- Shree Dhootapapeshwar Limited, 135, Nanubhai Desai Road, Khetwadi, Girgaon, Mumbai, Maharashtra, 400004, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
9
|
Li Z, Wang B, Bai D, Zhang L. Brazil nut ( Bertholletia excelsa) and metformin abrogate cardiac complication in fructose/STZ-induced type 2 diabetic rats by attenuating oxidative stress and modulating the MAPK-mTOR/NFkB/IL-10 signaling pathways. Food Nutr Res 2024; 68:10749. [PMID: 39239455 PMCID: PMC11375446 DOI: 10.29219/fnr.v68.10749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 09/07/2024] Open
Abstract
Background The global prevalence of diabetic heart complication has been on the increase, and some of the drugs that are currently used to treat diabetes mellitus (DM) have not been able to mitigate this complication. Objective This study determines the effect of Brazil nut (Bertholletia excelsa) and metformin on diabetic cardiomyopathy (DCM) in fructose/streptozotocin (STZ)-induced type 2 diabetic rats and also characterizes using Gas Chromatography Mass Spectrophotometry and Fourier Transform Infrared the bioactive compounds in 50% aqueous ethanol extract of Brazil nut. Design After inducing type 2 DM, 30 male albino Wistar rats were separated into five groups that comprised of six rats per group, and they were treated as follows: groups 1 (Control) and 2 (Diabetic control) rats received rat pellets and distilled water; group 3 (Diabetic + Brazil nut) received rat pellets and Brazil nut extract (100 mg/kg, orally) dissolved in distilled water, group 4 (Diabetic + metformin) received metformin (100 mg/kg, orally) dissolved in distilled water, while group 5 (Diabetic + Brazil nut + metformin) received oral administrations of Brazil nut (100 mg/kg) and metformin (100 mg/kg) dissolved in distilled water. This study lasted for 6 weeks. The dose of Brazil nut used was selected from our pilot study on the minimum therapeutic dose of different concentrations of Brazil nut extract. Results STZ administration induced insulin resistance, hyperglycemia, loss of weight, dyslipidemia, oxidative stress, inflammation, apoptosis, alteration of mammalian target of rapamycin, mitogen-activated protein kinase, heart function markers (creatine kinase MB, lactate dehydrogenase, and aspartate amino transaminase), and heart histology of the diabetic control, which was ameliorated after treatment with Brazil nut and metformin, but their combined treatment was better than the single treatments. Conclusion This study shows that Brazil nut contains several bioactive compounds that support its biological properties as well as its candidature as a complementary therapy to metformin in mitigating cardiac complications arising from DM in rats.
Collapse
Affiliation(s)
- Zhenzuo Li
- Department of Endocrinology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Baolan Wang
- Department of Endocrinology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Dongfang Bai
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Li Zhang
- Department of Endocrinology, The Fourth People's Hospital of Jinan, Jinan, China
| |
Collapse
|
10
|
Liza, Hussain G, Malik A, Akhtar S, Anwar H. Artemisia vulgaris Extract as a Novel Therapeutic Approach for Reversing Diabetic Cardiomyopathy in a Rat Model. Pharmaceuticals (Basel) 2024; 17:1046. [PMID: 39204151 PMCID: PMC11358959 DOI: 10.3390/ph17081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Diabetic cardiomyopathy, a severe diabetic complication, impairs heart function, leading to heart failure. Treatment that effectively addresses this condition without causing side effects is urgently needed. Current anti-hyperglycemic therapies are expensive, has side effects and do not effectively prevent cardiac remodeling. Therefore, it is important to explore natural products that may have the potential to reverse cardiac remodeling. That is why the aim of the current study was to determine the left ventricular remodeling potential of the methanolic extract of Artemisia vulgaris in a diabetic cardiomyopathy rat model. Following the initial comprehensive phytochemical evaluation of plant phenolic and flavonoid content, which showed strong anti-hyperglycemic and antioxidant activities, an extract of Artemisia vulgaris was administered in an in vivo experiment. Diabetic cardiomyopathy was induced in Wistar albino rats according to previously described protocols in the literature, and the effect of treatment was checked by serum and histopathological analysis after 45 days. Artemisia vulgaris treatment significantly (p ≤ 0.05) reduced fasting blood glucose (108.5 ± 1.75 mg/dL), glycated hemoglobin (4.03 ± 0.12 %), serum glucose (116.66 ± 3.28 mg/dL), insulin (15.66 ± 0.66 ng/mL), total oxidant status (54.66 ± 3.22 µmol H2O2Equiv.L-1), Malondialdehyde (0.20 ± 0.01 mmol/L), total cholesterol (91.16 ± 3.35 mg/dL), triglycerides (130.66 ± 3.15 mg/dL), low-density lipids (36.57 ± 1.02 mg/dL), sodium (140 ± 3.21 mmol/L), calcium (10.44 ± 0.24 mmol/L), creatine kinase MB (1227.5 ± 17.89 IU/L), lactate dehydrogenase (1300 ± 34.64 IU/L), C-reactive protein (30 ± 0.57 pg/mL), tumor necrosis factor-α (58.66 ± 1.76 pg/mL), atrial natriuretic peptide (2.53 ± 0.04 pg/mL), B-type natriuretic peptide (10.66 ± 0.44 pg/mL), aspartate aminotransferase (86.5 ± 4.99 U/L), Alanine Transaminase (55.33 ± 2.90 U/L), urea (25.33 ± 1.15 mg/dL) and creatinine (0.64 ± 0.02 mg/dL) but significantly increased (p ≤ 0.05) total antioxidant capacity (1.73 ± 0.07 mmol Trolox Equil./L), high-density lipids (40 ± 1.59 mg/dL) and potassium (3.82 ± 0.04 mmol/L) levels. ECG and histopathology confirmed the significant improvement in remodeling and the reversal of structural changes in the heart and pancreas. In conclusion, Artemisia vulgaris possesses significant left ventricular remodeling potential in course of diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
- Liza
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA;
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| |
Collapse
|
11
|
Tehrani SD, Hosseini A, Shahzamani M, Heidari Z, Askari G, Majeed M, Sahebkar A, Bagherniya M. Evaluation of the effectiveness of curcumin and piperine co-supplementation on inflammatory factors, cardiac biomarkers, atrial fibrillation, and clinical outcomes after coronary artery bypass graft surgery. Clin Nutr ESPEN 2024; 62:57-65. [PMID: 38901949 DOI: 10.1016/j.clnesp.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Coronary artery bypass graft (CABG) is one of the preferred treatments for patients with heart problems, especially in individuals with other comorbidities and when multiple arteries are narrowed. This study aimed to assess the effects of administrating curcumin-piperine on patients who underwent CABG surgery. METHODS This was a randomized, double-blind, placebo-controlled clinical trial, in which 80 eligible adults who underwent CABG surgery, were randomized into 4 groups. Patients received 3 tablets daily for 5 days after the surgery, which contained curcumin-piperine (each tablet contained 500 mg curcumin +5 mg piperine) or a placebo (each tablet contained 505 mg maltodextrin). Group A received 3 placebo tablets, group B received 2 placebos and one curcumin-piperine tablet, group C received 1 placebo and 2 curcumin-piperine tablets, and group D received 3 curcumin-piperine tablets. Before and after the intervention, C-reactive protein (CRP), total antioxidant capacity (TAC), cardiometabolic factors, clinical outcomes, and 28-day mortality were evaluated. RESULTS Between-group analysis showed that CRP significantly decreased (P = 0.028), and TAC significantly increased (P = 0.033) after the intervention (Post hoc analysis showed that for CRP, the difference was between group B and D, and for TAC was between group C and D). Between-group analysis also showed that creatine kinase mono-phosphate (CK-MB) marginally reduced (P = 0.077); however, changes for troponin I (P = 0.692), lactate dehydrogenase (LDH) (P = 0.668), ejection fraction (P = 0.340), and arterial fibrillation (P = 0.99) were not significant. Blood urea nitrogen (P = 0.820) and serum creatinine (P = 0.244) did not show notable changes between groups. CONCLUSION Supplementation with curcumin-piperine had a promising effect on serum CRP and TAC. It also had a favorable impact on CK-MB among patients who underwent CABG surgery. TRIAL REGISTRATION IRCT20201129049534N4, available on https://en.irct.ir/trial/56930.
Collapse
Affiliation(s)
- Sahar Dadkhah Tehrani
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Hosseini
- Department of Cardiovascular Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Shahzamani
- Department of Cardiovascular Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Muhammed Majeed
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bengaluru, Karnataka, 560 058, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
13
|
Liu N, Chen Y, An T, Tao S, Lv B, Dou J, Deng R, Zhen X, Zhang Y, Lu C, Chang Z, Jiang G. Lysophosphatidylcholine trigger myocardial injury in diabetic cardiomyopathy via the TLR4/ZNF480/AP-1/NF-kB pathway. Heliyon 2024; 10:e33601. [PMID: 39040275 PMCID: PMC11260982 DOI: 10.1016/j.heliyon.2024.e33601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Diabetic cardiomyopathy (DC), a frequent complication of type 2 diabetes mellitus (T2DM), is mainly associated with severe adverse outcomes. Previous research has highlighted the role of Lysophosphatidylcholine (LPC) in inducing myocardial injury; however, the specific mechanisms through which LPC mediate such injury in DC remain elusive. The existing knowledge gap underscores the need for additional clarification. Consequently, this study aimed to explore the impact and underlying mechanisms of LPC on myocardial injury in DC. Methods A total of 55 patients diagnosed with T2DM and 62 healthy controls were involved. A combination of 16s rRNA sequencing, metabolomic analysis, transcriptomic RNA-sequencing (RNA-seq), and whole exome sequencing (WES) was performed on fecal and peripheral blood samples collected from the participants. Following this, correlation analysis was carried out, and the results were further validated through the mouse model of T2DM. Results Four LPC variants distinguishing T2DM patients from healthy controls were identified, all of which were upregulated in T2DM patients. Specifically, Lysopc (16:0, 2 N isoform) and LPC (16:0) exhibited a positive correlation with nuclear factor kappa B subunit 2 (NFKB2) and a negative correlation with Zinc finger protein 480 (ZNF480) Furthermore, the expression levels of Toll-like receptor 4 (TLR4), c-Jun, c-Fos, and NFKB2 were upregulated in the peripheral blood of T2DM patients and in the myocardial tissue of T2DM mice, whereas ZNF480 expression level was downregulated. Lastly, myocardial injury was identified in T2DM mice. Conclusions The results indicated that LPC could induce myocardial injury in DC through the TLR4/ZNF480/AP-1/NF-kB pathway, providing a precise target for the clinical diagnosis and treatment of DC.
Collapse
Affiliation(s)
- Nannan Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, City Urumqi, China
| | - Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Tao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinfang Dou
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianjie Zhen
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Caizhong Lu
- Guangming Traditional Chinese Medecine Hospital of Pudong New Area, Shanghai, China
| | - Zhongsheng Chang
- Guangming Traditional Chinese Medecine Hospital of Pudong New Area, Shanghai, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
B. Abo-Zalam H, El Denshary EED, A. Abdalsalam R, A. Khalil I, M. Khattab M, A. Hamzawy M. Revolutionizing Hyperlipidemia Treatment: Nanoencapsulated CoQ10 and Selenium Combat Simvastatin-Induced Myopathy and Insulin Resistance in Rats. Adv Pharm Bull 2024; 14:364-377. [PMID: 39206395 PMCID: PMC11347742 DOI: 10.34172/apb.2024.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/04/2024] Open
Abstract
Purpose The objective of this study was to develop a nanoencapsulated platform for coenzyme Q10 nanoparticles (coQNPs) or selenium nanoparticles (SeNPs) and explore their potential therapeutic benefits in treating hyperlipidemia and combating simvastatin (SV)-induced myopathy and adverse reactions in hyperlipidemic rats. Methods The physical and chemical properties of the solid nanoparticles, coQNPs, and SeNPs were characterized, including zeta potential studies. Male Wistar albino rats were treated with various interventions for 112 days, including a nano-vehicle only, high-fat diet (HFD), HFD with SV alone, or with coQNPs or/and SeNPs for the last 30 days. Results The coQNPs and SeNPs exhibited uniform spherical shapes with high encapsulation efficiency (EE% 91.20±2.14 and 94.89±1.54, respectively). The results demonstrated that coQNPs and SeNPs effectively reduced hyperlipidemia, insulin resistance, SV-induced myopathy, and hepatotoxicity. However, combining SV with coQNPs and SeNPs resulted in severe liver and muscle damage. Treatment with SV and SeNPs or SV and coQNPs alone showed significant improvements compared to SV treatment alone. Conclusion These findings suggest that the CoQNPs or SeNPs platforms offer advanced relief for hyperlipidemia and insulin resistance while limiting adverse effects such as myopathy and hepatotoxicity.
Collapse
Affiliation(s)
- Hagar B. Abo-Zalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 6th of October University, 6th of October, Giza, Egypt
| | - Ezz El Deen El Denshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania A. Abdalsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, New Giza University, Giza, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza, (12566) Egypt
| | - Mahmoud M. Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
15
|
Lei XT, Pu DL, Shan G, Wu QN. Atorvastatin ameliorated myocardial fibrosis by inhibiting oxidative stress and modulating macrophage polarization in diabetic cardiomyopathy. World J Diabetes 2024; 15:1070-1073. [PMID: 38983803 PMCID: PMC11229961 DOI: 10.4239/wjd.v15.i6.1070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 06/11/2024] Open
Abstract
In this editorial, we commented on the article published in the recent issue of the World Journal of Diabetes. Diabetic cardiomyopathy (DCM) is characterized by myocardial fibrosis, ventricular hypertrophy and diastolic dysfunction in diabetic patients, which can cause heart failure and threaten the life of patients. The pathogenesis of DCM has not been fully clarified, and it may involve oxidative stress, inflammatory stimulation, apoptosis, and autophagy. There is lack of effective therapies for DCM in the clinical practice. Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques, and exhibit definite cardiovascular protective effects. Studies have shown that statins also have anti-inflammatory and antioxidant effects. We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and anti-inflammatory effects of macrophage polarization on diabetic myocardium, and thereby improving DCM.
Collapse
Affiliation(s)
- Xiao-Tian Lei
- Department of Endocrinology, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dan-Lan Pu
- Department of Endocrinology, Chongqing Yubei District People's Hospital, Chongqing 400030, China
| | - Geng Shan
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing 402360, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing 402360, China
| |
Collapse
|
16
|
Bo C, Liu F, Zhang Z, Du Z, Xiu H, Zhang Z, Li M, Zhang C, Jia Q. Simvastatin attenuates silica-induced pulmonary inflammation and fibrosis in rats via the AMPK-NOX pathway. BMC Pulm Med 2024; 24:224. [PMID: 38720270 PMCID: PMC11080310 DOI: 10.1186/s12890-024-03014-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α and transforming growth factor-β1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.
Collapse
Affiliation(s)
- Cunxiang Bo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Guangzhou Huaxia Vocational College, Guangzhou, China
| | - Zewen Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haidi Xiu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Caiqing Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Pulmonary and Critical Care Medicine, Shandong Province's Second General Hospital (Shandong Province ENT Hospital), Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, Shandong, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
17
|
Hasan IH, Shaheen SY, Alhusaini AM, Mahmoud AM. Simvastatin mitigates diabetic nephropathy by upregulating farnesoid X receptor and Nrf2/HO-1 signaling and attenuating oxidative stress and inflammation in rats. Life Sci 2024; 340:122445. [PMID: 38278349 DOI: 10.1016/j.lfs.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Diabetic nephropathy is one of the complications of diabetes that affects the kidney and can result in renal failure. The cholesterol-lowering drug simvastatin (SIM) has shown promising effects against diabetic nephropathy (DN). This study evaluated the protective role of SIM on DN, pointing to the involvement of farnesoid X receptor (FXR) and Nrf2/HO-1 signaling in attenuating inflammatory response, oxidative injury, and tissue damage in streptozotocin-induced diabetic rats. SIM was supplemented orally for 8 weeks, and samples were collected for analysis. SIM effectively ameliorated hyperglycemia, kidney hypertrophy, body weight loss, and tissue injury and fibrosis in diabetic animals. SIM mitigated oxidative stress (OS), inflammatory response, and cell death, as evidenced by the suppressed malondialdehyde, nitric oxide, myeloperoxidase, NF-kB, TNF-α, IL-1β, CD68, Bax, and caspase-3 in the diabetic kidney. These effects were linked to suppressed Keap1, upregulated FXR, Nrf2, and HO-1, and enhanced antioxidant defenses and Bcl-2. The in silico findings revealed the binding affinity of SIM with NF-kB, caspase-3, Keap1, HO-1, and FXR. In conclusion, SIM protects against DN by attenuating hyperglycemia, kidney injury, fibrosis, inflammation, and OS, and upregulating antioxidants, FXR, and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11459, Saudi Arabia..
| | - Sameerah Y Shaheen
- Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11459, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK..
| |
Collapse
|
18
|
Yao B, Lv J, Du L, Zhang H, Xu Z. Phoenixin-14 protects cardiac damages in a streptozotocin-induced diabetes mice model through SIRT3. Arch Physiol Biochem 2024; 130:110-118. [PMID: 34618648 DOI: 10.1080/13813455.2021.1981946] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type I diabetes is a metabolic syndrome that severely impacts the normal lives of patients through its multiple complications, such as diabetic cardiomyopathy (DCM). Phoenixin-14 is a peptide found to be widely expressed in eukaryons with multiple protective properties, including anti-oxidative stress and anti-inflammatory effects. The present study aims to explore the potential therapeutic impacts of Phoenixin-14 on DCM. METHODS Type I diabetes was induced by treatment with a single dose of STZ (40 mg/kg body weight) intraperitoneally for 5 consecutive days. Mice were divided into four groups: the Control, Phoenixin-14, T1DM, and Phoenixin-14 +T1DM groups. The levels of myocardial injury markers were measured. Cardiac hypertrophy was assessed using wheat germ agglutinin (WGA) staining. RESULTS Phoenixin-14 was significantly downregulated in the cardiac tissue of diabetic mice. The myocardial injury and deteriorated cardiac function in diabetic mice induced by STZ were significantly ameliorated by Phoenixin-14, accompanied by the alleviation of cardiac hypertrophy. In addition, the severe oxidative stress and inflammation in diabetic mice were dramatically mitigated by Phoenixin-14. Lastly, the downregulated SIRT3 and upregulated p-FOXO3 in diabetic mice were pronouncedly reversed by Phoenixin-14. It is worth mentioning that compared to the Control, no significant changes to any of the investigated parameters in the present study were found in the Phoenixin-14-treated normal mice, suggesting that treatment with it has no side effects. CONCLUSION Our data revealed that Phoenixin-14 protected against cardiac damages in STZ-induced diabetes mice models.
Collapse
Affiliation(s)
- Bo Yao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junlin Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Le Du
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhao Xu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Song XM, Zhao MN, Li GZ, Li N, Wang T, Zhou H. Atorvastatin ameliorated myocardial fibrosis in db/db mice by inhibiting oxidative stress and modulating macrophage polarization. World J Diabetes 2023; 14:1849-1861. [PMID: 38222782 PMCID: PMC10784803 DOI: 10.4239/wjd.v14.i12.1849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND People with diabetes mellitus (DM) suffer from multiple chronic complications due to sustained hyperglycemia, especially diabetic cardiomyopathy (DCM). Oxidative stress and inflammatory cells play crucial roles in the occurrence and progression of myocardial remodeling. Macrophages polarize to two distinct phenotypes: M1 and M2, and such plasticity in phenotypes provide macrophages various biological functions. AIM To investigate the effect of atorvastatin on cardiac function of DCM in db/db mice and its underlying mechanisms. METHODS DCM mouse models were established and randomly divided into DM, atorvastatin, and metformin groups. C57BL/6 mice were used as the control. Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson staining was used to examine the morphology and collagen fibers in myocardial tissues. The expression of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β),M1 macrophages (iNOS+), and M2 macrophages (CD206+) were demonstrated by immunohistochemistry and immunofluorescence staining. The levels of TGF-β1, IL-1β, and TNF-α were detected by ELISA and real-time quantitative polymerase chain reaction. Malondialdehyde (MDA) concentrations and superoxide dismutase (SOD) ac-tivities were also measured. RESULTS Treatment with atorvastatin alleviated cardiac dysfunction and decreased db/db mice. The broken myocardial fibers and deposition of collagen in the myocardial interstitium were relieved especially by atorvastatin treatment. Atorvastatin also reduced the levels of serum lactate dehydrogenase, creatine kinase isoenzyme, and troponin; lowered the levels of TGF-β1, TNF-α and IL-1β in serum and myocardium; decreased the concentration of MDA and increased SOD activity in myocardium of db/db mice; inhibited M1 macrophages; and promoted M2 macrophages. CONCLUSION Administration of atorvastatin attenuates myocardial fibrosis in db/db mice, which may be associated with the antioxidative stress and anti-inflammatory effects of atorvastatin on diabetic myocardium through modulating macrophage polarization.
Collapse
Affiliation(s)
- Xian-Min Song
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Geriatrics, Handan Central Hospital, Handan 056001, Hebei Province, China
| | - Meng-Nan Zhao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Gui-Zhi Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
20
|
Huo JL, Feng Q, Pan S, Fu WJ, Liu Z, Liu Z. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov 2023; 9:256. [PMID: 37479697 PMCID: PMC10362058 DOI: 10.1038/s41420-023-01553-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) mainly refers to myocardial metabolic dysfunction caused by high glucose, and hyperglycemia is an independent risk factor for cardiac function in the absence of coronary atherosclerosis and hypertension. DCM, which is a severe complication of diabetes, has become the leading cause of heart failure in diabetic patients. The initial symptoms are inconspicuous, and patients gradually exhibit left ventricular dysfunction and eventually develop total heart failure, which brings a great challenge to the early diagnosis of DCM. To date, the underlying pathological mechanisms of DCM are complicated and have not been fully elucidated. Although there are therapeutic strategies available for DCM, the treatment is mainly focused on controlling blood glucose and blood lipids, and there is a lack of effective drugs targeting myocardial injury. Thus, a large percentage of patients with DCM inevitably develop heart failure. Given the neglected initial symptoms, the intricate cellular and molecular mechanisms, and the lack of available drugs, it is necessary to explore early diagnostic biomarkers, further understand the signaling pathways involved in the pathogenesis of DCM, summarize the current therapeutic strategies, and develop new targeted interventions.
Collapse
Affiliation(s)
- Jin-Ling Huo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Wen-Jia Fu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Zhenzhen Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
21
|
Farrag EAE, Hammad MO, Safwat SM, Hamed S, Hellal D. Artemisinin attenuates type 2 diabetic cardiomyopathy in rats through modulation of AGE-RAGE/HMGB-1 signaling pathway. Sci Rep 2023; 13:11043. [PMID: 37422477 PMCID: PMC10329689 DOI: 10.1038/s41598-023-37678-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Diabetes mellitus is a common metabolic disorder. About two-thirds of diabetic patients develop diabetic cardiomyopathy (DCM), which becomes a challenging issue as it severely threatens the patient's life. Hyperglycemia and the resulting advanced glycated end products (AGE) and their receptor (RAGE)/High Mobility Group Box-1 (HMGB-1) molecular pathway are thought to be key players. Recently, artemisinin (ART) has gained more attention owing to its potent biological activities beyond its antimalarial effect. Herein, we aim to evaluate the effect of ART on DCM and the possible underlying mechanisms. Twenty-four male Sprague-Dawley rats were divided into: control, ART, type 2 diabetic and type 2 diabetic treated with ART groups. At the end of the research, the ECG was recorded, then the heart weight to body weight (HW/BW) ratio, fasting blood glucose, serum insulin and HOMA-IR were evaluated. Cardiac biomarkers (CK-MB and LDH), oxidative stress markers, IL-1β, AGE, RAGE and HMGB-1 expression were also measured. The heart specimens were stained for H&E as well as Masson's trichrome. DCM induced disturbances in all studied parameters; contrary to this, ART improved these insults. Our study concluded that ART could improve DCM through modulation of the AGE-RAGE/HMGB-1 signaling pathway, with subsequent impacts on oxidative stress, inflammation and fibrosis. ART could therefore be a promising therapy for the management of DCM.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Maha O Hammad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally M Safwat
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Hellal
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Xu Y, Cao L, Zou W, Yu R, Shen W. Panax notoginseng saponins inhibits NLRP3 inflammasome-mediated pyroptosis by downregulating lncRNA-ANRIL in cardiorenal syndrome type 4. Chin Med 2023; 18:50. [PMID: 37158944 PMCID: PMC10165771 DOI: 10.1186/s13020-023-00756-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE Cardiorenal syndrome type 4 (CRS4) is a complication of chronic kidney disease. Panax notoginseng saponins (PNS) have been confirmed to be efficient in cardiovascular diseases. Our study aimed to explore the therapeutic role and mechanism of PNS in CRS4. METHODS CRS4 model rats and hypoxia-induced cardiomyocytes were treated with PNS, with and without pyroptosis inhibitor VX765 and ANRIL overexpression plasmids. Cardiac function and cardiorenal function biomarkers levels were measured by echocardiography and ELISA, respectively. Cardiac fibrosis was detected by Masson staining. Cell viability was determined by cell counting kit-8 and flow cytometry. Expression of fibrosis-related genes (COL-I, COL-III, TGF-β, α-SMA) and ANRIL was examined using RT-qPCR. Pyroptosis-related protein levels of NLRP3, ASC, IL-1β, TGF-β1, GSDMD-N, and caspase-1 were measured by western blotting or immunofluorescence staining. RESULTS PNS improved cardiac function, and inhibited cardiac fibrosis and pyroptosis in a dose-dependent manner in model rats and injured H9c2 cells (p < 0.01). The expression of fibrosis-related genes (COL-I, COL-III, TGF-β, α-SMA) and pyroptosis-related proteins (NLRP3, ASC, IL-1β, TGF-β1, GSDMD-N, and caspase-1) was inhibited by PNS in injured cardiac tissues and cells (p < 0.01). Additionally, ANRIL was upregulated in model rats and injured cells, but PNS reduced its expression in a dose-dependent manner (p < 0.05). Additionally, the inhibitory effect of PNS on pyroptosis in injured H9c2 cells was enhanced by VX765 and reversed by ANRIL overexpression, respectively (p < 0.05). CONCLUSION PNS inhibits pyroptosis by downregulating lncRNA-ANRIL in CRS4.
Collapse
Affiliation(s)
- Ying Xu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luxi Cao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wenli Zou
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Rizhen Yu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wei Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
23
|
Deng JP, Liu X, Li Y, Ni SH, Sun SN, Ou-Yang XL, Ye XH, Wang LJ, Lu L. Drug vector representation and potential efficacy prediction based on graph representation learning and transcriptome data: Acacetin from traditional Chinese Medicine model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:115966. [PMID: 36572325 DOI: 10.1016/j.jep.2022.115966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition. AIM OF THE STUDY Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin. MATERIALS AND METHODS Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results. RESULTS The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments. CONCLUSIONS We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
Collapse
Affiliation(s)
- Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Xiao-Lu Ou-Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China
| | - Xiao-Han Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province, Guangzhou, 510407, China.
| |
Collapse
|
24
|
Mannino F, Imbesi C, Bitto A, Minutoli L, Squadrito F, D'Angelo T, Booz C, Pallio G, Irrera N. Anti-oxidant and anti-inflammatory effects of ellagic and punicic acid in an in vitro model of cardiac fibrosis. Biomed Pharmacother 2023; 162:114666. [PMID: 37030134 DOI: 10.1016/j.biopha.2023.114666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
Cardiac fibrosis is a pathological process characterized by an excessive deposition of extracellular matrix (ECM) and an increased production of fibrillar collagen in the cardiac interstitium, mainly caused by the activation of cardiac fibroblasts and their transition into myofibroblasts. Oxidative stress is deeply implicated in the pathogenesis of cardiac fibrosis both directly and via its involvement in the tumor growth factor β1 (TGF-β1) signaling. Ellagic acid (EA) and punicic acid (PA) are the main components of the Punica granatum L (pomegranate) fruit and seed oil respectively, whose antioxidant, anti-inflammatory and anti-fibrotic effects have been previously described. Therefore, the aim of this study was to investigate the effects of EA or PA or EA+PA in an in vitro model of cardiac fibrosis. Immortalized Human Cardiac Fibroblasts (IM-HCF) were stimulated with 10 ng/ml of TGF-β1 for 24 h to induce a fibrotic damage. Cells were then treated with EA (1 µM), PA (1 µM) or EA+PA for additional 24 h. Both EA and PA reduced the pro-fibrotic proteins expressions and the intracellular reactive oxygen species (ROS) accumulation. The anti-oxidant activity was also observed by Nrf2 activation with the consequent TGF-β1-Smad2/3-MMP2/9 and Wnt/β-catenin signaling inhibition, thus reducing collagen production. EA and PA significantly inhibit NF-κB pathway and, consequently, TNF-α, IL-1β and IL-6 levels: the greater effect was observed when EA and PA were used in combination. These results suggest that EA, PA and in particular EA+PA might be effective in reducing fibrosis through their antioxidant and anti-inflammatory properties by the modulation of different molecular pathways.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Tommaso D'Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy.
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
25
|
Deng J, Yan F, Tian J, Qiao A, Yan D. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:35. [PMID: 36871006 PMCID: PMC9985231 DOI: 10.1186/s13098-023-00998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious cardiovascular complication and the leading cause of death in diabetic patients. Patients typically do not experience any symptoms and have normal systolic and diastolic cardiac functions in the early stages of DCM. Because the majority of cardiac tissue has already been destroyed by the time DCM is detected, research must be conducted on biomarkers for early DCM, early diagnosis of DCM patients, and early symptomatic management to minimize mortality rates among DCM patients. Most of the existing implemented clinical markers are not very specific for DCM, especially in the early stages of DCM. Recent studies have shown that a number of new novel markers, such as galactin-3 (Gal-3), adiponectin (APN), and irisin, have significant changes in the clinical course of the various stages of DCM, suggesting that we may have a positive effect on the identification of DCM. As a summary of the current state of knowledge regarding DCM biomarkers, this review aims to inspire new ideas for identifying clinical markers and related pathophysiologic mechanisms that could be used in the early diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, Guangdong Province, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, 611137, Sichuan Province, China
| | - Jinglun Tian
- Department of Geriatrics, the Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, 611130, China
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, Guangdong Province, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, Guangdong Province, China.
| |
Collapse
|
26
|
Salau VF, Erukainure OL, Olofinsan KA, Msomi NZ, Ijomone OK, Islam MS. Ferulic acid mitigates diabetic cardiomyopathy via modulation of metabolic abnormalities in cardiac tissues of diabetic rats. Fundam Clin Pharmacol 2023; 37:44-59. [PMID: 35841183 PMCID: PMC10086938 DOI: 10.1111/fcp.12819] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 01/25/2023]
Abstract
Cardiovascular abnormalities have been reported as a major contributor of diabetic mortality. The protective effect of ferulic acid on diabetic cardiomyopathy in fructose-streptozotocin induced type 2 diabetes (T2D) rat model was elucidated in this study. Type 2 diabetic rats were treated by oral administration of low (150 mg/kg b.w) and high (300 mg/kg b.w) doses of ferulic acid. Metformin was used as the antidiabetic drug. Rats were humanely euthanized after 5 weeks of treatment, and their blood and hearts were collected. Induction of T2D depleted the levels of reduced glutathione, glycogen, and HDL-cholesterol and the activities of superoxide dismutase, catalase, ENTPDase, and 5'nucleotidase. It simultaneously triggered increase in the levels of malondialdehyde, total cholesterol, triglyceride, LDL-cholesterol, creatinine kinase-MB as well as activities of acetylcholinesterase, angiotensin converting enzyme (ACE), ATPase, glucose-6-phopsphatase, fructose-1,6-bisphophatase, glycogen phosphorylase, and lipase. T2D induction further revealed an obvious degeneration of cardiac muscle morphology. However, treatment with ferulic acid markedly reversed the levels and activities of these biomarkers with concomitant improvement in myocardium structural morphology, which had favorable comparison with the standard drug, metformin. Additionally, T2D induction led to the depletion of 40%, 75%, and 33% of fatty acids, fatty esters, and steroids, respectively, with concomitant generation of eicosenoic acid, gamolenic acid, and vitamin E. Ferulic acid treatment restored eicosanoic acid, 2-hydroxyethyl ester, with concomitant generation of 6-octadecenoic acid, (Z)-, cis-11-eicosenoic acid, tridecanedioic acid, octadecanoic acid, 2-hydroxyethyl ester, ethyl 3-hydroxytridecanoate, dipalmitin, cholesterol isocaproate, cholest-5-ene, 3-(1-oxobuthoxy)-, cholesta-3,5-diene. These results suggest the cardioprotective potential of ferulic acid against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | | | - Nontokozo Z Msomi
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Olayemi K Ijomone
- Department of Anatomy, University of Medical Sciences, Ondo City, Nigeria
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
27
|
Khadrawy SM, El Sayed RA. Umbelliferone attenuates diabetic cardiomyopathy by suppression of JAK/STAT signaling pathway through amelioration of oxidative stress and inflammation in rats. J Biochem Mol Toxicol 2023; 37:e23296. [PMID: 36650709 DOI: 10.1002/jbt.23296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/04/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Umbelliferone (UMB), 7-hydroxycoumarin, is a naturally occurring coumarin derivative that has a plethora of biological and therapeutic activities. The focus of this research was to elucidate the curative effects of two different doses of UMB on diabetic cardiomyopathy (DCM) in a type 2 diabetic rat model induced by 50 mg/kg body weight of streptozotocin (STZ). Diabetic rats orally received 10 or 30 mg/kg of UMB daily for 8 weeks. Compared to the nontreated diabetic group, both UMB treatment doses significantly decreased glucose levels, glycated hemoglobin (HbA1c), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), creatine kinase MB (CK-MB), cardiovascular risk indices, and oxidative stress by reducing malondialdehyde (MDA) and increasing the activity of the antioxidant enzymes. The hypercholesterolemia and hypertriglyceridemia also dramatically decreased in diabetic groups with UMB treatments accompanied by an improvement in insulin, and insulin sensitivity indices (HOMA-IR and QUICKI). Furthermore, the cardiac gene expressions and protein levels of Janus kinase2 (JAK2), signal transducer and activator of transcription3 (STAT3), and transforming growth factor beta1 (TGF-β1) were also markedly downregulated in a dose-dependent manner by UMB treatments. Finally, the biochemical results were assured by the reduction of histological alterations in cardiac tissues. In conclusion, UMB is a propitious substance for the treatment of DCM by virtuousness of its antihyperglycemic, antihyperlipidemic, antioxidant, and anti-inflammatory properties through modulating the JAK/STAT signaling pathway that may be the underlying mechanism in UMB action.
Collapse
Affiliation(s)
- Sally M Khadrawy
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha A El Sayed
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (for Girls), Cairo, Egypt
| |
Collapse
|
28
|
Wang M, Wang G, Pang X, Ma J, Yuan J, Pan Y, Fu Y, Laher I, Li S. MOTS-c repairs myocardial damage by inhibiting the CCN1/ERK1/2/EGR1 pathway in diabetic rats. Front Nutr 2023; 9:1060684. [PMID: 36687680 PMCID: PMC9846618 DOI: 10.3389/fnut.2022.1060684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiac structure remodeling and dysfunction are common complications of diabetes, often leading to serious cardiovascular events. MOTS-c, a mitochondria-derived peptide, regulates metabolic homeostasis by accelerating glucose uptake and improving insulin sensitivity. Plasma levels of MOTS-c are decreased in patients with diabetes. MOTS-c can improve vascular endothelial function, making it a novel therapeutic target for the cardiovascular complications of diabetes. We investigated the effects of MOTS-c on cardiac structure and function and analyzed transcriptomic characteristics in diabetic rats. Our results indicate that treatment with MOTS-c for 8-week repaired myocardial mitochondrial damage and preserved cardiac systolic and diastolic function. Transcriptomic analysis revealed that MOTS-c altered 47 disease causing genes. Functional enrichment analysis indicated MOTS-c attenuated diabetic heart disease involved apoptosis, immunoregulation, angiogenesis and fatty acid metabolism. Moreover, MOTS-c reduced myocardial apoptosis by downregulating CCN1 genes and thereby inhibiting the activation of ERK1/2 and the expression of its downstream EGR1 gene. Our findings identify potential therapeutic targets for the treatment of T2D and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Gangqiang Wang
- Physical Education Section, Chengdu Textile College, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China,*Correspondence: Shunchang Li,
| |
Collapse
|
29
|
Zou XZ, Zhang YW, Pan ZF, Hu XP, Xu YN, Huang ZJ, Sun ZY, Yuan MN, Shi JN, Huang P, Liu T. Gentiopicroside alleviates cardiac inflammation and fibrosis in T2DM rats through targeting Smad3 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154389. [PMID: 36037771 DOI: 10.1016/j.phymed.2022.154389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cardiac fibrosis is a major structural change observed in the heart of patients with type 2 diabetes mellitus (T2DM), ultimately resulting in heart failure (HF). Suppression of inflammation is an effective therapeutic strategy for treating cardiac fibrosis and HF. Gentiopicroside (GPS), the primary component of Gentiana manshurica Kitagawa, possess potent anti-inflammatory activity. However, its cardioprotective role remains elusive. PURPOSE We explored the potential cardioprotective role of GPS in T2DM rats and its underlying mechanisms. METHODS T2DM rats built by high-fat diet and streptozotocin were orally administered 25, 50, or 100 mg/kg GPS, daily for 8 weeks. The positive control drug was Metformin (200 mg/kg/day). Primary cardiac fibroblasts (CFs) were induced by high glucose (30 mM) and subsequently treated with GPS (100 μM). Cardiac function and pathological changes were analyzed using echocardiography and histological staining. Potential targets of GPS were predicted using Molecular docking. Real-time PCR as well as western blotting were applied to verify the expression of objective genes. RESULTS All three doses reduced fasting blood glucose levels, but only 50 and 100 mg/kg GPS improved cardiac function and alleviated inflammation and fibrosis in T2DM rats. GPS (100 mg/kg) exhibited a better effect, similar to that of metformin. Mechanistically, binding between GPS and the MH2 domain of Smad3 blocked high glucose-induced Smad3 phosphorylation, thus attenuating inflammation, oxidative stress, and activation in CFs. CONCLUSION We, for the first time, demonstrated that GPS improved cardiac function in T2DM rats and elucidated the underlying mechanism through which GPS targeted Smad3 phosphorylation to suppress inflammation and activation in CFs, thereby revealing the potential application of GPS in HF therapy.
Collapse
Affiliation(s)
- Xiao-Zhou Zou
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Yi-Wen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Zong-Fu Pan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Xiao-Ping Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Yin-Ning Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang, China
| | - Zhong-Jie Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang, China
| | - Zhi-Yong Sun
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Meng-Nan Yuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Jia-Na Shi
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China.
| | - Ting Liu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China; Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
30
|
Syringic Acid Ameliorates Cardiac, Hepatic, Renal and Neuronal Damage Induced by Chronic Hyperglycaemia in Wistar Rats: A Behavioural, Biochemical and Histological Analysis. Molecules 2022; 27:molecules27196722. [PMID: 36235257 PMCID: PMC9573038 DOI: 10.3390/molecules27196722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of syringic acid (SA) on renal, cardiac, hepatic, and neuronal diabetic complications in streptozotocin-induced neonatal (nSTZ) diabetic rats. STZ (110 mg/kg i.p) was injected into Wistar rat neonates as a split dose (second and third postnatal day). Diabetes mellitus was diagnosed in adults by measuring fasting blood glucose levels, urine volume, and food and water intake. The treatment of SA (25 mg/kg, 50 mg/kg p.o) was given from the 8th to 18th postnatal week. To assess the development of diabetic complications and the effect of therapy, biochemical indicators in serum and behavioural parameters were recorded at specific intervals during the study period. SA (25 mg/kg, 50 mg/kg p.o) treatment reduced hyperglycaemia, polydipsia, polyphagia, polyuria, relative organ weight, cardiac hypertrophic indices, inflammatory markers, cell injury markers, glycated haemoglobin, histopathological score, and oxidative stress, and increased Na/K ATPase activity. These findings suggest that SA might significantly alleviate diabetic complications and/or renal, neuronal, cardiac, and hepatic damage in nSTZ diabetic rats.
Collapse
|
31
|
Peng M, Xia T, Zhong Y, Zhao M, Yue Y, Liang L, Zhong R, Zhang H, Li C, Cao X, Yang M, Wang Y, Shu Z. Integrative pharmacology reveals the mechanisms of Erzhi Pill, a traditional Chinese formulation, against diabetic cardiomyopathy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115474. [PMID: 35716918 DOI: 10.1016/j.jep.2022.115474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erzhi Pill (EZP) is a traditional Chinese prescription that has marked effects in treating type 2 diabetes mellitus and diabetic nephropathy. However, its underlying pharmacological mechanisms in the treatment of diabetic cardiomyopathy (DCM), remain to be elucidated. AIM OF THE STUDY This study aimed to apply an integrative pharmacological strategy to systematically evaluate the pharmacological effects and molecular mechanisms of EZP, and provide a solid theoretical basis for the clinical application of EZP in the treatment of DCM. MATERIALS AND METHODS In this study, the potential targets and key pathways of EZP were predicted and validated using network pharmacology and molecular docking, respectively. Changes in cardiac metabolites and major metabolic pathways in rat heart samples were examined using 1H-nuclear magnetic resonance (NMR) metabolomics. Finally, biochemical analysis was conducted to detect the protein expression levels of key pathways. RESULTS We found that EZP decreased fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL) levels, increased high-density lipoprotein (HDL) levels in the serum, and alleviated the morphological abnormalities of the heart tissue in diabetic rats. Furthermore, EZP effectively restored superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-8, and caspase-9 activity levels, as well as the levels of reactive oxygen species (ROS), malondialdehyde (MDA), B-cell lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) in the heart tissue. Network pharmacology prediction results indicated that the mechanism of EZP in treating DCM was closely related to apoptosis, oxidative stress, and the HIF-1, PI3K-Akt, and FoxO signaling pathways. In addition, 1H-NMR metabolomics confirmed that EZP primarily regulated both energy metabolism and amino acid metabolism, including the tricarboxylic acid (TCA) cycle, ketone bodies metabolism, glutamine and glutamate metabolism, glycine metabolism, and purine metabolism. Finally, immunohistochemistry results indicated that EZP reduced the expression levels of p-AMPK, p-PI3K, p-Akt, and p-FoxO3a proteins, in the heart tissue of DCM rats. CONCLUSION The results confirmed that the overall therapeutic effect of EZP in the DCM rat model is exerted via inhibition of oxidative stress and apoptosis, alongside the regulation of energy metabolism and amino acid metabolism, as well as the AMPK and PI3K/Akt/FoxO3a signaling pathways. This study provides an experimental basis for the use of EZP in DCM treatment.
Collapse
Affiliation(s)
- Mingming Peng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tianyi Xia
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yanmei Zhong
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Mantong Zhao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yimin Yue
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lanyuan Liang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Renxing Zhong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Han Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Chuanqiu Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xia Cao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Mengru Yang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yi Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zunpeng Shu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Emerging roles of ferroptosis in cardiovascular diseases. Cell Death Dis 2022; 8:394. [PMID: 36127318 PMCID: PMC9488879 DOI: 10.1038/s41420-022-01183-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
The mechanism of cardiovascular diseases (CVDs) is complex and threatens human health. Cardiomyocyte death is an important participant in the pathophysiological basis of CVDs. Ferroptosis is a new type of iron-dependent programmed cell death caused by excessive accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS) and abnormal iron metabolism. Ferroptosis differs from other known cell death pathways, such as apoptosis, necrosis, necroptosis, autophagy and pyroptosis. Several compounds have been shown to induce or inhibit ferroptosis by regulating related key factors or signalling pathways. Recent studies have confirmed that ferroptosis is associated with the development of diverse CVDs and may be a potential therapeutic drug target for CVDs. In this review, we summarize the characteristics and related mechanisms of ferroptosis and focus on its role in CVDs, with the goal of inspiring novel treatment strategies.
Collapse
|
33
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
34
|
Wu X, Zhou X, Lai S, Liu J, Qi J. Curcumin activates Nrf2/HO-1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo. FASEB J 2022; 36:e22505. [PMID: 35971779 DOI: 10.1096/fj.202200543rrr] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023]
Abstract
The hallmark feature of Diabetes mellitus (DM) is hyperglycemia which can lead to excess production of reactive oxygen species (ROS) in the myocardium, contributing to diabetic cardiomyopathy (DCM). Nuclear factor erythroid2-related factor2 (Nrf2), a transcriptional activator, enhances its ability to resist oxidative stress by activating multiple downstream anti-oxidants, anti-inflammatory proteins, and detoxifying enzymes. However, the mechanism of Nrf2 signaling in HG-induced DCM is unclear. In this study, we used HG pretreated H9c2 cells as the experimental basis in vitro, and established a high fat-diet, streptozotocin (STZ) induced Type 2 diabetic rat model in vivo. Meanwhile, we used shRNA-Nrf2 and curcumin (CUR) (as an activator) to affect H9c2 cells, to verify the role of the Nrf2 signaling pathway in DCM. The results showed that the excessive production of ROS caused by HG, which could inhibit the activation of Nrf2-related signaling, resulting in a decrease in cell energy metabolism and an increase in cell apoptosis. Surprisingly, we found that the activation of the Nrf2 signaling pathway significantly increased cardiomyocyte viability, reduced ROS formation, increased antioxidant enzyme activity, and inhibited cardiomyocyte apoptosis. In conclusion, these findings conclusively infer that CUR activation of the Nrf2/HO-1 signaling pathway exerts myocardial protection by reducing ROS formation.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueliang Zhou
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Songqing Lai
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jichun Liu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jianwei Qi
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Chen F, Zhang HY, He D, Rao CM, Xu B. Cardioprotective Effect of Gynostemma pentaphyllum against Streptozotocin Induced Cardiac Toxicity in Rats via Alteration of AMPK/Nrf2/HO-1 Pathway. J Oleo Sci 2022; 71:991-1002. [PMID: 35781259 DOI: 10.5650/jos.ess21281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gynostemma pentaphyllum (GP) is a plant commonly used in diabetic therapy in China. GP having potent antioxidant effect against various free radicals. The purpose of the current investigation to identify the cardioprotective effect of GP against streptozotocin (STZ)/ high fat diet (HFD) induced cardiac dysfunction in rats via alteration of AMPK/Nrf2/HO-1 pathway. Wistar rats were used for the current protocol. The rats were received the intraperitoneal injection of STZ and HFD to induce the cardiac remodelling. Blood glucose level, insulin and lipid parameters were estimated. Blood pressure and heart rate were also estimated. Cardiac parameters, antioxidant, cytokines, total protein and inflammatory mediators were analysed. The mRNA expression was detected using the RT-qPCR, respectively. GP significantly (p < 0.001) decreased the BGL and improved the insulin level. GP altered the ratio of heart/BW, liver/BW, and lung/BW. GP treatment significantly (p < 0.001) suppressed the heart rate and blood pressure (diastolic, systolic and mean pressure). GP significantly (p < 0.001) reduced the level of TC, LDL, TG, VLDL and increased the level of HDL. DCM induced rats received the GP administration exhibited reduction in the level of CK and LDH. GP significantly (p < 0.001) reduced the levels of MDA, hydrogen peroxide, peroxynitrite, ROS and increased the level of GSH, SOD, CAT and GPx. GP significantly (p < 0.001) reduced the levels of cytokines (TNF-α, IL-6, IL-1β) and inflammatory parameters (COX-2 and NFκB). GP significantly (p < 0.001) suppressed the NLRP3 and NF-κB expression. GP also boosted mitochondrial biogenesis by boosting the PGC-1α, HO-1 and Nrf2 expression in cardiac tissue. GP treatment showed the cardioprotective effects against STZ induced diabetic cardiac dysfunction via alteration of AMPK/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Cardiology, Affiliated Hospital of Yunnan University
| | - Huan-Yu Zhang
- Department of Ultrasound, Affiliated Hospital of Yunnan University
| | - Di He
- Department of Hematology, Affiliated Hospital of Yunnan University
| | - Chun-Mei Rao
- Diabetes, Pu'er Hospital of Traditional Chinese Medicine
| | - Bo Xu
- Department of Endocrinology, Affiliated Hospital of Yunnan University
| |
Collapse
|
36
|
Naghdi A, Goodarzi MT, Karimi J, Hashemnia M, Khodadadi I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J Cardiovasc Thorac Res 2022; 14:128-137. [PMID: 35935389 PMCID: PMC9339728 DOI: 10.34172/jcvtr.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction: Hyperglycemia enhances oxidative stress and apoptosis and induces damages in heart tissue. Based on antioxidant properties of curcumin and metformin, we hypothesized that these agents may exhibit cardioprotective effects by attenuating oxidative stress and modulating expression of the genes involved in apoptosis in type-1 diabetes.
Methods: Thirty-six male rats were randomly divided into six groups; (N): control; (D): streptozotocin-induced diabetic rats; (D+Cur50) and (D+Cur150): diabetic rats treated with 50 and 150 milligram of curcumin per kilogram of body weight (mg/kg.bw), respectively; (D+Met300) and (D+Met500): diabetic rats received 300 and 500 mg/kg.bw of metformin, respectively. Heart tissues were dissected and gene expression levels of Bax, Bcl-2, and caspase-3 were analyzed. Total anti-oxidant capacity (TAC), total oxidant status (TOS), and malondialdehyde (MDA) level, and activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were measured.
Results: Enhancement in TOS, OSI, and MDA levels as well as increased in the activity of CAT and reduction in SOD and GPx activities were observed in diabetic group (D) compared with control rats. Treatment of diabetic animals with either curcumin or metformin normalized TOS, OSI, and MDA levels and restored CAT, SOD, and GPx activities. Diabetes caused extensive damages in heart tissue of rats (group D) and increased expression of caspase-3 and Bax genes and enhanced ratio of Bax/Bcl-2 expression compared with controls. Treatment with curcumin or metformin mitigated histopathological changes and dampened apoptosis by normalizing Bax and caspase-3 expression.
Conclusion: Curcumin and metformin modulated diabetes-induced cardiac damage probably by reducing oxidative stress.
Collapse
Affiliation(s)
- Atefeh Naghdi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Fu J, Hu X. Simvastatin alleviates epithelial‑mesenchymal transition and oxidative stress of high glucose‑induced lens epithelial cells in vitro by inhibiting RhoA/ROCK signaling. Exp Ther Med 2022; 23:420. [PMID: 35601076 PMCID: PMC9117960 DOI: 10.3892/etm.2022.11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic cataracts (DC) is one of the main causes of blindness among patients with diabetes mellitus. The aim of the present study was to examine the effect of simvastatin on lens epithelial cells in DC and the underlying mechanism. The viability of SRA01/04 cells treated with different concentrations of simvastatin was detected using a Cell Counting Kit-8 assay before and after high glucose (HG) treatment. The expression levels of E-cadherin, N-cadherin, Vimentin and α-smooth muscle actin (α-SMA), proteins associated with epithelial-mesenchymal transition (EMT), in addition to RhoA, Rho-associated kinases (ROCK)1 and ROCK2, proteins related to RhoA/ROCK signaling, were also measured in SRA01/04 cells treated with HG and simvastatin, with or without U46619, using western blot analysis. DCFH-DA dyes, superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) kits were used to measure the levels of oxidative stress parameters in SRA01/04 cells treated with HG and simvastatin with or without U46619. The cell viability of SRA01/04 cells treated with simvastatin was found to be significantly elevated after HG treatment. The protein expression levels of E-cadherin were increased but those of N-cadherin, Vimentin and α-SMA decreased after HG and simvastatin treatment, and this was reversed by U46619. The levels of SOD and GSH-GSSG were found to be increased whereas reactive oxygen species levels were decreased, effects that were reversed by U46619. Additionally, the protein expression levels of RhoA, ROCK1 and ROCK2 were markedly decreased. These findings provided evidence that simvastatin increased HG-induced SRA01/04 cell viability and exerted inhibitory effects on EMT and oxidative stress that occurs during DC.
Collapse
Affiliation(s)
- Jianming Fu
- Department of Ophthalmology, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| | - Xiaojie Hu
- Department of Ophthalmology, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
38
|
Osukoya OA, Ajiboye BO, Oyinloye BE, Owero-Ozeze OS, Ojo OA, Kappo PA. Aqueous extract of Solanum macrocapon Linn leaf abate diabetic cardiomyopathy by attenuating oxidative stress and inflammation in rats. J Food Biochem 2022; 46:e14172. [PMID: 35437796 DOI: 10.1111/jfbc.14172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
In this research, the beneficial roles of aqueous leaf extract of Solanum macrocarpon (SM) on diabetic cardiomyopathy were evaluated. Diabetic rats (induced with alloxan) were given varying doses of SM aqueous leaves extract for 28 days, and the animals were sacrificed. A series of diabetic cardiomyopathy parameters were determined. Diabetic rats showed hyperglycemia, hyperlipidemia, with a momentous upsurge in lactate dehydrogenase, creatine kinase, cardiac troponin I activities as well as inflammatory markers. Also, diabetic rats demonstrated a substantial decline in the activities of antioxidant enzymes in relation to other groups. Administration of different doses of SM aqueous leaf extract to diabetic rats demonstrated normoglycemia, normolipidemia, reduced the activities of lactate dehydrogenase, creatine kinase, cardiac troponin I, and inflammatory levels as well as an increase in the antioxidant enzyme activities. In conclusion, the results suggest that SM aqueous leaf extract ameliorates diabetic cardiomyopathy. PRACTICAL APPLICATIONS: This study examined the role of Solanum macrocarpon (SM) aqueous leaf extract in diabetic cardiomyopathy. Results revealed that SM might be useful in ameliorating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Olukemi Adetutu Osukoya
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria.,Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.,Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria.,Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, South Africa
| | - Ofogho Sonia Owero-Ozeze
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular toxicology, and Computational Biochemistry Research group, Department of Biochemistry, Bowen University, Iwo, Osun State, Nigeria
| | - Paul Abidemi Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry, University of Johannesburg, South Africa
| |
Collapse
|
39
|
Longo M, Scappaticcio L, Cirillo P, Maio A, Carotenuto R, Maiorino MI, Bellastella G, Esposito K. Glycemic Control and the Heart: The Tale of Diabetic Cardiomyopathy Continues. Biomolecules 2022; 12:biom12020272. [PMID: 35204778 PMCID: PMC8961546 DOI: 10.3390/biom12020272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in people with diabetes. Diabetic cardiomyopathy (DC) is an important complication of diabetes and represents a distinct subtype of heart failure that occurs in absence of cardiovascular diseases. Chronic hyperglycemia and hyperinsulinemia along with insulin resistance and inflammatory milieu are the main mechanisms involved in the pathophysiology of DC. Changes in lifestyle favoring healthy dietary patterns and physical activity, combined with more innovative anti-diabetes therapies, are the current treatment strategies to safeguard the cardiovascular system. This review aims at providing an updated comprehensive overview of clinical, pathogenetic, and molecular aspects of DC, with a focus on the effects of anti-hyperglycemic drugs on the prevention of pump dysfunction and consequently on cardiovascular health in type 2 diabetes.
Collapse
Affiliation(s)
- Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Paolo Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Antonietta Maio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Raffaela Carotenuto
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-156-65031
| |
Collapse
|
40
|
Zhang C, Zhang B, Zhang X, Wang M, Sun X, Sun G. Panax notoginseng Saponin Protects Against Diabetic Cardiomyopathy Through Lipid Metabolism Modulation. J Am Heart Assoc 2022; 11:e023540. [PMID: 35112884 PMCID: PMC9245810 DOI: 10.1161/jaha.121.023540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background People with diabetes are more likely to develop cardiovascular diseases. Lipotoxicity plays a key role in the development of diabetic cardiomyopathy. Panax notoginseng saponin (PNS) has been used to treat diabetes and obesity. However, the role of PNS in diabetic cardiomyopathy remains unclear. Methods and Results Diabetic db/db mice received high‐dose (200 mg/kg per day) or medium‐dose (100 mg/kg per day) PNS by gavage for 12 weeks until week 36. Lipid accumulation and cardiac function in diabetic mice were detected and possible mechanisms involved were explored. PNS significantly improved body weight, body fat content, serum lipids, adipocytokines, and antioxidative function in db/db mice. Lipid accumulation in adipose tissue, liver, and heart were also alleviated by PNS treatment. Cardiac function and mitochondrial structure were also improved by PNS. H9c2 cells were treated with palmitate acid, and PNS pretreatment reduced lipid accumulation, mitochondrial reactive oxygen species, as well as improved mitochondrial membrane potential and mitochondrial oxygen consumption rate. Levels of proteins and expression of genes related to glucose and lipid metabolism, antioxidative function, and mitochondrial dynamics were also improved by PNS administration. Conclusions PNS attenuated heart dysfunction in diabetic mice by reducing lipotoxicity as well as modulating oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
41
|
Antar SA, Abdo W, Taha RS, Farage AE, El-Moselhy LE, Amer ME, Abdel Monsef AS, Abdel Hamid AM, Kamel EM, Ahmeda AF, Mahmoud AM. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats. Life Sci 2022; 291:120260. [DOI: 10.1016/j.lfs.2021.120260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
|
42
|
Syringic Acid Attenuates Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. Adv Pharmacol Pharm Sci 2022; 2021:5018092. [PMID: 34993484 PMCID: PMC8727109 DOI: 10.1155/2021/5018092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Diabetic cardiomyopathy (DC) has become one of the serious complications in diabetic cases. In this study, we aimed to explore the syringic acid (SYR) protective effect against diabetes-induced cardiac injury in experimental rats. Methods Rats were divided in control and streptozotocin-induced diabetic rats which were subdivided into diabetic controls, and three test groups (SYR at 25, 50, and 100 mg/kg) and the nondiabetic group received 100 mg/kg of SYR. All treatments were given SYR for 6 weeks. SYR effects on cardiac diagnostic markers, heart lipid peroxidation, protein carbonylation, antioxidant system, and changes of the heart mitochondrial mass and biogenesis were measured. Results Diabetes induction prompted CK-MB, LDH levels in serum, cardiac catalase, and superoxide dismutase activity, as well as cardiac TBARs and carbonylated protein. SYR administration (100 m/kg) attenuated CK-MB and LDH levels. Also, 50 and 100 mg/kg of SYR reduced cardiac TBARs and carbonylated protein in diabetic rats. These treatments did not show any effects on GSH content, mtDNA, and mitochondrial biogenesis indices (PGC1- α, NRF1, NRF2, and TFAM) in heart tissue. Conclusions SYR treatment showed protective effects on diabetic cardiomyopathy in rats by reducing lipid peroxidation and protein carbonylation. The possible mechanisms could be related to antioxidant activity of this phenolic acid. SYR might play a role of a protective factor in cardiac challenges in diabetes.
Collapse
|
43
|
Zhang C, Han M, Zhang X, Tong H, Sun X, Sun G. Ginsenoside Rb1 Protects Against Diabetic Cardiomyopathy by Regulating the Adipocytokine Pathway. J Inflamm Res 2022; 15:71-83. [PMID: 35023944 PMCID: PMC8743619 DOI: 10.2147/jir.s348866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Obesity and diabetes are often accompanied by chronic inflammation and insulin resistance, which lead to complications such as diabetic cardiomyopathy. Ginsenoside Rb1 has been used to treat diabetes and obesity and reduce inflammation as well as risk of heart diseases. However, the role of ginsenoside Rb1 in treating diabetic cardiomyopathy remains unclear. METHODS Diabetic mice were administered ginsenoside Rb1 for 12 weeks, and their body weight, body fat, and blood glucose levels as well as and serum insulin, lipids, and adipocytokine levels were assessed. Lipid accumulation, pathological morphology of the adipose tissue, liver, and heart were examined. Western blot and qRT-PCR were performed to investigate the molecular changes in response to ginsenoside Rb1 treatment. RESULTS Ginsenoside Rb1 treatment significantly reduced body weight and body fat, attenuated hyperglycemia and hyperlipidemia, and ameliorated insulin resistance and abnormal levels of adipocytokines in diabetic mice. In addition, lipid accumulation and inflammation reduced while the functions of heart improved in the ginsenoside Rb1-treated group. Furthermore, antioxidant function improved in the ginsenoside Rb1-treated diabetic hearts. PCR and Western blotting analyses revealed that the lipid-lowering effect of ginsenoside Rb1 and the resulting improvement of cardiac function could be attributed to the adipocytokine pathway, which promoted energy homeostasis and alleviated cardiac dysfunction. CONCLUSION Ginsenoside Rb1 lowered lipid levels in a adipocytokine-mediated manner and attenuated hyperglycemia/hyperlipidemia-induced oxidative stress, hypertrophy, inflammation, fibrosis, and apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Meixin Han
- College of Pharmacy, Harbin University of Commerce, Harbin, People’s Republic of China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hongna Tong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
44
|
Nellaiappan K, Preeti K, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev 2022; 18:e030821192146. [PMID: 33745424 DOI: 10.2174/1573399817666210309104203] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Despite the advent of novel therapies which manage and control diabetes well, the increased risk of morbidity and mortality in diabetic subjects is associated with the devastating secondary complications it produces. Long-standing diabetes majorly drives cellular and molecular alterations, which eventually damage both small and large blood vessels. The complications are prevalent both in type I and type II diabetic subjects. The microvascular complications include diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, while the macrovascular complications include diabetic heart disease and stroke. The current therapeutic strategy alleviates the complications to some extent but does not cure or prevent them. Also, the recent clinical trial outcomes in this field are disappointing. Success in the drug discovery of diabetic complications may be achieved by a better understanding of the underlying pathophysiology and by recognising the crucial factors contributing to the development and progression of the disease. In this review, we discuss the well-studied cellular mechanisms leading to the development and progression of diabetic complications. In addition, we also highlight the various therapeutic paradigms currently in clinical practice.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| |
Collapse
|
45
|
Refaie MM, El-Hussieny M, Bayoumi AM, Shehata S, Welson NN, Abdelzaher WY. Simvastatin cardioprotection in cyclophosphamide-induced toxicity via the modulation of inflammasome/caspase1/interleukin1β pathway. Hum Exp Toxicol 2022; 41:9603271221111440. [PMID: 35762198 DOI: 10.1177/09603271221111440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Drug-induced cardiotoxicity is a serious adverse effect that occurs during the administration of chemotherapeutic agents such as cyclophosphamide (CYC). Therefore, there is a critical need to find cardioprotective agents to keep the heart healthy. The current study aimed to investigate the protective effect of simvastatin (SIM) against CYC-induced heart damage and evaluate different mechanisms involved in mediating this effect, including the inflammasome/caspase1/interleukin1β (IL1β) pathway and endothelial nitric oxide synthase (eNOS). 36 rats were randomly assigned to one of four groups: a control group that received only vehicles, a CYC group that received CYC (150 mg/kg/day) i.p. on the fourth and fifth days, a CYC+SIM group that received SIM (10 mg/kg/day) orally for 5 days and CYC (150 mg/kg/day) i.p. on the fourth and fifth days, and a CYC+SIM+ Nitro- ω-L-arginine (L-NNA) group that received L-NNA (25 mg/kg/day, SIM (10 mg/kg/day) orally for 5 days and CYC (150 mg/kg/day) i.p. on the 4th and 5th days. The CYC group revealed an obvious elevation in cardiac enzymes and heart weights with toxic histopathological changes. Moreover, there was an increase in malondialdehyde (MDA), tumor necrosis factor-alpha (TNFα) levels, and up-regulation of the NLRP3inflammasome/caspase1/IL1β pathway. In addition, total antioxidant capacity (TAC), eNOS, reduced glutathione (GSH), and superoxide dismutase (SOD) significantly decreased. CYC-induced cardiotoxicity was most properly reversed by SIM through its anti-oxidant, anti-inflammatory, and anti-apoptotic actions with the stimulation of eNOS. The co-administration of L-NNA diminished the protective effect of SIM, indicating the essential role of eNOS in mediating this effect. Therefore, SIM ameliorated CYC-induced cardiotoxicity.
Collapse
Affiliation(s)
- Marwa Mm Refaie
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, El-Minia, Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Asmaa Ma Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt.,Department of Biochemistry, 215098Kyushu University Graduate School of Medical Sciences, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, 158411Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
46
|
Wu X, Li H, Wan Z, Wang R, Liu J, Liu Q, Zhao H, Wang Z, Zhang H, Guo H, Qi C, Jiao X, Li X. The combination of ursolic acid and empagliflozin relieves diabetic nephropathy by reducing inflammation, oxidative stress and renal fibrosis. Biomed Pharmacother 2021; 144:112267. [PMID: 34624679 DOI: 10.1016/j.biopha.2021.112267] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Studies have shown that ursolic acid (UA) and empagliflozin (EM) exert therapeutic effects in the treatment of diabetic nephropathy (DN), but both drugs have disadvantages. This study explores the effect of combining these drugs compared to that of either monotherapy. A diabetic rat model was established by feeding a high-fat diet (HFD) with high-sugar content and administering a low dose of streptozotocin (STZ) via intraperitoneal injection. UA (50 mg/kg/day, po), EM (10 mg/kg/day, po) or both were administered for 8 weeks. The development of DN was determined by observing increases in urine protein, serum creatinine, urea nitrogen, and uric acid and abnormal changes in kidney morphology. UA and EM either alone or in combination can alleviate the increases in blood glucose, glycosylated haemoglobin, blood lipid levels, inflammatory factors (TNF-α, IL-1β, IL-6), oxidation factors (SOD, MDA, GSH, CAT, NO), renal fibrosis and pro-fibrosis factors (FN, E-cad, MMP-9, TIMP-1, SMA-α, TGF-β1, SMAD, MAPK). The treatments could also ameliorate DN by preventing the abnormal proliferation of glomerular mesangial cells under high-glucose conditions, aberrant apoptosis and excessive production of reactive oxygen species (ROS). In addition, UA reduces the increase in LDL-L, reverses abnormal bladder morphology and mitigates the increase in colony count caused by EM, and the combination treatment can overcome the disadvantages of the slow hypoglycaemic effect of UA. In short, UA combined with empagliflozin is more effective than either monotherapy in the treatment of DN and can cancel the adverse effects of each other. The protective effect of this regimen on the kidney may be related to reducing inflammation, oxidative stress and renal fibrosis.
Collapse
Affiliation(s)
- Xiaohan Wu
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China; Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan City, Hubei Province, China
| | - He Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Zhijie Wan
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Ran Wang
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Jing Liu
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Qingfeng Liu
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Haiyun Zhao
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Zhehuan Wang
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Huiru Zhang
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Hui Guo
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Caihong Qi
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Xiangyue Jiao
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Xiaotian Li
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China.
| |
Collapse
|
47
|
Mushtaq I, Bashir Z, Sarwar M, Arshad M, Ishtiaq A, Khan W, Khan U, Tabassum S, Ali T, Fatima T, Valadi H, Nawaz M, Murtaza I. N-Acetyl Cysteine, Selenium, and Ascorbic Acid Rescue Diabetic Cardiac Hypertrophy via Mitochondrial-Associated Redox Regulators. Molecules 2021; 26:7285. [PMID: 34885867 PMCID: PMC8659237 DOI: 10.3390/molecules26237285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic disorders often lead to cardiac complications. Metabolic deregulations during diabetic conditions are linked to mitochondrial dysfunctions, which are the key contributing factors in cardiac hypertrophy. However, the underlying mechanisms involved in diabetes-induced cardiac hypertrophy are poorly understood. In the current study, we initially established a diabetic rat model by alloxan-administration, which was validated by peripheral glucose measurement. Diabetic rats displayed myocardial stiffness and fibrosis, changes in heart weight/body weight, heart weight/tibia length ratios, and enhanced size of myocytes, which altogether demonstrated the establishment of diabetic cardiac hypertrophy (DCH). Furthermore, we examined the expression of genes associated with mitochondrial signaling impairment. Our data show that the expression of PGC-1α, cytochrome c, MFN-2, and Drp-1 was deregulated. Mitochondrial-signaling impairment was further validated by redox-system dysregulation, which showed a significant increase in ROS and thiobarbituric acid reactive substances, both in serum and heart tissue, whereas the superoxide dismutase, catalase, and glutathione levels were decreased. Additionally, the expression levels of pro-apoptotic gene PUMA and stress marker GATA-4 genes were elevated, whereas ARC, PPARα, and Bcl-2 expression levels were decreased in the heart tissues of diabetic rats. Importantly, these alloxan-induced impairments were rescued by N-acetyl cysteine, ascorbic acid, and selenium treatment. This was demonstrated by the amelioration of myocardial stiffness, fibrosis, mitochondrial gene expression, lipid profile, restoration of myocyte size, reduced oxidative stress, and the activation of enzymes associated with antioxidant activities. Altogether, these data indicate that the improvement of mitochondrial dysfunction by protective agents such as N-acetyl cysteine, selenium, and ascorbic acid could rescue diabetes-associated cardiac complications, including DCH.
Collapse
Affiliation(s)
- Iram Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.M.); (Z.B.); (M.S.); (M.A.); (A.I.); (T.A.)
| | - Zainab Bashir
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.M.); (Z.B.); (M.S.); (M.A.); (A.I.); (T.A.)
| | - Mehvish Sarwar
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.M.); (Z.B.); (M.S.); (M.A.); (A.I.); (T.A.)
| | - Maria Arshad
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.M.); (Z.B.); (M.S.); (M.A.); (A.I.); (T.A.)
| | - Ayesha Ishtiaq
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.M.); (Z.B.); (M.S.); (M.A.); (A.I.); (T.A.)
| | - Wajiha Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbotabad 22060, Pakistan;
| | - Uzma Khan
- Faculty of Biological Sciences, Hazara University, Mansehra 21040, Pakistan;
| | - Sobia Tabassum
- Department of Bioinformatics and Biotechnology, Islamic International University Islamabad (IIUI), Islamabad 44000, Pakistan;
| | - Tahir Ali
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.M.); (Z.B.); (M.S.); (M.A.); (A.I.); (T.A.)
| | - Tahzeeb Fatima
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (T.F.); (H.V.)
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (T.F.); (H.V.)
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (T.F.); (H.V.)
| | - Iram Murtaza
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.M.); (Z.B.); (M.S.); (M.A.); (A.I.); (T.A.)
| |
Collapse
|
48
|
The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother 2021; 145:112423. [PMID: 34800783 DOI: 10.1016/j.biopha.2021.112423] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a programmed iron-dependent cell death characterized by accumulation of lipid peroxides (LOOH) and redox disequilibrium. Ferroptosis shows unique characteristics in biology, chemistry, and gene levels, compared to other cell death forms. The metabolic disorder of intracellular LOOH catalyzed by iron causes the inactivity of GPX4, disrupts the redox balance, and triggers cell death. Metabolism of amino acid, iron, and lipid, including associated pathways, is considered as a specific hallmark of ferroptosis. Epidemiological studies and animal experiments have shown that ferroptosis plays an important character in the pathophysiology of cardiovascular disease such as atherosclerosis, myocardial infarction (MI), ischemia/reperfusion (I/R), heart failure (HF), cardiac hypertrophy, cardiomyopathy, and abdominal aortic aneurysm (AAA). This review systematically summarized the latest research progress on the mechanisms of ferroptosis. Then we report the contribution of ferroptosis in cardiovascular diseases. Finally, we discuss and analyze the therapeutic approaches targeting for ferroptosis associated with cardiovascular diseases.
Collapse
|
49
|
Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Cell Mol Life Sci 2021; 78:8127-8155. [PMID: 34783870 PMCID: PMC8593173 DOI: 10.1007/s00018-021-03983-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage damage caused by sports injury or osteoarthritis (OA) has gained increased attention as a worldwide health burden. Pharmaceutical treatments are considered cost-effective means of promoting cartilage regeneration, but are limited by their inability to generate sufficient functional chondrocytes and modify disease progression. Small molecular chemical compounds are an abundant source of new pharmaceutical therapeutics for cartilage regeneration, as they have advantages in design, fabrication, and application, and, when used in combination, act as powerful tools for manipulating cellular fate. In this review, we present current achievements in the development of small molecular drugs for cartilage regeneration, particularly in the fields of chondrocyte generation and reversion of chondrocyte degenerative phenotypes. Several clinically or preclinically available small molecules, which have been shown to facilitate chondrogenesis, chondrocyte dedifferentiation, and cellular reprogramming, and subsequently ameliorate cartilage degeneration by targeting inflammation, matrix degradation, metabolism, and epigenetics, are summarized. Notably, this review introduces essential parameters for high-throughput screening strategies, including models of different chondrogenic cell sources, phenotype readout methodologies, and transferable advanced systems from other fields. Overall, this review provides new insights into future pharmaceutical therapies for cartilage regeneration.
Collapse
|
50
|
FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5582567. [PMID: 34621323 PMCID: PMC8492284 DOI: 10.1155/2021/5582567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/16/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Background The pathogenesis and clinical features of diabetic cardiomyopathy (DCM) have been well studied in the past decade; however, effective approaches to prevent and treat this disease are limited. Fufang Zhenzhu Tiaozhi (FTZ) formula, a traditional Chinese prescription, is habitually used to treat dyslipidemia and diabetes. Recently, several studies have reported the therapeutic effects of FTZ on cardiovascular diseases. However, the effects of FTZ on DCM have not yet been fully elucidated. This study investigated the effects of FTZ on DCM and determined the mechanisms underlying its efficacy. Methods Diabetes was induced in mice by intraperitoneal injection of streptozotocin; the mice were randomly divided into a control group (Con), diabetes group (DCM), and diabetes-treated with FTZ (DCM + FTZ). Myocardial structural alterations, fibrosis biomarkers, and inflammation were observed. Besides, the potential targets and their related signaling pathways were analyzed using network pharmacology and further verified by Western blot. Results Diabetic mice showed significant body weight loss, hyperglycemia, and excessive collagen content in the cardiac tissue, while serum and myocardial inflammatory factors significantly increased. Nerveless, treatment with FTZ for 1 month significantly improved body weight, attenuated hyperglycemia, and alleviated diabetes-associated myocardial structure and function abnormalities. Furthermore, the serum levels of interleukin 12 (IL-12) and chemokine (C–C motif) ligand 2 (CCL2) as well as the mRNA levels of cardiac IL-12, IL-6, and C–C motif chemokine receptor 2 (Ccr2) reduced after FTZ treatment. Additionally, a total of 67 active compounds and 76 potential targets related to DCM were analyzed. Pathway and functional enrichment analyses showed that FTZ mainly regulates inflammation-related pathways, including MAPK and PI3K-AKT signaling pathways. Further investigation revealed that the activities of STAT3, AKT, and ERK were augmented in diabetic hearts but decreased in FTZ-treated cardiac tissues. Conclusion Our results suggest that FTZ exhibits therapeutic properties against DCM by ameliorating hyperglycemia-induced inflammation and fibrosis via at least partial inhibition of AKT, ERK, and STAT3 signaling pathways.
Collapse
|