1
|
Huo Q, Ning L, Xie N. Identification of GZMA as a Potential Therapeutic Target Involved in Immune Infiltration in Breast Cancer by Integrated Bioinformatical Analysis. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:213-226. [PMID: 36926265 PMCID: PMC10013577 DOI: 10.2147/bctt.s400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/18/2023] [Indexed: 03/12/2023]
Abstract
Purpose Granzyme A (GZMA) is a potential prognostic target for various cancer types. However, its therapeutic significance in breast cancer with immune infiltration remains controversial. We analyzed GZMA expression and its prognostic value in breast cancer with immune cell infiltration. Patients and methods Data was obtained from patients with breast cancer registered at The Cancer Genome Atlas. A correlation was performed between GZMA expression and patient's clinicopathological features such as age, pathologic stage, metastasis stage, overall survival (OS), disease-specific survival (DSS), and progress free interval (PFI). Kaplan-Meier analyses and Cox proportional hazard regression model were used to examine the predictive significance of GZMA expression for breast cancer. The co-expression pattern of GZMA was assessed by the LinkedOmics web portal. The relationship between GZMA expression and immune cells was analyzed using the TIMER database. The correlation between GZMA and lymphocytes and immunomodulators was established with the TISIDB database. Results There was a lower GZMA expression in breast cancer tissue than in normal tissue. Interestingly, GZMA expression was associated with age, pathologic stage, and the Tumour, Node, and Metastasis stage. Overexpression of GZMA was also associated with better OS, DSS, and PFI. Based on the Cox regression analysis, GZMA was identified as an independent favorable prognostic factor for breast cancer. Our findings demonstrated a strong association between GZMA and T-cell checkpoints (PD-1, PD-L1, and cytotoxic T lymphocyte-associated antigen (CTLA-4)) in breast cancer. Moreover, we evaluated the interactions between GZMA expression and markers of dendritic and CD8+ T cells using quantitative immunofluorescence. We discovered that increased infiltration of dendritic and CD8+ T cells was associated with GZMA expression in breast cancer. Conclusion GZMA expression is associated with a favorable prognosis in breast cancer and is significantly correlated with immune cell infiltration. GZMA may be considered a promising therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Lvwen Ning
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Moreno-Martinez L, Santiago L, de la Torre M, Calvo AC, Pardo J, Osta R. Hemizygous Granzyme A Mice Expressing the hSOD1G93A Transgene Show Slightly Extended Lifespan. Int J Mol Sci 2022; 23:13554. [PMID: 36362341 PMCID: PMC9655466 DOI: 10.3390/ijms232113554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Granzyme A (gzmA), a serine protease involved in the modulation of the inflammatory immune response, is found at an elevated level in the serum from ALS patients. However, the influence of gzmA on the progression of ALS remains unclear. The aim of our work was to assess whether the absence of gzmA in an ALS murine model could help slow down the progression of the disease. Homozygous and hemizygous gzmA-deficient mice expressing the hSOD1G93A transgene were generated, and survival of these mice was monitored. Subsequently, gene and protein expression of inflammatory and oxidative stress markers was measured in the spinal cord and quadriceps of these mice. We observed the longest lifespan in gzmA+/- mice. GzmA gene and protein expression was downregulated in the spinal cord and serum from gmzA+/- mice, confirming that the increased survival of hemizygous mice is correlated with lower levels of gzmA. In addition, mRNA and protein levels of glutathione reductase (GSR), involved in oxidative stress, were found downregulated in the spinal cord and quadriceps of gmzA+/- mice, together with lower IL-1β and IL-6 mRNA levels in hemyzigous mice. In summary, our findings indicate for the first time that reduced levels, but not the absence, of gzmA could slightly ameliorate the disease progression in this animal model.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Llipsy Santiago
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam de la Torre
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Ana Cristina Calvo
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Julián Pardo
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Centre of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
3
|
Xiong J, Zhao Y, Lin Y, Chen L, Weng Q, Shi C, Liu X, Geng Y, Liu L, Wang J, Zhang M. Identification and characterization of innate lymphoid cells generated from pluripotent stem cells. Cell Rep 2022; 41:111569. [DOI: 10.1016/j.celrep.2022.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
|
4
|
Liu Z, van ‘t Veer C, Hendriks RW, Roelofs JJTH, van der Poll T, de Vos AF. Bruton's Tyrosine Kinase Deficiency Ameliorates Antimicrobial Host Defense during Peritonitis Induced by Pathogenic Escherichia coli. Infect Immun 2022; 90:e0067421. [PMID: 35587199 PMCID: PMC9202372 DOI: 10.1128/iai.00674-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Peritonitis and abdominal sepsis remain major health problems and challenge for clinicians. Bruton's tyrosine kinase (Btk) is a versatile signaling protein involved in the regulation of B cell development and function, as well as innate host defense. In the current study, we aimed to explore the role of Btk in the host response during peritonitis and sepsis in mice induced by a gradually growing pathogenic strain of Escherichia coli bacteria. We found that Btk deficiency ameliorated antibacterial host defense during the late stage of E. coli-induced peritonitis. Btk was not required for cytokine and chemokine release in response to either E. coli or lipopolysaccharide and did not impact organ damage evoked by E. coli. Btk deficiency also did not alter neutrophil influx to the primary site of infection. However, the absence of Btk modestly enhanced phagocytosis of E. coli by neutrophils. These results indicate that Btk-mediated signaling is superfluous for inflammatory responses and remarkably detrimental for antibacterial defense during E. coli-induced peritonitis.
Collapse
Affiliation(s)
- Zhe Liu
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis van ‘t Veer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joris J. T. H. Roelofs
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
6
|
Role of Myeloid Tet Methylcytosine Dioxygenase 2 in Pulmonary and Peritoneal Inflammation Induced by Lipopolysaccharide and Peritonitis Induced by Escherichia coli. Cells 2021; 11:cells11010082. [PMID: 35011643 PMCID: PMC8750455 DOI: 10.3390/cells11010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Tet methylcytosine dioxygenase 2 (Tet2) mediates demethylation of DNA. We here sought to determine the expression and function of Tet2 in macrophages upon exposure to lipopolysaccharide (LPS), and in the host response to LPS induced lung and peritoneal inflammation, and during Escherichia (E.) coli induced peritonitis. LPS induced Tet2 expression in mouse macrophages and human monocytes in vitro, as well as in human alveolar macrophages after bronchial instillation in vivo. Bone marrow-derived macrophages from myeloid Tet2 deficient (Tet2fl/flLysMCre) mice displayed enhanced production of IL-1β, IL-6 and CXCL1 upon stimulation with several Toll-like receptor agonists; similar results were obtained with LPS stimulated alveolar and peritoneal macrophages. Histone deacetylation was involved in the effect of Tet2 on IL-6 production, whilst methylation at the Il6 promoter was not altered by Tet2 deficiency. Tet2fl/flLysMCre mice showed higher IL-6 and TNF levels in bronchoalveolar and peritoneal lavage fluid after intranasal and intraperitoneal LPS administration, respectively, whilst other inflammatory responses were unaltered. E. coli induced stronger production of IL-1β and IL-6 by Tet2 deficient peritoneal macrophages but not in peritoneal lavage fluid of Tet2fl/flLysMCre mice after in vivo intraperitoneal infection. Tet2fl/flLysMCre mice displayed enhanced bacterial growth during E. coli peritonitis, which was associated with a reduced capacity of Tet2fl/flLysMCre peritoneal macrophages to inhibit the growth of E. coli in vitro. Collectively, these data suggest that Tet2 is involved in the regulation of macrophage functions triggered by LPS and during E. coli infection.
Collapse
|
7
|
Uranga-Murillo I, Tapia E, Garzón-Tituaña M, Ramirez-Labrada A, Santiago L, Pesini C, Esteban P, Roig FJ, Galvez EM, Bird PI, Pardo J, Arias M. Biological relevance of Granzymes A and K during E. coli sepsis. Am J Cancer Res 2021; 11:9873-9883. [PMID: 34815792 PMCID: PMC8581435 DOI: 10.7150/thno.59418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
Aims: Recent in vitro findings suggest that the serine protease Granzyme K (GzmK) may act as a proinflammatory mediator. However, its role in sepsis is unknown. Here we aim to understand the role of GzmK in a mouse model of bacterial sepsis and compare it to the biological relevance of Granzyme A (GzmA). Methods: Sepsis was induced in WT, GzmA-/- and GzmK-/- mice by an intraperitoneal injection of 2x108 CFU from E. coli. Mouse survival was monitored during 5 days. Levels of IL-1α, IL-1β, TNFα and IL-6 in plasma were measured and bacterial load in blood, liver and spleen was analyzed. Finally, profile of cellular expression of GzmA and GzmK was analyzed by FACS. Results: GzmA and GzmK are not involved in the control of bacterial infection. However, GzmA and GzmK deficient mice showed a lower sepsis score in comparison with WT mice, although only GzmA deficient mice exhibited increased survival. GzmA deficient mice also showed reduced expression of some proinflammatory cytokines like IL1-α, IL-β and IL-6. A similar result was found when extracellular GzmA was therapeutically inhibited in WT mice using serpinb6b, which improved survival and reduced IL-6 expression. Mechanistically, active extracellular GzmA induces the production of IL-6 in macrophages by a mechanism dependent on TLR4 and MyD88. Conclusions: These results suggest that although both proteases contribute to the clinical signs of E. coli-induced sepsis, inhibition of GzmA is sufficient to reduce inflammation and improve survival irrespectively of the presence of other inflammatory granzymes, like GzmK.
Collapse
|
8
|
García-Laorden MI, Hoogendijk AJ, Wiewel MA, van Vught LA, Schultz MJ, Bovenschen N, de Vos AF, van der Poll T. Intracellular expression of granzymes A, B, K and M in blood lymphocyte subsets of critically ill patients with or without sepsis. Clin Exp Immunol 2021; 205:222-231. [PMID: 33866542 PMCID: PMC8274148 DOI: 10.1111/cei.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a complex syndrome related to an infection-induced exaggerated inflammatory response, which is associated with a high mortality. Granzymes (Gzm) are proteases mainly found in cytotoxic lymphocytes that not only have a role in target cell death, but also as mediators of infection and inflammation. In this study we sought to analyse the intracellular expression of GzmA, B, M and K by flow cytometry in diverse blood lymphocyte populations from 22 sepsis patients, 12 non-infected intensive care unit (ICU) patients and 32 healthy controls. Additionally, we measured GzmA and B plasma levels. Both groups of patients presented decreased percentage of natural killer (NK) cells expressing GzmA, B and M relative to healthy controls, while sepsis patients showed an increased proportion of CD8+ T cells expressing GzmB compared to controls. Expression of GzmK remained relatively unaltered between groups. Extracellular levels of GzmB were increased in non-infected ICU patients relative to sepsis patients and healthy controls. Our results show differential alterations in intracellular expression of Gzm in sepsis patients and non-infected critically ill patients compared to healthy individuals depending on the lymphocyte population and on the Gzm.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Arie J Hoogendijk
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryse A Wiewel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Niels Bovenschen
- Department of Pathology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Stasi A, Franzin R, Divella C, Sallustio F, Curci C, Picerno A, Pontrelli P, Staffieri F, Lacitignola L, Crovace A, Cantaluppi V, Medica D, Ronco C, de Cal M, Lorenzin A, Zanella M, Pertosa GB, Stallone G, Gesualdo L, Castellano G. PMMA-Based Continuous Hemofiltration Modulated Complement Activation and Renal Dysfunction in LPS-Induced Acute Kidney Injury. Front Immunol 2021; 12:605212. [PMID: 33868226 PMCID: PMC8047323 DOI: 10.3389/fimmu.2021.605212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) is a frequent complication in critically ill patients, refractory to conventional treatments. Aberrant activation of innate immune system may affect organ damage with poor prognosis for septic patients. Here, we investigated the efficacy of polymethyl methacrylate membrane (PMMA)-based continuous hemofiltration (CVVH) in modulating systemic and tissue immune activation in a swine model of LPS-induced AKI. After 3 h from LPS infusion, animals underwent to PMMA-CVVH or polysulfone (PS)-CVVH. Renal deposition of terminal complement mediator C5b-9 and of Pentraxin-3 (PTX3) deposits were evaluated on biopsies whereas systemic Complement activation was assessed by ELISA assay. Gene expression profile was performed from isolated peripheral blood mononuclear cells (PBMC) by microarrays and the results validated by Real-time PCR. Endotoxemic pigs presented oliguric AKI with increased tubulo-interstitial infiltrate, extensive collagen deposition, and glomerular thrombi; local PTX-3 and C5b-9 renal deposits and increased serum activation of classical and alternative Complement pathways were found in endotoxemic animals. PMMA-CVVH treatment significantly reduced tissue and systemic Complement activation limiting renal damage and fibrosis. By microarray analysis, we identified 711 and 913 differentially expressed genes with a fold change >2 and a false discovery rate <0.05 in endotoxemic pigs and PMMA-CVVH treated-animals, respectively. The most modulated genes were Granzyme B, Complement Factor B, Complement Component 4 Binding Protein Alpha, IL-12, and SERPINB-1 that were closely related to sepsis-induced immunological process. Our data suggest that PMMA-based CVVH can efficiently modulate immunological dysfunction in LPS-induced AKI.
Collapse
Affiliation(s)
- Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Angela Picerno
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Luca Lacitignola
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Antonio Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Davide Medica
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Anna Lorenzin
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Giovanni B. Pertosa
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Garzón-Tituaña M, Sierra-Monzón JL, Comas L, Santiago L, Khaliulina-Ushakova T, Uranga-Murillo I, Ramirez-Labrada A, Tapia E, Morte-Romea E, Algarate S, Couty L, Camerer E, Bird PI, Seral C, Luque P, Paño-Pardo JR, Galvez EM, Pardo J, Arias M. Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis. Theranostics 2021; 11:3781-3795. [PMID: 33664861 PMCID: PMC7914344 DOI: 10.7150/thno.49288] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Tatiana Khaliulina-Ushakova
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Sonia Algarate
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ludovic Couty
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 3800, Clayton VIC, Australia
| | - Cristina Seral
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Pilar Luque
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018, Zaragoza, Spain
- Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| |
Collapse
|
11
|
Ebrahimi Meimand S, Rostam-Abadi Y, Rezaei N. Autism spectrum disorders and natural killer cells: a review on pathogenesis and treatment. Expert Rev Clin Immunol 2020; 17:27-35. [PMID: 33191807 DOI: 10.1080/1744666x.2020.1850273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Autism spectrum disorder (ASD), as a wide spectrum of neurodevelopmental disorders, is characterized by early-onset impairments in social-communication, repetitive behaviors, and restrictive interests.Areas covered: Although still unknown, there are some pieces of evidence suggesting altered immune function in the etiology of ASD. This review aims to summarize studies linking Natural Killer (NK) cells to ASD by searching through databases like MEDLINE and Scopus up to October 2020. NK cells play important roles in the innate immune system and immune regulation. As parts of the immune system, they interact with the neural system as well. Immune dysregulations such as autoimmunity and improper immune responses to both internal and external stimulations, especially in early developmental stages of the brain, may induce neurodevelopmental disorders. NK cells' dysfunction in children with ASD as well as their parents have been highlighted in many studies.Expert opinion: Changes in the frequency, gene expressions, cytotoxicity features, and receptors of NK cells are reported in children with ASD. Immune therapy for children with ASD with immune abnormality has shown promising results. However, further studies are needed to elucidate the exact role of NK cells in the pathogenesis of ASD providing future treatment options for these children.
Collapse
Affiliation(s)
- Sepideh Ebrahimi Meimand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasna Rostam-Abadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
13
|
Schanoski AS, Le TT, Kaiserman D, Rowe C, Prow NA, Barboza DD, Santos CA, Zanotto PMA, Magalhães KG, Aurelio L, Muller D, Young P, Zhao P, Bird PI, Suhrbier A. Granzyme A in Chikungunya and Other Arboviral Infections. Front Immunol 2020; 10:3083. [PMID: 31993061 PMCID: PMC6971054 DOI: 10.3389/fimmu.2019.03083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.
Collapse
Affiliation(s)
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Caitlin Rowe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Diego D Barboza
- Bacteriology Laboratory, Butantan Institute, São Paulo, Brazil
| | - Cliomar A Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health, State Secretary for Health, Aracajú, Brazil
| | - Paolo M A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Luigi Aurelio
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - David Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Peishen Zhao
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
15
|
Querido MM, Aguiar L, Neves P, Pereira CC, Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surf B Biointerfaces 2019; 178:8-21. [PMID: 30822681 PMCID: PMC7127218 DOI: 10.1016/j.colsurfb.2019.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
Abstract
According to World Health Organization, every year in the European Union, 4 million patients acquire a healthcare associated infection. Even though some microorganisms represent no threat to healthy people, hospitals harbor different levels of immunocompetent individuals, namely patients receiving immunosuppressors, with previous infections, or those with extremes of age (young children and elderly), requiring the implementation of effective control measures. Public spaces have also been found an important source of infectious disease outbreaks due to poor or none infection control measures applied. In both places, surfaces play a major role on microorganisms' propagation, yet they are very often neglected, with very few guidelines about efficient cleaning measures and microbiological assessment available. To overcome surface contamination problems, new strategies are being designed to limit the microorganisms' ability to survive over surfaces and materials. Surface modification and/or functionalization to prevent contamination is a hot-topic of research and several different approaches have been developed lately. Surfaces with anti-adhesive properties, with incorporated antimicrobial substances or modified with biological active metals are some of the strategies recently proposed. This review intends to summarize the problems associated with contaminated surfaces and their importance on infection spreading, and to present some of the strategies developed to prevent this public health problem, namely some already being commercialized.
Collapse
Affiliation(s)
- Micaela Machado Querido
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Lívia Aguiar
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Paula Neves
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Cristiana Costa Pereira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Innate and Adaptive Cell Populations Driving Inflammation in Dry Eye Disease. Mediators Inflamm 2018; 2018:2532314. [PMID: 30158831 PMCID: PMC6109495 DOI: 10.1155/2018/2532314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022] Open
Abstract
Dry eye disease (DED) is the most common ocular disease and affects millions of individuals worldwide. DED encompasses a heterogeneous group of diseases that can be generally divided into two forms including aqueous-deficient and evaporative DED. Evidence suggests that these conditions arise from either failure of lacrimal gland secretion or low tear film quality. In its secondary form, DED is often associated with autoimmune diseases such as Sjögren's syndrome and rheumatoid arthritis. Current treatment strategies for DED are limited to anti-inflammatory medications that target the immune system as the source of deleterious inflammation and tissue injury. However, there is a lack of understanding of the underlying pathogenesis of DED, and subsequently, there are very few effective treatment strategies. The gap in our knowledge of the etiology of primary DED is in part because the majority of research in DED focused on secondary autoimmune causes. This review focuses on what is currently understood about the contribution of innate and adaptive immune cell populations in the pathogenesis of DED and highlights the need to continue investigating the central role of immunity driving DED.
Collapse
|
17
|
Han AL, Kim HR, Choi KH, Ryu JW, Hwang KE, So HS, Park MC, Zhu M, Huang Y, Lee YJ, Park DS. Expression Profile of Three Splicing Factors in Pleural Cells Based on the Underlying Etiology and Its Clinical Values in Patients with Pleural Effusion. Transl Oncol 2018; 11:147-156. [PMID: 29288986 PMCID: PMC6002346 DOI: 10.1016/j.tranon.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022] Open
Abstract
Splicing factors (SFs) are involved in oncogenesis or immune modulation, the common underlying processes giving rise to pleural effusion (PE). The expression profiles of three SFs (HNRNPA1, SRSF1, and SRSF3) and their clinical values have never been assessed in PE. The three SFs (in pellets of PE) and conventional tumor markers were analyzed using PE samples in patients with PE (N = 336). The sum of higher-molecular weight (Mw) forms of HNRNPA1 (Sum-HMws-HNRNPA1) and SRSF1 (Sum-HMws-SRSF1) and SRSF3 levels were upregulated in malignant PE (MPE) compared to benign PE (BPE); they were highest in cytology-positive MPE, followed by tuberculous PE and parapneumonic PE. Meanwhile, the lowest-Mw HNRNPA1 (LMw-HNRNPA1) and SRSF1 (LMw-SRSF1) levels were not upregulated in MPE. Sum-HMws-HNRNPA1, Sum-HMws-SRSF1, and SRSF3, but neither LMw-HNRNPA1 nor LMw-SRSF1, showed positive correlations with cancer cell percentages in MPE. The detection accuracy for MPE was high in the order of carcinoembryonic antigen (CEA, 85%), Sum-HMws-HNRNPA1 (76%), Sum-HMws-SRSF1 (68%), SRSF3, cytokeratin-19 fragments (CYFRA 21-1), LMw-HNRNPA1, and LMw-SRSF1. Sum-HMws-HNRNPA1 detected more than half of the MPE cases that were undetected by cytology and CEA. Sum-HMws-HNRNPA1, but not other SFs or conventional tumor markers, showed an association with longer overall survival among patients with MPE receiving chemotherapy. Our results demonstrated different levels of the three SFs with their Mw-specific profiles depending on the etiology of PE. We suggest that Sum-HMws-HNRNPA1 is a supplementary diagnostic marker for MPE and a favorable prognostic indicator for patients with MPE receiving chemotherapy.
Collapse
Affiliation(s)
- A-Lum Han
- Department of Family Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Hak-Ryul Kim
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Keum-Ha Choi
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Jae-Won Ryu
- School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Ki-Eun Hwang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Hong-Seob So
- Department of Microbiology, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Min-Cheol Park
- Department of Oriental Medical Ophthalmology & Otolaryngology & Dermatology, College of Oriental Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Mengyu Zhu
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Yuya Huang
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Young-Jin Lee
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Do-Sim Park
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan, 54538, Korea; Wonkwang Institute of Clinical Medicine, Wonkwang University Hospital, Iksan, 54538, Korea; Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, 54538, Korea.
| |
Collapse
|
18
|
Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua A. Natural Killer Cells: Angels and Devils for Immunotherapy. Int J Mol Sci 2017; 18:ijms18091868. [PMID: 28850071 PMCID: PMC5618517 DOI: 10.3390/ijms18091868] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, the relevance of the immune system to fight cancer has led to the development of immunotherapy, including the adoptive cell transfer of immune cells, such as natural killer (NK) cells and chimeric antigen receptors (CAR)-modified T cells. The discovery of donor NK cells’ anti-tumor activity in acute myeloid leukemia patients receiving allogeneic stem cell transplantation (allo-SCT) was the trigger to conduct many clinical trials infusing NK cells. Surprisingly, many of these studies did not obtain optimal results, suggesting that many different NK cell parameters combined with the best clinical protocol need to be optimized. Various parameters including the high array of activating receptors that NK cells have, the source of NK cells selected to treat patients, different cytotoxic mechanisms that NK cells activate depending on the target cell and tumor cell survival mechanisms need to be considered before choosing the best immunotherapeutic strategy using NK cells. In this review, we will discuss these parameters to help improve current strategies using NK cells in cancer therapy. Moreover, the chimeric antigen receptor (CAR) modification, which has revolutionized the concept of immunotherapy, will be discussed in the context of NK cells. Lastly, the dark side of NK cells and their involvement in inflammation will also be discussed.
Collapse
Affiliation(s)
- Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Guillermo Suñe
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Lorena Perez-Amill
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Maria Castella
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| |
Collapse
|