1
|
Nelios G, Prapa I, Mitropoulou G, Kompoura V, Balafas E, Kostomitsopoulos N, Yanni AE, Kourkoutas Y. Assessment of Immobilized Lacticaseibacillus rhamnosus OLXAL-1 Cells on Oat Flakes for Functional Regulation of the Intestinal Microbiome in a Type-1 Diabetic Animal Model. Foods 2024; 13:4134. [PMID: 39767077 PMCID: PMC11675650 DOI: 10.3390/foods13244134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/05/2025] Open
Abstract
The aim of this study was to examine the effect of free or immobilized Lacticaseibacillus rhamnosus OLXAL-1 cells on oat flakes on the gut microbiota and metabolic and inflammatory markers in a streptozotocin (STZ)-induced Type-1 Diabetes Mellitus (T1DM) animal model. Forty-eight male Wistar rats were assigned into eight groups (n = 6): healthy or diabetic animals that received either a control diet (CD and DCD), an oat-supplemented diet (OD and DOD), a diet supplemented with free L. rhamnosus OLXAL-1 cells (CFC and DFC), or a diet supplemented with immobilized L. rhamnosus OLXAL-1 cells on oat flakes (CIC and DIC). Neither L. rhamnosus OLXAL-1 nor oat supplementation led to any significant positive effects on body weight, insulin levels, plasma glucose concentrations, or lipid profile parameters. L. rhamnosus OLXAL-1 administration resulted in a rise in the relative abundances of Lactobacillus and Bifidobacterium, as well as increased levels of lactic, acetic, and butyric acids in the feces of the diabetic animals. Additionally, supplementation with oat flakes significantly reduced the microbial populations of E. coli, Enterobacteriaceae, coliforms, staphylococci, and enterococci and lowered IL-1β levels in the blood plasma of diabetic animals. These findings suggested that probiotic food-based strategies could have a potential therapeutic role in managing dysbiosis and inflammation associated with T1DM.
Collapse
Affiliation(s)
- Grigorios Nelios
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Evangelos Balafas
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| |
Collapse
|
2
|
Gao WT, Liu JX, Wang DH, Sun HJ, Zhang XY. Melatonin reduced colon inflammation but had no effect on energy metabolism in ageing Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109731. [PMID: 37611884 DOI: 10.1016/j.cbpc.2023.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.
Collapse
Affiliation(s)
- Wen-Ting Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xiu Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shenyang Normal University, Shenyang 110034, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong University, Qingdao 266237, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250358, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
4
|
Deng Y, Jiang S, Huang Y, Tan X, Huang Y, Chen L, Xu J, Xiong X, Zhou J, Xu Y. Metformin Contributes to the Therapeutic Effects of Acne Vulgaris by Modifying the Gut Microbiome. Dermatol Ther 2023. [DOI: 10.1155/2023/9336867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background. Considering the increasing side effects of the first-line treatment for acne vulgaris, metformin was developed to be an effective adjunct therapy, but its mechanism of action is poorly defined. Recent evidence shows that the gut microbiota is a site of metformin action. The aim of this study was to evaluate the effects and mechanism of action for metformin in the adjuvant treatment of acne vulgaris by regulating gut microbiota. Methods. First, untreated acne patients were randomly allocated into two treatment groups. Both groups were treated with isotretinoin, but only one was additionally treated with metformin, for three months. Sprague Dawley (SD) rats were used as acne models, and they were also separated into groups that received isotretinoin, metformin, a combination of isotretinoin and metformin, and the vehicle, respectively. Then, the fecal samples from drug-intervention rats were transferred to germ-free rats with acne. The severity of the disease was evaluated using the Global Acne Grading System (GAGS) scoring for patients, and the number of comedones and mononuclear cells in pathological sections was used for rats. The composition of the gut microbiota was detected using gene sequencing for 16S rDNA. Results. Metformin had strong effects on the composition and function of the gut microbiota, and this correlated with the reduction in the severity of acne in both humans and rats. The fecal transfer to pseudo-germ-free rats improved both the inflammatory phenotype and comedones of acne in recipients of metformin-altered microbiota. Conclusion. The results suggest that metformin improves the symptoms of acne vulgaris by modulating the gut microbiota.
Collapse
|
5
|
Guo J, Song C, Liu Y, Wu X, Dong W, Zhu H, Xiang Z, Qin C. Characteristics of gut microbiota in representative mice strains: Implications for biological research. Animal Model Exp Med 2022; 5:337-349. [PMID: 35892142 PMCID: PMC9434578 DOI: 10.1002/ame2.12257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Experimental animals are used to study physiological phenomena, pathological mechanisms, and disease prevention. The gut microbiome is known as a potential confounding factor for inconsistent data from preclinical studies. Although many gut microbiome studies have been conducted in recent decades, few have focused on gut microbiota fluctuation among representative mouse strains. Methods A range of frequently used mouse strains were selected from 34 isolation packages representing disease‐related animal (DRA), immunity defect animal (IDA), or gene‐editing animal (GEA) from the BALB/c and C57BL/6J backgrounds together with normal mice, and their microbial genomic DNA were isolated from mouse feces to sequence for the exploration of gut microbiota. Results Mouse background strain, classification, introduced source, introduced year, and reproduction type significantly affected the gut microbiota structure (p < 0.001 for all parameters), with background strain contributing the greatest influence (R2 = 0.237). In normal groups, distinct gut microbiota types existed in different mouse strains. Sixty‐four core operational taxonomic units were obtained from normal mice, and 12 belonged to Lactobacillus. Interestingly, the gut microbiota in C57BL/6J was more stable than that in BALB/c mice. Furthermore, the gut microbiota in the IDA, GEA, and DRA groups significantly differed from that in normal groups (p < 0.001 for all). Compared with the normal group, there was a significantly higher Chao1 and Shannon index (p < 0.001 for all) in the IDA, GEA, and DRA groups. Markedly changed classes occurred with Firmicutes and Bacteroidetes. The abundances of Helicobacter, Blautia, Enterobacter, Bacillus, Clostridioides, Paenibacillus, and Clostridiales all significantly decreased in the IDA, GEA, and DRA groups, whereas those of Saccharimonas, Rikenella, and Odoribacter all significantly increased.
Collapse
Affiliation(s)
- Jianguo Guo
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chenchen Song
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunbo Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xuying Wu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hua Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhiguang Xiang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Fang XY, Qi LW, Chen HF, Gao P, Zhang Q, Leng RX, Fan YG, Li BZ, Pan HF, Ye DQ. The Interaction Between Dietary Fructose and Gut Microbiota in Hyperuricemia and Gout. Front Nutr 2022; 9:890730. [PMID: 35811965 PMCID: PMC9257186 DOI: 10.3389/fnut.2022.890730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
With the worldwide epidemics of hyperuricemia and associated gout, the diseases with purine metabolic disorders have become a serious threat to human public health. Accumulating evidence has shown that they have been linked to increased consumption of fructose in humans, we hereby made a timely review on the roles of fructose intake and the gut microbiota in regulating purine metabolism, together with the potential mechanisms by which excessive fructose intake contributes to hyperuricemia and gout. To this end, we focus on the understanding of the interaction between a fructose-rich diet and the gut microbiota in hyperuricemia and gout to seek for safe, cheap, and side-effect-free clinical interventions. Furthermore, fructose intake recommendations for hyperuricemia and gout patients, as well as the variety of probiotics and prebiotics with uric acid-lowering effects targeting the intestinal tract are also summarized to provide reference and guidance for the further research.
Collapse
Affiliation(s)
- Xin-yu Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Liang-wei Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Hai-feng Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Peng Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Qin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Rui-xue Leng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Yin-guang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Bao-zhu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-feng Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Dong-qing Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
- *Correspondence: Dong-qing Ye
| |
Collapse
|
7
|
Environmental Factors and the Risk of Developing Type 1 Diabetes-Old Disease and New Data. BIOLOGY 2022; 11:biology11040608. [PMID: 35453807 PMCID: PMC9027552 DOI: 10.3390/biology11040608] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Despite many studies, the risk factors of type 1 diabetes (T1DM) in children and adolescents are still not fully understood and remain a big challenge. Therefore, an extensive online search for scientific research on factors related to diabetes has been performed for the identification of new factors of unexplained etiology. A better understanding of the role of viral, bacterial, and yeast-like fungi infections related to the risk of T1DM in children and adolescents and the identification of new risk factors, especially those spread by the droplet route, is of great importance for people and families with diabetes. Abstract The incidence of type 1 diabetes (T1D) is increasing worldwide. The onset of T1D usually occurs in childhood and is caused by the selective destruction of insulin-producing pancreatic islet cells (β-cells) by autoreactive T cells, leading to insulin deficiency. Despite advanced research and enormous progress in medicine, the causes of T1D are still not fully understood. Therefore, an extensive online search for scientific research on environmental factors associated with diabetes and the identification of new factors of unexplained etiology has been carried out using the PubMed, Cochrane, and Embase databases. The search results were limited to the past 11 years of research and discovered 143 manuscripts published between 2011 and 2022. Additionally, 21 manuscripts from between 2000 and 2010 and 3 manuscripts from 1974 to 2000 were referenced for historical reference as the first studies showcasing a certain phenomenon or mechanism. More and more scientists are inclined to believe that environmental factors are responsible for the increased incidence of diabetes. Research results show that higher T1D incidence is associated with vitamin D deficiency, a colder climate, and pollution of the environment, as well as the influence of viral, bacterial, and yeast-like fungi infections. The key viral infections affecting the risk of developing T1DM are rubella virus, mumps virus, Coxsackie virus, cytomegalovirus, and enterovirus. Since 2020, i.e., from the beginning of the COVID-19 pandemic, more and more studies have been looking for a link between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and diabetes development. A better understanding of the role of viral, bacterial, and yeast-like fungi infections related to the risk of T1DM in children and adolescents and the identification of new risk factors, especially those spread by the droplet route, is of great importance for people and families with diabetes.
Collapse
|
8
|
Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods 2022; 11:foods11070974. [PMID: 35407061 PMCID: PMC8997417 DOI: 10.3390/foods11070974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) may lead to abnormally elevated blood glucose, lipid metabolism disorder, and low-grade inflammation. Besides, the development of T2DM is always accompanied by gut microbiota dysbiosis and metabolic dysfunction. In this study, the T2DM mice model was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. Additionally, the effects of oral administration of ethanol extract from Sanghuangporous vaninii (SVE) on T2DM and its complications (including hypoglycemia, hyperlipidemia, inflammation, and gut microbiota dysbiosis) were investigated. The results showed SVE could improve body weight, glycolipid metabolism, and inflammation-related parameters. Besides, SVE intervention effectively ameliorated the diabetes-induced pancreas and jejunum injury. Furthermore, SVE intervention significantly increased the relative abundances of Akkermansia, Dubosiella, Bacteroides, and Parabacteroides, and decreased the levels of Lactobacillus, Flavonifractor, Odoribacter, and Desulfovibrio compared to the model group (LDA > 3.0, p < 0.05). Metabolic function prediction of the intestinal microbiota by PICRUSt revealed that glycerolipid metabolism, insulin signaling pathway, PI3K-Akt signaling pathway, and fatty acid degradation were enriched in the diabetic mice treated with SVE. Moreover, the integrative analysis indicated that the key intestinal microbial phylotypes in response to SVE intervention were strongly correlated with glucose and lipid metabolism-associated biochemical parameters. These findings demonstrated that SVE has the potential to alleviate T2DM and its complications by modulating the gut microbiota imbalance.
Collapse
|
9
|
Noh JY, Wu CS, DeLuca JAA, Devaraj S, Jayaraman A, Alaniz RC, Tan XD, Allred CD, Sun Y. Novel Role of Ghrelin Receptor in Gut Dysbiosis and Experimental Colitis in Aging. Int J Mol Sci 2022; 23:2219. [PMID: 35216335 PMCID: PMC8875592 DOI: 10.3390/ijms23042219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic low-grade inflammation is a hallmark of aging, which is now coined as inflamm-aging. Inflamm-aging contributes to many age-associated diseases such as obesity, type 2 diabetes, cardiovascular disease, and inflammatory bowel disease (IBD). We have shown that gut hormone ghrelin, via its receptor growth hormone secretagogue receptor (GHS-R), regulates energy metabolism and inflammation in aging. Emerging evidence suggests that gut microbiome has a critical role in intestinal immunity of the host. To determine whether microbiome is an integral driving force of GHS-R mediated immune-metabolic homeostasis in aging, we assessed the gut microbiome profiles of young and old GHS-R global knockout (KO) mice. While young GHS-R KO mice showed marginal changes in Bacteroidetes and Firmicutes, aged GHS-R KO mice exhibited reduced Bacteroidetes and increased Firmicutes, featuring a disease-susceptible microbiome profile. To further study the role of GHS-R in intestinal inflammation in aging, we induced acute colitis in young and aged GHS-R KO mice using dextran sulfate sodium (DSS). The GHS-R KO mice showed more severe disease activity scores, higher proinflammatory cytokine expression, and decreased expression of tight junction markers. These results suggest that GHS-R plays an important role in microbiome homeostasis and gut inflammation during aging; GHS-R suppression exacerbates intestinal inflammation in aging and increases vulnerability to colitis. Collectively, our finding reveals for the first time that GHS-R is an important regulator of intestinal health in aging; targeting GHS-R may present a novel therapeutic strategy for prevention/treatment of aging leaky gut and inflammatory bowel disease.
Collapse
Affiliation(s)
- Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
| | - Jennifer A. A. DeLuca
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX 77843, USA;
| | - Xiao-Di Tan
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Clinton D. Allred
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Yan N, Wang L, Li Y, Wang T, Yang L, Yan R, Wang H, Jia S. Metformin intervention ameliorates AS in ApoE-/- mice through restoring gut dysbiosis and anti-inflammation. PLoS One 2021; 16:e0254321. [PMID: 34264978 PMCID: PMC8282009 DOI: 10.1371/journal.pone.0254321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) is closely associated with chronic low-grade inflammation and gut dysbiosis. Metformin (MET) presents pleiotropic benefits in the control of chronic metabolic diseases, but the impacts of MET intervention on gut microbiota and inflammation in AS remain largely unclear. In this study, ApoE-/- mice with a high-fat diet (HFD) were adopted to assess the MET treatment. After 12 weeks of MET intervention (100mg·kg-1·d-1), relevant indications were investigated. As indicated by the pathological measurements, the atherosclerotic lesion was alleviated with MET intervention. Moreover, parameters in AS including body weights (BWs), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC) and malondialdehyde (MDA) were elevated; whereas high-density lipoprotein (HDL) and total superoxide dismutase (T-SOD) levels were decreased, which could be reversed by MET intervention. Elevated pro-inflammatory interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and lipopolysaccaride (LPS) in AS were decreased after MET administration. However, anti-inflammatory IL-10 showed no significant difference between AS group and AS+MET group. Consistently, accumulated macrophages in the aorta of AS were conversely lowered with MET treatment. The results of 16S rRNA sequencing and analysis displayed that the overall community of gut microbiota in AS was notably changed with MET treatment mainly through decreasing Firmicutes, Proteobacteria, Romboutsia, Firmicutes/Bacteroidetes, as well as increasing Akkermansia, Bacteroidetes, Bifidobacterium. Additionally, we found that microbiota-derived short-chain fatty acids (SCFAs) including acetic acid, propionic acid, butyric acid and valeric acid in AS were decreased, which were significantly up-regulated with MET intervention. Consistent with the attenuation of MET on gut dysbiosis, decreased intestinal tight junction protein zonula occludens-1 (ZO)-1 in AS was restored after MET supplementation. Correlation analysis showed close relationships among gut bacteria, microbial metabolites SCFAs and inflammation. Collectively, MET intervention ameliorates AS in ApoE-/- mice through restoring gut dysbiosis and anti-inflammation, thus can potentially serve as an inexpensive and effective intervention for the control of the atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ning Yan
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lijuan Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Department of Cardiovascular Diseases, The Second Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libo Yang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Yan
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shaobin Jia
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Qi M, Tan B, Wang J, Liao S, Li J, Cui Z, Shao Y, Ji P, Yin Y. Postnatal growth retardation is associated with deteriorated intestinal mucosal barrier function using a porcine model. J Cell Physiol 2021; 236:2631-2648. [PMID: 32853405 DOI: 10.1002/jcp.30028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
Individuals with postnatal growth retardation (PGR) are prone to developing chronic diseases. Abnormal development in small intestine is casually implicated in impaired growth. However, the exact mechanism is still implausible. In this present study, PGR piglets (aged 42 days) were employed as a good model to analyze developmental changes in intestinal mucosal barrier function. Our data demonstrated that PGR piglets exhibited impaired jejunal and ileal epithelial villous morphology and permeability, accompanied by decreased cell proliferation ability and increased apoptosis rate. In addition, the expression of tight junction proteins (ZO-1, claudin 1, and occludin) and E-cadherin was markedly inhibited by PGR. The expression of P-glycoprotein was significantly reduced in PGR piglets, as well as decreased activity of lysozyme. Moreover, the mRNA abundance and content of inflammatory cytokines were significantly increased in the intestinal mucosa and plasma of PGR piglets, respectively. PGR also contributed to lower level of sIgA, and higher level of CD68-positive rate, β-defensins, and protein expression involved p38 MAPK/NF-κB pathway. Furthermore, PGR altered the intestinal microbial community such as decreased genus Alloprevotella and Oscillospira abundances, and led to lower microbial-derived butyrate production, which may be potential targets for treatment. Collectively, our findings indicated that the intestinal mucosal barrier function of PGR piglets could develop the nutritional intervention strategies in prevention and treatment of the intestinal mucosal barrier dysfunction in piglets and humans.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhijuan Cui
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
12
|
Zhang Y, Zhang S, Li B, Luo Y, Gong Y, Jin X, Zhang J, Zhou Y, Zhuo X, Wang Z, Zhao X, Han X, Gao Y, Yu H, Liang D, Zhao S, Sun D, Wang D, Xu W, Qu G, Bo W, Li D, Wu Y, Li Y. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc Res 2021; 118:785-797. [PMID: 33757127 DOI: 10.1093/cvr/cvab114] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS Aging is the most significant contributor to the increasing prevalence of atrial fibrillation (AF). The gut microbiota dysbiosis is involved in age-related diseases. However, whether the aged-associated dysbiosis contributes to age-related AF is still unknown. Direct demonstration that the aged gut microbiota is sufficient to transmit the enhanced AF susceptibility in a young host via microbiota-intestinal barrier-atria axis has not yet been reported. This study aimed to determine whether gut microbiota dysbiosis affects age-related AF. METHODS AND RESULTS Herein, by using a fecal microbiota transplantation (FMT) rat model, we demonstrated that the high AF susceptibility of aged rats could be transmitted to a young host. Specially, we found the dramatically increased levels of circulating lipopolysaccharide (LPS) and glucose led to the up-regulated expression of NLR family pyrin domain containing 3 (NLRP3)-inflammasome, promoting the development of AF which depended on the enhanced atrial fibrosis in recipient host. Inhibition of inflammasome by a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, resulted in a lower atrial fibrosis and AF susceptibility. Then we conducted cross-sectional clinical studies to explore the effect of aging on the altering trends with glucose levels and circulating LPS among clinical individuals in two China hospitals. We found that both of serum LPS and glucose levels were progressively increased in elderly patients as compared with those young. Furthermore, the aging phenotype of circulating LPS and glucose levels, intestinal structure and atrial NLRP3-inflammasome of rats were also confirmed in clinical AF patients. Finally, aged rats colonized with youthful microbiota restored intestinal structure and atrial NLRP3-inflammasome activity, which suppressed the development of aged-related AF. CONCLUSIONS Collectively, these studies described a novel causal role of aberrant gut microbiota in the pathogenesis of age-related AF, which indicates that the microbiota-intestinal barrier-atrial NLRP3 inflammasome axis may be a rational molecular target for the treatment of aged-related arrhythmia disease. TRANSLATIONAL PERSPECTIVE The current study demonstrates that aged-associated microbiota dysbiosis promotes AF in part through a microbiota-gut-atria axis. Increased AF susceptibility due to enhanced atrial NLRP3-inflammasome activity by LPS and high glucose was found in an aged FMT rat model, and also confirmed within elderly clinical individuals. In a long-term FMT rat study, the AF susceptibility was ameliorated by treatment with youthful microbiota. The present findings can further increase our understanding of aged-related AF and address a promising therapeutic strategy that involves modulation of gut microbiota composition.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bolin Li
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingchun Luo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongtai Gong
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuexin Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiawei Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun Zhou
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaozhen Zhuo
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiology, Key Laboratory of Environment and Genes Related to Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixi Wang
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunlong Gao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Yu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desen Liang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shiqi Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dingyu Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangjin Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wanlan Bo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wu
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.,The Cell Transplantation Key Laboratory of National Health Commission, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin, China.,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
13
|
Wu CS, Muthyala SDV, Klemashevich C, Ufondu AU, Menon R, Chen Z, Devaraj S, Jayaraman A, Sun Y. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging (Albany NY) 2021; 13:6330-6345. [PMID: 33612480 PMCID: PMC7993679 DOI: 10.18632/aging.202525] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/04/2021] [Indexed: 04/12/2023]
Abstract
The interplay between microbiota and host metabolism plays an important role in health. Here, we examined the relationship between age, gut microbiome and host serum metabolites in male C57BL/6J mice. Fecal microbiome analysis of 3, 6, 18, and 28 months (M) old mice showed that the Firmicutes/Bacteroidetes ratio was highest in the 6M group; the decrease of Firmicutes in the older age groups suggests a reduced capacity of gut microflora to harvest energy from food. We found age-dependent increase in Proteobacteria, which may lead to altered mucus structure more susceptible to bacteria penetration and ultimately increased intestinal inflammation. Metabolomic profiling of polar serum metabolites at fed state in 3, 12, 18 and 28M mice revealed age-associated changes in metabolic cascades involved in tryptophan, purine, amino acids, and nicotinamide metabolism. Correlation analyses showed that nicotinamide decreased with age, while allantoin and guanosine, metabolites in purine metabolism, increased with age. Notably, tryptophan and its microbially derived compounds indole and indole-3-lactic acid significantly decreased with age, while kynurenine increased with age. Together, these results suggest a significant interplay between bacterial and host metabolism, and gut dysbiosis and altered microbial metabolism contribute to aging.
Collapse
Affiliation(s)
- Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Cory Klemashevich
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX 77843, USA
| | | | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sridevi Devaraj
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Ding QY, Tian JX, Li M, Lian FM, Zhao LH, Wei XX, Han L, Zheng YJ, Gao ZZ, Yang HY, Fang XY, Tong XL. Interactions Between Therapeutics for Metabolic Disease, Cardiovascular Risk Factors, and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:530160. [PMID: 33194785 PMCID: PMC7644821 DOI: 10.3389/fcimb.2020.530160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
With improved standards of living, the incidence of multiple metabolic disorders has increased year by year, especially major risk factors for cardiovascular disease such as hyperglycemia and hyperlipidemia, continues to increase. Emerging epidemiological data and clinical trials have shown the additional protective effects of some metabolic therapy drugs against cardiovascular diseases. A series of studies have found that these drugs may work by modulating the composition of gut microbiota. In this review, we provide a brief overview of the contribution of the gut microbiota to both metabolic disorders and cardiovascular diseases, as well as the response of gut microbiota to metabolic therapy drugs with cardiovascular benefits. In this manner, we link the recent advances in microbiome studies on metabolic treatment drugs with their cardiovascular protective effects, suggesting that intestinal microorganisms may play a potential role in reducing cardiovascular risk factors. We also discuss the potential of microorganism-targeted therapeutics as treatment strategies for preventing and/or treating cardiovascular disease and highlight the need to establish causal links between therapeutics for metabolic diseases, gut microbiota modulation, and cardiovascular protection.
Collapse
Affiliation(s)
- Qi-You Ding
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jia-Xing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin-Hua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiu-Xiu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Lin Han
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Jiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Ze-Zheng Gao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hao-Yu Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xin-Yi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Donovan C, Liu G, Shen S, Marshall JE, Kim RY, Alemao CA, Budden KF, Choi JP, Kohonen-Corish M, El-Omar EM, Yang IA, Hansbro PM. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol 2020; 108:925-935. [PMID: 33405294 DOI: 10.1002/jlb.3mr0720-472rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, is one of the most well-characterized inflammasomes, activated by pathogen-associated molecular patterns and damage-associated molecular patterns, including from commensal or pathogenic bacterial and viral infections. The NLRP3 inflammasome promotes inflammatory cell recruitment and regulates immune responses in tissues such as the gastrointestinal tract and the lung, and is involved in many diseases that affect the gut and lung. Recently, the microbiome in the gut and the lung, and the crosstalk between these organs (gut-lung axis), has been identified as a potential mechanism that may influence disease in a bidirectional manner. In this review, we focus on themes presented in this area at the 2019 World Congress on Inflammation. We discuss recent evidence on how the microbiome can affect NLRP3 inflammasome responses in the gut and lung, the role of this inflammasome in regulating gut and lung inflammation in disease, and its potential role in the gut-lung axis. We highlight the exponential increase in our understanding of the NLRP3 inflammasome due to the synthesis of the NLRP3 inflammasome inhibitor, MCC950, and propose future studies that may further elucidate the roles of the NLRP3 inflammasome in gut and lung diseases.
Collapse
Affiliation(s)
- Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Charlotte A Alemao
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jaesung P Choi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Maija Kohonen-Corish
- Woolcock Institute of Medical Research and Faculty of Science, University of Technology Sydney, Garvan Institute of Medical Research and St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Ian A Yang
- The Prince Charles Hospital and The University of Queensland, Brisbane, Queensland, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
16
|
Wu CS, Wei Q, Wang H, Kim DM, Balderas M, Wu G, Lawler J, Safe S, Guo S, Devaraj S, Chen Z, Sun Y. Protective Effects of Ghrelin on Fasting-Induced Muscle Atrophy in Aging Mice. J Gerontol A Biol Sci Med Sci 2020; 75:621-630. [PMID: 30407483 PMCID: PMC7328200 DOI: 10.1093/gerona/gly256] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is the aging-associated progressive loss of skeletal muscle; however, the pathogenic mechanism of sarcopenia is not clear. The orexigenic hormone ghrelin stimulates growth hormone secretion, increases food intake, and promotes adiposity. Here we showed that fasting-induced muscle loss was exacerbated in old ghrelin-null (Ghrl-/-) mice, exhibiting decreased expression of myogenic regulator MyoD and increased expression of protein degradation marker MuRF1, as well as altered mitochondrial function. Moreover, acylated ghrelin and unacylated ghrelin treatments significantly increased mitochondrial respiration capacity in muscle C2C12 cells. Consistently, acylated ghrelin and unacylated ghrelin treatments effectively increased myogenic genes and decreased degradation genes in the muscle in fasted old Ghrl-/- mice, possibly by stimulating insulin and adenosine monophosphate-activated protein kinase pathways. Furthermore, Ghrl-/- mice showed a profile of pro-inflammatory gut microbiota, exhibiting reduced butyrate-producing bacteria Roseburia and ClostridiumXIVb. Collectively, our results showed that ghrelin has a major role in the maintenance of aging muscle via both muscle-intrinsic and -extrinsic mechanisms. Acylated ghrelin and unacylated ghrelin enhanced muscle anabolism and exerted protective effects for muscle atrophy. Because unacylated ghrelin is devoid of the obesogenic side effect seen with acylated ghrelin, it represents an attractive therapeutic option for sarcopenia.
Collapse
Affiliation(s)
- Chia-Shan Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Qiong Wei
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Division of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province
| | - Hongying Wang
- Department of Nutrition and Food Science, Texas A&M University, College Station
- Laboratory of Lipid and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, China
| | - Da Mi Kim
- Department of Nutrition and Food Science, Texas A&M University, College Station
| | - Miriam Balderas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station
| | - John Lawler
- Department of Health and Kinesiology, Texas A&M University, College Station
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Zheng Chen
- The University of Texas Health Science Center at Houston
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
17
|
Ding S, Xu S, Ma Y, Liu G, Jang H, Fang J. Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules 2019; 9:biom9120850. [PMID: 31835423 PMCID: PMC6995523 DOI: 10.3390/biom9120850] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The inflammasome is a multiprotein complex that acts to enhance inflammatory responses by promoting the production and secretion of key cytokines. The best-known inflammasome is the NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin domain-containing 3) inflammasome. The evidence has shown that the NLRP3 inflammasome, IL-1β, thioredoxin-interacting protein (TXNIP), and pyroptosis play vital roles in the development of diabetes. This review summarizes the regulation of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) by NLRP3 via modulation of glucose tolerance, insulin resistance, inflammation, and apoptosis mediated by endoplasmic reticulum stress in adipose tissue. Moreover, NLRP3 participates in intestinal homeostasis and inflammatory conditions, and NLRP3-deficient mice experience intestinal lesions. The diversity of an individual's gut microbiome and the resultant microbial metabolites determines the extent of their involvement in the physiological and pathological mechanisms within the gut. As such, further study of the interaction between the NLRP3 inflammasome and the complex intestinal environment in disease development is warranted to discover novel therapies for the treatment of diabetes.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
| | - Sheng Xu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong, China;
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, Hunan, China
- Correspondence: (G.L.); (H.J.); (J.F.); Tel.:+86-731-8461-9706 (G.L.); +86-731-8461-3600 (J.F.)
| | - Hongmei Jang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
- Correspondence: (G.L.); (H.J.); (J.F.); Tel.:+86-731-8461-9706 (G.L.); +86-731-8461-3600 (J.F.)
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
- Correspondence: (G.L.); (H.J.); (J.F.); Tel.:+86-731-8461-9706 (G.L.); +86-731-8461-3600 (J.F.)
| |
Collapse
|
18
|
Chen Y, Kidd J, Bhat OM, Yuan X, Hong J, He X, Li PL. Suppression of Glucagon-Like Peptide-1 Release by Inhibition of Intestinal NLRP3 Inflammasome Activation in Asc -/- and Nlrp3 -/- Mice. Front Physiol 2019; 10:1213. [PMID: 31632284 PMCID: PMC6779826 DOI: 10.3389/fphys.2019.01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone secreted by intestinal enteroendocrine L-cells, which plays a crucial role in glucose control, regulation, and protection from different pathological conditions such as diabetes mellitus. The present study sought to test whether GLP-1 release increases gut injury with a high-fat diet (HFD) and whether this GLP-1 release is associated with NLRP3 inflammasome activation. Our results showed that the NLRP3 inflammasome is activated in the intestinal tissue of wild-type mice on a HFD, accompanied by GLP-1 overexpression. The number of intestinal L-cells and the GLP-1 level in serum are increased in WT mice with HFD. However, in the Asc-/- and Nlrp3-/- mice, these HFD-induced intestinal and serum GLP-1 changes were suppressed. Using confocal microscopy, the colocalization of GLP-1 and FLICA that labels activated caspase-1 in intestine was decreased in the Asc-/- and Nlrp3-/- mice compared to WT mice. Mechanistically, the inhibitor of caspase-1 or HMGB1 blocker is used to demonstrate the regulatory action of NRLP3 inflammasome in GLP-1 release. It was found that the level of GLP-1 and its colocalization with IL-1β were reduced by inhibition of the caspase-1 activity, but not altered by blockade of HMGB1 action. Our results suggest that NLRP3 inflammasome activation triggers GLP-1 production from the intestine, which is associated with IL-1β, but not with HMGB1. These findings for the first time provide evidence that the activation of NLRP3 inflammasome in the intestine increases GLP-1 release in mice, which may serve as an adaptive response to intestinal inflammation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Gastroenterology, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Jason Kidd
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Owais M. Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Jinni Hong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Xingxiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
19
|
Effect of the Chinese Medicine YangZheng XiaoJi on Reducing Fatigue in Mice with Orthotopic Transplantation of Colon Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3870812. [PMID: 30891076 PMCID: PMC6390313 DOI: 10.1155/2019/3870812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022]
Abstract
Background Fatigue is a common, distressing, and persistent symptom for patients with malignant tumor including colorectal cancer (CRC). Although studies of cancer-related fatigue (CRF) have sprung out in recent years, the pathophysiological mechanisms that induce CRF remain unclear, and effective therapeutic interventions have yet to be established. Methods To investigate the effect of the traditional Chinese medicine YangZheng XiaoJi (YZXJ) on CRF, we constructed orthotopic colon cancer mice, randomly divided into YZXJ group and control (NS) group. Physical or mental fatigue was respectively assessed by swimming exhaustion time or suspension tail resting time. At the end of the experiment, serum was collected to measure the expression level of inflammatory factors by ELISA and feces to microbiota changes by 16s rDNA, and hepatic glycogen content was detected via the anthrone method. Result The nutritional status of the YZXJ group was better than that of the control group, and there was no statistical difference in tumor weight. The swimming exhaustion times of YZXJ group and control group were (162.80 ± 14.67) s and (117.60 ± 13.42, P < 0.05) s, respectively; the suspension tail resting time of YZXJ group was shorter than that of the control group (49.85 ± 4.56) s and (68.83 ± 7.26) s, P < 0.05)). Serum levels of IL-1β and IL-6 in YZXJ group were significantly lower than the control group (P < 0.05). Liver glycogen in YZXJ group was (5.18 ± 3.11) mg/g liver tissue, which was significantly higher than that in control group (2.95 ± 2.06) mg/g liver tissue (P < 0.05). At phylum level, increased abundance of Bacteroidetes, Verrucomicrobia, Actinobacteria, and Cyanobacteria and decreased Proteobacteria in YZXJ group emerged as the top differences between the two groups, and the Firmicutes/Bacteroidetes ratio was decreased in YZXJ group compared to the control group. At genus level, the abundance of Parabacteroides, unidentified Saprospiraceae, and Elizabethkingia which all belong to phylum Bacteroidetes were increased, while Arcobacter, Marinobacter, Alkanindiges, Sulfuricurvum, Haliangium, and Thiobacillus in phylum Proteobacteria were decreased after YZXJ intervention. YZXJ can also increase Pirellula, Microbacterium, and Alpinimonas and decrease Rubrobacter and Iamia. Conclusion YZXJ may reduce the physical and mental fatigue caused by colorectal cancer by inhibiting inflammatory reaction, promoting hepatic glycogen synthesis, and changing the composition of intestinal microbiota.
Collapse
|
20
|
Wang S, Li H, Du C, Liu Q, Yang D, Chen L, Zhu Q, Wang Z. Effects of dietary supplementation with Lactobacillus acidophilus on the performance, intestinal physical barrier function, and the expression of NOD-like receptors in weaned piglets. PeerJ 2018; 6:e6060. [PMID: 30588399 PMCID: PMC6302781 DOI: 10.7717/peerj.6060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/04/2018] [Indexed: 12/20/2022] Open
Abstract
Lactobacillus supplementation is beneficial to the barrier function of the intestinal physical barrier in piglets. However, the mechanisms underlying this beneficial function remain largely unknown. Here, we investigated the effects of dietary supplementation with Lactobacillus acidophilus on the performance, intestinal physical barrier functioning, and NOD-like receptors (NLRs) expression in weaned piglets. Sixteen weaned piglets were randomly allocated to two groups. The control group received a corn-soybean basal diet, while the treatment group received the same diet adding 0.1% L. acidophilus, for 14 days. As a result, dietary L. acidophilus supplementation was found to increase the average daily gain (ADG) (P < 0.05), reduced serum diamine oxidase (DAO) activity (P < 0.05), increased the mRNA expression and protein abundance of occludin in the jejunum and ileum (P < 0.01), reduced the mRNA levels of NOD1 (P < 0.01), receptor interacting serine/threonine kinase 2 (RIPK2) (P < 0.05), nuclear factor κB (NF-κB) (P < 0.01), NLR family pyrin domain containing 3 (NLRP3) (P < 0.01), caspase-1 (P < 0.01), interleukin 1β (IL-1β) (P < 0.05) and IL-18 (P < 0.01) in the jejunum tissues of the weaned pigs. The expression of NLRP3 (P < 0.05), caspase-1 (P < 0.01), IL-1β (P < 0.05) and IL-18 (P < 0.05) was also reduced in the ileum tissues of the weaned pigs. These results showed that L. acidophilus supplementation improves the growth performance, enhances the intestinal physical barrier function, and inhibits the expression of NOD1 and NLRP3 signaling-pathway-related genes in jejunum and ileum tissues. They also suggest that L. acidophilus enhances the intestinal physical barrier functioning by inhibiting IL-1β and IL-18 pro-inflammatory cytokines via the NOD1/NLRP3 signaling pathway in weaned piglets.
Collapse
Affiliation(s)
- Shiqiong Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Haihua Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Chenhong Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qian Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dongji Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longbin Chen
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qi Zhu
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhixiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Obesity and diabetes are worldwide epidemics. There is also a growing body of evidence relating the gut microbiome composition to insulin resistance. The purpose of this review is to delineate the studies linking gut microbiota to obesity, metabolic syndrome, and diabetes. RECENT FINDINGS Animal studies as well as proof of concept studies using fecal transplantation demonstrate the pivotal role of the gut microbiota in regulating insulin resistance states and inflammation. While we still need to standardize methodologies to study the microbiome, there is an abundance of evidence pointing to the link between gut microbiome, inflammation, and insulin resistance, and future studies should be aimed at identifying unifying mechanisms.
Collapse
Affiliation(s)
- Xinpu Chen
- Department of Pathology & Immunology, Baylor College of Medicine and Texas Children's Hospital, 6621 Fannin Street, Houston, TX, 77030, USA
| | - Sridevi Devaraj
- Department of Pathology & Immunology, Baylor College of Medicine and Texas Children's Hospital, 6621 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|