1
|
Li S, Mu A, Jing Z, Liu Z, Cao X, Guo J, Xi Y, Guo Q. Cross ethnic Mendelian randomization analysis reveals causal relationship between air pollution and risk of kidney stones. Sci Rep 2025; 15:12132. [PMID: 40204920 PMCID: PMC11982192 DOI: 10.1038/s41598-025-97436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
Accumulating evidence has indicated that exposures to air pollution increase the odds of kidney stones. However, the previous research methods were limited. To address this gap, we employed genome-wide association studies (GWAS) datasets and Mendelian randomization (MR) to verify the causation. Applying publicly accessible summary datasets from UK Biobank, FinnGen consortium and Biobank Japan, a two-sample MR, and further multivariate MR were carried out to calculate the causality between air pollution [particulate matter 2.5 (PM2.5), PM2.5 absorbance, PM2.5-10, PM10, nitrogen dioxide, and nitrogen oxides] and kidney stone risk in three different populations (European, East Asian, and South Asian). The inverse variance weighted (IVW) was utilized for its first-step assessment, supplemented with MR-Egger, weighted median, Cochran's Q test, MR-Egger intercept and leave-one-out analysis to ensure the robustness. Employing IVW, we discovered in the European population that PM2.5 absorbance was statistically correlated with kidney stone risk (odds ratio (OR) = 1.40; 95% confidence interval (CI), 1.01-1.94; P = 0.04), with no heterogeneity, pleiotropy, or sensitivity observed. Additionally, the MVMR result revealed the directly causative connection between a single PM2.5 absorbance and the increase in kidney stone risk (OR = 1.77, 95%CI: 1.06-2.98, p = 0.03). Our investigation proposed the correlation between PM2.5 absorbance and an increased risk of kidney stones in European populations. The control of air pollution, especially PM2.5, may have crucial implications for the prevention of kidney stones.
Collapse
Affiliation(s)
- Shuangping Li
- Department of Urology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Aijia Mu
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Zhinan Jing
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Ziyi Liu
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Xinfang Cao
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Jincheng Guo
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Yujia Xi
- Department of Urology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China.
| | - Qiang Guo
- Department of Urology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China.
| |
Collapse
|
2
|
Ai Q, Wei J, Luo B, Wang Z, Dong J, Zhao J, Xu W, Chen L, Fang W, Zhu S. Electroacupuncture inhibits oxidative stress and improves cognitive function by downregulating the Ang II/AT1R/NOX axis in chronic cerebral ischemia rats. Neurosci Lett 2025; 851:138179. [PMID: 39999906 DOI: 10.1016/j.neulet.2025.138179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVE This study aimed to explore the effects of Electroacupuncture (EA) on chronic cerebral ischemia (CCI). METHODS A CCI rat model was established by blocking the common carotid arteries. Model rats were treated with EA at the "Baihui" (GV20) and "Dazhui" (GV14) acupoints and/or ARB. Ang II and AT1R expression in the artery and hippocampal tissues was determined. Immunohistochemistry staining was used to detect RECA-1 expression in hippocampal tissues. NOX2, NOX4, SOD1, SOD2, ROS, and MDA levels were examined. Morris water maze and TUNEL staining were used to explore the effects of EA on cognitive impairment and apoptosis, respectively. RESULTS Ang II and AT1R levels were reduced by EA in CCI rats. RECA-1 expression was reduced in model rats, while EA and ARB increased its expression. EA inhibited oxidative stress in CCI rats. Besides, EA improved cognitive impairment in CCI rats. Apoptosis in the hippocampal tissues of CCI rats was inhibited by EA treatment. Furthermore, inhibition of Ang II/AT1R/NOX axis promoted the therapeutic effects of EA on oxidative stress and cognitive impairment in model rats. CONCLUSIONS EA treatment at the "Baihui" (GV20) and "Dazhui" (GV14) acupoints is effective against CCI-induced cognitive impairment and oxidative stress by downregulating Ang II/AT1R/NOX axis.
Collapse
Affiliation(s)
- Qi Ai
- Department of Rehabilitation, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Jurui Wei
- Department of Rehabilitation, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Bijun Luo
- Department of Respiratory Medicine, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Zixuan Wang
- Department of Anesthesiology, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Jun Dong
- Department of Rehabilitation, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Jiumei Zhao
- Department of Rehabilitation, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Wenqing Xu
- Department of Rehabilitation, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Lin Chen
- Department of Rehabilitation, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China
| | - Wenyao Fang
- Department of Rehabilitation, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China.
| | - Songjie Zhu
- Department of General Practice, The First People's Hospital of Lin'an District, Hangzhou 311300, PR China.
| |
Collapse
|
3
|
Xiang J, Lv M, Luo Y, Ke K, Zhang B, Wang M, Zhang K, Li H. Mechanistic studies of Ca 2+-induced classical pyroptosis pathway promoting renal adhesion on calcium oxalate kidney stone formation. Sci Rep 2025; 15:6669. [PMID: 39994305 PMCID: PMC11850917 DOI: 10.1038/s41598-025-91460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
This study aims to investigate the role of hypercalciuria and pyroptosis in the formation of calcium oxalate kidney stones. Bioinformatics analysis was performed to compare the correlation of pyroptosis scores and cell adhesion scores between Randall's plaques and normal tissues from kidney stone patients. For the in vitro experiments, we investigated the effects of high concentrations of Ca2+ on the pyroptosis and adhesion levels of renal tubular epithelial cells and examined the adhesion levels and crystal aggregation of the cells in high Ca2+ concentrations environment by knockdown and overexpression of the key pyroptosis gene, GSDMD, and we verified the effects of Ca2+ concentration on pyroptosis and adhesion levels, kidney injury, and crystal deposition by in vivo experiments. Bioinformatic results showed that the scores of pyroptosis and cell adhesion in Randall's plaques of patients with kidney stones were significantly higher than those in normal tissues, and pyroptosis was highly positively correlated with cell adhesion. In vitro and in vivo experiments showed that high concentrations of Ca2+ activated the NLRP3/Caspase-1/GSDMD pathway of pyroptosis through ROS and up-regulated the expression of adhesion-related proteins, and GSDMD could regulate the adhesion level of renal tubular epithelial cells by mediating the level of pyroptosis, thereby affecting the adhesion and deposition of calcium oxalate crystals. Our findings reveal that the Ca2+-induced classical pyroptosis pathway may be a potential mechanism to promote calcium oxalate kidney stone formation, which provides new insights into the etiology of kidney stones.
Collapse
Affiliation(s)
- Jinjie Xiang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yuhui Luo
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Kunbin Ke
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Baiyu Zhang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Mengyue Wang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Kun Zhang
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
4
|
Kaur M, Varanasi R, Nayak D, Tandon S, Agrawal V, Tandon C. Molecular insights into cell signaling pathways in kidney stone formation. Urolithiasis 2025; 53:30. [PMID: 39951111 DOI: 10.1007/s00240-025-01702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/25/2025] [Indexed: 05/09/2025]
Abstract
Urolithiasis, or kidney stones, has emerged as a significant public health concern. Despite this, effective treatments targeting stone formation and recurrence are limited. This review delves into the molecular mechanisms underlying the condition. Investigating these molecular aspects can address existing gaps in treatment options. Future research can uncover new therapeutic strategies by targeting downstream pathways, and effector molecules. Cell signaling pathways offer potential targets, as they involve complex interactions that can be modulated to address multiple clinical symptoms. An imbalance in calcium and oxalate levels can lead to kidney stone formation which is characterized by oxidative stress, inflammation, and cell death. The interplay between key organelles like the endoplasmic reticulum and mitochondria triggers stress pathways, including oxidative stress and apoptosis. This review consolidates recent advances in understanding the pathophysiology and signaling events associated with kidney stones.
Collapse
Affiliation(s)
- Manpreet Kaur
- Amity University, Punjab, Mohali, 140308, India
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Roja Varanasi
- Central Council for Research in Homeopathy, New Delhi, 110058, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy, New Delhi, 110058, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India.
| | | | | |
Collapse
|
5
|
Yao R, Pan JS, He RB, Hou BB, Suo XG, Li GX, Xia KG, Hu DK, Mao XK, Li W, Hao ZY. Pectolinarigenin alleviates calcium oxalate-induced renal inflammation and oxidative stress by binding to HIF-1α. Int Immunopharmacol 2024; 143:113284. [PMID: 39378657 DOI: 10.1016/j.intimp.2024.113284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Calcium oxalate (CaOx) crystals are the main constituents of renal crystals in humans and induce tubular lumen damage in renal tubules, leading to renal calcium deposition and kidney stone formation. Oxidative stress and inflammation play important roles in regulating calcium oxalate-induced injury. Here, we evaluated the efficacy in inhibiting oxidation and inflammation of pectinolinarigenin, a biologically active natural metabolite, in CaOx nephrocalcinosis and further explored its targets of action. First, we developed cellular and mouse models of calcium oxalate renal nephrocalcinosis and identified the onset of oxidative stress and inflammation according to experimental data. We found that pectolinarigenin inhibited this onset while reducing renal crystal deposition. Network pharmacology was subsequently utilized to screen for hypoxia-inducible factor-1α (HIF-1α), a regulator involved in the body's release and over-oxidation of inflammatory factors. Finally, molecular docking, cellular thermal shift assay, and other experiments to detect HIF-1α expression showed that pectolinarigenin directly combined with HIF-1α and prevented downstream reactive oxygen species activation and release. Our results indicate that pectolinarigenin can target and inhibit HIF-1α-mediated inflammatory responses and oxidative stress damage and be a novel drug for CaOx nephrocalcinosis treatment.
Collapse
Affiliation(s)
- Rui Yao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Jia-Shan Pan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Bing-Bing Hou
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Guo-Xiang Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Kai-Guo Xia
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - De-Kai Hu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Xi-Ke Mao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Wei Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zong-Yao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China.
| |
Collapse
|
6
|
Gao X, Lin B, Chen C, Fang Z, Yang J, Wu S, Chen Q, Zheng K, Yu Z, Li Y, Gao X, Lin G, Chen L. Lycopene from tomatoes and tomato products exerts renoprotective effects by ameliorating oxidative stress, apoptosis, pyroptosis, fibrosis, and inflammatory injury in calcium oxalate nephrolithiasis: the underlying mechanisms. Food Funct 2024; 15:4021-4036. [PMID: 38584465 DOI: 10.1039/d4fo00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Several mechanisms underlying nephrolithiasis, one of the most common urological diseases, involve calcium oxalate formation, including oxidative stress, inflammatory reactions, fibrosis, pyroptosis, and apoptosis. Although lycopene has strong antioxidant activity, its protective effects against CaOx-induced injury have not yet been reported. This study aimed to systematically investigate the protective effects of lycopene and explore its mechanisms and molecular targets. Crystal deposition, renal function, oxidative stress, inflammatory response, fibrosis, pyroptosis, and apoptosis were assessed to evaluate the renoprotective effects of lycopene against crystal formation in a CaOx rat model and oxalate-stimulated NRK-52E and HK-2 cells. Lycopene markedly ameliorated crystal deposition, restored renal function, and suppressed kidney injury by reducing oxidative stress, apoptosis, inflammation, fibrosis, and pyroptosis in the rats. In cell models, lycopene pretreatment reversed reactive oxygen species increase, apoptotic damage, intracellular lactate dehydrogenase release, cytotoxicity, pyroptosis, and extracellular matrix deposition. Network pharmacology and proteomic analyses were performed to identify lycopene target proteins under CaOx-exposed conditions, and the results showed that Trappc4 might be a pivotal target gene for lycopene, as identified by cellular thermal shift assay and surface plasmon resonance analyses. Based on molecular docking, molecular dynamics simulations, alanine scanning mutagenesis, and saturation mutagenesis, we observed that lycopene directly interacts with Trappc4 via hydrophobic bonds, which may be attributed to the PHE4 and PHE142 residues, preventing ERK1/2 or elevating AMPK signaling pathway phosphorylation events. In conclusion, lycopene might ameliorate oxalate-induced renal tubular epithelial cell injury via the Trappc4/ERK1/2/AMPK pathway, indicating its potential for the treatment of nephrolithiasis.
Collapse
Affiliation(s)
- Xiaomin Gao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Southern Baixiang, OuHai District, Wenzhou, Zhejiang, 325006, P.R. China.
| | - Binwei Lin
- Department of Urology, Rui'an People's Hospital, The Third Affiliated Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang province, 325200, P.R. China
| | - Chen Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital, Navy Medical University, Changhai Road, YangPu District, Shanghai, 200433, P.R. China.
| | - Jinzhao Yang
- The Department of Pharmacy, The Third Clinical Institute Affiliated to Wenzhou Medical University (Wenzhou People's Hospital), Wenzhou, Zhejiang, 325006, P.R. China
| | - Shuzhi Wu
- The Department of Neurology, The Third Clinical Institute Affiliated to Wenzhou Medical University (Wenzhou People's Hospital), Wenzhou, Zhejiang, 325006, P.R. China
| | - Qing Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China
| | - Kewen Zheng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Southern Baixiang, OuHai District, Wenzhou, Zhejiang, 325006, P.R. China.
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Southern Baixiang, OuHai District, Wenzhou, Zhejiang, 325006, P.R. China.
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Southern Baixiang, OuHai District, Wenzhou, Zhejiang, 325006, P.R. China.
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Navy Medical University, Changhai Road, YangPu District, Shanghai, 200433, P.R. China.
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China
| | - Lianguo Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325006, P.R. China
| |
Collapse
|
7
|
Zhao H, Li Z, Yan M, Ma L, Dong X, Li X, Zhang H, Li P. Irbesartan ameliorates diabetic kidney injury in db/db mice by restoring circadian rhythm and cell cycle. J Transl Int Med 2024; 12:157-169. [PMID: 38799791 PMCID: PMC11117442 DOI: 10.2478/jtim-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Background and Objectives Irbesartan has been widely used in the clinical treatment of diabetic kidney disease (DKD). However, the molecular mechanism of its delay of DKD disease progression has not been fully elucidated. The aim of the present study was to investigate the mechanism of irbesartan in the treatment of DKD. Materials and Methods C57BL/KsJ db/db mice were randomly divided into the model group and irbesartan-treated group. After treatment with irbesartan for 12 weeks, the effects on blood glucose, body weight, 24-h urinary albumin, and renal injuries were evaluated. Microarray was used to determine the differentially expressed genes (DEGs) in the renal cortex of mice. |Log FC| <0.5 and false discovery rate (FDR) <0.25 were set as the screening criteria. Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), protein-protein interaction (PPI) network and modules, and microRNA (miRNA)-DEGs network analysis were applied to analyze the DEGs. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of microarray. Results The present study demonstrated irbesartan could significantly improve the renal function in db/db mice through decreasing 24-h urinary albumin and alleviating the pathological injury of kidney. Irbesartan may affect the expression of numerous kidney genes involved in circadian rhythm, cell cycle, micoRNAs in cancer, and PI3K-AKT signaling pathway. In the miRNA-DEGs network, miR-1970, miR-703, miR-466f, miR-5135, and miR-132-3p were the potential targets for irbesartan treatment. The validation test confirmed that key genes regulating circadian rhythm (Arntl, Per3, and Dbp) and cell cycle (Prc1, Ccna2, and Ccnb2) were restored in db/db mice on treatment with Irbesartan. Conclusion Generally, irbesartan can effectively treat DKD by regulating the circadian rhythm and cell cycle. The DEGs and pathways identified in the study will provide new insights into the potential mechanisms of irbesartan in the treatment of DKD.
Collapse
Affiliation(s)
- Hailing Zhao
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, the Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan063210, Hebei Province, China
| | - Meihua Yan
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Liang Ma
- Clinical Laboratory, China–Japan Friendship Hospital, Beijing10029, China
| | - Xi Dong
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Xin Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Haojun Zhang
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Ping Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| |
Collapse
|
8
|
Zhao H, Li Z, Yan M, Ma L, Dong X, Li X, Zhang H, Li P. Irbesartan ameliorates diabetic kidney injury in db/db mice by restoring circadian rhythm and cell cycle. J Transl Int Med 2024; 12:157-169. [PMID: 38779121 PMCID: PMC11107183 DOI: 10.2478/jtim-2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Background and Objectives Irbesartan has been widely used in the clinical treatment of diabetic kidney disease (DKD). However, the molecular mechanism of its delay of DKD disease progression has not been fully elucidated. The aim of the present study was to investigate the mechanism of irbesartan in the treatment of DKD. Materials and Methods C57BL/KsJ db/db mice were randomly divided into the model group and irbesartan-treated group. After treatment with irbesartan for 12 weeks, the effects on blood glucose, body weight, 24-h urinary albumin, and renal injuries were evaluated. Microarray was used to determine the differentially expressed genes (DEGs) in the renal cortex of mice. |Log FC| <0.5 and false discovery rate (FDR) <0.25 were set as the screening criteria. Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), protein-protein interaction (PPI) network and modules, and microRNA (miRNA)-DEGs network analysis were applied to analyze the DEGs. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of microarray. Results The present study demonstrated irbesartan could significantly improve the renal function in db/db mice through decreasing 24-h urinary albumin and alleviating the pathological injury of kidney. Irbesartan may affect the expression of numerous kidney genes involved in circadian rhythm, cell cycle, micoRNAs in cancer, and PI3K-AKT signaling pathway. In the miRNA-DEGs network, miR-1970, miR-703, miR-466f, miR-5135, and miR-132-3p were the potential targets for irbesartan treatment. The validation test confirmed that key genes regulating circadian rhythm (Arntl, Per3, and Dbp) and cell cycle (Prc1, Ccna2, and Ccnb2) were restored in db/db mice on treatment with Irbesartan. Conclusion Generally, irbesartan can effectively treat DKD by regulating the circadian rhythm and cell cycle. The DEGs and pathways identified in the study will provide new insights into the potential mechanisms of irbesartan in the treatment of DKD.
Collapse
Affiliation(s)
- Hailing Zhao
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, the Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan063210, Hebei Province, China
| | - Meihua Yan
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Liang Ma
- Clinical Laboratory, China–Japan Friendship Hospital, Beijing10029, China
| | - Xi Dong
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Xin Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Haojun Zhang
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| | - Ping Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing100029, China
| |
Collapse
|
9
|
Xiong P, Zheng YY, Ouyang JM. Carboxylated Pocoa polysaccharides inhibited oxidative damage and inflammation of HK-2 cells induced by calcium oxalate nanoparticles. Biomed Pharmacother 2023; 169:115865. [PMID: 37972469 DOI: 10.1016/j.biopha.2023.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The inhibitory effects of Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents on oxidative damage and inflammatory response of renal epithelial cells and the influence of -COOH content in polysaccharides were investigated. HK-2 cell damage model was established by nanocalcium oxalate crystals (nanoCOM), and then PCPs with -COOH contents of 2.56% (PCP0), 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) were used to protect the cells. PCPs could inhibit the damage of nanoCOM to HK-2 cells, increase cell viability, restore cytoskeleton and morphology, and improve lysosomal integrity. PCPs can reduce the oxidative stress response of nanoCOM to cells, inhibit the opening of mPTP and cell necrotic apoptosis, reduce the level of Ca2+ ions in cells, the production of ATP and MDA, and increase SOD expression. PCPs can also reduce the cellular inflammatory response caused by oxidative damage, and reduce the expression of nitric oxide (NO), inflammatory factors TNF-α, IL-6, IL-1β and MCP-1, as well as the content of inflammasome NLRP3. After protection, PCPs can inhibit the endocytosis of nanoCOM crystals by cells. With the increase in -COOH content in PCPs, its ability to inhibit nanoCOM cell damage, reduce oxidative stress, reduce inflammatory response, and inhibit crystal endocytosis increases, that is, PCP3 with the highest -COOH content, shows the best biological activity. Inhibiting cell damage and inflammation and reducing a large amount of endocytosis of crystals by cells are beneficial to inhibit the formation of kidney stones.
Collapse
Affiliation(s)
- Peng Xiong
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Yu-Yun Zheng
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China.
| |
Collapse
|
10
|
Liu J, Huang J, Gong B, Cheng S, Liu Y, Chen Y, Feng Q, Li J, Qiu M, Yu G, Liao Y. Polydatin protects against calcium oxalate crystal-induced renal injury through the cytoplasmic/mitochondrial reactive oxygen species-NLRP3 inflammasome pathway. Biomed Pharmacother 2023; 167:115621. [PMID: 37793278 DOI: 10.1016/j.biopha.2023.115621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Oxidative stress and inflammatory responses are critical factors in calcium oxalate (CaOx) crystal-induced renal injury. Reactive oxygen species (ROS) are usually produced in the cytoplasm and mitochondria and trigger the priming and activation of the NLRP3 inflammasome, thereby regulating cytokines and inflammation. Polydatin is a plant rhizome extract with anti-inflammatory, antioxidant, and antitumor effects. However, it remains not clear whether and how these pathophysiological processes exists in CaOx crystal-induced renal inflammatory injury. METHODS Here, we measured the expression of the NLRP3 inflammasome, IL-18, IL-1β, intracellular and mitochondrial ROS (mtROS) levels and relevant morphological changes in treated renal tubular epithelial cells (TECs) and stone-forming rats. The study further explored the action of intracellular ROS and mtROS on these inflammatory damage, and the beneficial effects and pathway of polydatin. RESULTS We verified that CaOx crystal-induced cytoplasmic ROS and mtROS upregulation promoted the priming and activation of the NLRP3 inflammasome, thereby stimulating IL-18/1β maturation and activation. Polydatin can relieve oxidative stress and inflammatory damage by decreasing ROS. We further demonstrated that mtROS is the main target for polydatin to exert the NLRP3 inflammasome-regulating function. The inhibition of mtROS can effectively relieve the inflammatory damage to TECs and kidney caused by CaOx crystal. CONCLUSION These findings provide new insight into the relationship between mitochondrial damage and inflammation in nephrolithiasis and show that polydatin-mediated anti-inflammatory and antioxidative protection is a therapeutic strategy for, but not limited to, crystalline nephropathy.
Collapse
Affiliation(s)
- Jiannan Liu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianlin Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bo Gong
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Songtao Cheng
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yadong Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Urology, Ningbo First Hospital, Zhejiang 315000, China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, The First Affiliated Hospital of Shanxi Medical University, Shanxi 030001, China
| | - Qiang Feng
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Li
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Mingxing Qiu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gui Yu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yong Liao
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
11
|
Hong SY, Yang YY, Wang SG, Qin BL. Inhibition of AT1R/IP3/IP3R-mediated Ca 2+ release protects against calcium oxalate crystals-induced renal oxidative stress. Chem Biol Interact 2023; 382:110636. [PMID: 37454925 DOI: 10.1016/j.cbi.2023.110636] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Calcium oxalate (CaOx) stones are the most prevalent type of kidney stones. CaOx crystals can stimulate reactive oxygen species (ROS) generation and induce renal oxidative stress to promote stone formation. Intracellular Ca2+ is an important signaling molecule, and an elevation of cytoplasmic Ca2+ levels could trigger oxidative stress. Our previous study has revealed that upregulation of Ang II/AT1R promoted renal oxidative stress during CaOx exposure. IP3/IP3R/Ca2+ signaling pathway activated via Ang II/AT1R is involved in several diseases, but its role in stone formation has not been reported. Herein, we focus on the role of AT1R/IP3/IP3R-mediated Ca2+ release in CaOx crystals-induced oxidative stress and explore whether inhibition of this pathway could alleviate renal oxidative stress. NRK-52E cells were exposed to CaOx crystals pretreated with AT1R inhibitor losartan or IP3R inhibitor 2-APB, and glyoxylic acid monohydrate-induced CaOx stone-forming rats were treated with losartan or 2-APB. The intracellular Ca2+ levels, ROS levels, oxidative stress indexes, and the gene expression of this pathway were detected. Our results showed that CaOx crystals activated AT1R to promote IP3/IP3R-mediated Ca2+ release, leading to increased cytoplasmic Ca2+ levels. The Ca2+ elevation was able to stimulate NOX2 and NOX4 to generate ROS, induce oxidative stress, and upregulate the expression of stone-related proteins. 2-APB and losartan reversed the referred effects, reduced CaOx crystals deposition and alleviated tissue injury in the rat kidneys. In summary, our results indicated that CaOx crystals promoted renal oxidative stress by activating the AT1R/IP3/IP3R/Ca2+ pathway. Inhibition of AT1R/IP3/IP3R-mediated Ca2+ release protected against CaOx crystals-induced renal oxidative stress. 2-APB and losartan might be promising preventive and therapeutic agents for the treatment of kidney stone disease.
Collapse
Affiliation(s)
- Sen-Yuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuan-Yuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Xu Z, Yao X, Duan C, Liu H, Xu H. Metabolic changes in kidney stone disease. Front Immunol 2023; 14:1142207. [PMID: 37228601 PMCID: PMC10203412 DOI: 10.3389/fimmu.2023.1142207] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, San Francisco, CA, United States
| | - Hua Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Qi Q, Hu Y, Chen Y, Xu Y, Hao Z. Dietary Selenium Intake and Kidney Stones in Old Adults: an Analysis from NHANES 2011 to 2018. Biol Trace Elem Res 2023; 201:1588-1595. [PMID: 35687296 PMCID: PMC9931801 DOI: 10.1007/s12011-022-03282-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
The association between dietary selenium intake and kidney stones remains unclear. The purpose of this study was to explore the correlation between dietary selenium intake and kidney stones in older adults. A total of 6669 adults aged ≥ 60 years who had participated in the National Health and Nutrition Examination Survey (NHANES) during 2011-2018 were enrolled in the current study. The correlation between dietary selenium intake and kidney stones was assessed by the logistic regression analysis. Smooth curve fitting was used to explore the potential non-linear relationship and subgroup analyses were further adopted. After adjustment for multiple confounding factors, the odds ratio (OR) with 95% confidence interval (CI) of kidney stones for per standard deviation increment in dietary selenium intake was 0.92 (0.85, 1.00) overall. Compared with the lowest quartile, the ORs (95% CIs) with increasing quartiles were 0.88 (0.71, 1.08), 0.82 (0.66, 1.02), and 0.79 (0.64, 0.97). In addition, smooth curve fitting and stratified analyses showed that there was a non-linear and stable correlation between dietary selenium intake and the occurrence of kidney stones respectively. For adults aged over 60, dietary selenium intake was inversely correlated with kidney stones, and this relationship remained after adjusting for other confounding variables. Further researches are needed to explore the potential mechanism between dietary selenium intake and kidney stones.
Collapse
Affiliation(s)
- Qiao Qi
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218th Jixi Road, Hefei, 230022, China
| | - Yongtao Hu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218th Jixi Road, Hefei, 230022, China
| | - Yang Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218th Jixi Road, Hefei, 230022, China
| | - Yuexian Xu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218th Jixi Road, Hefei, 230022, China
| | - Zongyao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218th Jixi Road, Hefei, 230022, China.
| |
Collapse
|
14
|
Buhur A, Gürel Ç, Kuşçu GC, Yiğittürk G, Oltulu F, Karabay Yavaşoğlu NÜ, Uysal A, Yavaşoğlu A. Is losartan a promising agent for the treatment of type 1 diabetes-induced testicular germ cell apoptosis in rats? Mol Biol Rep 2023; 50:2195-2205. [PMID: 36565418 DOI: 10.1007/s11033-022-08172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is common metabolic disease that poses a major risk to public health and fertility. Previous studies indicate that DM may cause male infertility by triggering oxidative stress and germ cell apoptosis in the testis. Due to the undesirable effects of known antidiabetic drugs, scientists have begun to investigate the use of alternative drugs to control infertility complications observed in men. In this context, present study aimed to investigate the possible antiapoptotic effect of losartan against DM-induced testicular germ cell apoptosis. METHODS AND RESULTS Expreimental DM model was induced by intraperitoneal injection of streptozocin (STZ, 55 mg/kg) to 28 rats, which were then randomly assigned to 4 groups; 1 mL saline solution was given to DM + saline group by oral gavage, 5 mg/kg/day oral losartan was given to DM + low-dose losartan, 20 mg/kg/day oral losartan was given to DM + mid-dose losartan and, 80 mg/kg/day oral losartan was given to DM + high-dose losartan group for 4 weeks. Bax, Bcl-2 and cleaved-Caspase 3 immunoexpression, terminal-deoxynucleotidyl transferase dutp nick end labeling (TUNEL), Annexin-V and Real Time PCR analyses performed to evaluate antiapoptotic effects of losartan on diabetic rats' testis. In addition, biochemical analyzes carried out to evaluate change in oxidative stress. CONCLUSION The results showed that losartan may have dose-related antiapoptotic effects on rats' testis via decreasing oxidative stress.
Collapse
Affiliation(s)
- Aylin Buhur
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | - Çevik Gürel
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey. .,Faculty of Medicine, Department of Histology and Embryology, Harran University, Sanliurfa, Turkey.
| | - Gökçe Ceren Kuşçu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | - Gürkan Yiğittürk
- Faculty of Medicine, Department of Histology and Embryology, Muğla Sıtkı Kocman University, Muğla, Turkey
| | - Fatih Oltulu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | | | - Ayşegül Uysal
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | - Altuğ Yavaşoğlu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| |
Collapse
|
15
|
Yang Y, Hong S, Wang Q, Wang S, Xun Y. Exosome-mediated crosstalk between epithelial cells amplifies the cell injury cascade in CaOx stone formation. J Biol Eng 2023; 17:16. [PMID: 36855143 PMCID: PMC9976448 DOI: 10.1186/s13036-023-00324-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Calcium oxalate (CaOx) stone disease is found worldwide. To explore the role of exosomes as a mediator of intercellular crosstalk during CaOx stone formation, we conducted this study, which may provide a new insight into the treatment and prevention of CaOx stones. METHODS Exosomes derived from HK2 cells with (EXO(S)) or without (EXO(C))CaOx crystal stimulation were cocultured with normal tubular epithelial cells and subcapsularly injected into rat kidneys. Then, oxidative stress levels, the MAPK signalling pathway and osteogenic changes were detected via qPCR, Western blotting, immunofluorescence and immunohistochemical staining. In vivo fluorescence imaging and exosome internalization assays showed the absorption and utilization of exosomes. RESULTS EXO(S) increased the reactive oxygen species (ROS) level and activated the expression of BMP2, OPN and OCN via the MAPK/P-38 pathway both in vivo and in vitro. In vivo experiments showed that preinjection of EXO(S) aggravated, while preinjection of EXO(C) ameliorated, these effects. Crystal depositions were significantly increased in SD rats injected with GAM when they were preinjected with EXO(S), and these effects could be reversed after preinjection with EXO(C). CONCLUSION Our study revealed that exosome-mediated intercellular crosstalk could accelerate the formation of CaOx stones by promoting oxidative stress and the osteogenic cascade in normal tubular epithelial cells. HK2 cells stimulated with CaOx crystals released more exosomal miR-223-3p and S100A8 comparing with normal HK2 cells. These exosomes derived from HK2 cells stimulated with CaOx (EXO(S)) could amplify the oxidative stress and osteogenic changes via MAPK/P-38 pathway, which finally led to the formation of Randall's plaque.
Collapse
Affiliation(s)
- Yuanyuan Yang
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Senyuan Hong
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Qing Wang
- grid.443382.a0000 0004 1804 268XDepartment of Urology, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, 550000 Guizhou China ,grid.443382.a0000 0004 1804 268XDepartment of Research Laboratory Center, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, 550000 Guizhou China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med 2023; 21:2. [PMID: 36593471 PMCID: PMC9807106 DOI: 10.1186/s12967-022-03842-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.
Collapse
Affiliation(s)
- Xin-Sen Chen
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Jing-Rui Cui
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Xiang-Long Meng
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Shu-Hang Wang
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yu-Lei Gao
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Song-Tao Shou
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Cun Liu
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Fen Chai
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| |
Collapse
|
17
|
Liu H, Cao M, Jin Y, Jia B, Wang L, Dong M, Han L, Abankwah J, Liu J, Zhou T, Chen B, Wang Y, Bian Y. Network pharmacology and experimental validation to elucidate the pharmacological mechanisms of Bushen Huashi decoction against kidney stones. Front Endocrinol (Lausanne) 2023; 14:1031895. [PMID: 36864834 PMCID: PMC9971497 DOI: 10.3389/fendo.2023.1031895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Kidney stone disease (KS) is a complicated disease with an increasing global incidence. It was shown that Bushen Huashi decoction (BSHS) is a classic Chinese medicine formula that has therapeutic benefits for patients with KS. However, its pharmacological profile and mechanism of action are yet to be elucidated. METHODS The present study used a network pharmacology approach to characterize the mechanism by which BSHS affects KS. Compounds were retrieved from corresponding databases, and active compounds were selected based on their oral bioavailability (≥30) and drug-likeness index (≥0.18). BSHS potential proteins were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, whereas KS potential genes were obtained from GeneCards and OMIM, TTD, and DisGeNET. Gene ontology and pathway enrichment analysis were used to determine potential pathways associated with genes. The ingredients of BSHS extract were identified by the ultra-high-performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (UHPLC-Q/Orbitrap MS). The network pharmacology analyses predicted the potential underlying action mechanisms of BSHS on KS, which were further validated experimentally in the rat model of calcium oxalate kidney stones. RESULTS Our study found that BSHS reduced renal crystal deposition and improved renal function in ethylene glycol(EG)+ammonium chloride(AC)-induced rats, and also reversed oxidative stress levels and inhibited renal tubular epithelial cell apoptosis in rats. BSHS upregulated protein and mRNA expression of E2, ESR1, ESR2, BCL2, NRF2, and HO-1 in EG+AC-induced rat kidney while downregulating BAX protein and mRNA expression, consistent with the network pharmacology results. DISCUSSION This study provides evidence that BSHS plays a critical role in anti-KS via regulation of E2/ESR1/2, NRF2/HO-1, and BCL2/BAX signaling pathways, indicating that BSHS is a candidate herbal drug for further investigation in treating KS.
Collapse
Affiliation(s)
- Haizhao Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Cao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengxue Dong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Joseph Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianwei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baogui Chen
- Wuqing Hospital of Traditional Chinese Medicine Affiliated with Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yiyang Wang, ; Yuhong Bian,
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yiyang Wang, ; Yuhong Bian,
| |
Collapse
|
18
|
Jia Q, Huang Z, Wang G, Sun X, Wu Y, Yang B, Yang T, Liu J, Li P, Li J. Osteopontin: An important protein in the formation of kidney stones. Front Pharmacol 2022; 13:1036423. [PMID: 36452224 PMCID: PMC9703462 DOI: 10.3389/fphar.2022.1036423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
The incidence of kidney stones averages 10%, and the recurrence rate of kidney stones is approximately 10% at 1 year, 35% at 5 years, 50% at 10 years, and 75% at 20 years. However, there is currently a lack of good medicines for the prevention and treatment of kidney stones. Osteopontin (OPN) is an important protein in kidney stone formation, but its role is controversial, with some studies suggesting that it inhibits stone formation, while other studies suggest that it can promote stone formation. OPN is a highly phosphorylated protein, and with the deepening of research, there is growing evidence that it promotes stone formation, and the phosphorylated protein is believed to have adhesion effect, promote stone aggregation and nucleation. In addition, OPN is closely related to immune cell infiltration, such as OPN as a pro-inflammatory factor, which can activate mast cells (degranulate to release various inflammatory factors), macrophages (differentiated into M1 macrophages), and T cells (differentiated into T1 cells) etc., and these inflammatory cells play a role in kidney damage and stone formation. In short, OPN mainly exists in the phosphorylated form in kidney stones, plays an important role in the formation of stones, and may be an important target for drug therapy of kidney stones.
Collapse
Affiliation(s)
- Qingxia Jia
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xia Sun
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bowei Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tongxin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianhe Liu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
The advances of calcium oxalate calculi associated drugs and targets. Eur J Pharmacol 2022; 935:175324. [DOI: 10.1016/j.ejphar.2022.175324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022]
|
20
|
Yang Y, Hong S, Lu Y, Wang Q, Wang S, Xun Y. CAV1 alleviated CaOx stones formation via suppressing autophagy-dependent ferroptosis. PeerJ 2022; 10:e14033. [PMID: 36128191 PMCID: PMC9482765 DOI: 10.7717/peerj.14033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 01/19/2023] Open
Abstract
Background Calcium oxalate (CaOx) is the most common type of kidney stone, but the mechanism of CaOx stones formation remains unclear. The injury of renal cells such as ferroptosis and autophagy has been considered a basis for stones formation. Methods We conducted transmission electron microscope (TEM), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and C11-BODIPY analysis to explore whether CaOx could induce autophagy-dependent ferroptosis in vivo and in vitro. To explore the possible mechanism, we conducted bioinformatic analysis of patients with or without CaOx stones, Western blot and qPCR were used to identify the different genes we found in bioinformatic analysis. Results In our study, we found that CaOx could induce autophagy-dependent ferroptosis no matter in vivo or in vitro, which might finally lead to urolithiasis. Bioinformatic analysis of the GSE73680 dataset indicated that the expression of caveolin-1 (CAV1) was higher in control patients than CaOx stone patients, the STRING database indicated that CAV1 might interact with low density lipoprotein receptro-related protein 6 (LRP6), Gene Set Enrichment Analysis (GSEA) showed that the WNT pathway positively associated with the control group while negatively related to the stone group, and LRP6 was the core gene of the WNT pathway. Western blot found that CAV1, LRP6, and Wnt/β-Catenin were decreased in Human Kidney2 (HK2) cells stimulated with CaOx. Furthermore, the WNT pathway was considered to be involved in autophagy and ferroptosis. Conclusions We presumed that CAV1 could ameliorate autophagy-dependent ferroptosis through the LRP6/Wnt/β-Catenin axis, and finally alleviate CaOx stone formation.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senyuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuchao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China,Department of Research Laboratory Center, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Pyrrosia petiolosa Extract Ameliorates Ethylene Glycol-Induced Urolithiasis in Rats by Inhibiting Oxidative Stress and Inflammatory Response. DISEASE MARKERS 2022; 2022:1913067. [PMID: 35968503 PMCID: PMC9374559 DOI: 10.1155/2022/1913067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Objective To study the therapeutic effect and mechanism of Pyrrosia petiolosa (P. petiolosa) extract on ethylene glycol- (EG-) induced urolithiasis in rats. Methods Thirty SD male rats were randomly divided into five groups (n = 6): control group, EG group, and P. petiolosa group (25 mg/kg, 50 mg/kg group, and 100 mg/kg). Biochemical testing was adopted for measuring the blood and urine parameters, as well as the level of superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde acid (MDA) in kidney tissues. HE staining and ELISA were utilized to observe the histopathological changes and detect the level of IL-1β, IL-6, MCP-1, and TNF-α in the kidney tissue, respectively. And western blot was performed for checking NOX2, NOX4, TGF-β1, p-Smad3, Smad3, p-Smad2, and Smad2 protein expression level in kidney tissues. Results EG could significantly increase the level of blood urea nitrogen, creatinine, and Na in serum and 24-hour urinary protein, oxalate, uric acid, creatinine, calcium, and phosphorus in urine and decreased the urine volume in rats. Whereas P. petiolosa extract was able to greatly decrease the level of related parameters in serum and urine in a dose-dependent manner, but did not affect the urine pH. In addition, P. petiolosa extract notably ameliorated EG-induced renal tissue injury. Compared with the EG group, P. petiolosa extract markedly raised the level of SOD and GSH and decreased the MDA level and the expression of NOX2 and NOX4 in the kidney tissue. Moreover, P. petiolosa extract also lowered the level of IL-1β, IL-6, MCP-1, and TNF-α in EG-stimulated kidney tissue and inhibited the protein level of EG-induced TGF-β1, p-Smad3, and p-Smad2 in a concentration-dependent manner. Conclusion P. petiolosa extract can improve EG-induced urolithiasis in rats by inhibiting oxidative stress, inflammatory response, and the activation of TGF-β pathway.
Collapse
|
22
|
Xie J, Ye Z, Li L, Xia Y, Yuan R, Ruan Y, Zhou X. Ferrostatin‑1 alleviates oxalate‑induced renal tubular epithelial cell injury, fibrosis and calcium oxalate stone formation by inhibiting ferroptosis. Mol Med Rep 2022; 26:256. [PMID: 35703358 PMCID: PMC9218727 DOI: 10.3892/mmr.2022.12772] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to evaluate the role and mechanism of ferrostatin-1 (Fer-1) in oxalate (Ox)-induced renal tubular epithelial cell injury, fibrosis, and calcium oxalate (CaOx) stone formation. A CaOx model in mice kidneys was established via intraperitoneal injection of 80 mg/kg glyoxylic acid for 14 days. The mice were randomly divided into three groups (n=6), namely, the control (Con), the CaOx group, and the CaOx + Fer-1 group. Cultured human renal tubular epithelial cells (HK-2 cells) were randomly divided into three groups (n=3), namely, the control (Con), the Ox group, and the Ox + Fer-1 group. The levels of heme oxygenase 1 (HO-1), superoxide dismutase 2 (SOD2), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) were assessed by immunofluorescence and western blot analysis. Renal tubular injury and apoptosis were evaluated by H&E and TUNEL staining. Kidney interstitial fibrosis was evaluated by Masson and Sirius red staining, and the levels of E-cadherin, vimentin and α-SMA were detected by immunofluorescence or western blot analysis. Mitochondrial structure was observed using a transmission electron microscope. The levels of reactive oxygen species (ROS) were determined by flow cytometry and CaOx stone formation was evaluated by von Kossa staining. The results revealed that in comparison with the Con group, mitochondrial injury under glyoxylic acid treatment was observed by TEM. The expression of GPX4 and SLC7A11 in the CaOx and Ox groups was downregulated (P<0.05), whereas the expression of HO-1 and SOD2 was upregulated (P<0.05). Renal tissue damage, apoptosis of renal tubular epithelial cells, and interstitial fibrosis were increased in the CaOx and Ox groups (P<0.05). In comparison with the CaOx or Ox group, the expression of GPX4 and SLC7A11 in the CaOx + Fer-1 or Ox + Fer-1 group was upregulated (P<0.05), whereas that of HO-1 and SOD2 was downregulated (P<0.05). Renal tissue damage, apoptosis of renal tubular epithelial cells and interstitial fibrosis were decreased following Fer-1 treatment (P<0.05). The ROS level was also decreased following Fer-1 treatment. Moreover, CaOx stone formation was decreased in the CaOx + Fer-1 group (P<0.05). In conclusion, Fer-1 alleviated Ox-induced renal tubular epithelial cell injury, fibrosis, and CaOx stone formation by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Jinna Xie
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Xu X, Chen J, Lv H, Xi Y, Ying A, Hu X. Molecular mechanism of Pyrrosia lingua in the treatment of nephrolithiasis: Network pharmacology analysis and in vivo experimental verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153929. [PMID: 35104754 DOI: 10.1016/j.phymed.2022.153929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence exists reporting that Pyrrosia lingua (PL, Xinhui Pharmaceutical, Polypodiaceae) alleviates nephrolithiasis in rat models. The precipitation of calcium oxalate may result in kidney stones, and the intestinal microbiota is critical for oxalate metabolism. Therefore, we attempt to delineate the molecular mechanism underlying the effect of PL on nephrolithiasis and its association with gut microbiota. METHODS Following differential flora analysis in gutMEGA, the network relationship of PL and nephrolithiasis was analyzed based on the TCMSP, DisGeNET and STRING databases. Moreover, the kidney stone model rats were fed with different doses of PL powder and PL extract. In addition, metabolomics technology was employed to identify the active ingredients in PL extract and the microbial metabolites in rat feces. RESULTS The effect of PL on the nephrolithiasis was based on quercetin and kaempferol by mediating the toll-like receptor signaling pathway and regulating the expression levels of interleukin 6, tumor necrosis factor, mitogen activated protein kinase 8, and secreted phosphoprotein 1. PL significantly reduced the levels of urine oxalic acid, urine calcium, and osteopontin (OPN) levels in rat models of nephrolithiasis. Notably, PL extract decreased these two indicators to lower levels. Furthermore, contents of Oxalobacter formigenes, Bacteriodetes, Bifidobacterium and Fecalibacterium were obviously reduced after treatment with PL extract. CONCLUSION PL powder and its active extracts reduce the oxalate level in urine by regulating oxalate metabolism, thus ameliorating the damage of kidney tissues and preventing kidney stone formation. This study suggests the use of PL and its extracts as an alternative source of promising agents that might directly or indirectly inhibit the progression of kidney stone diseases.
Collapse
Affiliation(s)
- Xiangwei Xu
- Department of Pharmacy, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, PR China
| | - Jun Chen
- Department of Pharmacy, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, PR China
| | - Haiou Lv
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China
| | - Yiyuan Xi
- School of Pharmacy, Wenzhou Medical University, PR China
| | - Aiying Ying
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China
| | - Xiang Hu
- Department of Urology Surgery, Yongkang First people's Hospital Affiliated to Hangzhou Medical College, 599 jinshan West Road, Dongcheng Street, Yongkang, Zhejiang Province 321300, PR China.
| |
Collapse
|
24
|
Identification of Resolvin D1 and Protectin D1 as Potential Therapeutic Agents for Treating Kidney Stones. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4345037. [PMID: 35251472 PMCID: PMC8894018 DOI: 10.1155/2022/4345037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Intrarenal calcium oxalate (CaOx) crystals induce renal tubular epithelial cell (TEC) inflammatory and oxidative injury. This study is aimed at exploring potential therapeutic lipid components in kidney stones because lipids are involved in the development of several diseases and indicate the risk of kidney stones. Serum specimens were collected from 35 kidney stone patients and 35 normal controls. The lipid components in serum were measured, and differences were analyzed. The documented biological importance was comprehensively reviewed to identify lipids that differed significantly between the two groups to find potential agents associated with kidney stones. CaOx nephrocalcinosis mouse model was established to examine the therapeutic effects of specific lipids on CaOx deposition and CaOx-induced oxidative renal injury. Several lipids with significantly different levels were present in the serum of patients with stones and normal controls. Resolvin D1 (RvD1) (4.93-fold change, P < 0.001) and protectin D1 (PD1) (5.06-fold change, P < 0.001) were significantly decreased in the serum of patients with kidney stones, and an integrative review suggested that these factors might be associated with inflammatory responses, which is a crucial mechanism associated with stone damage. The administration of RvD1 and PD1 significantly inhibited kidney CaOx deposition and suppressed CaOx-induced renal tubular cell inflammatory injury and necrosis in a CaOx nephrocalcinosis mouse model. Furthermore, RvD1 and PD1 facilitated the expression of the oxidative indicator superoxide dismutase 2 (SOD2), inhibited NADPH oxidase 2 (NOX2) expression, and diminished intracellular reactive oxygen species (ROS) levels. This study preliminarily elucidated the role of lipids in kidney stones. The inhibitory effects of RvD1 and PD1 on oxidative damage induced by CaOx deposition provide a promising perspective for kidney stone treatment strategies.
Collapse
|
25
|
Xun Y, Zhou P, Yang Y, Li C, Zhang J, Hu H, Qin B, Zhang Z, Wang Q, Lu Y, Wang S. Role of Nox4 in High Calcium-Induced Renal Oxidative Stress Damage and Crystal Deposition. Antioxid Redox Signal 2022; 36:15-38. [PMID: 34435888 DOI: 10.1089/ars.2020.8159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: We aimed at exploring the role of nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (Nox4) in the regulation of hypercalciuria-induced renal oxidative damage and crystal depositions. Results: High calcium activated Nox4 expression through protein kinase C (PKC). Downregulation of Nox4 expression attenuated hypercalciuria-induced osteoblast-associated protein expression, oxidative stress injury, and crystal deposition in rat kidneys of 1,25-dihydroxyvitamin D3 (VitD) urolithiasis model. Further, calcium-induced activation of mitogen-activated protein kinase (MAPK), overexpression of osteoblast-associated protein, oxidative stress injury, apoptosis, and calcium salt deposition in normal rat kidney epithelial-like (NRK-52E) cells were reversed by downregulating Nox4 expression but were enhanced by upregulating Nox4 expression in vitro. Moreover, calcium-induced increases of osteoblast-associated protein expression were attenuated by the c-Jun-N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) inhibitors. Innovation: Our results demonstrated the effect of Nox4 in the pathological process of kidney stones in in vitro and in vivo studies for the first time. Calcium aggravates renal oxidative stress injury and crystal deposition by activating the Nox4-related reactive oxygen species (ROS)-ERK/JNK pathway in the rat kidney. This study is expected to provide a new theoretical basis for the prevention and treatment of kidney stones. Conclusion: Nox4-derived ROS induced by calcium through PKC caused oxidative stress damage and apoptosis in renal tubular epithelial cells; in addition, Nox4-derived ROS induced by calcium mediated abnormal activation of the bone morphogenetic protein 2 (BMP2) signaling pathway through the MAPK signaling pathway, which induced renal tubular epithelial cells to transdifferentiate into osteoblast-like cells, resulting in the formation of a kidney stone. Antioxid. Redox Signal. 36, 15-38.
Collapse
Affiliation(s)
- Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Peng Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiaqiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Henglong Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Baolong Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zongbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuchao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
26
|
Gao X, Peng Y, Fang Z, Li L, Ming S, Dong H, Li R, Zhu Y, Zhang W, Zhu B, Liao J, Wang Z, Liu M, Lin W, Zeng J, Gao X. Inhibition of EZH2 ameliorates hyperoxaluria-induced kidney injury through the JNK/FoxO3a pathway. Life Sci 2021; 291:120258. [PMID: 34952043 DOI: 10.1016/j.lfs.2021.120258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
AIMS Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, has been shown to play a role in kidney diseases. However, its role in hyperoxaluria-induced renal tubular epithelial cells (TECs) injury remains unclear. MATERIALS AND METHODS A hyperoxaluria rat model was established by providing 0.5% ammonium chloride and drinking water containing 1% ethylene glycol. TECs were exposed to oxalate stress. The 3-DZNeP, a selective EZH2 inhibitor, was administered in vivo and in vitro. Cell viability, ROS production, and apoptosis ratio were evaluated. Crystal deposition was detected by Von Kossa staining and kidney tissue injury was detected by HE staining and TUNEL. EZH2, H3K27me3, cleaved-caspase3, IL-6, and MCP-1 were examined by western blot or immunohistochemistry. KEY FINDINGS Inhibition of EZH2 by 3-DZNeP significantly attenuated hyperoxaluria-induced oxidative and inflammatory injury and CaOx crystal deposition in vivo. Similarly, inhibition of EZH2 using 3-DZNeP or shRNA restored cell viability, suppressed LDH release and the production of intracellular ROS in vitro. Furthermore, the MAPK signaling pathway and FoxO3a levels were activated or elevated in TECs exposed to oxalate. EZH2 inhibition using 3-DZNeP blocked these effects. CC90003 (ERK inhibitor) or SB203580 (p38 inhibitor) did not significantly affect the expression of FoxO3a in TECs treated with 3-DZNeP and oxalate; only SP600125 (JNK inhibitor) significantly decreased FoxO3a expression. SIGNIFICANCE EZH2 inhibition protects against oxalate-induced TECs injury and reduces CaOx crystal deposition in the kidney may by modulating the JNK/FoxO3a pathway; EZH2 may be a promising therapeutic target in TECs injury.
Collapse
Affiliation(s)
- Xiaomin Gao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yonghan Peng
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ling Li
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Shaoxiong Ming
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hao Dong
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Rui Li
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Baoyi Zhu
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Junhao Liao
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Zeyu Wang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Min Liu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Weijian Lin
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Jianwen Zeng
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China.
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China.
| |
Collapse
|
27
|
Ye QL, Wang DM, Wang X, Zhang ZQ, Tian QX, Feng SY, Zhang ZH, Yu DX, Ding DM, Xie DD. Sirt1 inhibits kidney stones formation by attenuating calcium oxalate-induced cell injury. Chem Biol Interact 2021; 347:109605. [PMID: 34333021 DOI: 10.1016/j.cbi.2021.109605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/03/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Cell injury is a necessary and critical event during CaOx kidney stone formation. Sirt1 exerts a number of pleiotropic effects, protecting against renal cell injury. This study aims to explore the relationship between Sirt1 and CaOx kidney stone formation and the underlying mechanism. Sirt1 expression in renal tissues or HK-2 cells was detected by Western blot, immunohistochemistry and immunofluorescence. Apoptosis in renal tissues was examined by TUNEL staining. Renal pathological changes and the crystals deposition were detected by hematoxylin-eosin and Von Kossa staining. Crystal-cell adhesion and cell injury in HK-2 cells were assessed by atomic absorption spectrometry and flow cytometry, respectively. Sirt1 expression in nephrolithiasis patients was downregulated and the level of apoptosis was increased. Further study found that Sirt1 expression was decreased in both in vivo and in vitro models. Interestingly, the levels of cell injury were elevated in vivo and in vitro models. Suppressing Sirt1 expression promoted COM-induced crystal-cell adhesion and exacerbated cell injury. In contrast, increasing the expression of Sirt1 by lentivirus transfection in vitro and resveratrol administration in vivo, alleviated crystal deposition and cell damage. Our findings suggest that Sirt1 could inhibit kidney stone formation, at least in part, through attenuating CaOx -induced cell injury.
Collapse
Affiliation(s)
- Qing-Lin Ye
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Da-Ming Wang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Xin Wang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Qiang Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Qi-Xing Tian
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Shi-Yao Feng
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Mao Ding
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
28
|
AlSaad AMS, Alasmari F, Abuohashish HM, Mohany M, Ahmed MM, Al-Rejaie SS. Renin angiotensin system blockage by losartan neutralize hypercholesterolemia-induced inflammatory and oxidative injuries. Redox Rep 2021; 25:51-58. [PMID: 32396454 PMCID: PMC7269056 DOI: 10.1080/13510002.2020.1763714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objectives: This study explores the protective role of losartan (LT) against oxidative and inflammatory damages in different physiological systems including heart, liver, and kidney tissue in hypercholesterolemic rats. Methods: After induction of hypercholesterolemia by high cholesterol diet for 6 weeks, LT was administered for 4 weeks. In serum, the levels of lipoproteins, aminotransferases, creatine kinases, urea, apoptosis, and inflammatory markers were measured. In cardiac, hepatic, and renal tissues, lipid peroxidation product and GSH as well as antioxidant enzymatic activities were assayed. Finally, histopathological assessment evaluated the structural damage in cardiac, hepatic, and renal tissues. Results: Serum markers of cardiac, hepatic, and renal toxicities including creatine kinases, aminotransferases, and urea were attenuated by LT in hypercholesterolemic animals. Moreover, LT markedly corrected the elevated levels of lipoproteins, apoptosis, and inflammatory biomarkers. Hypercholesterolemia-induced lipid peroxidation, low GSH levels, and diminished activities of antioxidant enzymes were prominently improved in LT treated animals. Histopathological alterations by hypercholesterolemia in heart, liver, and kidney tissues were ameliorated by LT. Conclusion: This study confirmed the pathological enrollment of renin–angiotensin system in hypercholesterolemia-associated metabolic alterations. LT had a significant cardiac, hepatic, and renal protective role against these impairments through down-regulation of oxidative damage, inflammation and necrosis.
Collapse
Affiliation(s)
- Abdulaziz M S AlSaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem M Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Liu RN, Zou DM, Tian MY, Li K, Du JL, Liu MJ, Ma YZ. Effect of magnesium ammonium phosphate on the expression of adhesion molecules in sheep renal tubular epithelial cells. Res Vet Sci 2021; 138:167-177. [PMID: 34153557 DOI: 10.1016/j.rvsc.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/29/2021] [Accepted: 05/25/2021] [Indexed: 11/28/2022]
Abstract
Adhesion molecules play an important role in urinary calculus formation. The expressions of adhesion molecules in renal tubular has been reported in some animals. However, the role of adhesion molecules in the process of sheep urinary calculus formation is still unclear. The magnesium ammonium phosphate (MAP) is the main component of sheep urinary calculus. In this paper, the sheep renal tubular epithelial cells (RTECs) were isolated and treated with MAP, the expressions of osteopontin (OPN), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and apoptosis-related indicators caspase-3, Bcl-2 and Bax in RTECs were observed, the viability of RTECs was detected by Cell Counting Kit-8 (CCK-8). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA), and the expressions of inflammatory factors Interleukin-6 (IL-6), Interleukin-1 (IL-1), Interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent (ELISA). The histopathological observation of kidney in urolithiasis sheep was made. The results showed that MAP could reduce the viability and SOD activity, enhance the activity of MDA significantly and promote the expressions of IL-1, IL-6, IL-17 and TNF-α of RTECs. By western blot and qPCR methods, the expressions of ICAM-1, VCAM-1 and OPN increased in 48 h. In addition, the expression of caspase-3 increased significantly and the ratio of Bcl-2/Bax reduced with exposure to MAP. The renal tissue structure was seriously damaged, the RTECs in urolithiasis sheep were degenerative and necrotic.
Collapse
Affiliation(s)
- Ruo-Nan Liu
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071000, China
| | - Dong-Min Zou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Meng-Yue Tian
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071000, China
| | - Ke Li
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071000, China
| | - Jin-Liang Du
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071000, China.; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Mao-Jun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yu-Zhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071000, China..
| |
Collapse
|
30
|
Ding T, Zhao T, Li Y, Liu Z, Ding J, Ji B, Wang Y, Guo Z. Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153562. [PMID: 33857849 DOI: 10.1016/j.phymed.2021.153562] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nephrolithiasis is a common urinary disease with a high recurrence rate of secondary stone formation. Several mechanisms are involved in the onset and recurrence of nephrolithiasis, e.g., oxidative stress, inflammation, apoptosis, and epithelial-mesenchymal transition (EMT). Vitexin, a flavonoid monomer derived from medicinal plants that exert many biological effects including anti-inflammatory and anticancer effects, has not been investigated in nephrolithiasis studies. Moreover, pyroptosis, a form of programmed cell death resulting from inflammasome-associated caspase activation, has not been studied in mice with nephrolithiasis. PURPOSE We aimed to investigate the protective effect and underlying mechanisms of vitexin in nephrolithiasis, and the related role of pyroptosis in vivo and in vitro. METHODS Mouse models of nephrolithiasis were established via intraperitoneal injection of glyoxylate, and cell models of tubular epithelial cells and macrophages were established using calcium oxalate monohydrate (COM). Crystal deposition and kidney tissue injury were evaluated by hematoxylin and eosin, and von Kossa staining. Renal oxidative stress indexes including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), were analyzed. The renal expression of interleukin-1 beta (IL-1β), gasdermin D (GSDMD), osteopontin (OPN), CD44, and monocyte chemotactic protein 1 (MCP-1), and EMT-related proteins in renal tubular epithelial cells was assessed. Cell viability and the apoptosis ratio were evaluated. RESULTS In vivo, vitexin alleviated crystal deposition and kidney tissue injury, and decreased the level of MDA, and increased the levels of SOD, GSH, and CAT. Vitexin also reduced the levels of the pyroptosis-related proteins GSDMD, NLRP3, cleaved caspase-1, and mature IL-1β, which were elevated in mice with nephrolithiasis, and repressed apoptosis and the expression of OPN and CD44. Moreover, vitexin mitigated F4/80-positive macrophage infiltration and MCP-1 expression in the kidneys. Furthermore, an in vitro study showed that vitexin increased the viability of HK-2 cells and THP-1-derived macrophages, which was impaired by treatment with COM crystals, decreased the medium lactate dehydrogenase (LDH) level, and inhibited the expression of pyroptosis-related proteins in HK-2 cells and macrophages. Vitexin repressed EMT of HK-2 cells, with increased expression of pan-cytokeratin (Pan-ck) and decreased expression of Vimentin and alpha-smooth muscle actin (α-SMA), and downregulated the Wnt/β-catenin pathway. Moreover, vitexin suppressed tumor necrosis factor-α (TNF-α) and IL-1β mRNA expression, which was upregulated by COM in macrophages. CONCLUSION Vitexin exerts protective effects against nephrolithiasis by inhibiting pyroptosis activation, apoptosis, EMT, and macrophage infiltration. In addition, GSDMD-related pyroptosis mediates nephrolithiasis.
Collapse
Affiliation(s)
- Tao Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China
| | - Tingting Zhao
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China
| | - Yinhui Li
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China
| | - Zhixiao Liu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, PR China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China
| | - Boyao Ji
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, PR China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, PR China; Shanghai Key Lab of Cell Engineering, Shanghai 200433, PR China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
31
|
Wen J, Cao Y, Li Y, Zhu F, Yuan M, Xu J, Li J. Metabolomics analysis of the serum from children with urolithiasis using UPLC-MS. Clin Transl Sci 2021; 14:1327-1337. [PMID: 33580996 PMCID: PMC8301561 DOI: 10.1111/cts.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023] Open
Abstract
Pediatric urolithiasis is a common urologic disease with high morbidity and recurrence rates. Recent studies have shown that metabolic dysfunction plays a vital role in the pathogenesis of urolithiasis, especially in children, but the specific mechanism is still unclear. Metabolomics is an ideal technology for exploring the mechanism of metabolic disorders in urolithiasis. In the present study, a serum metabolomics based on ultra‐performance liquid chromatography mass spectrometry was performed. A total of 50 children subjects were recruited for the study, including 30 patients with kidney stones and 20 normal controls (NCs). Principal component analysis and orthogonal partial least‐squares determinant analysis were carried, and 40 metabolites were found to be significantly altered in patients with kidney stones, mainly involving retinol metabolism, steroid hormone biosynthesis, and porphyrin and chlorophyll metabolism. The kidney stone group appeared to have a lower serum level of bilirubin, but a relative higher level of retinal, all‐transretinoic acid, progesterone, and prostaglandin E2 compared with those of the NC group. All the findings suggest that patients with urolithiasis have several metabolic characteristics, which are related to stone formation or compensation. These metabolites and pathways are very likely associated with development of kidney stones and should be considered as potential novel targets for treatment and prevention.
Collapse
Affiliation(s)
- Junxiang Wen
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yinyin Cao
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yang Li
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fenhua Zhu
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Meifen Yuan
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Xu
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Li
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
32
|
Li X, Xuan W, Chen D, Gao H, Wang G, Guo Q, Wang Y, Song H, Cai B. Research Progress of Alzheimer's Disease Therapeutic Drugs: Based on Renin-Angiotensin System Axis. J Alzheimers Dis 2020; 78:1315-1338. [PMID: 33164932 DOI: 10.3233/jad-200770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is widely recognized that Alzheimer's disease (AD) has a complicate link to renin-angiotensin system (RAS). It is known that cerebrovascular disease has some connections with AD, but most of the studies are still conducted in parallel or independently. Although previous research came up with large number of hypotheses about the pathogenesis of AD, it does not include the mechanism of RAS-related regulation of AD. It has been found that many components of RAS have been changed in AD. For example, the multifunctional and high-efficiency vasoconstrictor Ang II and Ang III with similar effects are changed under the action of other RAS signal peptides; these signal peptides are believed to help improve nerve injury and cognitive function. These changes may lead to neuropathological changes of AD, and progressive defects of cognitive function, which are association with some hypotheses of AD. The role of RAS in AD gradually attracts our attention, and RAS deserved to be considered carefully in the pathogenesis of AD. This review discusses the mechanisms of RAS participating in the three current hypotheses of AD: neuroinflammation, oxidative stress and amyloid-β protein (Aβ) hypothesis, as well as the drugs that regulate RAS systems already in clinical or in clinical trials. It further demonstrates the importance of RAS in the pathogenesis of AD, not only because of its multiple aspects of participation, which may be accidental, but also because of the availability of RAS drugs, which can be reused as therapies of AD.
Collapse
Affiliation(s)
- Xinquan Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Weiting Xuan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Dabao Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Huawu Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Guangyun Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qiaoru Guo
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
33
|
Piotrowska A, Chmielewska M, Andrzejewski W, Dziegiel P, Podhorska-Okolow M. Influence of Angiotensin II on cell viability and apoptosis in rat renal proximal tubular epithelial cells in in vitro studies. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320949850. [PMID: 32962526 PMCID: PMC7649907 DOI: 10.1177/1470320320949850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction: Angiotensin II (Ang II) is multifunctional peptide that plays an important role in blood pressure regulation and maintenance electrolyte homeostasis. It shows biological effects by activating two main receptors: AT1 and AT2. The aim of the present work was to investigate the effect of Ang II on NRK-52E cells in in vitro studies. Furthermore, an attempt was made to determine the effectiveness of the AT1 and AT2 receptor blocker activity (respectively, losartan and PD123319). Methods: The study was carried out using adherent NRK-52E cell line. Immunofluorescence and Western Blot method were used to confirm the presence of AT1 and AT2 receptors in the cells. The SRB and MTT tests showed decrease in the viability of NRK-52E cells incubated with Ang II in comparison to the control (without Ang II). Results: The blockade of the AT1 receptor caused an increase in cell viability in comparison to cells incubated with Ang II only. The blockade of AT2 receptor also triggered statistically significant increase in cell viability in comparison with cells only exposed to Ang II. Combined administration of blockers for both receptors (losartan and PD123319) decreased Ang II cytotoxicity against NRK-52E cell line. The apoptosis was only observed in cells incubated with Ang II in comparison with control cells. However, simultaneous use of both blockers caused statistically significant decrease in apoptosis. Conclusions: The result of our study indicates that Ang II causes damaging effect on NRK-52E cells by directing them to programmed cell death. It seems that not only does the AT2 receptor itself play an important role in the induction of apoptosis, but also its interaction with AT1 receptor does as well.
Collapse
Affiliation(s)
- Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland
| | - Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Waldemar Andrzejewski
- Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland.,Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | | |
Collapse
|
34
|
Wang Z, Li MX, Xu CZ, Zhang Y, Deng Q, Sun R, Hu QY, Zhang SP, Zhang JW, Liang H. Comprehensive study of altered proteomic landscape in proximal renal tubular epithelial cells in response to calcium oxalate monohydrate crystals. BMC Urol 2020; 20:136. [PMID: 32867742 PMCID: PMC7461262 DOI: 10.1186/s12894-020-00709-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Calcium oxalate monohydrate (COM), the major crystalline composition of most kidney stones, induces inflammatory infiltration and injures in renal tubular cells. However, the mechanism of COM-induced toxic effects in renal tubular cells remain ambiguous. The present study aimed to investigate the potential changes in proteomic landscape of proximal renal tubular cells in response to the stimulation of COM crystals. Methods Clinical kidney stone samples were collected and characterized by a stone component analyzer. Three COM-enriched samples were applied to treat human proximal tubular epithelial cells HK-2. The proteomic landscape of COM-crystal treated HK-2 cells was screened by TMT-labeled quantitative proteomics analysis. The differentially expressed proteins (DEPs) were identified by pair-wise analysis. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEPs were performed. Protein interaction networks were identified by STRING database. Results The data of TMT-labeled quantitative proteomic analysis showed that a total of 1141 proteins were differentially expressed in HK-2 cells, of which 699 were up-regulated and 442 were down-regulated. Functional characterization by KEGG, along with GO enrichments, suggests that the DEPs are mainly involved in cellular components and cellular processes, including regulation of actin cytoskeleton, tight junction and focal adhesion. 3 high-degree hub nodes, CFL1, ACTN and MYH9 were identified by STRING analysis. Conclusion These results suggested that calcium oxalate crystal has a significant effect on protein expression profile in human proximal renal tubular epithelial cells.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China.
| | - Ming-Xing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chang-Zhi Xu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Rui Sun
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Qi-Yi Hu
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Sheng-Ping Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Jian-Wen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, 518109, Guangdong, China.
| |
Collapse
|
35
|
Fibrauretine reduces ischemia/reperfusion injury via RISK/eNOS activation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1515-1525. [PMID: 31796985 DOI: 10.1007/s00210-019-01770-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/15/2023]
Abstract
Current studies have shown that fibrauretine can be used in the treatment of cardiovascular diseases; however, the protective mechanism of fibrauretine in cardiovascular diseases is unclear. The aim of this study was to investigate the effect and mechanism of fibrauretine in acute myocardial ischemia-reperfusion injury. We investigated the effects of glucocorticoid receptor/oestrogen receptor (GR/ER)-mediated Akt phosphorylation, extracellular regulated protein kinase (ERK1/2) activation and nitric oxide (NO) on the treatment of acute myocardial ischemia-reperfusion injury by fibrauretine. Myocardial ischemia-reperfusion (I/R) injury models were established in rats and gene-knockout mice, and the infarct size was measured. We detected the expression and phosphorylation of phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), glucocorticoid receptor, oestrogen receptor, lactate dehydrogenase (LDH), creatine phosphokinase (CK-MB), stress-activated protein kinase (JNK), P38 protein kinase (P38 MAPK) and nitric oxide synthase (NOS) with or without the inhibitors to investigate the protective effect of fibrauretine on the heart. The results showed that fibrauretine can significantly reduce the myocardial infarction area in myocardial I/R injury, inhibit the activities of LDH and CK-MB in the serum, and increase the content of NO. However, the effects of fibrauretine on the reduction of the myocardial infarction area were eliminated by the PI3K inhibitor LY294002, Akt inhibitor IV, GR inhibitor RU468, ER inhibitor tamoxifen, eNOS inhibitor L-NAME and ERK1/2 inhibitor U0126. Moreover, in the case of WT mice and gene-knockout eNOS and iNOS mice, fibrauretine was able to significantly reduce the myocardial infarction area in iNOS-/- and wild type mice. However, there was no significant protective effect of fibrauretine in eNOS-/- mice. It is suggested that eNOS plays an important role in the protective effect of fibrauretine on the heart. Therefore, the results of this study show that the protective effect of fibrauretine on myocardial I/R injury is closely associated with eNOS expression, GR/ER-induced Akt phosphorylation and ERK1/2 activation.
Collapse
|
36
|
Jiang K, Hu J, Luo G, Song D, Zhang P, Zhu J, Sun F. miR-155-5p Promotes Oxalate- and Calcium-Induced Kidney Oxidative Stress Injury by Suppressing MGP Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5863617. [PMID: 32215174 PMCID: PMC7081043 DOI: 10.1155/2020/5863617] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Oxalate and calcium are the major risk factors for calcium oxalate (CaOx) stone formation. However, the exact mechanism remains unclear. This study was designed to confirm the potential function of miR-155-5p in the formation of CaOx induced by oxalate and calcium oxalate monohydrate (COM). The HK-2 cells were treated by the different concentrations of oxalate and COM for 48 h. We found that oxalate and COM treatment significantly increased ROS generation, LDH release, cellular MDA levels, and H2O2 concentration in HK-2 cells. The results of qRT-PCR and western blot showed that expression of NOX2 was upregulated, while that of SOD-2 was downregulated following the treatment with oxalate and COM in HK-2 cells. Moreover, the results of miRNA microarray analysis showed that miR-155-5p was significantly upregulated after oxalate and COM treated in HK-2 cells, but miR-155-5p inhibitor treatment significantly decreased ROS generation, LDH release, cellular MDA levels, and H2O2 concentration in HK-2 cells incubated with oxalate and COM. miR-155-5p negatively regulated the expression level of MGP via directly targeting its 3'-UTR, verified by the Dual-Luciferase Reporter System. In vivo, polarized light optical microphotography showed that CaOx crystal significantly increased in the high-dose oxalate and Ca2+ groups compared to the control group. Furthermore, IHC analyses showed strong positive staining intensity for the NOX-2 protein in the high-dose oxalate and Ca2+-treated mouse kidneys, and miR-155-5p overexpression can further enhance its expression. However, the expression of SOD-2 protein was weakly stained. In conclusion, our study indicates that miR-155-5p promotes oxalate- and COM-induced kidney oxidative stress injury by suppressing MGP expression.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dalong Song
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
- Guizhou University, Guiyang, China
- Department of Urology, Panzhou People's Hospital, Panzhou, Guizhou, China
| | - Peng Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
37
|
Rosiglitazone Suppresses Calcium Oxalate Crystal Binding and Oxalate-Induced Oxidative Stress in Renal Epithelial Cells by Promoting PPAR- γ Activation and Subsequent Regulation of TGF- β1 and HGF Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4826525. [PMID: 31781338 PMCID: PMC6875173 DOI: 10.1155/2019/4826525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptor- (PPAR-) γ is a ligand-dependent transcription factor, and it has become evident that PPAR-γ agonists have renoprotective effects, but their influence and mechanism during the development of calcium oxalate (CaOx) nephrolithiasis remain unknown. Rosiglitazone (RSG) was used as a representative PPAR-γ agonist in our experiments. The expression of transforming growth factor-β1 (TGF-β1), hepatocyte growth factor (HGF), c-Met, p-Met, PPAR-γ, p-PPAR-γ (Ser112), Smad2, Smad3, pSmad2/3, and Smad7 was examined in oxalate-treated Madin-Darby canine kidney (MDCK) cells and a stone-forming rat model. A CCK-8 assay was used to evaluate the effects of RSG on cell viability. In addition, intracellular reactive oxygen species (ROS) levels were monitored, and lipid peroxidation in renal tissue was detected according to superoxide dismutase and malondialdehyde levels. Moreover, the location and extent of CaOx crystal deposition were evaluated by Pizzolato staining. Our results showed that, both in vitro and in vivo, oxalate impaired PPAR-γ expression and phosphorylation, and then accumulative ROS production was observed, accompanied by enhanced TGF-β1 and reduced HGF. These phenomena could be reversed by the addition of RSG. RSG also promoted cell viability and proliferation and decreased oxidative stress damage and CaOx crystal deposition. However, these protective effects of RSG were abrogated by the PPAR-γ-specific inhibitor GW9662. Our results revealed that the reduction of PPAR-γ activity played a critical role in oxalate-induced ROS damage and CaOx stone formation. RSG can regulate TGF-β1 and HGF/c-Met through PPAR-γ to exert antioxidant effects against hyperoxaluria and alleviate crystal deposition. Therefore, PPAR-γ agonists may be expected to be a novel therapy for nephrolithiasis, and this effect is related to PPAR-γ-dependent suppression of oxidative stress.
Collapse
|
38
|
Tannich F, Tlili A, Pintard C, Chniguir A, Eto B, Dang PMC, Souilem O, El-Benna J. Activation of the phagocyte NADPH oxidase/NOX2 and myeloperoxidase in the mouse brain during pilocarpine-induced temporal lobe epilepsy and inhibition by ketamine. Inflammopharmacology 2019; 28:487-497. [PMID: 31667656 DOI: 10.1007/s10787-019-00655-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
Excessive reactive oxygen species (ROS) production can induce tissue injury involved in a variety of neurodegenerative disorders such as neurodegeneration observed in pilocarpine-induced temporal lobe epilepsy. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has beneficial effects in pilocarpine-induced temporal lobe epilepsy, when administered within minutes of seizure to avoid the harmful neurological lesions induced by pilocarpine. However, the enzymes involved in ROS productions and the effect of ketamine on this process remain less documented. Here we show that during pilocarpine-induced epilepsy in mice, the expression of the phagocyte NADPH oxidase NOX2 subunits (NOX2/gp91phox, p22phox, and p47phox) and the expression of myeloperoxidase (MPO) were dramatically increased in mice brain treated with pilocarpine. Interestingly, treatment of mice with ketamine before or after pilocarpine administration decreased this process, mainly when injected before pilocarpine. Finally, our results showed that pilocarpine induced p47phox phosphorylation and H2O2 production in mice brain and ketamine was able to inhibit these processes. Our results show that pilocarpine induced NOX2 activation to produce ROS in mice brain and that administration of ketamine before or after the induction of temporal lobe epilepsy by pilocarpine inhibited this activation in mice brain. These results suggest a key role of the phagocyte NADPH oxidase NOX2 and MPO in epilepsy and identify a novel effect of ketamine.
Collapse
Affiliation(s)
- Fatma Tannich
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, University of Manouba, Sidi Thabet, Tunisia. .,Neurophysiology Laboratory and Functional Pathology, Department of Biological Sciences, Faculty of Sciences of Tunis, University Campus of Al-Manar, Tunis, Tunisia. .,INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.
| | - Asma Tlili
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Coralie Pintard
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Amina Chniguir
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Bruno Eto
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, 59006, Lille, France
| | - Pham My-Chan Dang
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Ouajdi Souilem
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, University of Manouba, Sidi Thabet, Tunisia
| | - Jamel El-Benna
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
39
|
Li Y, Ma G, Lv Y, Su J, Li G, Chen X. Efficacy of Obcordata A from Aspidopterys obcordata on Kidney Stones by Inhibiting NOX4 Expression. Molecules 2019; 24:E1957. [PMID: 31117291 PMCID: PMC6572403 DOI: 10.3390/molecules24101957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
Obcordata A (OA) is a polyoxypregnane glycoside derived from the Dai medicine Aspidopterys obcordata vines. This study aims to investigate the efficacy of OA on renal tubular epithelial cells exposed to calcium oxalate crystals. We incubated renal tubular cells with 28 μg·cm2 calcium oxalate crystals for 24 h with and without OA, GKT137831, phorbol-12-myristate-13-acetate (PMA), and tocopherol. The MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, microscopic examination, flow cytometry, and immunofluorescence staining revealed that calcium oxalate crystals decreased cell viability and elevated reactive oxygen species (ROS) levels. OA, GKT137831, and tocopherol protected cells and decreased ROS levels. However, OA did not exhibit direct DPPH scavenging ability. In addition, immunoblotting illustrated that OA inhibited the NOX4 (nicotinamide adenine dinucleotide phosphate oxidases 4) expression and downregulated the protein expression in the NOX4/ROS/p38 MAPK (p38 mitogen-activated protein kinase) pathway. The findings suggest that the cytoprotective and antioxidant effects of OA can be blocked by the NOX4 agonist PMA. In conclusion, OA could be used as a NOX4 inhibitor to prevent kidney stones.
Collapse
Affiliation(s)
- Yihang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China.
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China.
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Yana Lv
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China.
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China.
| | - Jing Su
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China.
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China.
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China.
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China.
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
40
|
Metabolomic analysis reveals a protective effect of Fu-Fang-Jin-Qian-Chao herbal granules on oxalate-induced kidney injury. Biosci Rep 2019; 39:BSR20181833. [PMID: 30737304 PMCID: PMC6386768 DOI: 10.1042/bsr20181833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Nephrolithiasis is one of the world’s major public health burdens with a high incidence and a risk of persistent renal dysfunction. Fu-Fang-Jin-Qian-Chao granules (FFJQC), a traditional Chinese herb formula, is commonly used in treatment of nephrolithiasis. However, the therapeutic mechanism of FFJQC on kidney stone has still been a mystery. The objective of the present study is to explore the therapeutic mechanism of FFJQC on kidney injury and identify unique metabolomics patterns using a mouse model of kidney stone induced by a calcium oxalate (CaOx) deposition. Von Kossa staining and immuno-histopathological staining of osteopontin (OPN), cluster of differentiation 44 (CD44) and calbindin-D28k were conducted on renal sections. Biochemical analysis was performed on serum, urine, and kidney tissues. A metabolomics approach based on ultra-HPLC coupled with quadrupole-TOF-MS (UHPLC-Q-TOF/MS) was used for serum metabolic profiling. The immunohistopathological and biochemical analysis showed the therapeutic benefits of FFJQC. The expression levels of OPN and CD44 were decreased while calbindin-D28k increased after the CaOx injured mice were treated with FFJQC. In addition, total of 81 serum metabolites were identified to be associated with protective effects of FFJQC on CaOx crystal injured mice. Most of these metabolites were involved in purine, amino acid, membrane lipid and energy metabolism. Potential metabolite biomarkers were found for CaOx crystal-induced renal damage. Potential metabolite biomarkers of CaOx crystal-induced renal damage were found. FFJQC shows therapeutic benefits on CaOx crystal injured mice via regulation of multiple metabolic pathways including amino acids, purine, pyrimidine, glycerolipid, arachidonic acid (AA), sphingolipid, glycerophospholipid, and fatty acid.
Collapse
|
41
|
The lipid peroxidation in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy. Future Med Chem 2018; 10:2685-2693. [PMID: 30518231 DOI: 10.4155/fmc-2018-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To evaluate the level of lipid peroxidation in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy (ESWL). MATERIALS & METHODS Isoprostane concentration (8-isoPGF2α) was measured in urine, and thiobarbituric acid reactive substance production in serum and erythrocytes. In addition, the concentrations of selected compounds (uric acid, glucose and creatinine) were measured in serum. RESULTS The patients (before and after ESWL) demonstrated significantly higher levels of two different biomarkers of lipid peroxidation compared with the control group. A correlation was identified between increased amounts of uric acid and biomarkers of lipid peroxidation in patients with nephrolithiasis, both before and after ESWL. CONCLUSION Uric acid may be associated with lipid peroxidation in patients with nephrolithiasis.
Collapse
|
42
|
Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1724648. [PMID: 30405874 PMCID: PMC6199878 DOI: 10.1155/2018/1724648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/27/2022]
Abstract
Solute carrier family 26 member 6 (Slc26a6), which is mainly expressed in the intestines and kidneys, is a multifunctional anion transporter that is crucial in the transport of oxalate anions. This study is aimed at investigating the effect of Slc26a6 expression on oxalate-induced cell oxidation and crystal formation. Lentivirus transfection was used to upregulate or downregulate Slc26a6 expression in NRK cells. Cell viability and apoptosis, reactive oxygen species (ROS) and malondialdehyde (MDA) generation, and superoxide dismutase (SOD) activity were measured. Crystal adhesion and the cell ultrastructure were observed using light and transmission electron microscopy (TEM). Three groups of rats, normal control, lentivirus-vector, and lentivirus-small interfering RNA (lv-siRNA) groups, were used, and after lentivirus transfection, they were fed 1% ethylene glycol (EG) and 0.5% ammonium chloride (NH4Cl) for 2 weeks. Dihydroethidium (DHE), terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labeling (TUNEL), and von Kossa staining were performed, and nuclear factor κB (NFκB) and osteopontin (OPN) expression were measured. In the vitro study, compared to the control group, downregulated Slc26a6 NRK cells showed alleviation of the cell viability decrease, cell apoptosis rate, ROS generation, and SOD activity decrease after oxalate treatment. Crystal adhesion and vesicles were significantly less after oxalate exposure than in the untreated controls. Rats infected with lentivirus-siRNA exhibited attenuated SOD generation, cell apoptosis, and crystal formation in the kidneys. Increased phosphorylation of NFκB and OPN was involved in the pathological process. In conclusion, the results of the present study indicate that reducing the expression of Slc26a6 in the kidney may be a potential strategy for preventing stone formation.
Collapse
|