1
|
Magaña-Gómez JA, González-Ochoa G, Rosas-Rodríguez JA, Stephens-Camacho NA, Flores-Mendoza LK. Sucralose-Enhanced Adipogenesis on Preadipocyte Human Cell Line During Differentiation Process. Int J Mol Sci 2024; 25:13635. [PMID: 39769396 PMCID: PMC11727828 DOI: 10.3390/ijms252413635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Sucralose, a commonly nonnutritive sweetener used in daily products of habitual diet, is related to impairing the gut microbiome by disrupting inflammatory response, promoting weight gain by increasing adipose tissue and promoting chronic inflammatory processes. Considering the impact of sucralose in the development of metabolic diseases, in this work, we focused on the impact of sucralose on the adipocyte differentiation process to determine if sucralose can promote adipogenesis and increase adipose tissue depots in PCS 210 010 human preadipocytes cell line. Sucralose at 25 (S25) and 100 ng/µL (S100) concentrations were tested against control with no edulcorant (NS) during the adipocyte differentiation process at 48 h and 96 h. The genetic expression of adipogenesis markers such as CEBP-α, PPARγ, EBF-2, UCP-1, and lipogenesis regulator ACC was determined by qPCR. A panel of human cytokines related to inflammatory response was measured by a flow cytometer using the kit Legend Plex Human Cytokine panel of BIOLUMINEX. Our results indicate that sucralose increased the expression of white adipocyte differentiation marker CEBP-α and lipogenesis regulator ACC at 96 h before complete differentiation. Also, sucralose triggers an inflammatory response by synthesizing adiponectin, resistin, IL-6, IL-8, and Il-1B. To summarize, sucralose stimulates the expression of genes related to adipogenesis and negatively affects the secretion of inflammatory cytokines and adipokines during preadipocyte differentiation.
Collapse
Affiliation(s)
- Javier A. Magaña-Gómez
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz, CU 80010 Culiacán, Sinaloa, Mexico;
| | - Guadalupe González-Ochoa
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| | - Jesus A. Rosas-Rodríguez
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| | - N. Aurora Stephens-Camacho
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz, CU 80010 Culiacán, Sinaloa, Mexico;
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora, Blvd. Manlio Fabio Beltrones 810, Col. Bugambilias, CP 85875 Navojoa, Sonora, Mexico
| | - Lilian K. Flores-Mendoza
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| |
Collapse
|
2
|
Martínez-Carrillo BE, De Sales-Millán A, Aguirre-Garrido JF, Valdés-Ramos R, de María Cruz-Estrada F, Castillo-Cardiel JA. Changes in the Composition and Diversity of the Intestinal Microbiota Associated with Carbohydrate Consumption in Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2024; 25:12359. [PMID: 39596424 PMCID: PMC11594722 DOI: 10.3390/ijms252212359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease, influenced by dietary and environmental factors that can modify the intestinal microbiota. The aim of this study was to evaluate changes in the composition and diversity of the intestinal microbiota associated with carbohydrate (CHO) consumption in T2DM patients. Forty patients participated, with and without T2DM. Fecal samples were collected for the characterization of microbial diversity from the massive sequencing of the 16S rRNA gene. Carbohydrate consumption was quantified using the Frequency Consumption Foods questionnaire (FCF), the groups were categorized according to Body Mass Index (BMI) and BMI + CHO consumption. The group without T2DM showed normal biochemical and anthropometric parameters, although they had a high carbohydrate consumption compared to the group with T2DM. At the phylum level, there were differences in relative abundance; the control overweight group (CL-OW > CHO) and T2DM-Normal Weight > CHO patients had increased Bacteroides and decreased Firmicutes. In contrast, the CL-OW > CHO and T2DM-OW < CHO patients, showed reduced Bacteroidetes and an elevated amount of Firmicutes. At the genus level, the differences were in the relative abundance of Roseburia, Clostridium_IV, Prevotella, and Sporobacter, associated with the consumption of carbohydrates. The groups that consumed high amounts of carbohydrates, regardless of whether they had diabetes mellitus or were overweight, had a significantly reduced proportion of Faecalibacterium, an altered proportion of Bacteroides. The high consumption of carbohydrates showed considerable modifications in the composition and diversity of the bacterial communities.
Collapse
Affiliation(s)
- Beatriz Elina Martínez-Carrillo
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - Amapola De Sales-Millán
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | | | - Roxana Valdés-Ramos
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - Flor de María Cruz-Estrada
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - José Arturo Castillo-Cardiel
- Department of Research, Continuing Education and Distance Learning, Universidad Autónoma de Durango, Durango 34209, Mexico;
| |
Collapse
|
3
|
Cebeci E, Katirci E, Karhan M, Korgun ET. The immunomodulator effect of Stevia rebaudiana Bertoni mediated by TNF-α and IL-1β in peripheral blood in diabetic rats. Food Sci Nutr 2024; 12:7581-7590. [PMID: 39479688 PMCID: PMC11521730 DOI: 10.1002/fsn3.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Stevia rebaudiana Bertoni, which is a medicinal plant used in the treatment of diabetes, was the focus of this study aiming to investigate its immunomodulatory properties in diabetes. To form the diabetes group, rats were injected intraperitoneally with STZ and rats with blood glucose levels above 200 mg/dL 2 days after STZ injection were included in the diabetes group. To form the stevia and diabetes + stevia groups, stevia was administered daily by gavage to both healthy and diabetic rats for 28 days. At the end of 28 days, the levels of interleukin-1 beta and tumor necrosis factor-alpha in the blood were measured by ELISA. CD3, CD4, and CD8 protein levels in the blood were determined by flow cytometry. Rat body weight increased in the diabetes +25 mg/kg bW stevia group compared with the diabetes group. Blood glucose levels were significantly decreased in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). IL-1β cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). TNF-α cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). The amount of CD8 + T cells decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (*p < .05). The stevia diet leads to a reduction in peripheral circulating cytotoxic T cells and proinflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha under hyperglycemic conditions.
Collapse
Affiliation(s)
- Erhan Cebeci
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| | - Ertan Katirci
- Faculty of Medicine, Department of Histology and EmbryologyAhi Evran UniversityKirsehirTurkey
| | - Mustafa Karhan
- Faculty of Engineering, Department of Food EngineeringAkdeniz UniversityAntalyaTurkey
| | - Emin Turkay Korgun
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| |
Collapse
|
4
|
Rathaus M, Azem L, Livne R, Ron S, Ron I, Hadar R, Efroni G, Amir A, Braun T, Haberman Y, Tirosh A. Long-term metabolic effects of non-nutritive sweeteners. Mol Metab 2024; 88:101985. [PMID: 38977130 PMCID: PMC11347859 DOI: 10.1016/j.molmet.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS Long-term consumption of commonly used NNSs does not induce adverse metabolic effects, with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Loziana Azem
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel; Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
5
|
Mohammed DM, Abdelgawad MA, Ghoneim MM, Alhossan A, Al-Serwi RH, Farouk A. Impact of Some Natural and Artificial Sweeteners Consumption on Different Hormonal Levels and Inflammatory Cytokines in Male Rats: In Vivo and In Silico Studies. ACS OMEGA 2024; 9:30364-30380. [PMID: 39035958 PMCID: PMC11256323 DOI: 10.1021/acsomega.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Substituting sugar with noncaloric sweeteners prevents overweight and diabetes development. They come in two types: artificial, like aspartame and sucralose, and natural, such as sorbitol. This research aimed to assess the effects of sucrose and these sweeteners on nutritional parameters, hematological parameters, hormones, and anti- and pro-inflammatory cytokines in male rats. Thirty rats had been separated into five groups. The results showed the highest significant increase in body weight gain, total food intake, and feed efficiency noticed in the aspartame group followed by sucralose, sucrose, and sorbitol, respectively. In contrast to RBCs and platelets, all sweeteners significantly reduced the hemoglobin level, Hct %, and WBC count. The aspartame group showed the highest decline in glycoproteins, steroids, and T3, and T4 hormones and a dramatic elevation in thyroid stimulating hormone, eicosanoid, and amine hormones compared with the control group. A vigorous elevation in anti- and proinflammatory cytokine levels was observed in the aspartame group, followed by sucralose, sucrose, and sorbitol groups. Aspartame has the highest docking scores when studying the interactions of sweeteners and a target protein associated with hormones or cytokines using in silico molecular docking, with the best absorption, distribution, metabolism, elimination, and toxicity properties compared to the remaining sweeteners.
Collapse
Affiliation(s)
- Dina Mostafa Mohammed
- Nutrition
and Food Sciences Department, National Research
Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Abdulaziz Alhossan
- Department
of Clinical Pharmacy—College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department
of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Farouk
- Flavour
and
Aroma Chemistry Department, National Research
Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
6
|
Whelan K, Bancil AS, Lindsay JO, Chassaing B. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:406-427. [PMID: 38388570 DOI: 10.1038/s41575-024-00893-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Ultra-processed foods (UPFs) and food additives have become ubiquitous components of the modern human diet. There is increasing evidence of an association between diets rich in UPFs and gut disease, including inflammatory bowel disease, colorectal cancer and irritable bowel syndrome. Food additives are added to many UPFs and have themselves been shown to affect gut health. For example, evidence shows that some emulsifiers, sweeteners, colours, and microparticles and nanoparticles have effects on a range of outcomes, including the gut microbiome, intestinal permeability and intestinal inflammation. Broadly speaking, evidence for the effect of UPFs on gut disease comes from observational epidemiological studies, whereas, by contrast, evidence for the effect of food additives comes largely from preclinical studies conducted in vitro or in animal models. Fewer studies have investigated the effect of UPFs or food additives on gut health and disease in human intervention studies. Hence, the aim of this article is to critically review the evidence for the effects of UPF and food additives on gut health and disease and to discuss the clinical application of these findings.
Collapse
Affiliation(s)
- Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK.
| | - Aaron S Bancil
- Department of Nutritional Sciences, King's College London, London, UK
| | - James O Lindsay
- Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine, London, UK
| | | |
Collapse
|
7
|
Aguayo-Guerrero JA, Méndez-García LA, Solleiro-Villavicencio H, Viurcos-Sanabria R, Escobedo G. Sucralose: From Sweet Success to Metabolic Controversies-Unraveling the Global Health Implications of a Pervasive Non-Caloric Artificial Sweetener. Life (Basel) 2024; 14:323. [PMID: 38541649 PMCID: PMC10971371 DOI: 10.3390/life14030323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 01/04/2025] Open
Abstract
Sucralose is a food additive initially used to mitigate glycemic peaks and calorie intake in patients with diabetes and obesity. Although sucralose has been considered safe for human consumption, the World Health Organization (WHO) issued a global alert in 2023 concerning the potential health implications of this artificial sweetener. This review aims to comprehensively explore the effects of sucralose intake on human health by understanding sucralose absorption, metabolism, and excretion. We also outline the role of the sweet taste 1 receptor 3 (T1R3) in mediating sucralose-dependent signaling pathways that regulate satiety, incretin release, and insulin response. Finally, we discuss the impact of sucralose on microbiome dysbiosis, inflammatory response origin, liver damage, and toxicity. Gaining a deeper understanding of the manifold effects of sucralose on human physiology will help promote further studies to ensure its consumption is deemed safe for a broader population, including children, adolescents, and pregnant women.
Collapse
Affiliation(s)
- José Alfredo Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | | | - Rebeca Viurcos-Sanabria
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| |
Collapse
|
8
|
Schiffman SS, Scholl EH, Furey TS, Nagle HT. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:307-341. [PMID: 37246822 DOI: 10.1080/10937404.2023.2213903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.
Collapse
Affiliation(s)
- Susan S Schiffman
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
| | | | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H Troy Nagle
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Movahedian M, Golzan SA, Asbaghi O, Prabahar K, Hekmatdoost A. Assessing the impact of non-nutritive sweeteners on anthropometric indices and leptin levels in adults: A GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Crit Rev Food Sci Nutr 2023; 64:11161-11178. [PMID: 37440689 DOI: 10.1080/10408398.2023.2233615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In today's world, non-nutritive sweeteners (NNSs) are recognized as substitutes for sugar or other high-calorie sweeteners, and their consumption is increasing dramatically. However, there is ongoing debate regarding the impact of NNSs on anthropometric indices. To fill this gap in knowledge, the current GRADE-assessed systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the effects of artificial- and stevia-based sweeteners consumption on anthropometric indices and serum leptin level which is known as an appetite-regulating hormone. A comprehensive search was conducted on the Scopus, PubMed, and Embase databases up to November 2022 to identify randomized controlled trials (RCTs) investigating the effects of NNSs on anthropometric indices and serum leptin levels. Data extraction from qualified studies was performed independently by two researchers. A random- or fixed-effects model was used to estimate weighted mean differences (WMDs) and 95% confidence intervals (CIs) for anthropometric indices such as body weight (BW), body mass index (BMI), fat mass (FM), fat-free mass (FFM), waist circumference (WC) and serum leptin level. Heterogeneity between studies was assessed using Cochran's Q test and quantified using the I2 statistic. From a pool of 3212 studies initially identified, 20 studies with a total sample size of 2158 subjects were included in the analysis. Results of the pooled analysis showed that NNSs consumption had a significant reducing effect on BW (WMD: -1.02, 95% CI: -1.57, -0.46 Kg), FM (WMD: -1.09, 95% CI: -1.90, -0.29), and FFM (WMD: -0.83, 95% CI: -1.42, -0.23), but did not have any significant effect on BMI (WMD: -0.16, 95% CI: -0.35, 0.02), WC (WMD: -1.03, 95% CI: -2.77, 0.72), or serum leptin level (WMD: -2.17, 95% CI: -4.98, 0.65). The findings of this study indicate that the consumption of artificial- and stevia-based sweeteners may lead to a reduction in body weight, fat mass, and free fat mass.
Collapse
Affiliation(s)
- Mina Movahedian
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kousalya Prabahar
- Department of Pharmacy Practice, University of Tabuk, Tabuk, Saudi Arabia
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022; 10:microorganisms10010167. [PMID: 35056616 PMCID: PMC8780106 DOI: 10.3390/microorganisms10010167] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Diet is a key environmental factor in inflammatory bowel disease (IBD) and, at the same time, represents one of the most promising therapies for IBD. Our daily diet often contains food additives present in numerous processed foods and even in dietary supplements. Recently, researchers and national authorities have been paying much attention to their toxicity and effects on gut microbiota and health. This review aims to gather the latest data focusing on the potential role of food additives in the pathogenesis of IBDs through gut microbiota modulation. Some artificial emulsifiers and sweeteners can induce the dysbiosis associated with an alteration of the intestinal barrier, an activation of chronic inflammation, and abnormal immune response accelerating the onset of IBD. Even if most of these results are retrieved from in vivo and in vitro studies, many artificial food additives can represent a potential hidden driver of gut chronic inflammation through gut microbiota alterations, especially in a population with IBD predisposition. In this context, pending the confirmation of these results by large human studies, it would be advisable that IBD patients avoid the consumption of processed food containing artificial food additives and follow a personalized nutritional therapy prescribed by a clinical nutritionist.
Collapse
|
12
|
Santos PS, Ruy CC, Rabelo Paiva Caria C, Gambero A. Effects of long-term consumption of sucralose associated with high-fat diet in male mice. Food Funct 2021; 12:9904-9911. [PMID: 34486007 DOI: 10.1039/d1fo02135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sucralose is a widely consumed non-nutritive sweetener (NNS). Studies have shown that some NNS can favor weight gain by altering the intestinal microbiota, satiety hormone production, or aspects related to glucose homeostasis. In this study, we investigated the effects of ad libitum sucralose consumption in mice fed with normal or high-fat diet (HFD) for an extended period (16 weeks). Weight gain, final body composition, energy expenditure, intestinal and pancreatic hormone production, and endotoxemia during a voracity test, as well as liver and skeletal muscles were evaluated after 16 weeks. We observed that sucralose supplementation reduced weight gain in HFD-fed mice but did not change weight gain in mice fed with normal diet. The evaluation of HFD mice showed that sucralose supplementation resulted in improvements in glycemic homeostasis, hepatic steatosis, and increased energy expenditure. Our results suggest that sucralose consumption promotes different outcomes in relation to weight gain when combined with different diets, which may explain the controversial data in previous studies, and can be considered in future clinical research aimed at clarifying the impact of NNS consumption on human health.
Collapse
Affiliation(s)
- Paola Sousa Santos
- Rainha da Paz Catholic College (FCARP), Araputanga, MT, Brazil.,Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Bragança Paulista, SP, Brazil
| | - Caio Cesar Ruy
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Bragança Paulista, SP, Brazil
| | - Cintia Rabelo Paiva Caria
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Alessandra Gambero
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), State University of Campinas, Campinas, SP, Brazil.,Life Science Center, Pontifical Catholic University of Campinas (PUCCAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Basson AR, Rodriguez-Palacios A, Cominelli F. Artificial Sweeteners: History and New Concepts on Inflammation. Front Nutr 2021; 8:746247. [PMID: 34631773 PMCID: PMC8497813 DOI: 10.3389/fnut.2021.746247] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of artificial sweeteners (AS) to the North American market in the 1950s, a growing number of epidemiological and animal studies have suggested that AS may induce changes in gut bacteria and gut wall immune reactivity, which could negatively affect individuals with or susceptible to chronic inflammatory conditions such as inflammatory bowel disease (IBD), a disorder that has been growing exponentially in westernized countries. This review summarizes the history of current FDA-approved AS and their chemical composition, metabolism, and bacterial utilization, and provides a scoping overview of the disease mechanisms associated with the induction or prevention of inflammation in IBD. We provide a general outlook on areas that have been both largely and scarcely studied, emerging concepts using silica, and describe the effects of AS on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Mouse Models, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, United States
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Mouse Models, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, United States
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Chronic consumption of sweeteners in mice and its effect on the immune system and the small intestine microbiota. ACTA ACUST UNITED AC 2021; 41:504-530. [PMID: 34559497 PMCID: PMC8519602 DOI: 10.7705/biomedica.5806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Sweeteners are additives used in different foods. They can be natural (sucrose and stevia) or artificial (sucralose). Currently, they are routinely consumed in multiple products and their effects on the mucosa of the small intestine and its microbiota are still controversial.
Objective: To relate the consumption of sweeteners and their effect on the immune system and the microbiota of the small intestine in CD1 mice.
Materials and methods: We used 54 three-week-old CD1 mice divided into three groups in the experiments: 1) A group of three weeks without treatment, 2) a group treated for six weeks, and 3) a group treated for 12 weeks using sucrose, sucralose, and stevia. We obtained CD19+ B lymphocytes, IgA+ antibodies, transforming growth factor-beta (TGF-b), and interleukins 12 and 17 (IL-12 and -17) from Peyer’s patches and lamina propria cells while DNA was obtained from intestinal solids to identify bacterial species.
Results: After 12 weeks, sucrose and sucralose consumption caused a reduction in bacterial communities with an increase in CD19+, a decrease in IgA+ and TGF-b, and an increase in IL-12 and -17 in the Peyer’s patches while in the lamina propria there was an increase in all parameters. In contrast, stevia led to an improvement in bacterial diversity and percentage of CD19+ lymphocytes with minimal increase in IgA+, TGF-b, and IL-12, and a decrease in IL-17.
Conclusion: Sucrose and sucralose caused negative alterations in bacterial diversity and immune parameters after 12 weeks; in contrast, stevia was beneficial for the intestinal mucosa.
Collapse
|
15
|
Rodriguez-Palacios A, Basson AR, Cominelli F. Artificial Sweeteners and Whole-Food Science: Could Mice Help Clinicians Make Diet Recommendations for IBD Patients? Gastroenterology 2021; 161:8-14. [PMID: 33798527 PMCID: PMC8592564 DOI: 10.1053/j.gastro.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Alexander Rodriguez-Palacios
- Department of Medicine and Division of Gastroenterology and Liver Diseases Case Western Reserve University School of Medicine, and, Digestive Health Research Institute, University Hospitals Cleveland Medical Center, and, Germ-Free and Gut Microbiome Core, Cleveland Digestive Diseases Research Core Center, Case Western Reserve University, and, University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, Ohio
| | - Abigail Raffner Basson
- Department of Medicine and Division of Gastroenterology and Liver Diseases Case Western Reserve University School of Medicine, and, Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Fabio Cominelli
- Department of Medicine and Division of Gastroenterology and Liver Diseases Case Western Reserve University School of Medicine, and, Digestive Health Research Institute, University Hospitals Cleveland Medical Center, and, Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
Ren JN, Yin KJ, Fan G, Li X, Zhao L, Li Z, Zhang LL, Xie DY, Yuan F, Pan SY. Effect of short-term intake of four sweeteners on feed intake, solution consumption and neurotransmitters release on mice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2227-2236. [PMID: 33967319 PMCID: PMC8076381 DOI: 10.1007/s13197-020-04733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
This study focused on the effect of short-term intake of sweeteners on feed intake, solution consumption and neurotransmitters release on mice. The results showed that the free drinking of 10 mM sucralose solution, 100 mM maltose solution, 3 mM saccharin solution and 3 g/L stevioside solution for 32 days will not affect the normal development of the body weight and feed intake of the mice. The consumption of maltose solution was significantly higher than that of the other sweeteners. The leptin and insulin levels increased significantly after the short-term intake of these four sweeteners. The dopamine (DA) content in the whole brain of the mice increased significantly only in the maltose group. These results indicate that the short-term intake of the preferred concentrations of maltose, stevioside, sucralose and saccharin will not affect the body weight and feed intake of the mice. Mice prefer maltose solution to other sweeteners solutions. The 100 mM maltose solution and 3 mM saccharin solution could result in the oxidative stress on mice after 32 days' short-term intake. Compared with other sweeteners, only sugars that could be broken down into small molecules of glucose might have a positive effect on dopamine levels.
Collapse
Affiliation(s)
- Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Kai-Jing Yin
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing, 102200 China
| | - Zhi Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Ding-Yuan Xie
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Fang Yuan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| |
Collapse
|
17
|
Effects of Non-Nutritive Sweeteners on Energy Intake, Body Weight and Postprandial Glycemia in Healthy and with Altered Glycemic Response Rats. Foods 2021; 10:foods10050958. [PMID: 33924861 PMCID: PMC8146401 DOI: 10.3390/foods10050958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the effects of non-nutritive sweeteners (NNS) consumption on energy intake, body weight and postprandial glycemia in healthy and with altered glycemic response rats. Animals on normal diet (ND) or high-fat diet (HFD) were divided to receive NNS (sucralose, aspartame, stevia, rebaudioside A) or nutritive sweeteners (glucose, sucrose) for 8 weeks. The NNS were administered at doses equivalent to the human acceptable daily intake (ADI). A test using rapidly digestible starch was performed before and after treatments to estimate glycemic response. No effects of NNS consumption were observed on energy intake or body weight. Sucrose provoked an increased fluid consumption, however, energy intake, and weight gain were not altered. In ND, no effects of NNS on glycemic response were observed. In HFD, the glycemic response was increased after sucralose and stevia when only the final tolerance test was considered, however, after including the baseline test, these results were no longer significant compared to glucose. These findings provide further evidence suggesting that at the recommended doses, NNS do not alter feeding behavior, body weight or glycemic tolerance in healthy and with altered glycemic rats.
Collapse
|
18
|
Graneri LT, Mamo JCL, D’Alonzo Z, Lam V, Takechi R. Chronic Intake of Energy Drinks and Their Sugar Free Substitution Similarly Promotes Metabolic Syndrome. Nutrients 2021; 13:nu13041202. [PMID: 33917297 PMCID: PMC8067378 DOI: 10.3390/nu13041202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Energy drinks containing significant quantities of caffeine, taurine and sugar are increasingly consumed, particularly by adolescents and young adults. The putative effects of chronic ingestion of either standard energy drink, MotherTM (ED), or its sugar-free formulation (sfED) on metabolic syndrome were determined in wild-type C57BL/6J mice, in comparison to a soft drink, Coca-Cola (SD), a Western-styled diet enriched in saturated fatty acids (SFA), and a combination of SFA + ED. Following 13 weeks of intervention, mice treated with ED were hyperglycaemic and hypertriglyceridaemic, indicating higher triglyceride glucose index, which was similar to the mice maintained on SD. Surprisingly, the mice maintained on sfED also showed signs of insulin resistance with hyperglycaemia, hypertriglyceridaemia, and greater triglyceride glucose index, comparable to the ED group mice. In addition, the ED mice had greater adiposity primarily due to the increase in white adipose tissue, although the body weight was comparable to the control mice receiving only water. The mice maintained on SFA diet exhibited significantly greater weight gain, body fat, cholesterol and insulin, whilst blood glucose and triglyceride concentrations remained comparable to the control mice. Collectively, these data suggest that the consumption of both standard and sugar-free forms of energy drinks induces metabolic syndrome, particularly insulin resistance.
Collapse
Affiliation(s)
- Liam T. Graneri
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Zachary D’Alonzo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- Correspondence: ; Tel.: +61-8-92662607
| |
Collapse
|
19
|
Risdon S, Battault S, Romo-Romo A, Roustit M, Briand L, Meyer G, Almeda-Valdes P, Walther G. Sucralose and Cardiometabolic Health: Current Understanding from Receptors to Clinical Investigations. Adv Nutr 2021; 12:1500-1513. [PMID: 33578411 PMCID: PMC8321845 DOI: 10.1093/advances/nmaa185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
The excess consumption of added sugar is consistently found to be associated with weight gain, and a higher risk of type 2 diabetes mellitus, coronary heart disease, and stroke. In an effort to reduce the risk of cardiometabolic disease, sugar is frequently replaced by low- and null-calorie sweeteners (LCSs). Alarmingly, though, emerging evidence indicates that the consumption of LCSs is associated with an increase in cardiovascular mortality risk that is amplified in those who are overweight or obese. Sucralose, a null-caloric high-intensity sweetener, is the most commonly used LCS worldwide, which is regularly consumed by healthy individuals and patients with metabolic disease. To explore a potential causal role for sucralose in increased cardiovascular risk, this present review summarizes the preclinical and clinical data from current research detailing the effects of sucralose on systems controlling food intake, glucose homeostasis, and gut microbiota.
Collapse
Affiliation(s)
| | | | - Alonso Romo-Romo
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Matthieu Roustit
- Université Grenoble Alpes, Inserm U1042, Grenoble, France,Grenoble Alpes University Hospital, Clinical Pharmacology, Inserm CIC1406, Grenoble, France
| | - Loic Briand
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, CNRS, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | | | - Paloma Almeda-Valdes
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | | |
Collapse
|
20
|
Effect of sucralose on the blood content of thyroid hormones. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Farid A, Hesham M, El-Dewak M, Amin A. The hidden hazardous effects of stevia and sucralose consumption in male and female albino mice in comparison to sucrose. Saudi Pharm J 2020; 28:1290-1300. [PMID: 33132722 PMCID: PMC7584803 DOI: 10.1016/j.jsps.2020.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Replacing sucrose with non-caloric sweeteners is an approach to avoid overweight and diabetes development. Non-caloric sweeteners are classified into either artificial as sucralose or natural as stevia. Both of them have been approved by FDA, but the effects of their chronic consumption are controversial. The present study aimed to evaluate the effects of these two sweeteners, in male and female albino mice, on different blood biochemical parameters, enzymes activities and immunological parameters after 8 and 16 weeks of sweeteners administration. 40.5 mg/ml of sucrose, 5.2 mg/ml of sucralose and 4.2 mg/ml of stevia were dissolved individually in distilled water. Mice were administrated by sweetener's solution for 5 h daily. Male and female mice showed a preference for water consumption with sucralose or stevia. Both of the two sweeteners significantly reduced the hemoglobin level, HCT%, RBCs and WBCs count. After 18 weeks, significant elevations in liver and kidney function enzymes were observed in male and female mice administrated with both non-caloric sweeteners. Histopathological examination in sucralose and stevia administrated groups confirmed the biochemical results; where it revealed a severe damage in liver and kidney sections. While, sucrose administration elevated, only, the levels of ALT, AST and cholesterol in male mice. A vigorous elevation in levels of different immunoglobulin (IgG, IgE and IgA) and pro-inflammatory cytokines (IL-6 and -8), that was accompanied by a significant reduction in level of anti-inflammatory cytokine IL-10, was observed in male and female mice groups administrated with sucralose or stevia. On the other hand, sucrose administration led to an elevation in IgA and reduction in IL-10 levels.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Egypt
| | - Marim Hesham
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Egypt
| | - Mohamed El-Dewak
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Egypt
| | - Ayman Amin
- Department of Plant Physiology, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
22
|
Mbambo NP, Dlamini SN, Chukwuma CI, Islam MS. Comparative effects of commonly used commercially available non-nutritive sweeteners on diabetes-related parameters in non-diabetic rats. J Food Biochem 2020; 44:e13453. [PMID: 32869881 DOI: 10.1111/jfbc.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
Studies of non-nutritive sweeteners (NNS) in diabetes models have been limited to their pure forms or NNS-sweetened products. Hence, we conducted a comparative study on the effects of commercial table-top NNS on diabetes-related parameters in non-diabetic rats. Normal animals were fed for 5 weeks with aqueous solutions of aspartame-, sucralose-, stevia-, sodium cyclamate- and saccharin-based commercial NNS at concentrations equivalent to the sweetness of 10% sucrose solution and thereafter food intake, blood glucose, lipid profile, and biochemical parameters were measured. Aspartame adversely affected blood cholesterols, while cyclamate increased food intake and weight gain. Stevia reduced weight gain and exhibited insulinotropic effects. These data in normal rats hypothetically suggest that stevia-based NNS may help in glycemic control and body weight management, while cyclamate- and aspartame-based NNS may increase body weight and risk of cardiovascular diseases. Further clinical studies are, however, required to confirm the results of this study. PRACTICAL APPLICATIONS: The use of NNS is becoming more popular, especially for individuals with diabetes. However, while there are several commercial table-top NNS available in the market, little is known about how they affect most diabetes-related parameters of consumers, as most of the previous studies on NNS have been limited to their pure forms or NNS-sweetened products. Therefore, we comparatively studied the effects of some commercially available table-top forms of the different NNS (aspartame, sucralose, cyclamate, saccharin, and stevia) on diabetes-related parameters in normal rats. These findings in normal rats suggested that some commercially available NNSs like stevia-based NNS may be suitable for glycemic control and body weight management, while cyclamate- and aspartame-based NNS may increase body weight and risk of cardiovascular diseases. However, these finding in normal rats is subject to additional corroborative clinical studies.
Collapse
Affiliation(s)
- Nondumiso Prosperity Mbambo
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Siphiwe Ndumiso Dlamini
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Chika Ifeanyi Chukwuma
- Center on Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
23
|
Turner A, Veysey M, Keely S, Scarlett CJ, Lucock M, Beckett EL. Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4094. [PMID: 32521750 PMCID: PMC7312722 DOI: 10.3390/ijerph17114094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Intense sweeteners (IS) are often marketed as a healthier alternative to sugars, with the potential to aid in combating the worldwide rise of diabetes and obesity. However, their use has been counterintuitively associated with impaired glucose homeostasis, weight gain and altered gut microbiota. The nature of these associations, and the mechanisms responsible, are yet to be fully elucidated. Differences in their interaction with taste receptors may be a potential explanatory factor. Like sugars, IS stimulate sweet taste receptors, but due to their diverse structures, some are also able to stimulate bitter taste receptors. These receptors are expressed in the oral cavity and extra-orally, including throughout the gastrointestinal tract. They are involved in the modulation of appetite, glucose homeostasis and gut motility. Therefore, taste genotypes resulting in functional receptor changes and altered receptor expression levels may be associated with metabolic conditions. IS and taste receptors may both interact with the gastrointestinal microbiome, and their interactions may potentially explain the relationship between IS use, obesity and metabolic outcomes. While these elements are often studied in isolation, the potential interactions remain unexplored. Here, the current evidence of the relationship between IS use, obesity and metabolic outcomes is presented, and the potential roles for interactions with taste receptors and the gastrointestinal microbiota in modulating these relationships are explored.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Martin Veysey
- School of Medicine and Public Health, University of Newcastle, Ourimbah 2258, Australia;
- Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Mark Lucock
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Emma L. Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
24
|
Ranjbar T, Nekooeian AA, Tanideh N, Koohi-Hosseinabadi O, Masoumi SJ, Amanat S, Azarpira N, Monabati A. A comparison of the effects of Stevia extract and metformin on metabolic syndrome indices in rats fed with a high-fat, high-sucrose diet. J Food Biochem 2020; 44:e13242. [PMID: 32478426 DOI: 10.1111/jfbc.13242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
The beneficial effects of Stevia on metabolic indices have been studied in recent years. However, controversial results emphasize the need for further investigation. We aimed to examine and compare the effects of Stevia's hydroalcoholic extract with two dosages (200, 400 mg/kg) with those of metformin (100 mg/kg) on metabolic syndrome (MetS) indices of rats fed with a high-fat, high-sucrose diet (HFHS). It was found that both Stevia extract and metformin could prevent the adverse effects of a HFHS on lipid profile, liver enzymes, total antioxidant capacity (TAC), and histopathologic factors. Except for the finding that metformin showed a greater potential to alleviate insulin resistance than did Stevia extract, no significant difference was observed between the rats receiving metformin or Stevia extract. In addition, using a high treatment dosage of Stevia extract did not lead to better results than a low dosage. Collectively, the efficacy of Stevia extracts to modify metabolic, oxidative, and histopathological indices in a MetS model was comparable to that of the metformin. PRACTICAL APPLICATIONS: This study was aimed to compare the efficiency of Stevia hydroalcoholic extract with metformin in attenuating MetS abnormalities of rats induced by a high-fat, high-sucrose diet. The results showed the beneficial changes caused due to the administration of Stevia extract on lipid profile, antioxidant capacity, liver enzyme, and liver histopathological indices. The changes were comparable with the results of metformin group. Despite some promising results, further investigation is suggested to evaluate the effectiveness of Stevia extract on human subjects.
Collapse
Affiliation(s)
- Tahereh Ranjbar
- Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbar Nekooeian
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Department of Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sasan Amanat
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology and Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Shi Q, Cai L, Jia H, Zhu X, Chen L, Deng S. Low intake of digestible carbohydrates ameliorates duodenal absorption of carbohydrates in mice with glucose metabolism disorders induced by artificial sweeteners. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4952-4962. [PMID: 30953347 DOI: 10.1002/jsfa.9727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Long-term artificial sweetener consumption has been reported to induce glucose intolerance, and the intestinal microbiota seems as an important target. While the impacts of artificial sweeteners on energy balance remain controversial, this work aimed to evaluate the protective effects in mice of a low digestible carbohydrate (LDC) diet on plasma glucose, plasma fasting insulin, sweet taste receptors, glucose transporters, and absorption of carbohydrates, together with consumption of acesulfame potassium (AK) or saccharin (SAC). RESULTS Artificial sweetener was administered to mice for 12 weeks to induce glucose metabolism disorders; mice were treated with an LDC diet for the final 6 weeks. The experimental groups were treated with an LDC diet that had the same energy as the normal-diet group. Prolonged administration of artificial sweeteners led to metabolic dysfunction, characterized by significantly increased plasma glucose, insulin resistance, sweet taste receptors, glucose transporters, and absorption of carbohydrates. Treatment with an LDC diet positively modulated these altered parameters, suggesting overall beneficial effects of an LDC diet on detrimental changes associated with artificial sweeteners. CONCLUSIONS Reducing digestible carbohydrates in the diet can significantly reduce the absorption of carbohydrates and improve glucose metabolism disorders caused by dietary factors. These effects may be due to the fact that reducing the amount of digestible carbohydrates in the feed can reduce the number of intestinal sweet receptors induced by exposure to artificial sweeteners. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hongzhe Jia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xuemei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Lei Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shaoping Deng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
26
|
A Single 48 mg Sucralose Sip Unbalances Monocyte Subpopulations and Stimulates Insulin Secretion in Healthy Young Adults. J Immunol Res 2019; 2019:6105059. [PMID: 31183389 PMCID: PMC6512026 DOI: 10.1155/2019/6105059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Sucralose is a noncaloric artificial sweetener that is widely consumed worldwide and has been associated with alteration in glucose and insulin homeostasis. Unbalance in monocyte subpopulations expressing CD11c and CD206 hallmarks metabolic dysfunction but has not yet been studied in response to sucralose. Our goal was to examine the effect of a single sucralose sip on serum insulin and blood glucose and the percentages of classical, intermediate, and nonclassical monocytes in healthy young adults subjected to an oral glucose tolerance test (OGTT). This study was a randomized, placebo-controlled clinical trial. Volunteers randomly received 60 mL water as placebo (n = 20) or 48 mg sucralose dissolved in 60 mL water (n = 25), fifteen minutes prior to an OGTT. Blood samples were individually drawn every 15 minutes for 180 minutes for quantifying glucose and insulin concentrations. Monocyte subsets expressing CD11c and CD206 were measured at -15 and 180 minutes by flow cytometry. As compared to controls, volunteers receiving sucralose exhibited significant increases in serum insulin at 30, 45, and 180 minutes, whereas blood glucose values showed no significant differences. Sucralose consumption caused a significant 7% increase in classical monocytes and 63% decrease in nonclassical monocytes with respect to placebo controls. Pearson's correlation models revealed a strong association of insulin with sucralose-induced monocyte subpopulation unbalance whereas glucose values did not show significant correlations. Sucralose ingestion decreased CD11c expression in all monocyte subsets and reduced CD206 expression in nonclassical monocytes suggesting that sucralose does not only unbalance monocyte subpopulations but also alter their expression pattern of cell surface molecules. This work demonstrates for the first time that a 48 mg sucralose sip increases serum insulin and unbalances monocyte subpopulations expressing CD11c and CD206 in noninsulin-resistant healthy young adults subjected to an OGTT. The apparently innocuous consumption of sucralose should be reexamined in light of these results.
Collapse
|
27
|
Bessler H, Djaldetti M. The impact of three commercial sweeteners on cytokine expression by mononuclears impelled by colon carcinoma cells. Int J Food Sci Nutr 2019; 70:970-976. [DOI: 10.1080/09637486.2019.1605337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hanna Bessler
- Laboratory for Immunology and Hematology Research, Rabin Medical Center - Hasharon Hospital, Petah-Tiqva, Israel
- The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Meir Djaldetti
- Laboratory for Immunology and Hematology Research, Rabin Medical Center - Hasharon Hospital, Petah-Tiqva, Israel
- The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| |
Collapse
|