1
|
Obi OJ, Hinenoya A, Awasthi SP, Hatanaka N, Faruque SM, Yamasaki S. Wild raccoons ( Procyon lotor) as a potential reservoir of cytolethal distending toxin-producing Providencia strains in Japan. Microbiol Spectr 2025; 13:e0261624. [PMID: 39998412 PMCID: PMC11960107 DOI: 10.1128/spectrum.02616-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/30/2024] [Indexed: 02/26/2025] Open
Abstract
In view of increasing reports of infections due to virulent Providencia species including cytolethal distending toxin (cdt) gene-positive strains, it is important to identify the reservoirs and transmission routes of such pathogenic strains. Raccoons considered to be a source of zoonotic pathogens were monitored for the presence of Providencia species in Japan and analyzed for cdt genes. Of 384 wild raccoon rectal swabs analyzed, 60% were positive for Providencia species, of which 20% carried cdt-genes. Among seven Providencia species isolated (P. alcalifaciens, P. rustigianii, P. rettgeri, P. stuartii, P. heimbachae, P. vermicola, and P. huaxiensis), cdt genes were distributed in P. alcalifcaiens (63%), P. rustigianii (16%), and novel in P. rettgeri (21%). Complete cdt gene clusters were identified in P. alcalifaciens and P. rustigianii strains, whereas P. rettgeri had intact cdtB but truncated cdtA and cdtC genes. Phylogenetic analyses showed divergent pulsotypes among the cdt gene-positive Providencia strains. Cytotoxicity assay revealed that P. alcalifaciens and P. rustigianii produced CDT more toxic to eukaryotic cells compared to human clinical strains, which were neutralized by anti-PaCdtB serum. As expected, the P. rettgeri strains with truncated cdt genes had no biological activity. Molecular analysis revealed that all the cdt genes were located on plasmids as determined by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern hybridization assay. Intriguingly, the cdtB gene in P. rustigianii strains was detected on dual plasmids. Notably, all the cdt gene-positive Providencia strains were found to carry plasmid-mediated T3SS-related genes. These results suggest that wild raccoons are possible reservoir of virulent Providencia strains in Japan.IMPORTANCEProvidencia species considered normal flora are occasionally associated with gastroenteritis in healthy humans. Cytolethal distending toxin (CDT), a bacterial virulence factor found in various Gram-negative bacteria and associated with gastroenteritis and extra-intestinal infection has also been reported in at least two Providencia species (P. alcalifaciens and P. rustigianii). Determination of the transmission routes of such virulent Providencia is crucial for the implementation of evidence-based control programs. In this study, we identified raccoons as the probable reservoir of the cdt gene-positive Providencia strains in Japan. Interestingly, CDTs produced by raccoon-derived Providencia strains exerted more toxic effects on the eukaryotic cells compared to the clinical Providencia strains. In addition, the identification of a novel cdt gene cluster in another species P. rettgeri isolated from raccoons suggests that Providencia may be categorized as an emerging zoonotic pathogen.
Collapse
Affiliation(s)
- Okechukwu John Obi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Sharda Prasad Awasthi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Noritoshi Hatanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Shah M. Faruque
- School of Environment and Life Sciences, Independent University, Dhaka, Bangladesh
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Ou S, Tian X, Zhang Z, Zhu L, Wang R, Cao G, Fu J, Zhang P. Characterization of a Novel Tn7-like Transposon Carrying blaDHA-1 in Providencia stuartii MF1 Isolated from Swine Wastewater. Curr Microbiol 2024; 82:6. [PMID: 39580610 DOI: 10.1007/s00284-024-03952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
Providencia stuartii is an emerging pathogen that causes nosocomial infections. In this study, a multidrug-resistant strain P. stuartii MF1 was isolated from swine wastewater. Comprehensive analysis of whole genome sequencing revealed that dozens of antibiotic resistance genes were found in MF1. A novel transposon Tn6450M which has high sequence identity to Tn6450 and the plasmid-borne Tn6765 from Proteus mirabilis was identified in the genome of MF1. Tn6450M was determined to be stably inserted into a new attTn7 site in the P. stuartii MF1 genome and contains the third-generation cephalosporins resistance-associated genes blaDHA-1. Intergeneric transmission of Tn6450 variants poses risks for the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Shijie Ou
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyi Tian
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Zhang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | | | - Rong Wang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
3
|
Arcari G, De Francesco A, Polani R, Carattoli A, Capitani V. Development of a Providencia stuartii multilocus sequence typing scheme. Front Microbiol 2024; 15:1493621. [PMID: 39545238 PMCID: PMC11560872 DOI: 10.3389/fmicb.2024.1493621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction The Providencia genus is assuming greater clinical relevance among infections caused by Enterobacterales also because of its intrinsic and acquired resistance to last-resort antibiotics. However, despite having been known and studied for over 50 years, genomics and taxonomy of the Providencia genus are currently undergoing a deep rearrangement. In this study we aim to outline and characterized the P. stuartii species. Methods We retrieved from the GenBank database all genomes labelled as Providencia and performed a comprehensive genome-based species definition founded on average nucleotide identity (ANI) and on alignment-free approaches. Results After defining the genomes assuredly identifiable as P. stuartii, we devised a MultiLocus Sequence Typing (MLST) and a core-genome MLST (cgMLST) schemes, based on 7 and 2,296 loci respectively. Discussion This work hence provides a framework for understanding the role of P. stuartii and of other members of this genus, which should be considered as emerging multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Ospedale di Circolo e Fondazione Macchi, Laboratory of Medical Microbiology and Virology, Varese, Italy
| | - Alice De Francesco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Riccardo Polani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Valerio Capitani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Hassan J, Hinenoya A, Hatanaka N, Awasthi SP, Manjunath GB, Rahman N, Yamate J, Nakamura S, Motooka D, Nagita A, Faruque SM, Yamasaki S. A plasmid-mediated type III secretion system associated with invasiveness and diarrheagenicity of Providencia rustigianii. mBio 2024; 15:e0229724. [PMID: 39248569 PMCID: PMC11481499 DOI: 10.1128/mbio.02297-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
We have recently described a clinical isolate of Providencia rustigianii strain JH-1 carrying the genes for cytolethal distending toxin (CDT) in a conjugative plasmid. A cdtB mutant of strain JH-1, which lost CDT activity, was still found to retain invasiveness and diarrheagenicity. The strain was subjected to phenotypic and genetic analyses including whole genome sequencing (WGS) to explore the genetic determinants of the observed invasiveness and diarrheagenic properties. Analysis and annotation of WGS data revealed the presence of two distinct type III secretion systems (T3SS) in strain JH-1, one of which was located on the chromosome designated as cT3SS (3,992,833 bp) and the other on a mega-plasmid designated as pT3SS (168,819 bp). Comparative genomic analysis revealed that cT3SS is generally conserved in Providencia spp. but pT3SS was limited to a subset of Providencia spp., carrying cdt genes. Strain JH-1 was found to invade HeLa cells and induce fluid accumulation with characteristic pathological lesions in rabbit ileal loops. Remarkably, these phenomena were associated with the pT3SS but not cT3SS. The plasmid could be transferred by conjugation from strain JH-1 to other strains of P. rustigianii, Providencia rettgeri, and Escherichia coli with concomitant transfer of these virulence properties. This is the first report of a functional and mobile T3SS in P. rustigianii and its association with invasiveness and diarrheagenicity of this bacterium. These data suggest that P. rustigianii and other CDT-producing Providencia strains might carry T3SS and exert their diarrheagenic effect by exploiting the T3SS nano-machinery.IMPORTANCEThe precise mechanism of virulence of Providencia rustigianii is unclear, although some strains produce cytolethal distending toxin as a putative virulence factor. We have detected the presence of a type III secretion system (T3SS) for the first time on a plasmid in a P. rustigianii strain. Plasmid-mediated T3SS seems to be directly involved in virulence of P. rustigianii and may serve as a means of horizontal transfer of T3SS genes. Our results may have implication in understanding the mechanism of emergence of new pathogenic strains of P. rustigianii.
Collapse
Affiliation(s)
- Jayedul Hassan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Institute for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Noritoshi Hatanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Institute for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Sharda Prasad Awasthi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Institute for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | | | - Nahid Rahman
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jyoji Yamate
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akira Nagita
- Department of Pediatrics, Mizushima Central Hospital, Okayama, Japan
| | - Shah M. Faruque
- School of Environment and Life Sciences, Independent University Bangladesh (IUB), Dhaka, Bangladesh
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Institute for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Abril AG, Calo-Mata P, Villa TG, Böhme K, Barros-Velázquez J, Sánchez-Pérez Á, Pazos M, Carrera M. High-Resolution Comparative and Quantitative Proteomics of Biogenic-Amine-Producing Bacteria and Virulence Factors Present in Seafood. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4448-4463. [PMID: 38364257 PMCID: PMC10906483 DOI: 10.1021/acs.jafc.3c06607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/18/2024]
Abstract
The presence of biogenic amines (histamine, tyramine, putrescine, and cadaverine) in seafood is a significant concern for food safety. This review describes for the first time a shotgun quantitative proteomics strategy to evaluate and compare foodborne strains of bacteria that produce biogenic amines in seafoods. This approach recognized 35,621 peptide spectrum matches, belonging to 20,792 peptides, and 4621 proteins. It allowed the determination of functional pathways and the classification of the strains into hierarchical clusters. The study identified a protein-protein interaction network involving 1160 nodes/10,318 edges. Proteins were related to energy pathways, spermidine biosynthesis, and putrescine metabolism. Label-free quantitative proteomics allowed the identification of differentially regulated proteins in specific strains such as putrescine aminotransferase, arginine decarboxylase, and l-histidine-binding protein. Additionally, 123 peptides were characterized as virulence factors and 299 peptide biomarkers were selected to identify bacterial species in fish products. This study presents the most extensive proteomic repository and progress in the science of food biogenic bacteria and could be applied in the food industry for the detection of bacterial contamination that produces histamine and other biogenic amines during food processing/storage.
Collapse
Affiliation(s)
- Ana G. Abril
- Department
of Food Technology, Spanish National Research
Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
- Department
of Microbiology and Parasitology, Faculty
of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department
of Analytical Chemistry, Nutrition and Food Science, Food Technology
Division, School of Veterinary Sciences,
University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G. Villa
- Department
of Microbiology and Parasitology, Faculty
of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Karola Böhme
- Department
of Analytical Chemistry, Nutrition and Food Science, Food Technology
Division, School of Veterinary Sciences,
University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department
of Analytical Chemistry, Nutrition and Food Science, Food Technology
Division, School of Veterinary Sciences,
University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Ángeles Sánchez-Pérez
- Sydney
School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Manuel Pazos
- Department
of Food Technology, Spanish National Research
Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| | - Mónica Carrera
- Department
of Food Technology, Spanish National Research
Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| |
Collapse
|
6
|
Mondol SM, Islam I, Islam MR, Shakil SK, Rakhi NN, Mustary JF, Amiruzzaman, Gomes DJ, Shahjalal HM, Rahaman MM. Genomic landscape of NDM-1 producing multidrug-resistant Providencia stuartii causing burn wound infections in Bangladesh. Sci Rep 2024; 14:2246. [PMID: 38278862 PMCID: PMC10817959 DOI: 10.1038/s41598-024-51819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The increasing antimicrobial resistance in Providencia stuartii (P. stuartii) worldwide, particularly concerning for immunocompromised and burn patients, has raised concern in Bangladesh, where the significance of this infectious opportunistic pathogen had been previously overlooked, prompting a need for investigation. The two strains of P. stuartii (P. stuartii SHNIBPS63 and P. stuartii SHNIBPS71) isolated from wound swab of two critically injured burn patients were found to be multidrug-resistant and P. stuartii SHNIBPS63 showed resistance to all the 22 antibiotics tested as well as revealed the co-existence of blaVEB-6 (Class A), blaNDM-1 (Class B), blaOXA-10 (Class D) beta lactamase genes. Complete resistance to carbapenems through the production of NDM-1, is indicative of an alarming situation as carbapenems are considered to be the last line antibiotic to combat this pathogen. Both isolates displayed strong biofilm-forming abilities and exhibited resistance to copper, zinc, and iron, in addition to carrying multiple genes associated with metal resistance and the formation of biofilms. The study also encompassed a pangenome analysis utilizing a dataset of eighty-six publicly available P. stuartii genomes (n = 86), revealing evidence of an open or expanding pangenome for P. stuartii. Also, an extensive genome-wide analysis of all the P. stuartii genomes revealed a concerning global prevalence of diverse antimicrobial resistance genes, with a particular alarm raised over the abundance of carbapenem resistance gene blaNDM-1. Additionally, this study highlighted the notable genetic diversity within P. stuartii, significant informations about phylogenomic relationships and ancestry, as well as potential for cross-species transmission, raising important implications for public health and microbial adaptation across different environments.
Collapse
Affiliation(s)
| | - Israt Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahriar Kabir Shakil
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Jannatul Ferdous Mustary
- Microbiology Department, Sheikh Hasina National Institute of Burn and Plastic Surgery, Dhaka, 1000, Bangladesh
| | - Amiruzzaman
- Department of Medicine, Sir Salimullah Medical College, Dhaka, 1000, Bangladesh
| | - Donald James Gomes
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hussain Md Shahjalal
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
7
|
Wu R, Zhu Z, Wang GH. Genome sequence of Providencia stuartii prov-sta1, isolated from the wasp Nasonia vitripennis. Microbiol Resour Announc 2023; 12:e0043023. [PMID: 37902323 PMCID: PMC10652912 DOI: 10.1128/mra.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Providencia stuartii prov-sta1 is a prevalent Gram-negative bacterium and dominant in the wasp Nasonia vitripennis. In this study, we present the draft genome sequence of P. stuartii prov-sta1, and the genome size is 4,380,152 bp in 183 contigs with a G+C content of 41.34%.
Collapse
Affiliation(s)
- Runbiao Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhengyu Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
| | - Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Guidone GHM, Cardozo JG, Silva LC, Sanches MS, Galhardi LCF, Kobayashi RKT, Vespero EC, Rocha SPD. Epidemiology and characterization of Providencia stuartii isolated from hospitalized patients in southern Brazil: a possible emerging pathogen. Access Microbiol 2023; 5:000652.v4. [PMID: 37970084 PMCID: PMC10634494 DOI: 10.1099/acmi.0.000652.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/08/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to characterize the virulence factors and antimicrobial resistance of Providencia stuartii , an opportunistic pathogen that causes human infections. We examined 45 isolates of P. stuartii both genotypically and phenotypically by studying their adherence to HeLa cells, biofilm formation, cytotoxicity and antimicrobial resistance, and analysed their genomes for putative virulence and resistance genes. This study found that most isolates possessed multiple virulence genes, including fimA, mrkA, fptA, iutA, ireA and hlyA, and were cytotoxic to Vero cells. All the isolates were resistant to amoxicillin plus clavulanic acid, levofloxacin and sulfamethoxazole plus trimethoprim, and most were resistant to ceftriaxone and cefepime. All isolates harboured extended-spectrum beta-lactamase coding genes such as bla CTX-M-2 and 23/45(51.11 %) of them also harboured bla CTX-M-9. The gene KPC-2 (carbapenemase) was detected in 8/45(17.77 %) isolates. This study also found clonality among the isolates, indicating the possible spread of the pathogen among patients at the hospital. These results have significant clinical and epidemiological implications and emphasize the importance of a continued understanding of the virulence and antimicrobial resistance of this pathogen for the prevention and treatment of future infections.
Collapse
Affiliation(s)
| | - Jennifer Germiniani Cardozo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Ligia Carla Faccin Galhardi
- Virology Laboratory, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Paraná, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Xiang K, Zhang Z, Li N, Zhang P, Liu F, Li H, Duan H, Zhang C, Ge J. Whole-Genome Sequence and Pathogenicity Analysis of Providencia Heimbachae Causing Diarrhea in Weaned Piglets. Curr Microbiol 2023; 80:364. [PMID: 37812274 DOI: 10.1007/s00284-023-03478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Providencia heimbachae was previously identified in piglets with post-weaned diarrhea and associated with hindlimb paralysis. However, the pathogenic mechanisms and virulence factors of P. heimbachae are not fully known. Whole-genome sequence analysis will be helpful to extend our understanding of the characterization of P. heimbachae at a genomic level. In this study, we sequenced the whole genome of P. heimbachae for the first time using PacBio RS II sequencers and assembled de novo through hierarchical genome assembly process (HGAP). Furthermore, we performed further genome annotation. The genome of P. heimbachae 99101 consists of a circular chromosome (4,262,828 bp) and a circular plasmid (231,957 bp) with G + C contents of 40.43 and 47.16%, respectively. Genome-wide sequence analysis yielded a total of 286 predicted virulence factors, 178 resistance genes, 17 chaperone protein manipulators of fimbriae, 47 genes involved in the encoding of flagellin, 12 cell membrane-associated virulence genes, 18 Enterobacteriaceae common antigens, etc. Based on genome analysis, we preliminarily confirmed through animal experiments that the capsule was the virulence factor of P. heimbachae causing hindlimb paralysis in animals. Our study provides a genetic basis for further elucidation of the characteristics and functional mechanisms of P. heimbachae as a conditionally pathogenic bacterium, as well as a direction for research into the mechanism of action of P. heimbachae infecting humans, extending knowledge of P. heimbachae as an important zoonotic pathogen.
Collapse
Affiliation(s)
- Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuo Zhang
- Shenyang Animal Disease Prevention and Control Center, Shenyang, 110031, China
| | - Nuowa Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ping Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Feng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
10
|
Hassan J, Awasthi SP, Hatanaka N, Hoang PH, Nagita A, Hinenoya A, Faruque SM, Yamasaki S. Presence of Functionally Active Cytolethal Distending Toxin Genes on a Conjugative Plasmid in a Clinical Isolate of Providencia rustigianii. Infect Immun 2023; 91:e0012122. [PMID: 37158737 PMCID: PMC10269090 DOI: 10.1128/iai.00121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Providencia rustigianii is potentially enteropathogenic in humans. Recently, we identified a P. rustigianii strain carrying a part of the cdtB gene homologous to that of Providencia alcalifacines that produces an exotoxin called cytolethal distending toxin (CDT), encoded by three subunit genes (cdtA, cdtB, and cdtC). In this study, we analyzed the P. rustigianii strain for possible presence of the entire cdt gene cluster and its organization, location, and mobility, as well as expression of the toxin as a putative virulence factor of P. rustigianii. Nucleotide sequence analysis revealed the presence of the three cdt subunit genes in tandem, and over 94% homology to the corresponding genes carried by P. alcalifaciens both at nucleotide and amino acid sequence levels. The P. rustigianii strain produced biologically active CDT, which caused distension of eukaryotic cell lines with characteristic tropism of CHO and Caco-2 cells but not of Vero cells. S1-nuclease digested pulsed-field gel electrophoresis followed by Southern hybridization analysis demonstrated that the cdt genes in both P. rustigianii and P. alcalifaciens strains are located on large plasmids (140 to 170 kb). Subsequently, conjugation assays using a genetically marked derivative of the P. rustigianii strain showed that the plasmid carrying cdt genes in the P. rustigianii was transferable to cdt gene-negative recipient strains of P. rustigianii, Providencia rettgeri, and Escherichia coli. Our results demonstrated the presence of cdt genes in P. rustigianii for the first time, and further showed that the genes are located on a transferable plasmid, which can potentially spread to other bacterial species.
Collapse
Affiliation(s)
- Jayedul Hassan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Sharda Prasad Awasthi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Noritoshi Hatanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Phuong Hoai Hoang
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Akira Nagita
- Department of Pediatrics, Mizushima Central Hospital, Okayama, Japan
| | - Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Shah M. Faruque
- School of Environment and Life Sciences, Independent University Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
11
|
Yan P, Jia YC, Zhang XL, Zhou YY, Guo Y, Yin RL, Yuan J, Wang LX, Guo ZB, Wang JY, Wang X, Yin RH. Virulence assessment of four Glaesserella parasuis strains isolated in Liaoning province of China. Res Vet Sci 2023; 158:226-234. [PMID: 37031471 DOI: 10.1016/j.rvsc.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Glaesserella parasuis (G. parasuis) is a part of the normal upper respiratory microbiota of healthy swine. In many studies, the serovars 1, 4, 5, and 12 of G. parasuis are considered to be highly virulent and its serovars 3, 6, 7, 9, and 11 are considered to be non-virulent. Until now, researchers have found that non-virulent strains of G. parasuis cause an increasing number of diseases. However, little is known concerning why non-virulent strains cause disease with the virulence changes. In present study, four G. parasuis strains were evaluated for their cytotoxicity property, which aims to compare their virulence. The results showed that highly virulent strains XX0306 and CY1201, as well as, non-virulent strains HLD0115 and YK1603 caused a series of pathological changes, increased lactate dehydrogenase (LDH) release, and decreased cell activity. In addition, compared to the control group, both highly and non-virulent strains showed similar trends, demonstrating that the method of classifying the virulence of G. parasuis based on its serovar is worth further deliberation. Hence, we investigated the adhesion capacity and invasion rate of G. parasuis, the results indicated that XX0306 and HLD0115 had the strongest adhesion and invasion ability, which contradicts the classification of the virulence of G. parasuis based on its serovar. The apoptosis degree induced by highly virulent strains was more intensive than non-virulent strains, as measured by annexin V and propidium iodide (PI) double staining. Through testing the expression of apoptosis-related genes Bcl-2 and Bax, we found highly virulent strains induced apoptosis by inhibiting the expression of Bcl-2.
Collapse
|
12
|
Gao M, Feng C, Ji Y, Shi Y, Shi W, Zhang L, Liu S, Li A, Zhang X, Li Q, Lu J, Bao Q, Zhang H. AadA36, a novel chromosomal aminoglycoside nucleotidyltransferase from a clinical isolate of Providencia stuartii. Front Microbiol 2022; 13:1035651. [PMID: 36386671 PMCID: PMC9663854 DOI: 10.3389/fmicb.2022.1035651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
In this study, we characterized a novel chromosome-encoded aminoglycoside nucleotidyltransferase (ANT), AadA36, from the Providencia stuartii strain P14 isolated from the sputum specimen of a burn patient at a hospital in Wenzhou, China. Among the functionally characterized ANTs, AadA36 shared the highest amino acid sequence identity of 51.91% with AadA14. The whole genome of P. stuartii P14 consisted of one chromosome and two plasmids (designated pP14-166 and pP14-114). A total of 19 genes with ≥80% similarity with functionally characterized antimicrobial resistance genes (ARGs) were identified in the whole genome, including aminoglycosides [aac(2')-Ia, aph(6)-Id, aph(3″)-Ib, aac(6')-Ib, ant(3″)-IIa, aph(3')-Ia], β-lactams (bla CMY-2 and bla OXA-10) and so on. Antimicrobial susceptibility testing showed that the aadA36 gene conferred specific resistance to spectinomycin and streptomycin, and the minimum inhibitory concentration (MIC) of these antimicrobials increased 128- and 64-fold compared with the control strain. The kinetic parameters of AadA36 were consistent with the MIC data of spectinomycin and streptomycin, with kcat /Km ratios of (1.07 ± 2.23) × 104 M-1 s-1 and (8.96 ± 1.01) × 103 M-1 s-1, respectively. The identification of a novel aminoglycoside resistance gene will help us further understand the complexity of the resistance mechanisms and provide deep insights into the dissemination of resistance genes in the microbial population.
Collapse
Affiliation(s)
- Mengdi Gao
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongan Ji
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yaokai Shi
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anqi Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Qiyu Bao
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China,*Correspondence: Qiyu Bao,
| | - Hailin Zhang
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China,Hailin Zhang,
| |
Collapse
|
13
|
Chen L, Wang B, Liu J, Wu X, Xu X, Cao H, Ji X, Zhang P, Li X, Hou Z, Li H. Different oral and gut microbial profiles in those with Alzheimer's disease consuming anti-inflammatory diets. Front Nutr 2022; 9:974694. [PMID: 36185672 PMCID: PMC9521405 DOI: 10.3389/fnut.2022.974694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/15/2022] [Indexed: 12/06/2022] Open
Abstract
The number of people living with Alzheimer's disease (AD) is increasing alongside with aging of the population. Systemic chronic inflammation and microbial imbalance may play an important role in the pathogenesis of AD. Inflammatory diets regulate both the host microbiomes and inflammatory status. This study aimed to explore the impact of inflammatory diets on oral-gut microbes in patients with AD and the relationship between microbes and markers of systemic inflammation. The dietary inflammatory properties and the oral and gut microorganisms were analyzed using the dietary inflammatory index (DII) and 16S RNA in 60 patients with AD. The α-diversity was not related to the DII (p > 0.05), whereas the β-diversity was different in the oral microbiomes (R2 = 0.061, p = 0.013). In the most anti-inflammatory diet group, Prevotella and Olsenella were more abundant in oral microbiomes and Alistipes, Ruminococcus, Odoribacter, and unclassified Firmicutes were in the gut microbiomes (p < 0.05). Specific oral and gut genera were associated with interleukin-6 (IL)-6, complement 3 (C3), high-sensitivity C-reactive protein (hs-CRP), IL-1β, IL-4, IL-10, IL-12, and tumor necrosis factor-α (TNF-α) (p < 0.05). In conclusion, anti-inflammatory diets seem to be associated with increased abundance of beneficial microbes, and specific oral and gut microbial composition was associated with inflammatory markers.
Collapse
Affiliation(s)
- Lili Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Fujian Provincial Hospital, Fuzhou, China
- Lili Chen
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xiaoqi Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xinhua Xu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Huizhen Cao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Hospital, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Hong Li
| |
Collapse
|
14
|
Jessop M, Huard K, Desfosses A, Tetreau G, Carriel D, Bacia-Verloop M, Mas C, Mas P, Fraudeau A, Colletier JP, Gutsche I. Structural and biochemical characterisation of the Providencia stuartii arginine decarboxylase shows distinct polymerisation and regulation. Commun Biol 2022; 5:317. [PMID: 35383285 PMCID: PMC8983666 DOI: 10.1038/s42003-022-03276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial homologous lysine and arginine decarboxylases play major roles in the acid stress response, physiology, antibiotic resistance and virulence. The Escherichia coli enzymes are considered as their archetypes. Whereas acid stress triggers polymerisation of the E. coli lysine decarboxylase LdcI, such behaviour has not been observed for the arginine decarboxylase Adc. Here we show that the Adc from a multidrug-resistant human pathogen Providencia stuartii massively polymerises into filaments whose cryo-EM structure reveals pronounced differences between Adc and LdcI assembly mechanisms. While the structural determinants of Adc polymerisation are conserved only in certain Providencia and Burkholderia species, acid stress-induced polymerisation of LdcI appears general for enterobacteria. Analysis of the expression, activity and oligomerisation of the P. stuartii Adc further highlights the distinct properties of this unusual protein and lays a platform for future investigation of the role of supramolecular assembly in the superfamily or arginine and lysine decarboxylases. Jessop et. al. investigate the expression, activity, structure and supramolecular assembly of the arginine decarboxylase from Providencia stuartii, compare its polymers with those formed by the Escherichia coli lysine decarboxylase, and analyse the evolutionary conservation of the structural determinants of the polymerisation of these enzymes in enterobacteria.
Collapse
Affiliation(s)
- Matthew Jessop
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.,Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Karine Huard
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Guillaume Tetreau
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Diego Carriel
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Caroline Mas
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Philippe Mas
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Angélique Fraudeau
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| |
Collapse
|
15
|
Association of Proteus mirabilis and Providencia stuartii Infections with Diabetes. Medicina (B Aires) 2022; 58:medicina58020271. [PMID: 35208593 PMCID: PMC8880118 DOI: 10.3390/medicina58020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 01/13/2023] Open
Abstract
Background and Objectives: Proteus and Providencia are related genera of opportunistic pathogens belonging to the Morganellaceae family, often a cause of infections in the immunocompromised hosts, such as diabetic patients. Their clinical significance has increased due to their intrinsic resistance to polymyxins, which is often associated with acquired resistance mechanisms. In this study we evaluated the infections caused by Proteus mirabilis and Providencia stuartii in two groups of patients, with diabetes (group 1) and without diabetes (group 2) admitted to the intensive care unit and surgical wards. The infections were investigated in terms of infection type, risk factors, clinical course, predictive factors for unfavourable outcomes and antibiotic resistance profile. Materials and Methods: An observational, retrospective, cross-sectional study was conducted, comprising all patients infected with these pathogens. Bacterial identification and antibiotic sensitivity testing were performed using the Vitek2C automated system. Results: Comparison of the two groups showed that the statistically significant common infectious risk factors were found less frequently among diabetic patients when compared with non-diabetic patients, and that antimicrobial resistance was significantly lower in the diabetic patient group. However, survival rates did not differ between the two groups, drawing attention to the implications of diabetes as comorbidity. Additionally, with regard to the antibiotic resistance profile, 38.89% of P. stuartii strains isolated from diabetic patients belonged to the difficult-to-treat (DTR) phenotype, contributing to the severity of these infections compared with those caused by P. mirabilis, of which 32% were wild type strains and 0% were DTR phenotype. The DTR/extended spectrum beta-lactamase producing P. stuartii isolates more than doubled the risk of mortality, while the presence of nasogastric nutrition tripled the risk. Conclusions: P. stuartii infections that occurred in diabetic patients proved to be more difficult to treat, the majority of them being healthcare-associated bacteremias.
Collapse
|
16
|
Zhao Y, Lian B, Liu X, Wang Q, Zhang D, Sheng Q, Cao L. Case report: Cryptogenic giant brain abscess caused by Providencia rettgeri mimicking stroke and tumor in a patient with impaired immunity. Front Neurol 2022; 13:1007435. [PMID: 36212658 PMCID: PMC9538924 DOI: 10.3389/fneur.2022.1007435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 02/05/2023] Open
Abstract
The highly lethal cryptogenic brain abscess can be easily misdiagnosed. However, cryptogenic brain abscess caused by Providencia rettgeri is rarely reported. We present the case of a cryptogenic Providencia rettgeri brain abscess and analyze the clinical manifestations, imaging findings, treatment, and outcome to improve the level of awareness, aid in accurate diagnosis, and highlight effective clinical management. A 39-year-old man was admitted to the hospital after experiencing acute speech and consciousness disorder for 1 day. The patient had a medical history of nephrotic syndrome and membranous nephropathy requiring immunosuppressant therapy. Magnetic resonance imaging revealed giant, space-occupying lesions involving the brain stem, basal ganglia, and temporal-parietal lobes without typical ring enhancement, mimicking a tumor. Initial antibiotic treatment was ineffective. Afterward, pathogen detection in cerebrospinal fluid using metagenomic next-generation sequencing revealed Providencia rettgeri. Intravenous maximum-dose ampicillin was administered for 5 weeks, and the patient's symptoms resolved. Cryptogenic Providencia rettgeri brain abscess typically occurs in patients with impaired immunity. Our patient exhibited a sudden onset with non-typical neuroimaging findings, requiring differentiation of the lesion from stroke and brain tumor. Metagenomic next-generation sequencing was important in identifying the pathogen. Rapid diagnosis and appropriate use of antibiotics were key to obtaining a favorable outcome.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurology, Shenzhen Third People's Hospital, Shenzhen, China
- Department of Neurology, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Baorong Lian
- Shantou University Medical College, Shantou University, Shantou, China
| | - Xudong Liu
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qizheng Wang
- Department of Neurology, Shenzhen Third People's Hospital, Shenzhen, China
- Department of Neurology, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Daxue Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Qi Sheng
- Department of Neurology, Shenzhen Third People's Hospital, Shenzhen, China
- Department of Neurology, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Liming Cao
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Liming Cao
| |
Collapse
|
17
|
Black Z, Balta I, Black L, Naughton PJ, Dooley JSG, Corcionivoschi N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front Microbiol 2021; 12:781357. [PMID: 34956145 PMCID: PMC8702830 DOI: 10.3389/fmicb.2021.781357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this review was to provide an update on the complex relationship between manure application, altered pathogen levels and antibiotic resistance. This is necessary to protect health and improve the sustainability of this major farming practice in agricultural systems based on high levels of manure production. It is important to consider soil health in relation to environment and land management practices in the context of the soil microflora and the introduction of pathogens on the health of the soil microbiome. Viable pathogens in manure spread on agricultural land may be distributed by leaching, surface run-off, water source contamination and contaminated crop removal. Thus it is important to understand how multiple pathogens can persist in manures and on soil at farm-scale and how crops produced under these conditions could be a potential transfer route for zoonotic pathogens. The management of pathogen load within livestock manure is a potential mechanism for the reduction and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat environmental stress coupled with their survival on food crops and vegetables post-harvest emphasizes the need for further study of these pathogens along with the emerging pathogen Providencia given its link to disease in the immunocompromised and its’ high levels of antibiotic resistance. The management of pathogen load within livestock manure has been widely recognized as a potential mechanism for the reduction and prevention of outbreaks infection but any studies undertaken should be considered as region specific due to the variable nature of the factors influencing pathogen content and survival in manures and soil. Mediocre soils that require nutrients could be one template for research on manure inputs and their influence on soil health and on pathogen survival on grassland and in food crops.
Collapse
Affiliation(s)
- Zoe Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Lisa Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Patrick J Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James S G Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
18
|
Salted duck eggs: the source for pathogens and antibiotic resistant bacteria. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4722-4729. [PMID: 34629536 DOI: 10.1007/s13197-020-04962-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
Salted duck eggs as a convenient food are very popular in China and Southeast Asia. Generally, they are produced by traditional curing methods. Here we used traditional methods to profile the bacterial community of salted duck eggs purchased from markets to systematically investigate their microbiological safety. 77 bacteria belonging to 14 genera were isolated. Bacillus related to flavor formation of salted duck eggs were the dominant genus. However, there existed some clinical pathogens which can cause food poisoning, such as Klebsiella pneumoniae, Staphylococcus aureus, and Aeromonas hydrophila. Moreover, PCA analysis showed that the composition of bacteria was related to the source and storage time rather than sampling sites. Besides, bacteria in the shell, intima and egg white of salted duck eggs were cross-linked. In addition, antimicrobial susceptibility testing indicated that resistant bacteria reached to 47.9%. And there was also no significant difference in bacterial resistance with sampling sites. Consequently, it's necessary to strengthen the food quality of salted duck eggs and improve personal dietary habit. SUPPLEMENTARY INFORMATION Supplementary information accompanies this paper at 10.1007/s13197-020-04962-w.
Collapse
|
19
|
Ye F, Gao X, Wang Z, Cao S, Liang G, He D, Lv Z, Wang L, Xu P, Zhang Q. Comparison of gut microbiota in autism spectrum disorders and neurotypical boys in China: A case-control study. Synth Syst Biotechnol 2021; 6:120-126. [PMID: 34095558 PMCID: PMC8163862 DOI: 10.1016/j.synbio.2021.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are a set of complex neurobiological disorders. Growing evidence has shown that the microbiota that resides in the gut can modulate brain development via the gut-brain axis. However, direct clinical evidence of the role of the microbiota-gut-brain axis in ASD is relatively limited. METHODS A case-control study of 71 boys with ASD and 18 neurotypical controls was conducted at China-Japan Friendship Hospital. Demographic information and fecal samples were collected, and the gut microbiome was evaluated and compared by 16S ribosomal RNA gene sequencing and metagenomic sequencing. RESULTS A higher abundance of operational taxonomic units (OTUs) based on fecal bacterial profiling was observed in the ASD group. Significantly different microbiome profiles were observed between the two groups. At the genus level, we observed a decrease in the relative abundance of Escherichia, Shigella, Veillonella, Akkermansia, Provindencia, Dialister, Bifidobacterium, Streptococcus, Ruminococcaceae UCG_002, Megasphaera, Eubacterium_coprostanol, Citrobacter, Ruminiclostridium_5, and Ruminiclostridium_6 in the ASD cohort, while Eisenbergiella, Klebsiella, Faecalibacterium, and Blautia were significantly increased. Ten bacterial strains were selected for clinical discrimination between those with ASD and the neurotypical controls. The highest AUC value of the model was 0.947. CONCLUSION Significant differences were observed in the composition of the gut microbiome between boys with ASD and neurotypical controls. These findings contribute to the knowledge of the alteration of the gut microbiome in ASD patients, which opens the possibility for early identification of this disease.
Collapse
Affiliation(s)
- Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xinying Gao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyi Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuman Cao
- College of Life Sciences, Institute of Life Science and Green Development, Key Lab of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China
| | - Guangcai Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Danni He
- Clinical Research Institute, China-Japan Friendship Hospital, Beijing, China
| | - Zhitang Lv
- College of Life Sciences, Institute of Life Science and Green Development, Key Lab of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China
| | - Liming Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengfei Xu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
20
|
Rakov C, Ben Porat S, Alkalay-Oren S, Yerushalmy O, Abdalrhman M, Gronovich N, Huang L, Pride D, Coppenhagen-Glazer S, Nir-Paz R, Hazan R. Targeting Biofilm of MDR Providencia stuartii by Phages Using a Catheter Model. Antibiotics (Basel) 2021; 10:antibiotics10040375. [PMID: 33918377 PMCID: PMC8065852 DOI: 10.3390/antibiotics10040375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 01/29/2023] Open
Abstract
Providencia spp. are emerging pathogens mainly in nosocomial infections. Providencia stuartii in particular is involved in urinary tract infections and contributes significantly to the high incidence of biofilm-formation in catheterized patients. Furthermore, recent reports suggested a role for multiple drug resistant (MDR) P. stuartii in hospital-associated outbreaks which leads to excessive complications resulting in challenging treatments. Phage therapy is currently one of the most promising solutions to combat antibiotic-resistant infections. However, the number of available phages targeting Providencia spp. is extremely limited, restricting the use of phage therapy in such cases. In the present study, we describe the isolation and characterization of 17 lytic and temperate bacteriophages targeting clinical isolates of Providencia spp. as part of the Israeli Phage Bank (IPB). These phages, isolated from sewage samples, were evaluated for host range activity and effectively eradicated 95% of the tested bacterial strains isolated from different geographic locations and displaying a wide range of antibiotic resistance. Their lytic activity is demonstrated on agar plates, planktonic cultures, and biofilm formed in a catheter model. The results suggest that these bacteriophages can potentially be used for treatment of antibiotic-resistant Providencia spp. infections in general and of urinary tract infections in particular.
Collapse
Affiliation(s)
- Chani Rakov
- Institute of Dental Sciences, School of Dentistry, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (C.R.); (S.B.P.); (S.A.-O.); (O.Y.); (N.G.); (S.C.-G.)
| | - Shira Ben Porat
- Institute of Dental Sciences, School of Dentistry, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (C.R.); (S.B.P.); (S.A.-O.); (O.Y.); (N.G.); (S.C.-G.)
| | - Sivan Alkalay-Oren
- Institute of Dental Sciences, School of Dentistry, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (C.R.); (S.B.P.); (S.A.-O.); (O.Y.); (N.G.); (S.C.-G.)
| | - Ortal Yerushalmy
- Institute of Dental Sciences, School of Dentistry, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (C.R.); (S.B.P.); (S.A.-O.); (O.Y.); (N.G.); (S.C.-G.)
| | - Mohanad Abdalrhman
- Hadassah-Hebrew University Medical Center, Department of Clinical Microbiology and Infectious Diseases, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (M.A.); (R.N.-P.)
| | - Niv Gronovich
- Institute of Dental Sciences, School of Dentistry, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (C.R.); (S.B.P.); (S.A.-O.); (O.Y.); (N.G.); (S.C.-G.)
| | - Lina Huang
- Department of Pathology, University of California, San Diego, CA 92093, USA; (L.H.); (D.P.)
| | - David Pride
- Department of Pathology, University of California, San Diego, CA 92093, USA; (L.H.); (D.P.)
| | - Shunit Coppenhagen-Glazer
- Institute of Dental Sciences, School of Dentistry, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (C.R.); (S.B.P.); (S.A.-O.); (O.Y.); (N.G.); (S.C.-G.)
| | - Ran Nir-Paz
- Hadassah-Hebrew University Medical Center, Department of Clinical Microbiology and Infectious Diseases, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (M.A.); (R.N.-P.)
| | - Ronen Hazan
- Institute of Dental Sciences, School of Dentistry, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (C.R.); (S.B.P.); (S.A.-O.); (O.Y.); (N.G.); (S.C.-G.)
- Correspondence: ; Tel.: +972-26758588
| |
Collapse
|
21
|
Yuan C, Wei Y, Zhang S, Cheng J, Cheng X, Qian C, Wang Y, Zhang Y, Yin Z, Chen H. Comparative Genomic Analysis Reveals Genetic Mechanisms of the Variety of Pathogenicity, Antibiotic Resistance, and Environmental Adaptation of Providencia Genus. Front Microbiol 2020; 11:572642. [PMID: 33193173 PMCID: PMC7652902 DOI: 10.3389/fmicb.2020.572642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
Abstract
The bacterial genus Providencia is Gram-negative opportunistic pathogens, which have been isolated from a variety of environments and organisms, ranging from humans to animals. Providencia alcalifaciens, Providencia rettgeri, and Providencia stuartii are the most common clinical isolates, however, these three species differ in their pathogenicity, antibiotic resistance and environmental adaptation. Genomes of 91 isolates of the genus Providencia were investigated to clarify their genetic diversity, focusing on virulence factors, antibiotic resistance genes, and environmental adaptation genes. Our study revealed an open pan-genome for the genus Providencia containing 14,720 gene families. Species of the genus Providencia exhibited different functional constraints, with the core genes, accessory genes, and unique genes. A maximum-likelihood phylogeny reconstructed with concatenated single-copy core genes classified all Providencia isolates into 11 distant groups. Comprehensive and systematic comparative genomic analyses revealed that specific distributions of virulence genes, which were highly homologous to virulence genes of the genus Proteus, contributed to diversity in pathogenicity of Providencia alcalifaciens, Providencia rettgeri, and Providencia stuartii. Furthermore, multidrug resistance (MDR) phenotypes of isolates of Providencia rettgeri and Providencia stuartii were predominantly due to resistance genes from class 1 and 2 integrons. In addition, Providencia rettgeri and Providencia stuartii harbored more genes related to material transport and energy metabolism, which conferred a stronger ability to adapt to diverse environments. Overall, our study provided valuable insights into the genetic diversity and functional features of the genus Providencia, and revealed genetic mechanisms underlying diversity in pathogenicity, antibiotic resistance and environmental adaptation of members of this genus.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, China.,Center for International Collaborative Research on Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Si Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Juan Cheng
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaolei Cheng
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yang Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China.,College of Life Science, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Hong Chen
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
22
|
Transposon Insertion Site Sequencing of Providencia stuartii: Essential Genes, Fitness Factors for Catheter-Associated Urinary Tract Infection, and the Impact of Polymicrobial Infection on Fitness Requirements. mSphere 2020; 5:5/3/e00412-20. [PMID: 32461277 PMCID: PMC7253602 DOI: 10.1128/msphere.00412-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infection (CAUTI), and yet literature describing the molecular mechanisms of its pathogenesis is limited. To identify factors important for colonization during single-species infection and during polymicrobial infection with a common cocolonizer, Proteus mirabilis, we created a saturating library of ∼50,000 transposon mutants and conducted transposon insertion site sequencing (Tn-Seq) in a murine model of CAUTI. P. stuartii strain BE2467 carries 4,398 genes, 521 of which were identified as essential for growth in laboratory medium and therefore could not be assessed for contribution to infection. Using an input/output fold change cutoff value of 20 and P values of <0.05, 340 genes were identified as important for establishing single-species infection only and 63 genes as uniquely important for polymicrobial infection with P. mirabilis, and 168 genes contributed to both single-species and coinfection. Seven mutants were constructed for experimental validation of the primary screen that corresponded to flagella (fliC mutant), twin arginine translocation (tatC), an ATP-dependent protease (clpP), d-alanine-d-alanine ligase (ddlA), type 3 secretion (yscI and sopB), and type VI secretion (impJ). Infection-specific phenotypes validated 6/7 (86%) mutants during direct cochallenge with wild-type P. stuartii and 3/5 (60%) mutants during coinfection with P. mirabilis, for a combined validation rate of 9/12 (75%). Tn-Seq therefore successfully identified genes that contribute to fitness of P. stuartii within the urinary tract, determined the impact of coinfection on fitness requirements, and added to the identification of a collection of genes that may contribute to fitness of multiple urinary tract pathogens.IMPORTANCE Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infections (CAUTIs), particularly during long-term catheterization. However, little is known regarding the pathogenesis of this organism. Using transposon insertion site sequencing (Tn-Seq), we performed a global assessment of P. stuartii fitness factors for CAUTI while simultaneously determining how coinfection with another pathogen alters fitness requirements. This approach provides four important contributions to the field: (i) the first global estimation of P. stuartii genes essential for growth in laboratory medium, (ii) identification of novel fitness factors for P. stuartii colonization of the catheterized urinary tract, (iii) identification of core fitness factors for both single-species and polymicrobial CAUTI, and (iv) assessment of conservation of fitness factors between common uropathogens. Genomewide assessment of the fitness requirements for common uropathogens during single-species and polymicrobial CAUTI thus elucidates complex interactions that contribute to disease severity and will uncover conserved targets for therapeutic intervention.
Collapse
|
23
|
Mutation of the Carboxy-Terminal Processing Protease in Acinetobacter baumannii Affects Motility, Leads to Loss of Membrane Integrity, and Reduces Virulence. Pathogens 2020; 9:pathogens9050322. [PMID: 32357487 PMCID: PMC7281292 DOI: 10.3390/pathogens9050322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 01/17/2023] Open
Abstract
Motility plays an essential role in the host–parasite relationship of pathogenic bacteria, and is often associated with virulence. While many pathogenic bacteria use flagella for locomotion, Acinetobacter baumannii strains do not have flagella, but have other features that aid in their motility. To study the genes involved in motility, transposon mutagenesis was performed to construct A. baumannii mutant strains. Mutant strain MR14 was found to have reduced motility, compared to wild-type ATCC 17978. NCBI BLAST analysis revealed that the Tn10 transposon in the MR14 genome is integrated into the gene that encodes for carboxy-terminal processing protease (Ctp). Additionally, MR14 exhibits a mucoidy, sticky phenotype as the result of increased extracellular DNA (eDNA) caused by bacterial autolysis. Transmission and scanning electron microscopy revealed cytoplasmic content leaving the cell and multiple cell membrane depressions, respectively. MR14 showed higher sensitivity to environmental stressors. Mutation of the ctp gene reduced invasion and adhesion of A. baumannii to airway epithelial cells, potentially due to increased hydrophobicity. In the zebrafish model of infection, MR14 increased the survival rate by 40% compared to the wild-type. Taken together, the ctp gene in A. baumannii has a pivotal role in maintaining membrane integrity, adaptation to environmental stress, and controlling virulence.
Collapse
|
24
|
Rowan-Nash AD, Araos R, D'Agata EMC, Belenky P. Antimicrobial Resistance Gene Prevalence in a Population of Patients with Advanced Dementia Is Related to Specific Pathobionts. iScience 2020; 23:100905. [PMID: 32106056 PMCID: PMC7044522 DOI: 10.1016/j.isci.2020.100905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/10/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Long-term care facilities are significant reservoirs of antimicrobial-resistant organisms, and patients with advanced dementia are particularly vulnerable to multidrug-resistant organism (MDRO) acquisition and antimicrobial overuse. In this study, we longitudinally examined a group of patients with advanced dementia using metagenomic sequencing. We found significant inter- and intra-subject heterogeneity in microbiota composition, suggesting temporal instability. We also observed a link between the antimicrobial resistance gene density in a sample and the relative abundances of several pathobionts, particularly Escherichia coli, Proteus mirabilis, and Enterococcus faecalis, and used this relationship to predict resistance gene density in samples from additional subjects. Furthermore, we used metagenomic assembly to demonstrate that these pathobionts had higher resistance gene content than many gut commensals. Given the frequency and abundances at which these pathobionts were found in this population and the underlying vulnerability to MDRO of patients with advanced dementia, attention to microbial blooms of these species may be warranted.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rafael Araos
- Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile; Millenium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Erika M C D'Agata
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
25
|
Leite GGS, Morales W, Weitsman S, Celly S, Parodi G, Mathur R, Sedighi R, Barlow GM, Rezaie A, Pimentel M. Optimizing microbiome sequencing for small intestinal aspirates: validation of novel techniques through the REIMAGINE study. BMC Microbiol 2019; 19:239. [PMID: 31675917 PMCID: PMC6824053 DOI: 10.1186/s12866-019-1617-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background The human small intestine plays a central role in the processes of digestion and nutrient absorption. However, characterizations of the human gut microbiome have largely relied on stool samples, and the associated methodologies are ill-suited for the viscosity and low microbial biomass of small intestine samples. As part of the REIMAGINE study to examine the specific roles of the small bowel microbiome in human health and disease, this study aimed to develop and validate methodologies to optimize microbial analysis of the small intestine. Results Subjects undergoing esophagogastroduodenoscopy without colon preparation for standard of care were prospectively recruited, and ~ 2 ml samples of luminal fluid were obtained from the duodenum using a custom sterile aspiration catheter. Samples of duodenal aspirates were either untreated (DA-U, N = 127) or pretreated with dithiothreitol (DA-DTT, N = 101), then cultured on MacConkey agar for quantitation of aerobic gram-negative bacteria, typically from the class Gammaproteobacteria, and on blood agar for quantitation of anaerobic microorganisms. DA-DTT exhibited 2.86-fold greater anaerobic bacterial counts compared to DA-U (P = 0.0101), but were not statistically different on MacConkey agar. DNA isolation from DA-U (N = 112) and DA-DTT (N = 43) samples and library preparation for 16S rRNA gene sequencing were also performed using modified protocols. DA-DTT samples exhibited 3.81-fold higher DNA concentrations (P = 0.0014) and 4.18-fold higher 16S library concentrations (P < 0.0001) then DA-U samples. 16S rRNA gene sequencing revealed increases in the detected relative abundances of obligate and facultative anaerobes in DA-DTT samples, including increases in the genera Clostridium (false discovery rate (FDR) P = 4.38E-6), Enterococcus (FDR P = 2.57E-8), Fusobacterium (FDR P = 0.02) and Bacteroides (FDR P = 5.43E-9). Detected levels of Gram-negative enteropathogens from the phylum Proteobacteria, such as Klebsiella (FDR P = 2.73E-6) and Providencia (FDR P < 0.0001) (family Enterobacteriaceae) and Pseudomonas (family Pseudomonadaceae) (FDR P = 0.04), were also increased in DA-DTT samples. Conclusions This study validates novel DTT-based methodology which optimizes microbial culture and 16S rRNA gene sequencing for the study of the small bowel microbiome. The microbial analyses indicate increased isolation of facultative and obligate anaerobes from the mucus layer using these novel techniques.
Collapse
Affiliation(s)
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shreya Celly
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rashin Sedighi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|