1
|
Stopka-Farooqui U, Stavrinides V, Simpson BS, Qureshi H, Carmona Echevierra LM, Pye H, Ahmed Z, Alawami MF, Kay JD, Olivier J, Heavey S, Patel D, Freeman A, Haider A, Moore CM, Ahmed HU, Whitaker HC. Combining tissue biomarkers with mpMRI to diagnose clinically significant prostate cancer. Analysis of 21 biomarkers in the PICTURE study. Prostate Cancer Prostatic Dis 2025; 28:457-468. [PMID: 39578642 DOI: 10.1038/s41391-024-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Serum PSA and digital rectal examination remain the key diagnostic tools for detecting prostate cancer. However, due to the limited specificity of serum PSA, the applicability of this marker continues to be controversial. Recent use of image-guided biopsy along with pathological assessment and the use of biomarkers has dramatically improved the diagnosis of clinically significant cancer. Despite the two modalities working together for diagnosis biomarker research often fails to correlate findings with imaging. METHODS AND RESULTS We looked at 21 prostate cancer biomarkers correlating our results with mpMRI data to investigate the hypothesis that biomarkers along with mpMRI data make a powerful tool to detect clinically significant prostate cancer. Biomarkers were selected based on the existing literature. Using a tissue microarray comprised of samples from the PICTURE study, with biopsies at 5 mm intervals and mpMRI data we analysed which biomarkers could differentiate benign and malignant tissue. Biomarker data were also correlated with pathological grading, mpMRI, serum PSA, age and family history. AGR2, CD10 and EGR protein expression was significantly different in both matched malignant and benign tissues. AMACR, ANPEP, GDF15, MSMB, PSMA, PTEN, TBL1XR1, TP63, VPS13A and VPS28 showed significantly different expression between Gleason grades in malignant tissue. The majority of the biomarkers tested did not correlate with mpMRI data. However, CD10, KHDRBS3, PCLAF, PSMA, SIK2 and GDF15 were differentially expressed with prostate cancer progression. AMACR and PTEN were identified in both pathological and image data evaluation. CONCLUSIONS There is a high demand to develop biomarkers that would help the diagnosis and prognosis of prostate cancer. Tissue biomarkers are of particular interest since immunohistochemistry remains a cheap, reliable method that is widely available in pathology departments. These results demonstrate that testing biomarkers in a cohort consistent with the current diagnostic pathway is crucial to identifying biomarker with potential clinical utility.
Collapse
Affiliation(s)
| | - Vasilis Stavrinides
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Benjamin S Simpson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Hania Qureshi
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lina M Carmona Echevierra
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Hayley Pye
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Zeba Ahmed
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mohammed F Alawami
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Jonathan D Kay
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Jonathan Olivier
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, Hospital Huriez, University Lille Nord de France, Lille, France
| | - Susan Heavey
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Dominic Patel
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Hashim U Ahmed
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Hayley C Whitaker
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
2
|
Bian Y, Shi J, Chen Z, Fang J, Chen W, Zou Y, Yao H, Tu J, Liao Y, Xie X, Shen J. A diagnostic signature developed based on the necroptosis-related genes and its association with immune infiltration in osteosarcoma. Heliyon 2024; 10:e35719. [PMID: 39253245 PMCID: PMC11381599 DOI: 10.1016/j.heliyon.2024.e35719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Osteosarcoma is a bone-derived malignancy that often leads to lung metastasis and death. Material and methods The RNA-seq data of TARGET-osteosarcoma were collected from TARGET database. GSE16088 and GSE12865 datasets of osteosarcoma x from Gene Expression Database (GEO) were donwloaded. ConsensusClusterPlus was used for molecular subtype classification. Univariate Cox and Lasso regression was employed to develop a risk model. To analyze the regulatory effects of model feature genes on the malignant phenotype of osteosarcoma cell lines, qRT-PCR, Transwell and wound healing assays were performed. The abundance of immune cell infiltration was assessed using MCP-Counter, Gene Set Enrichment Analysis (GSEA), and ESTIMATE. The Tumor Immune Dysfunction and Exclusion (TIDE) software was employed to evaluate immunotherapy and response to conventional chemotherapy drugs. Results Three clusters (C1, C2 and C3) were classified using 39 necroptosis score-associated genes. In general, C1 and C2 showed better prognosis outcome and lower death rate than C3. Specifically, C2 could benefit more from immunotherapy, while C3 was more sensitive to traditional medicines, and C1 had higher immune cell infiltration. Next, an 8-gene signature and a risk score model were developed, with a low risk score indicating better survival and immune cell infiltration. ROC analysis showed that 1-, 3-, and 5-year overall survival of osteosarcoma could be correctly predicted by the risk score model. Cellular experiments revealed that the model feature gene IFITM3 promoted the osteosarcoma cell migration and invasion. Furthermore, the overall survival of osteosarcoma patients from TARGET and validation datasets can be accurately evaluated using the nomogram model. Conclusions Our prognostic model developed using necroptosis genes could facilitate the prognostic prediction for patients suffering from osteosarcoma, offering potential osteosarcoma targets.
Collapse
Affiliation(s)
- Yiying Bian
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jixiang Shi
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji Fang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Yao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Tian Z, Qiao X, Wang Z, Li X, Pan Y, Wei X, Lv Z, Li P, Du Q, Wei W, Yan L, Chen S, Xu C, Feng Y, Zhou R. Cisplatin and doxorubicin chemotherapy alters gut microbiota in a murine osteosarcoma model. Aging (Albany NY) 2024; 16:1336-1351. [PMID: 38231481 PMCID: PMC10866425 DOI: 10.18632/aging.205428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
The gut microbiota is closely associated with tumor progression and treatment in a variety of cancers. However, the alteration of the gut microbiota during the progression and chemotherapy of osteosarcoma remains poorly understood. This study aimed to explore the relationship between dysbiosis in the gut microbiota during osteosarcoma growth and chemotherapy treatment. We used BALB/c nude mice to establish osteosarcoma xenograft tumor models and administered cisplatin (CDDP) or doxorubicin (DOX) intraperitonially once every 2 days for a total of 5 times to establish effective chemotherapy models. Fecal samples were collected and processed for 16S rRNA sequencing to analyze the composition of the gut microbiota. We observed that the abundances of Colidextribacter, Lachnospiraceae_NK4A136_group, Lachnospiraceae_UCG-010, Lachnospiraceae_UCG-006, and Lachnoclostridium decreased, and the abundances of Alloprevotella and Enterorhabdus increased in the osteosarcoma mouse model group compared to those in the control group. In addition, genera, such as Lachnoclostridium and Faecalibacterium were more abundant in chemotherapy-treated mice than those in saline-treated mice. Additionally, we observed that alterations in some genera, including Lachnoclostridium and Colidextribacter in the osteosarcoma animal model group returned to normal after CDDP or DOX treatment. Furthermore, the function of the gut microbiota was inferred through PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), which indicated that metabolism-related microbiota was highly enriched and significantly different in each group. These results indicate correlations between dysbiosis of the gut microbiota and osteosarcoma growth and chemotherapy treatment with CDDP or DOX and may provide novel avenues for the development of potential adjuvant therapies.
Collapse
Affiliation(s)
- Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Zhichao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, P.R. China
| | - Xiaoyan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Yongchun Pan
- Department of Orthopedics, The Third People’s Hospital of Datong City, Datong, Shanxi 037006, P.R. China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Qiujing Du
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, P.R. China
| | - Wenhao Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Song Chen
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
4
|
Chen HH, Hao PH, Zhang FY, Zhang TN. Non-coding RNAs in metabolic reprogramming of bone and soft tissue sarcoma: Fundamental mechanism and clinical implication. Biomed Pharmacother 2023; 160:114346. [PMID: 36738505 DOI: 10.1016/j.biopha.2023.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Sarcomas, comprising approximately 1% of human malignancies, show a poor response to treatment and easy recurrence. Metabolic reprogramming play an important role in tumor development in sarcomas. Accumulating evidence shows that non-coding RNAs (ncRNAs) participate in regulating the cellular metabolism of sarcomas, which improves the understanding of the development of therapy-resistant tumors. This review addresses the regulatory roles of metabolism-related ncRNAs and their implications for sarcoma initiation and progression. Dysregulation of metabolism-related ncRNAs is common in sarcomas and is associated with poor survival. Emerging studies show that abnormal expression of metabolism-related ncRNAs affects cellular metabolism, including glucose, lipid, and mitochondrial metabolism, and leads to the development of aggressive sarcomas. This review summarizes recent advances in the roles of dysregulated metabolism-related ncRNAs in sarcoma development and stemness and describes their potential to serve as biological biomarkers for disease diagnosis and prognosis prediction, as well as therapeutic targets for treating refractory sarcomas.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Fang-Yuan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
5
|
Liang J, Chen J, Hua S, Qin Z, Lu J, Lan C. Bioinformatics analysis of the key genes in osteosarcoma metastasis and immune invasion. Transl Pediatr 2022; 11:1656-1670. [PMID: 36345453 PMCID: PMC9636461 DOI: 10.21037/tp-22-402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND This study sought to identify potential key genes for osteosarcoma metastasis and analyze their immune infiltration patterns using bioinformatic methods. METHODS We obtained transcriptomic data related to osteosarcoma and osteosarcoma with metastasis from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) and The Gene Expression Omnibus (GEO) databases and identified the differentially expressed genes (DEGs). We also identified potential key genes for osteosarcoma metastasis by a protein-protein interaction network analysis, and we conducted a Gene Ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify the core genes for prognosis, immune cell infiltration, and drug sensitivity, and the risk prediction and prognosis models of metastasis were constructed. RESULTS By comparing the transcriptome data of osteosarcomas without metastasis and those with metastasis, a total of 19 core DEGs were identified, and the GO and KEGG analyses revealed an association between these DEGs and the regulation of cell division, secretory granule lumen, the Ras-associated protein 1 (Rap1) signaling pathway, and the mitogen-activated protein kinase (MAPK) signaling pathway. Compared with other immune cells, macrophage infiltration was predominant in osteosarcoma samples with metastatic osteosarcoma, and insulin-like growth factors-1 (IGF1) and myelocytomatosis protein 2 (MYC2) genes were predicted to more than 50 targeted therapeutic agents. A metastasis prediction model with 5 genes [i.e., ecotropic viral integration site 2B (EVI2B), CCAAT/enhancer binding protein (CEBPA), lymphocyte cytosolic protein 2 (LCP2), selectin L (SELL), and Niemann-Pick disease, type C2A (NPC2A)], and a prognostic model with 4 genes [i.e., insulin-like growth factors-2 (IGF2), cathepsin O (CTSO), Niemann-Pick disease, type C2 (NPC2), and amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein (APBB1IP)] were developed. CONCLUSIONS We constructed a metastasis prediction model with 5 genes (i.e., EVI2B, CEBPA, LCP2, SELL, and NPC2A), and a prognostic model with 4 genes (i.e., IGF2, CTSO, NPC2, and APBB1IP) that may be potential biomarkers for osteosarcoma metastasis. Macrophages are the predominant immune infiltrating cells in osteosarcoma metastasis and may provide a new direction for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Junqing Liang
- Department of Joint Surgery, The People's Hospital of Baise, Baise, China
| | - Jun Chen
- Department of Joint Surgery, The People's Hospital of Baise, Baise, China
| | - Shuliang Hua
- Department of Joint Surgery, The People's Hospital of Baise, Baise, China
| | - Zhuangguang Qin
- Department of Joint Surgery, The People's Hospital of Baise, Baise, China
| | - Jili Lu
- Department of Joint Surgery, The People's Hospital of Baise, Baise, China
| | - Changgong Lan
- Department of Joint Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, de León Carmona GG, Aguirre Padilla ME, Chakraborty S, Bandyopadhyay A, Paul S. The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010211. [PMID: 35011442 PMCID: PMC8746945 DOI: 10.3390/molecules27010211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a class of small (20-24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments.
Collapse
Affiliation(s)
- Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Mariana Yunuen Moreno Becerril
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Erick Octavio Mora Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Mexico City, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Gabriela García de León Carmona
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - María Emilia Aguirre Padilla
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines;
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
- Correspondence:
| |
Collapse
|
7
|
Fan L, Cao X, Lei Y. MicroRNA miR-23b-3p promotes osteosarcoma by targeting ventricular zone expressed PH domain-containing 1 (VEPH1)/phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Bioengineered 2021; 12:12568-12582. [PMID: 34903122 PMCID: PMC8810025 DOI: 10.1080/21655979.2021.2010383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence suggests that dysregulated miRNA expression can lead to the tumorigenesis of osteosarcoma (OS). Nevertheless, the potential role of miR-23b-3p in OS is unclear and remains to be explored. Microarray analysis was performed to identify key genes involved in OS. Reverse transcription quantitative polymerase chain reaction and Western blotting were used to examine miR-23b-3p expression, ventricular zone expressed PH domain-containing 1 (VEPH1) transcript (as well as other transcripts as indicated), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway-related protein expression. A luciferase reporter gene assay was performed to confirm the regulatory relationship between VEPH1 mRNA and miR-23b-3p. Cell viability was evaluated using the Cell Counting Kit-8 assay, cell growth was assessed using the bromodeoxyuridine enzyme-linked immunosorbent assay, and cell migration was tested using a wound healing assay. We found significant upregulation of miR-23b-3p in OS, which prominently promoted the viability, proliferation, and migration of OS cells. Additionally, VEPH1 was found to be a target of miR-23b-3p and its expression was decreased in OS. Lastly, VEPH1 alleviated the promotion effect of miR-23b-3p on the malignancy phenotypes of OS cells via the PI3K/AKT signaling pathway. Thus, miR-23b-3p augmented the viability, proliferation, and migration of OS cells by directly targeting and downregulating VEPH1, which inhibited the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Liang Fan
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cao
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanrong Lei
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Xu C, Wang M, Zandieh-Doulabi B, Sun W, Wei L, Liu Y. To B (Bone Morphogenic Protein-2) or Not to B (Bone Morphogenic Protein-2): Mesenchymal Stem Cells May Explain the Protein's Role in Osteosarcomagenesis. Front Cell Dev Biol 2021; 9:740783. [PMID: 34869325 PMCID: PMC8635864 DOI: 10.3389/fcell.2021.740783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.
Collapse
Affiliation(s)
- Chunfeng Xu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Meshkini A. A Correlation Between Intracellular Zinc Content and Osteosarcoma. Biol Trace Elem Res 2021; 199:3222-3231. [PMID: 33150482 DOI: 10.1007/s12011-020-02466-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Zinc is a trace element in human body involved in many biological processes. It is critical for cell growth and acts as a cofactor for the structure and function of a wide range of cellular proteins such as enzymes. Mounting evidence has shown the involvement of intracellular zinc in the bone-related biological processes such as bone growth, homeostasis, and regeneration; however, the molecular mechanism(s) whereby zinc impels tumorigenesis in bone remains largely unexplored. In this article, selective outline related to the content of intracellular zinc in osteosarcoma cells was provided, and its correlation with signaling molecules that are activated and consequently guide the cells toward tumorigenesis or osteogenesis was discussed. Based on preclinical and clinical evidence, dysregulation of zinc homeostasis, both at intracellular and tissue level, has the main role in the pathogenesis of osteosarcoma. Based on the intracellular zinc content, this element could have a direct role in the dynamics of bone cell transformation and tumor development and play an indirect role in the modulation of the inflammatory and pro/antitumorigenic responses in immune cells. In this context, zinc transporters and the proteins containing zinc domain are regulated by the availability of zinc, playing a crucial role in bone cell transformation and differentiation. According to recent studies, it seems that intracellular zinc levels could be considered as an early prognosis marker. Besides, identification and targeting of zinc-dependent signaling molecules could tilt the balance of life and death toward the latter in chemoresistant malignant cells and may pave a way for designing of the novel osteosarcoma treatment strategies.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, P. O. Box 9177948974, Iran.
| |
Collapse
|
10
|
ARHGEF3 Associated with Invasion, Metastasis, and Proliferation in Human Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3381957. [PMID: 34350290 PMCID: PMC8328732 DOI: 10.1155/2021/3381957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Background Osteosarcoma is a malignant bone tumor composed of mesenchymal cells producing osteoid and immature bone. This study is aimed at developing novel potential prognostic biomarkers and constructing a miRNA-mRNA network for progression in osteosarcoma. Method GSE70367 and GSE70414 were obtained in the Gene Expression Omnibus (GEO) database. GEO software and the GEO2R calculation method were used to analyze two gene profiles. The coexpression of differentially expressed miRNAs (DEMs) and genes (DEGs) was identified and searched for in the FunRich database for pathway and ontology analysis. Cytoscape was utilized to construct the mRNA-miRNA network. Survival analysis of identified miRNAs and mRNAs was performed by utilizing the Kaplan-Meier Plotter. Besides, expression levels of DEMs and target mRNAs were verified by performing quantitative real-time PCR (qRT-PCR) and Western blot (WB). Results Six differentially expressed microRNAs (DEMs) were identified, and 8 target genes were selected after screening. By using the KM Plotter software, miRNA-124 and ARHGEF3 were obviously associated with the overall survival of patients with osteosarcoma. Furthermore, ARHGEF3 was found downregulated in osteosarcoma cells by performing qRT-PCR and WB experiments. Results also showed that downregulated ARHGEF3 may associate with invasion, metastasis, and proliferation. Conclusions By using microarray and bioinformatics analysis, DEMs were selected, and a complete miRNA-mRNA network was constructed. ARHGEF3 may act as a therapeutic and prognostic target of osteosarcoma.
Collapse
|
11
|
Niu J, Yan T, Guo W, Wang W, Zhao Z, Ren T, Huang Y, Zhang H, Yu Y, Liang X. Identification of Potential Therapeutic Targets and Immune Cell Infiltration Characteristics in Osteosarcoma Using Bioinformatics Strategy. Front Oncol 2020; 10:1628. [PMID: 32974202 PMCID: PMC7471873 DOI: 10.3389/fonc.2020.01628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is one of the most aggressive malignant bone tumors worldwide. Although great advancements have been made in its treatment owing to the advent of neoadjuvant chemotherapy, the problem of lung metastasis is a major obstacle in the improvement of survival outcomes. Thus, the aim of the present study is to screen novel and key biomarkers, which may act as potential prognostic markers and therapeutic targets in osteosarcoma. We utilized the robust rank aggregation (RRA) method to integrate three osteosarcoma microarray datasets downloaded from the Gene Expression Omnibus (GEO) database, and we identified the robust differentially expressed genes (DEGs) between primary and metastatic osteosarcoma tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the functions of robust DEGs. The results of enrichment analysis showed that the robust DEGs were closely associated with osteosarcoma development and progression. Immune cell infiltration analysis was also conducted by CIBERSORT algorithm, and we found that macrophages are the most principal infiltrating immune cells in osteosarcoma, especially macrophages M0 and M2. Then, the protein–protein interaction network and key modules were constructed by Cytoscape, and 10 hub genes were selected by plugin cytoHubba from the whole network. The survival analysis of hub genes was also carried out based on the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The integrated bioinformatics analysis was utilized to provide new insight into osteosarcoma development and metastasis and identified EGR1, CXCL10, MYC, and CXCR4 as potential biomarkers for prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Zhiqing Zhao
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
12
|
Su Z, Yang B, Zeng Z, Zhu S, Wang C, Lei S, Jiang Y, Lin L. Metastasis-associated gene MAPK15 promotes the migration and invasion of osteosarcoma cells via the c-Jun/MMPs pathway. Oncol Lett 2020; 20:99-112. [PMID: 32565938 PMCID: PMC7285714 DOI: 10.3892/ol.2020.11544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common and destructive primary bone malignancy to affect children and adolescents. Metastases remain the primary cause of death in patients with OS. In the present study, weight gene co-expressed network analysis (WGCNA) and differentially-expressed gene analysis were used to identify key genes associated with the metastasis of OS. Reverse transcription-quantitative PCR and immunohistochemical staining were then used to detect the expression levels of these key genes in OS tissues, and to determine the hub genes of interest. Wound-healing and transwell assays, in addition to a lung metastasis model, were used to detect the effects of the hub genes on OS cell proliferation and metastasis in vitro and in vivo. Using WGCNA and differential expression analysis, deleted in lung and esophageal cancer protein 1 (DLEC1), Forkhead box J1 (FOXJ1) and mitogen-activated protein kinase 15 (MAPK15) were predicted to be key metastasis-associated genes, and highly expressed in metastatic OS tissues; among them, the protein and mRNA expression levels of MAPK15 were most significantly increased in our OS tissues from patients who exhibited metastases at diagnosis, and thus MAPK15 was determined to be a metastasis-associated hub gene to further study. Furthermore, inhibiting MAPK15 expression significantly decreased OS cell metastasis in vitro and in vivo, as well as suppressing c-Jun/matrix metalloproteinase (MMP)-associated pathways. Overexpression of MAPK15 activated the c-Jun/MMPs pathway and promoted OS cell metastasis, while inhibition of c-Jun blocked this effect. Taken together, MAPK15 was indicated to be an OS metastasis-associated gene, and was confirmed to promote the migration and invasion of OS cells via the c-Jun/MMP pathway. MAPK15 may therefore be an effective target for the treatment of OS.
Collapse
Affiliation(s)
- Zexin Su
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Bingsheng Yang
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shuang Zhu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| | - Chenyang Wang
- Department of Neurosurgery, Zhujiang Hospital, Neurosurgery Institute of Guangdong Province, Key Laboratory on Brain Function Repair and Rehabilitation, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yongfa Jiang
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Lijun Lin
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
13
|
Melim C, Jarak I, Veiga F, Figueiras A. The potential of micelleplexes as a therapeutic strategy for osteosarcoma disease. 3 Biotech 2020; 10:147. [PMID: 32181109 PMCID: PMC7052088 DOI: 10.1007/s13205-020-2142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is a rare aggressive bone, presenting low patient survival rate, high metastasis and relapse occurrence, mostly due to multi-drug resistant cells. To surpass that, the use of nanomedicine for the targeted delivery of genetic material, drugs or both have been extensively researched. In this review, we address the current situation of the disorder and some gene therapy options in the nanomedicine field that have been investigated. Among them, polymeric micelles (PM) are an advantageous therapeutic alternative highly explored for OS, as they allow for the targeted transportation of poorly water-soluble drugs to cancer cells. In addition, micelleplexes are PMs with cationic properties with promising features, such as the possibility for a dual therapy, which have made them an attractive research subject. The aim of this review article is to elucidate the application of a micelleplex formulation encapsulating the underexpressed miRNA145 to achieve an active targeting to OS cells and overcome multi-drug resistance, as a new and viable therapeutic strategy.
Collapse
Affiliation(s)
- Catarina Melim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Figueiras
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Yang W, Qi YB, Si M, Hou Y, Nie L. A comprehensive analysis for associations between multiple microRNAs and prognosis of osteosarcoma patients. PeerJ 2020; 8:e8389. [PMID: 31998559 PMCID: PMC6977468 DOI: 10.7717/peerj.8389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common malignant primary bone tumor occurring in children and young adults, which occupies the second important cause of tumor-associated deaths among children and young adults. Recent studies have demonstrated that many microRNAs (miRNAs) have abnormal expression in OS, and can function as prognostic factors of OS patients. However, no previous studies have comprehensively analyzed the relationship between multiple miRNAs and prognosis of OS patients. Methods A total of 63 OS patients were retrospectively enrolled. The clinical characteristics were collected, and the expression levels of miRNA-21, miRNA-30c, miRNA-34a, miRNA-101, miRNA-133a, miRNA-214, miRNA-218, miRNA-433 and miRNA-539 in tumor tissues were measured through quantitative real-time polymerasechain reaction. Kaplan–Meier analysis was used to perform univariate survival analysis, and Cox regression model was used to perform multivariate survival analysis which included the variables with P < 0.1 in univariate survival analysis. Results The cumulative survival for 1, 2 and 5 years was 90.48%, 68.25% and 38.10%, respectively, and mean survival time was (45.39 ± 3.60) months (95% CI [38.34–52.45]). Kaplan–Meier analysis demonstrated that TNM stage, metastasis or recurrence, miRNA-21, miRNA-214, miRNA-34a, miRNA-133a and miRNA-539 were correlated with cum survival, but gender, age, tumor diameter, differentiation, miRNA-30c, miRNA-433, miRNA-101 and miRNA-218 were not. Multivariate survival analysis demonstrated that miRNA-21 (hazard ratio (HR): 3.457, 95% CI [2.165–11.518]), miRNA (HR: 3.138, 95% CI [2.014–10.259]), miRNA-34a (HR: 0.452, 95% CI [0.202–0.915]), miRNA-133a (HR: 0.307, 95% CI [0.113–0.874]) and miRNA-539 (HR: 0.358, 95% CI [0.155–0.896]) were independent prognostic markers of OS patients after adjusting for TNM stage (HR: 2.893, 95% CI [1.496–8.125]), metastasis or recurrence (HR: 3.628, 95% CI [2.217–12.316]) and miRNA-30c (HR: 0.689, 95% CI [0.445–1.828]). Conclusions High expression of miRNA-21 and miRNA-214 and low expression of miRNA-34a, miRNA-133a and miRNA-539 were associated with poor prognosis of OS patients after adjusting for TNM stage, metastasis or recurrence and miRNA-30c.
Collapse
Affiliation(s)
- Wen Yang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Department of Spinal Surgery, Heze Municipal Hospital, Heze, Shandong Province, China
| | - Yu-Bin Qi
- Department of Orthopaedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Meng Si
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yong Hou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Lin Nie
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
15
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
16
|
Niveditha D, Sharma H, Sahu A, Majumder S, Chowdhury R, Chowdhury S. Drug Tolerant Cells: An Emerging Target With Unique Transcriptomic Features. Cancer Inform 2019; 18:1176935119881633. [PMID: 31636480 PMCID: PMC6787876 DOI: 10.1177/1176935119881633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/02/2022] Open
Abstract
Long-term outcome of cancer therapy is often severely perturbed by the
acquisition of drug resistance. Recent evidence point toward the survival of a
subpopulation of tumor cells under acute drug stress that over time can
re-populate the tumor. These transiently existing, weakly proliferative,
drug-tolerant cells facilitate tumor cell survival until more stable resistance
mechanisms are acquired. From a therapeutic perspective, understanding the
molecular features of the tolerant cells is critical to attenuation of
resistance. In this article, we discuss the transcriptomic features of
drug-tolerant osteosarcoma cells that survive a high dose of cisplatin shock. We
present the unique transcriptome of the minimally dividing tolerant cells in
comparison with the proliferative persisters or resistant cells derived from the
tolerant cells. Targeting the tolerant cells can represent an efficient
therapeutic strategy impeding tumor recurrence.
Collapse
Affiliation(s)
- Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Anirudha Sahu
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| |
Collapse
|
17
|
Jiang W, Yu Y, Liu J, Zhao Q, Wang J, Zhang J, Dang X. Downregulation of Cdc6 inhibits tumorigenesis of osteosarcoma in vivo and in vitro. Biomed Pharmacother 2019; 115:108949. [DOI: 10.1016/j.biopha.2019.108949] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
|
18
|
do Nascimento JCF, de Oliveira Vasconcelos A, Seabra MABL, Beltrão EIC, Rocha CRC. The challenge of determining the impact of FUT3 tumor-associated polymorphism rs2306969 (-6951 C> T) in invasive breast cancer cells. Mol Biol Rep 2019; 46:3531-3536. [PMID: 30929162 DOI: 10.1007/s11033-019-04780-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
FUT3 gene is responsible for encode an homonymous α1,3/4-fucosyltransferase involved in the synthesis of sialyl-Lewis antigens. FUT3-fucosylated glycoconjugates play key roles in pathways involved in tumor biology and metastasis, such as cellular ligation to E-selectins, TGF-β-induced epithelial-mesenchymal transition, NK cell-mediated tumor cytotoxicity and apoptosis. Tumor-associated FUT3 promoter polymorphism rs2306969 (-6951 C> T, position related to the gene's translation start site) has been linked to breast, ovarian and intestinal gastric cancer. Although non-coding polymorphisms accounts for the majority of variations founded in breast cancer, their functional roles are still poorly understood. This study aimed to investigate the impact of different alleles for this variation in FUT3 expression of invasive breast tumors. A luciferase reporter assay was performed using two breast tumor cell lines to evaluate respectively the impact of FUT3 rs2306969 (-6951 CC) and (-6951 TT) on protein expression. Gene and protein expressions were also measured in twenty-nine fresh biopsies of invasive breast tumors. Rs2306969 did not significantly influence FUT3 expression in both used systems. However, this study is defiant since the biological role of this polymorphism in breast cancer and other tumor types could be linked to cis/trans modulation of other genes, respond to different environmental stimuli or impact gene expression only in association with other variations. Rs2306969 did not modulate FUT3 expression in breast tumors under non-stimulated conditions. Nevertheless, our study contributes to the notably challenging task that is to understand how non-coding polymorphisms can drive the overall risk in cancer development.
Collapse
Affiliation(s)
| | | | | | - Eduardo Isidoro Carneiro Beltrão
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil.,Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil
| | - Cíntia Renata Costa Rocha
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil. .,Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil.
| |
Collapse
|
19
|
Sui C, Liu D, Hu Y, Zhang L. MicroRNA-708-5p affects proliferation and invasion of osteosarcoma cells by targeting URGCP. Exp Ther Med 2019; 17:2235-2241. [PMID: 30783484 PMCID: PMC6364217 DOI: 10.3892/etm.2019.7171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma is an aggressive cancer of the skeletal system which remains a challenge for the current therapeutic strategies due to unclear etiology and molecular mechanisms of pathogenesis. The current study aimed to determine the expression levels, role and molecular mechanism of microRNA-708-5p (miR-708-5p) in the development of osteosarcoma. The expression level of miR-708-5p was detected using reverse transcription-quantitative polymerase chain reaction. miR-708-5p was overexpressed in SaOS-2 cells using miR-708-5p mimics. Cell viability, apoptosis, migration and invasion were determined using Cell Counting kit-8 assay, flow cytometry, wound healing and transwell assays, respectively. The results indicated that miR-708-5p was significantly downregulated in osteosarcoma tissues and cells, and its overexpression significantly inhibited cell viability, invasion and migration and induced apoptosis of SaOS-2 cells. Furthermore, the present results indicated that miR-708-5p directly targeted the 3'-untranslated region of up-regulator of cell proliferation (URGCP) and negatively regulated its expression in SaOS-2 cells. Taken together, the current study suggested that miR-708-5p may inhibit the growth and invasion of osteosarcoma cells via regulating the URGCP/NF-κB signaling pathway. Further research on these molecules in osteosarcoma may provide novel insights into the target therapy for this disease.
Collapse
Affiliation(s)
- Cong Sui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Debao Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yong Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Linlin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
20
|
Abstract
Wingless-Type MMTV Integration Site Family, Member 6 (WNT6) is a member of the Wnt family and its expression is abnormal in different human cancer cell lines. The purpose of this study was to investigate the clinical significance of WNT6 in osteosarcoma.The levels of WNT6 mRNA and protein in tissue and serum were detected through quantitative real-time polymorperase chain reaction (qRT-PCR) and Enzyme Lined Immunosorbent Assay (ELISA), respectively. Chi-square test was performed to estimate the association of WNT6 expression with clinical parameters among osteosarcoma patients. Receiver operation characteristic (ROC) curve was plotted to determine diagnostic performance of serum WNT6 in osteosarcoma. Survival analysis was performed using Kaplan-Meier method. Cox regression analysis was adopted to evaluate prognostic significance of WNT6 expression among osteosarcoma patients.Compared with the controls, WNT6 mRNA and protein levels were significantly elevated in patients with osteosarcoma (P > .05 for all). Furthermore, WNT6 upregulation showed positive correlation with patients' age (P < .001), tumor grade (P < .001) and distant metastasis (P = .001). WNT6 might be a diagnostic marker for osteosarcoma with an AUC of 0.854 combining a specificity of 88.4% and a sensitivity of 77.8%. Survival analysis result indicated that high WNT6 expression predicted poor survival (log rank test, P = .001). WNT6 might be a potential prognostic biomarker for osteosarcoma (HR = 2.227, 95%CI = 1.061-10.842, P = .027).WNT6 may be a diagnostic and prognostic marker in osteosarcoma.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Orthopaedics, Zunyi Medical University, Zunyi, Guizhou
| | | | - Lu Li
- Department of Laboratory, Tiemei Coal Group General Hospital, Tieling
| | - Xiaohua Wang
- Intensive Care Unit, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning
| | - Yuanjie Gu
- Department of Orthopaedics, Zunyi Medical University, Zunyi, Guizhou
| | - Zhiqiang Jin
- Department of Orthopaedics, Pangang Group General Hospital, Panzhihua, Sichuan, China
| |
Collapse
|
21
|
Zhang B, Liu Y, Zhang J. Silencing of miR-19a-3p enhances osteosarcoma cells chemosensitivity by elevating the expression of tumor suppressor PTEN. Oncol Lett 2018; 17:414-421. [PMID: 30655782 DOI: 10.3892/ol.2018.9592] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/16/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs, which serve important roles in tumor progression. The present study analyzed the role of miR-19a-3p in the chemosensitivity of osteosarcoma (OS) cells. Overexpression of miR-19a-3p was observed in OS cells and a cisplatin-resistant MG63 cell line was subsequently constructed. It was observed that miR-19a-3p inhibitor transfection suppressed cell proliferation and decreased the expression of Ki67 and PCNA compared with the cisplatin treatment group. miR-19a-3p inhibitor transfection also promoted apoptotic rate, increased the expression of Bcl-2 associated X, apoptosis regulator (Bax) and markedly decreased the expression of Bcl-2 compared with the cisplatin treatment group. These results elucidated that silencing of miR-19a-3p enhanced chemosensitivity of OS cells to Cisplatin, through suppressing cell proliferation and promoting cell apoptosis during treatment with Cisplatin. Bioinformatics study and luciferase reporter assays indicated that PTEN was a target of miR-19a-3p, and western blotting demonstrated that PTEN expression was negatively regulated by miR-19a-3p in OS cells. In addition, overexpression of PTEN decreased cell proliferation, but increased apoptotic rate compared with the cisplatin treatment group. It was observed that inhibition of PTEN by BpV(HOpic) upregulated cell proliferation and downregulated apoptotic rate compared with the Cisplatin-treated miR-19a-3p inhibitor group, indicating that inhibition of PTEN expression counteracted the effect of the miR-19a-3p inhibitor on the regulation of chemosensitivity in OS cells. Taken together, overexpression of miR-19a-3p was observed in OS cell lines and that downregulation of miR-19a-3p enhanced the chemosensitivity of OS cells to Cisplatin, by elevating the expression of the tumor suppressor, PTEN.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Orthopaedics, The First People's Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Yuan Liu
- Department of Medical Examination, Center for Disease Control and Prevention of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Jiangnan Zhang
- Department of Orthopaedics, The First People's Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|