1
|
Ożarowski M, Karpiński TM, Czerny B, Kamiński A, Seremak-Mrozikiewicz A. Plant Alkaloids as Promising Anticancer Compounds with Blood-Brain Barrier Penetration in the Treatment of Glioblastoma: In Vitro and In Vivo Models. Molecules 2025; 30:1561. [PMID: 40286187 PMCID: PMC11990316 DOI: 10.3390/molecules30071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma (GBM) is one of the most invasive central nervous system tumors, with rising global incidence. Therapy resistance and poor prognosis highlight the urgent need for new anticancer drugs. Plant alkaloids, a largely unexplored yet promising class of compounds, have previously contributed to oncology treatments. While past reviews provided selective insights, this review aims to collectively compare data from the last decade on (1) plant alkaloid-based anticancer drugs, (2) alkaloid transport across the blood-brain barrier (BBB) in vitro and in vivo, (3) alkaloid mechanisms of action in glioblastoma models (in vitro, in vivo, ex vivo, and in silico), and (4) cytotoxicity and safety profiles. Additionally, innovative drug delivery systems (e.g., nanoparticles and liposomes) are discussed. Focusing on preclinical studies of single plant alkaloids, this review includes 22 botanical families and 28 alkaloids that demonstrated anti-GBM activity. Most alkaloids act in a concentration-dependent manner by (1) reducing glioma cell viability, (2) suppressing proliferation, (3) inhibiting migration and invasion, (4) inducing cell death, (5) downregulating Bcl-2 and key signaling pathways, (6) exhibiting antiangiogenic effects, (7) reducing tumor weight, and (8) improving survival rates. The toxic and adverse effect analysis suggests that alkaloids such as noscapine, lycorine, capsaicin, chelerythrine, caffeine, boldine, and colchicine show favorable therapeutic potential. However, tetrandrine, nitidine, harmine, harmaline, cyclopamine, cocaine, and brucine may pose greater risks than benefits. Piperine's toxicity and berberine's poor bioavailability suggest the need for novel drug formulations. Several alkaloids (kukoamine A, cyclovirobuxine D, α-solanine, oxymatrine, rutaecarpine, and evodiamine) require further pharmacological and toxicological evaluation. Overall, while plant alkaloids show promise in glioblastoma therapy, progress in assessing their BBB penetration remains limited. More comprehensive studies integrating glioma research and advanced drug delivery technologies are needed.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland;
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Adam Kamiński
- Department of Orthopaedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
| |
Collapse
|
2
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Song X, Singh M, Lee KE, Vinayagam R, Kang SG. Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems. Int J Mol Sci 2024; 25:12003. [PMID: 39596082 PMCID: PMC11593559 DOI: 10.3390/ijms252212003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine's effects on chronic diseases. Of importance, many meta-studies have shown that regularly drinking caffeine or caffeinated coffee significantly reduces the risk of developing Alzheimer's disease, epilepsy, and Parkinson's disease. Based on the health supplements of caffeine, this review summarizes various aspects related to the application of caffeine, including its pharmacokinetics, and various functional health benefits of caffeine, such as its effects on the central nervous system. The importance of caffeine and its use in alleviating or treating cancer, diabetes, eye diseases, autoimmune diseases, and cardiovascular diseases is also discussed. Overall, consuming caffeine daily in drinks containing antioxidant and neuroprotective properties, such as coffee, prevents progressive neurodegenerative diseases, such as Alzheimer's and Parkinson's. Furthermore, to effectively deliver caffeine to the body, recently developed nanoformulations using caffeine, for instance, nanoparticles, liposomes, etc., are summarized along with regulatory and safety considerations for caffeine. The U.S. Department of Agriculture (USDA) and the Food and Drug Administration (FDA) recommended that healthy adults consume up to 400 mg of caffeine per day or 5~6 mg/kg body weight. Since a cup of coffee contains, on average, 100 to 150 mg of coffee, 1 to 3 cups of coffee may help prevent chronic diseases. Furthermore, this review summarizes various interesting and important areas of research on caffeine and its applications related to human health.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kyung Eun Lee
- Sunforce Inc., 208-31, Gumchang-ro, Yeungcheon-si 31882, Republic of Korea;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Neves A, Albuquerque T, Faria R, Santos CRA, Vivès E, Boisguérin P, Carneiro D, Bruno DF, Pavlaki MD, Loureiro S, Sousa Â, Costa D. Evidence That a Peptide-Drug/p53 Gene Complex Promotes Cognate Gene Expression and Inhibits the Viability of Glioblastoma Cells. Pharmaceutics 2024; 16:781. [PMID: 38931902 PMCID: PMC11207567 DOI: 10.3390/pharmaceutics16060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiform (GBM) is considered the deadliest brain cancer. Conventional therapies are followed by poor patient survival outcomes, so novel and more efficacious therapeutic strategies are imperative to tackle this scourge. Gene therapy has emerged as an exciting and innovative tool in cancer therapy. Its combination with chemotherapy has significantly improved therapeutic outcomes. In line with this, our team has developed temozolomide-transferrin (Tf) peptide (WRAP5)/p53 gene nanometric complexes that were revealed to be biocompatible with non-cancerous cells and in a zebrafish model and were able to efficiently target and internalize into SNB19 and U373 glioma cell lines. The transfection of these cells, mediated by the formulated peptide-drug/gene complexes, resulted in p53 expression. The combined action of the anticancer drug with p53 supplementation in cancer cells enhances cytotoxicity, which was correlated to apoptosis activation through quantification of caspase-3 activity. In addition, increased caspase-9 levels revealed that the intrinsic or mitochondrial pathway of apoptosis was implicated. This assumption was further evidenced by the presence, in glioma cells, of Bax protein overexpression-a core regulator of this apoptotic pathway. Our findings demonstrated the great potential of peptide TMZ/p53 co-delivery complexes for cellular transfection, p53 expression, and apoptosis induction, holding promising therapeutic value toward glioblastoma.
Collapse
Affiliation(s)
- Ana Neves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Rúben Faria
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Cecília R. A. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Eric Vivès
- PhyMedExp, INSERM, CNRS, University of Montpellier, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguérin
- PhyMedExp, INSERM, CNRS, University of Montpellier, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Diana Carneiro
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Daniel F. Bruno
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Maria D. Pavlaki
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Susana Loureiro
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| |
Collapse
|
5
|
Yang K, Liu J, He T, Dong W. Caffeine and neonatal acute kidney injury. Pediatr Nephrol 2024; 39:1355-1367. [PMID: 37665410 DOI: 10.1007/s00467-023-06122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Acute kidney injury is one of the most threatening diseases in neonates, with complex pathogenesis and limited treatment options. Caffeine is a commonly used central nervous system stimulant for treating apnea in preterm infants. There is compelling evidence that caffeine may have potential benefits for preventing neonatal acute kidney injury, but comprehensive reports are lacking in this area. Hence, this review aims to provide a summary of clinical data on the potential benefits of caffeine in improving neonatal acute kidney injury. Additionally, it delves into the molecular mechanisms underlying caffeine's effects on acute kidney injury, with a focus on various aspects such as oxidative stress, adenosine receptors, mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome, autophagy, p53, and gut microbiota. The ultimate goal of this review is to provide information for healthcare professionals regarding the link between caffeine and neonatal acute kidney injury and to identify gaps in our current understanding.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Ting He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
6
|
Li W, Wang M, Ma W, Liu P, Zhang M, He J, Cui Y. Temozolomide protects against the progression of glioblastoma via SOX4 downregulation by inhibiting the LINC00470-mediated transcription factor EGR2. CNS Neurosci Ther 2023; 29:2292-2307. [PMID: 36987665 PMCID: PMC10352878 DOI: 10.1111/cns.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/17/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE Temozolomide is extensively applied in chemotherapy for glioblastoma with unclear exact action mechanisms. This article seeks to address the potential molecular mechanisms in temozolomide therapy for glioblastoma involving LINC00470. METHODS Bioinformatics analysis was conducted to predict the potential mechanism of LINC00470 in glioblastoma, which was validated by dual-luciferase reporter, RIP, ChIP, and RNA pull-down assays. LINC00470 expression and the predicted downstream transcription factor early growth response 2 (EGR2) were detected in the collected brain tissues from glioblastoma patients. Following temozolomide treatment and/or gain- and loss-of-function approaches in glioblastoma cells, cell viability, invasion, migration, cycle distribution, angiogenesis, autophagy, and apoptosis were measured. In addition, the expression of mesenchymal surface marker proteins was assessed by western blot. Tumor xenograft in nude mice was conducted for in vivo validation. RESULTS Mechanistic analysis and bioinformatics analysis revealed that LINC00470 transcriptionally activated SRY-related high-mobility-group box 4 (SOX4) through the transcription factor EGR2. LINC00470 and EGR2 were highly expressed in brain tissues of glioblastoma patients. LINC00470 and EGR2 mRNA expression gradually decreased with increasing concentrations of temozolomide in glioblastoma cells, and SOX4 expression was reduced in cells by temozolomide and LINC00470 knockdown. Temozolomide treatment induced cell cycle arrest, diminished cell viability, migration, invasion, and angiogenesis, and increased apoptosis and autophagy in glioblastoma, which was counteracted by overexpressing LINC00470 or SOX4 but was further promoted by LINC00470 knockdown. Temozolomide restrained glioblastoma growth and angiogenesis in vivo, while LINC00470 or SOX4 overexpression nullified but LINC00470 knockdown further facilitated these trends. CONCLUSION Conclusively, temozolomide repressed glioblastoma progression by repressing the LINC00470/EGR2/SOX4 axis.
Collapse
Affiliation(s)
- Wenyang Li
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Wang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wenjia Ma
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ping Liu
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Mingming Zhang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jiarong He
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yan Cui
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
7
|
Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN, Mazumder K, Moon IS. Natural Products Targeting Hsp90 for a Concurrent Strategy in Glioblastoma and Neurodegeneration. Metabolites 2022; 12:1153. [PMID: 36422293 PMCID: PMC9697676 DOI: 10.3390/metabo12111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 09/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nusrat Jahan Selsi
- Product Development Department, Popular Pharmaceuticals Ltd., Dhaka 1207, Bangladesh
| | - Nasrin Akter
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University Bangladesh, Dhaka 1212, Bangladesh
| | - Md Nazim Uddin
- Department of Pharmacy, Southern University Bangladesh, Chittagong 4000, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
8
|
Lombardi F, Augello FR, Artone S, Ayroldi E, Giusti I, Dolo V, Cifone MG, Cinque B, Palumbo P. Cyclooxygenase-2 Upregulated by Temozolomide in Glioblastoma Cells Is Shuttled In Extracellular Vesicles Modifying Recipient Cell Phenotype. Front Oncol 2022; 12:933746. [PMID: 35936755 PMCID: PMC9355724 DOI: 10.3389/fonc.2022.933746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Temozolomide (TMZ) resistance is frequent in patients with glioblastoma (GBM), a tumor characterized by a marked inflammatory microenvironment. Recently, we reported that cyclooxygenase-2 (COX-2) is upregulated in TMZ-resistant GBM cells treated with high TMZ concentrations. Moreover, COX-2 activity inhibition significantly counteracted TMZ-resistance of GBM cells. Extracellular vesicles (EV) are considered crucial mediators in orchestrating GBM drug resistance by modulating the tumor microenvironment (TME) and affecting the surrounding recipient cell phenotype and behavior. This work aimed to verify whether TMZ, at low and clinically relevant doses (5-20 µM), could induce COX-2 overexpression in GBM cells (T98G and U87MG) and explore if secreted EV shuttled COX-2 to recipient cells. The effect of COX-2 inhibitors (COXIB), Celecoxib (CXB), or NS398, alone or TMZ-combined, was also investigated. Our results indicated that TMZ at clinically relevant doses upregulated COX-2 in GBM cells. COXIB treatment significantly counteracted TMZ-induced COX-2 expression, confirming the crucial role of the COX-2/PGE2 system in TMZ-resistance. The COXIB specificity was verified on U251MG, COX-2 null GBM cells. Western blotting of GBM-EV cells showed the COX-2 presence, with the same intracellular trend, increasing in EV derived from TMZ-treated cells and decreasing in those derived from COXIB+TMZ-treated cells. We then evaluated the effect of EV secreted by TMZ-treated cells on U937 and U251MG, used as recipient cells. In human macrophage cell line U937, the internalization of EV derived by TMZ-T98G cells led to a shift versus a pro-tumor M2-like phenotype. On the other hand, EV from TMZ-T98G induced a significant decrease in TMZ sensitivity in U251MG cells. Overall, our results, in confirming the crucial role played by COX-2 in TMZ-resistance, provide the first evidence of the presence and effective functional transfer of this enzyme through EV derived from GBM cells, with multiple potential consequences at the level of TME.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Serena Artone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Emira Ayroldi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Benedetta Cinque, ; Paola Palumbo,
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Benedetta Cinque, ; Paola Palumbo,
| |
Collapse
|
9
|
Bonafé GA, Boschiero MN, Sodré AR, Ziegler JV, Rocha T, Ortega MM. Natural Plant Compounds: Does Caffeine, Dipotassium Glycyrrhizinate, Curcumin, and Euphol Play Roles as Antitumoral Compounds in Glioblastoma Cell Lines? Front Neurol 2022; 12:784330. [PMID: 35300350 PMCID: PMC8923017 DOI: 10.3389/fneur.2021.784330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Many plant-derived compounds are shown to be promising antitumor therapeutic agents by enhancing apoptosis-related pathways and cell cycle impairment in tumor cells, including glioblastoma (GBM) cell lines. We aimed to review four natural plant compounds effective in GBM cell lines as caffeine, dipotassium glycyrrhizinate (DPG), curcumin, and euphol. Furthermore, antitumoral effect of these plant compounds on GBM cell lines through microRNAs (miRs) modulation was investigated. However, only DPG and curcumin were found as effective on miR modulation. Caffeine arrests GBM cell cycle in G0/G1 phase by cyclin-dependent kinases (CDK) complex inhibition and by decreasing BCL-2 and increasing FOXO1 expression levels causing greater apoptotic activity. Caffeine can also directly inhibit IP3R3, p38 phosphorylation, and rho-associated protein kinase (ROCK), decreasing cell invasion and migration capacity or indirectly by inhibiting the tissue inhibitor metalloproteinase-1 (TIMP-1) and integrins β1 and β3, leading to lower matrix metalloproteinases, MMP-2 and MMP-9. DPG presents antitumoral effect in GBM cells related to nuclear factor kappa B (NF-κB) pathway suppression by IRAK2 and TRAF6-mediating miR-16 and miR-146a, respectively. More recently, it was observed that DPG upregulated miR-4443 and miR-3620, responsible for post-transcriptional inhibition of the NF-κB pathway by CD209 and TNC modulation, respectively leading to lower MMP-9 and migration capacity. Curcumin is able to increase miR-223-3p, miR-133a-3p, miR-181a-5p, miR-34a-5p, miR-30c-5p, and miR-1290 expression leading to serine or threonine kinase (AKT) pathway impairment and also it decreases miR-27a-5p, miR-221-3p, miR-21-5p, miR-125b-5p, and miR-151-3p expression causing p53-BCL2 pathway inhibition and consequently, cellular apoptosis. Interestingly, lower expression of miR-27a by curcumin action enhanced the C/EBP homologous protein(CHOP) expression, leading to paraptosis. Curcumin can inhibit miR-21 expression and consequently activate apoptosis through caspase 3 and death receptor (DR) 4 and 5 activation. Autophagy is controlled by the LC-3 protein that interacts with Atg family for the LC3-II formation and autophagy activation. Euphol can enhance LC3-II levels directly in GBM cells or inhibits tumor invasion and migration through PDK1 modulation.
Collapse
Affiliation(s)
- Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | - André Rodrigues Sodré
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | | | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
- *Correspondence: Manoela Marques Ortega
| |
Collapse
|
10
|
Travers S, Litofsky NS. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sci 2021; 11:brainsci11050533. [PMID: 33922443 PMCID: PMC8146925 DOI: 10.3390/brainsci11050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Survival in glioblastoma remains poor despite advancements in standard-of-care treatment. Some patients wish to take a more active role in their cancer treatment by adopting daily lifestyle changes to improve their quality of life or overall survival. We review the available literature through PubMed and Google Scholar to identify laboratory animal studies, human studies, and ongoing clinical trials. We discuss which health habits patients adopt and which have the most promise in glioblastoma. While results of clinical trials available on these topics are limited, dietary restrictions, exercise, use of supplements and cannabis, and smoking cessation all show some benefit in the comprehensive treatment of glioblastoma. Marital status also has an impact on survival. Further clinical trials combining standard treatments with lifestyle modifications are necessary to quantify their survival advantages.
Collapse
|
11
|
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in Research of Adult Gliomas. Int J Mol Sci 2021; 22:ijms22020924. [PMID: 33477674 PMCID: PMC7831916 DOI: 10.3390/ijms22020924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices. We discuss the progress that has been made in understanding glioma heterogeneity, alteration in gene expression and DNA methylation, as well as advances in various in silico models. Lastly current treatment options and future clinical trials, which aim to improve early diagnosis and disease monitoring, are also discussed.
Collapse
Affiliation(s)
- Alina Finch
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
| | - Georgios Solomou
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- School of Medicine, Keele University, Staffordshire ST5 5NL, UK
| | - Victoria Wykes
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham B15 2WB, UK;
| | - Chiara Bardella
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Correspondence: (C.B.); (C.W.)
| | - Colin Watts
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
- Correspondence: (C.B.); (C.W.)
| |
Collapse
|
12
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0109/dmdi-2020-0109.xml. [PMID: 32887179 DOI: 10.1515/dmdi-2020-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Objectives Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. Methods The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. Results We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. Conclusions The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
13
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 35:dmpt-2020-0109. [PMID: 34704697 DOI: 10.1515/dmpt-2020-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. METHODS The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. RESULTS We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. CONCLUSIONS The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation.,Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
14
|
Jiang S, Chen J. WRN inhibits oxidative stress-induced apoptosis of human lensepithelial cells through ATM/p53 signaling pathway and its expression is downregulated by DNA methylation. Mol Med 2020; 26:68. [PMID: 32640976 PMCID: PMC7341633 DOI: 10.1186/s10020-020-00187-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Apoptosis and oxidative stress are the main etiology of age related cataract (ARC). This article aims to investigate the role of WRN in lens epithelial cells (LECs). METHODS We estimated the methylation level of WRN in anterior lens capsule tissues of ARC patients. SRA01/04 (LECs) cells were treated with H2O2 or combined with 5-aza-2-deoxycytidine (5-Aza-CdR) or chloroquine. CCK8 and flow cytometry were performed to explore proliferation and apoptosis. The content of ROS was detected by fluorescent probe DCFH-DA. The gene and protein expression was assessed by quantitative real-time PCR or western blot. RESULTS WRN was down-regulated and the methylation level of WRN was increased in the anterior lens capsule tissues. WRN overexpression and 5-Aza-CdR enhanced proliferation and repressed apoptosis and oxidative stress of SRA01/04 cells. 5-Aza-CdR enhanced WRN expression. WRN knockdown inhibited proliferation and promoted apoptosis and oxidative stress of SRA01/04 cells, which was rescued by 5-Aza-CdR. WRN overexpression and 5-Aza-CdR repressed ATM/p53 signaling pathway. Furthermore, chloroquine inhibited proliferation and promoted apoptosis and oxidative stress of SRA01/04 cells by activating ATM/p53 signaling pathway. The influence conferred by chloroquine was abolished by WRN overexpression. CONCLUSION Our study reveals that DNA methylation mediated WRN inhibits apoptosis and oxidative stress of human LECs through ATM/p53 signaling pathway.
Collapse
Affiliation(s)
- Shengqun Jiang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University Guangzhou, No.601 Huangpu Avenue West, Guangzhou, Guangdong Province, China
- Ophthalmology Department, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University Guangzhou, No.601 Huangpu Avenue West, Guangzhou, Guangdong Province, China.
| |
Collapse
|