1
|
Shahrivari-Baviloliaei S, Konopacka A, Pascoalino LA, Reis F, Kunkowski D, Petropoulos SA, Konieczynski P, Orhan IE, Plenis A, Viapiana A. Nutritional, Chemical, Antioxidant and Antibacterial Screening of Astragalus cicer L. and Astragalus glycyphyllos L. Different Morphological Parts. Foods 2025; 14:250. [PMID: 39856916 PMCID: PMC11764730 DOI: 10.3390/foods14020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The chemical composition and biological activity of A. glycyphylos and A. cicer are scarcely investigated. In this study, the nutritional and chemical profiles of A. cicer and A. glycyphyllos, considering their different morphological parts (leaves, fruits and roots), were assessed together with their antioxidant and antibacterial potential. Our results showed that carbohydrates are the major macronutrients in both Astragalus species (above 62 g/100 g dry weight-DW). High amounts of ash (above 4.6 g/100 g DW) and protein (above 13.0 g/100 g DW) were also identified, particularly in leaves and fruits of A. cicer and A. glycyphyllos. Moreover, A. cicer was richer in sugars than A. glycyphyllos, while roots of both Astragalus species were the richest of fatty acids. Ten phenolic compounds were identified, with gallic acid and quercetin being predominant, above 49.84 and 37.27 μg/g DW, respectively. The mineral analysis revealed zinc and iron as the major constituents. Regarding the plants' antioxidant and antibacterial activity, both Astragalus species had antioxidant potential, and their water extracts showed antibacterial activity against S. aureus and E. coli. Altogether, these results provide insight into the potential of A. glycyphyllos and A. cicer as a source of nutritional benefits and active phytochemicals for many people, and they can be applied in the food sector as foods and as promising sources of natural ingredients.
Collapse
Affiliation(s)
- Saba Shahrivari-Baviloliaei
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.S.-B.); (D.K.); (P.K.)
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Liege Aguiar Pascoalino
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.R.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.R.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dawid Kunkowski
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.S.-B.); (D.K.); (P.K.)
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece;
| | - Pawel Konieczynski
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.S.-B.); (D.K.); (P.K.)
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye;
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, Ankara 06510, Türkiye
| | - Alina Plenis
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.S.-B.); (D.K.); (P.K.)
| | - Agnieszka Viapiana
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.S.-B.); (D.K.); (P.K.)
| |
Collapse
|
2
|
Klichkhanov NK, Suleimanova MN. Chemical Composition and Therapeutic Effects of Several Astragalus Species (Fabaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:172-186. [PMID: 39128957 DOI: 10.1134/s0012496624701096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
The review integrates information on the component composition and biological activity of some Astragalus L. (Fabaceae) species from studies reported over the past 5-7 years. The aerial and underground parts of 34 Astragalus species contain triterpene saponins, flavonoids, polysacharides, tannins, free organic acids, higher fatty acids, vitamins, trace elements, and other constituents. Among the Astragalus species, A. membranaceus (Fisch.) Bunge is the best studied in terms of component composition and biological activity. Anti-inflammatory, immunomodulatory, antioxidant, anticancer, cardioprotective, and hepathoprotective activities have been experimentally detected in total bioactive substances, fractions, and individual compounds extracted from various parts of A. membranaceus and A. membranaceus var. mongholicus in vitro and in vivo. The composition and biological effects of other Astragalus species are still poorly understood. The review summarizes the recent advances in studying new compounds extracted from Astragalus species and their biological activities.
Collapse
|
3
|
Shahrivari-Baviloliaei S, Erdogan Orhan I, Abaci Kaplan N, Konopacka A, Waleron K, Plenis A, Viapiana A. Characterization of Phenolic Profile and Biological Properties of Astragalus membranaceus Fisch. ex Bunge Commercial Samples. Antioxidants (Basel) 2024; 13:993. [PMID: 39199238 PMCID: PMC11351125 DOI: 10.3390/antiox13080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Astragalus membranaceus Fisch. ex Bunge (syn. Astragalus mongholicus Bunge) is one of the notable medicinal and food plants. Therefore, the aim of this study was to calculate the phenolic composition and antioxidant, antimicrobial, as well as enzyme inhibitory [acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYR)] activities with chemometric approaches of the hydromethanolic and water extracts of commercial A. membranaceus samples. Ten individual phenolic compounds were determined using high-performance liquid chromatography (HPLC), and only quercetin was found at a level of above 80 µg/g DW in both extracts. Moreover, the highest antioxidant activity in DPPH, FRAP, ABTS, and CUPRAC assays was found in the sample containing the roots in loose form from USA. A. membranaceus extracts displayed the inhibition zone diameters within the range from 10 to 22 mm antimicrobial activity against S. aureus, while there were no inhibition zones in any extracts in case of E. coli. The extracts of A. membranaceous showed an inhibition rate below 40% against TYR, and among tested extracts, only two samples were able to inhibit BChE with IC50 values of above 30 µg/mL. Correlation analysis showed a highly positive relationship between their phenolic composition and antioxidant activity. Concluding, the obtained results confirmed that A. membranaceus commercial samples could be an important dietary source of natural antioxidants.
Collapse
Affiliation(s)
- Saba Shahrivari-Baviloliaei
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye; (N.A.K.); (I.E.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, 06510 Ankara, Türkiye
| | - Nurten Abaci Kaplan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye; (N.A.K.); (I.E.O.)
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.K.); (K.W.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.K.); (K.W.)
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Agnieszka Viapiana
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| |
Collapse
|
4
|
Paździora W, Paśko P, Grabowska K, Galanty A. Can Isoflavone-Rich Legume Plants Be Useful in the Chemoprevention of Hormone-Dependent Cancers?-A Systematic Review. Int J Mol Sci 2024; 25:7389. [PMID: 39000493 PMCID: PMC11242776 DOI: 10.3390/ijms25137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Plants from the Fabaceae family are widely distributed around the world, especially in Europe, Asia and North America. They are a rich source of isoflavones, compounds with estrogen-like activity, which are suspected of having a chemopreventive effect against hormone-dependent cancers. Following the PRISMA guidelines, we conducted a systematic review aimed at assessing the impact of Fabaceae plant extracts on hormone-dependent cancer cells and the content of active compounds in plant raw materials. We analyzed the results of 63 articles from in vitro and in vivo studies describing the effect of plant extracts containing isoflavones on cancer cells, along with their anti-inflammatory and antioxidant potential. In the process, we determined the research limitations and future research directions. The collected results indicate the plant species with potentially high contents of phytoestrogens and anti-inflammatory, antioxidant and cytotoxic properties. They point to the potential use of plants in the diet as a source of compounds offering cancer prevention.
Collapse
Affiliation(s)
- Wojciech Paździora
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Str., 31-530 Cracow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.P.); (K.G.)
| |
Collapse
|
5
|
Feng ZJ, Lai WF. Chemical and Biological Properties of Biochanin A and Its Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15041105. [PMID: 37111591 PMCID: PMC10143291 DOI: 10.3390/pharmaceutics15041105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Biochanin A (BCA), an isoflavone derived from various plants such as chickpea, red clover and soybean, is attracting increasing attention and is considered to have applications in the development of pharmaceuticals and nutraceuticals due to its anti-inflammatory, anti-oxidant, anti-cancer and neuroprotective properties. To design optimised and targeted BCA formulations, on one hand there is a need for more in-depth studies on the biological functions of BCA. On the other hand, further studies on the chemical conformation, metabolic composition and bioavailability of BCA need to be conducted. This review highlights the various biological functions, extraction methods, metabolism, bioavailability, and application prospects of BCA. It is hoped that this review will provide a basis for understanding the mechanism, safety and toxicity of BCA and implementing the development of BCA formulations.
Collapse
Affiliation(s)
- Zhen-Jie Feng
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
6
|
Xu Q, Li Y, Du W, Zheng N, Wang J, Zhao S. Effect of dietary biochanin A on lactation performance, antioxidant capacity, rumen fermentation and rumen microbiome of dairy goat. Front Microbiol 2023; 14:1101849. [PMID: 36814572 PMCID: PMC9939525 DOI: 10.3389/fmicb.2023.1101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Biochanin A (BCA), an isoflavone phytoestrogen, is a secondary metabolite produced mainly in leguminous plants. The objective of this study was to evaluate the effect of BCA on lactation performance, nitrogen metabolism, and the health of dairy goat. Thirty mid-lactation Saanen dairy goats were divided into three groups randomly: control, 2 g/d BCA group, and 6 g/d BCA group. After 36 days of feeding, 30 dairy goats were transferred to individual metabolic cages. Subsequently, milk yield, feed intake, total feces, and urine excretion were recorded and samples were collected continuously for 3 days. Blood and ruminal fluid samples were collected over the subsequent 4 days. Milk yield, milk protein, fat content, and the feed conversion ratio of dairy goat were significantly increased by the BCA treatment. The levels of serum 17β-estradiol, growth hormone, insulin-like growth factor 1, glutathione peroxidase activity, and total antioxidant capacity were also increased significantly by BCA, indicating that BCA enhanced the antioxidant capacity of dairy goat. Amino acid degradation was significantly inhibited, while the ammonia nitrogen content was reduced significantly by BCA. Total volatile fatty acids was significantly increased by BCA supplementation. In addition, the relative abundance of Verrucomicrobiota was decreased significantly. However, the growth of nitrogen metabolism and cellulolytic bacteria was significantly increased under BCA treatment, including Prevotella sp., Treponema sp., Ruminococcus flavefaciens, and Ruminobacter amylophilus. In conclusion, supplementation with BCA improved the milk production performance, nitrogen metabolism, rumen fermentation and antioxidant capacity, and regulated the rumen microbiome of dairy goat.
Collapse
Affiliation(s)
- Qingbiao Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjuan Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Jiaqi Wang,
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Shengguo Zhao,
| |
Collapse
|
7
|
In Vitro and In Vivo Wound Healing Activity of Astragalus floccosus Boiss. (Fabaceae). Adv Pharmacol Pharm Sci 2022; 2022:7865015. [PMID: 35392504 PMCID: PMC8983193 DOI: 10.1155/2022/7865015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Estrogens are a group of sex hormones which have receptors on the skin and lead to increased cells and wound healing. Normally isoflavonoids are present in Astragalus floccosus Boiss. (Leguminosae). Therefore, the present study was conducted to evaluate the presence of isoflavonoids in A. floccosus' rich fraction of flavonoid and evaluate its wound healing effect accordingly. Flavonoids were evaluated by LCMS. Scratch was conducted and the medium culture was treated with the Astragalus' rich fraction of flavonoid (RFF) and was compared with nontreated culture during 48 hours. In addition, in vivo full-thickness wound healing evaluation was performed on rats. The rats were put into four groups and treated on a daily basis for 21 days with a cream containing 1.5% of the RFF (group 1), silver sulfadiazine (group 2), and Vaseline (group 3) separately. The nontreated group (group 4) was created for a better comparison. During the examination, wound size was evaluated and histopathological examination was performed. Herbal analysis detected 11 flavonoids, including 2 isoflavonoids, Calycosin-7-O-beta-D-glucoside and Formononetin, in the RFF. In vitro scratch wound healing showed significant improvement with RFF treatment in comparison to nontreated medium. Furthermore, in vitro drug release of Astragalus ointment showed a stationary line during 24 h and 0.14 mg/ml of flavonoid penetrated the skin. In vivo wound size evaluation showed significant improvement in the group treated with the RFF in comparison to other groups. Histopathological results indicated that congestion, edema, inflammation, necrosis, and angiogenesis decreased during the examination and fibroblast proliferation fibrosis epithelization was increased especially in the RFF group in comparison to the silver sulfadiazine and free groups. In conclusion, A. floccosus showed that wound healing activity in both in vitro and in vivo analyses can be attributed to the presence of isoflavonoids with estrogen-like activity in this plant.
Collapse
|
8
|
Lekmine S, Boussekine S, Akkal S, Martín-García AI, Boumegoura A, Kadi K, Djeghim H, Mekersi N, Bendjedid S, Bensouici C, Nieto G. Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC-ESI-MS Phenolic Profile of Astragalus gombiformis Pomel. Foods 2021; 10:1937. [PMID: 34441713 PMCID: PMC8394368 DOI: 10.3390/foods10081937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Plant-derived compounds have recently been gaining popularity as skincare factors due to their ability to absorb ultraviolet radiations and their anti-inflammatory, and antioxidant properties. In this light, this work aimed to evaluate in vitro the pharmacological activities of the butanolic extract prepared from the aerial parts of Astragalus gombiformis Pomel, an endemic species to southern Algeria. The sun protection factor was used to assess the photoprotective effect (SPF), the protein denaturation method to determine the anti-inflammatory activity, and brine shrimp nauplii and OxHLIA assay, respectively, to assess the cytotoxicity and antioxidant capacity of A. gombiformis. In addition, LC-ESI-MS analysis was employed for the characterization of the phenolic constituents of A. gombiformis. The results showed that A. gombiformis had high capacity for absorbing UV radiations with an SPF of 37.78 ± 0.85 and significant anti-inflammatory activity with a percentage inhibition of 75.38% which is close to that of diclofenac and ketoprofen. In addition, A. gombiformis was found to have effective cytotoxicity against Artemia nauplii with a DC50 value of about 44.7 µg/mL, but a weak hemolytic effect against human erythrocytes. LC-ESI-MS results detected the presence of 17 phenolic compounds with a predominance of cirsiliol, silymarin, quercitrin (quercetin-3-O-rhamnoside), and kaempferol. Taken together, these results suggest that A. gombiformis extract could be used as a skincare agent in cosmetic formulations, providing excellent antioxidant and anti-inflammatory protection, allowing the treatment of skin conditions, as well as a pharmaceutical agent with multidimensional applications.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Laboratory of Bioactive Molecules and Applications, Larbi Tébessi University, Tébessa 12000, Algeria; (S.L.); (S.B.)
| | - Samira Boussekine
- Laboratory of Bioactive Molecules and Applications, Larbi Tébessi University, Tébessa 12000, Algeria; (S.L.); (S.B.)
| | - Salah Akkal
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine 1, Constantine 25000, Algeria;
| | | | - Ali Boumegoura
- Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Nouvelle Ville, UV 03 BP E73, Constantine 25000, Algeria; (A.B.); (H.D.); (C.B.)
| | - Kenza Kadi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria; (K.K.); (N.M.)
| | - Hanene Djeghim
- Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Nouvelle Ville, UV 03 BP E73, Constantine 25000, Algeria; (A.B.); (H.D.); (C.B.)
| | - Nawal Mekersi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria; (K.K.); (N.M.)
| | - Samira Bendjedid
- Research Laboratory of Functional and Evolutionary Ecology, Department of Biology, Faculty of Natural Sciences and Life, Chadli Bendjedid University, El Tarf 36000, Algeria;
| | - Chawki Bensouici
- Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Nouvelle Ville, UV 03 BP E73, Constantine 25000, Algeria; (A.B.); (H.D.); (C.B.)
| | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30071 Murcia, Spain
| |
Collapse
|
9
|
Salehi B, Carneiro JNP, Rocha JE, Coutinho HDM, Morais Braga MFB, Sharifi-Rad J, Semwal P, Painuli S, Moujir LM, de Zarate Machado V, Janakiram S, Anil Kumar NV, Martorell M, Cruz-Martins N, El Beyrouthy M, Sadaka C. Astragalus species: Insights on its chemical composition toward pharmacological applications. Phytother Res 2021; 35:2445-2476. [PMID: 33325585 DOI: 10.1002/ptr.6974] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023]
Abstract
Astragalus L. is widely distributed throughout the temperate regions of Europe, Asia, and North America. The genus is widely used in folk medicine and in dietary supplements, as well as in cosmetics, teas, coffee, vegetable gums, and as forage for animals. The major phytoconstituents of Astragalus species with beneficial properties are saponins, flavonoids, and polysaccharides. Astragalus extracts and their isolated components exhibited promising in vitro and in vivo biological activities, including antiaging, antiinfective, cytoprotective, antiinflammatory, antioxidant, antitumor, antidiabesity, and immune-enhancing properties. Considering their proven therapeutic potential, the aim of this work is to give a comprehensive summary of the Astragalus spp. and their active components, in an attempt to provide new insight for further clinical development of these xenobiotics. This is the first review that briefly describes their ethnopharmacology, composition, biological, and toxicological properties.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | | | | | | | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, India
- Uttarakhand State Council for Science and Technology, Dehradun, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Laila Moujir Moujir
- Department of Biochemistry, Microbiology, Molecular Biology and Genetics, University of La Laguna, Tenerife, Spain
| | - Victoria de Zarate Machado
- Department of Biochemistry, Microbiology, Molecular Biology and Genetics, University of La Laguna, Tenerife, Spain
| | - Shriyaa Janakiram
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Natalia Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | | | - Carmen Sadaka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Al-Radadi NS. Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
11
|
Pharmacological Properties of Preparations Based on Astragalus Extract (Review). Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Sarfraz A, Javeed M, Shah MA, Hussain G, Shafiq N, Sarfraz I, Riaz A, Sadiqa A, Zara R, Zafar S, Kanwal L, Sarker SD, Rasul A. Biochanin A: A novel bioactive multifunctional compound from nature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137907. [PMID: 32208265 DOI: 10.1016/j.scitotenv.2020.137907] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Natural products (NPs) will continue to serve humans as matchless source of novel drug leads and an inspiration for the synthesis of non-natural drugs. As our scientific understanding of 'nature' is rapidly expanding, it would be worthwhile to illuminate the pharmacological distinctions of NPs to the scientific community and the public. Flavonoids have long fascinated scientists with their remarkable structural diversity as well as biological functions. Consequently, this review aims to shed light on the sources and pharmacological significance of a dietary isoflavone, biochanin A, which has been recently emerged as a multitargeted and multifunctional guardian of human health. Biochanin A possesses anti-inflammatory, anticancer, neuroprotective, antioxidant, anti-microbial, and hepatoprotective properties. It combats cancer development by inducing apoptosis, inhibition of metastasis and arresting cell cycle via targeting several deregulated signaling pathways of cancer. It fights inflammation by blocking the expression and activity of pro-inflammatory cytokines via modulation of NF-κB and MAPKs. Biochanin A acts as a neuroprotective agent by inhibiting microglial activation and apoptosis of neurons. As biochanin A has potential to modulate several biological networks, thus, it can be anticipated that this therapeutically potent compound might serve as a novel lead for drug development in the near future.
Collapse
Affiliation(s)
- Ayesha Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Maria Javeed
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Woman University Faisalabad (GCWUF), 38000 Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ayesha Sadiqa
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rabia Zara
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Saba Zafar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Lubna Kanwal
- Institute of Pure and Applied Zoology, University of Okara, Okara, Pakistan
| | - Satyajit D Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England, UK
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| |
Collapse
|
13
|
Chemical Profiling and Biological Properties of Extracts from Different Parts of Colchicum Szovitsii Subsp. Szovitsii. Antioxidants (Basel) 2019; 8:antiox8120632. [PMID: 31835669 PMCID: PMC6943543 DOI: 10.3390/antiox8120632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Like other members of the Colchicum genus, C. szovitsii subsp. szovitsii is also of medicinal importance in Turkish traditional medicine. However, its biological properties have not been fully investigated. Herein, we focused on the evaluation of the in vitro antioxidant and enzyme inhibitory effects of flower, root and leaf extracts, obtained using different extraction methods. In addition, a comprehensive (poly)-phenolic and alkaloid profiling of the different extracts was undertaken. In this regard, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) allowed us to putatively annotate 195 polyphenols and 87 alkaloids. The most abundant polyphenols were flavonoids (83 compounds), whilst colchicine and 2-demethylcolchicine were some of the most widespread alkaloids in each extract analyzed. However, our findings showed that C. szovitsii leaf extracts were a superior source of both total polyphenols and total alkaloids (being, on average 24.00 and 2.50 mg/g, respectively). Overall, methanolic leaf extracts showed the highest (p < 0.05) ferric reducing antioxidant power (FRAP) reducing power (on average 109.52 mgTE/g) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (on average 90.98 mgTE/g). Interestingly, each C. szovitsii methanolic extract was more active than the water extracts when considering enzymatic inhibition such as against tyrosinase, glucosidase, and acetylcholinesterase (AChE). Strong correlations (p < 0.01) were also observed between polyphenols/alkaloids and the biological activities determined. Multivariate statistics based on supervised orthogonal projections to latent structures discriminant analysis (OPLS-DA) allowed for the detection of those compounds most affected by the different extraction methods. Therefore, this is the first detailed evidence showing that C. szovitsii subsp. szovitsii might provide beneficial effects against oxidative stress and the associated chronic diseases. Nevertheless, the detailed mechanisms of action need to be further investigated.
Collapse
|
14
|
Liu T, Wang S, Ma H, Jin H, Li J, Yang X, Gao X, Chang Y. Microwave-Assisted Extraction Combined with In-Capillary [Fe(ferrozine) 3] 2+-CE-DAD to Screen Active Components with the Ability to Chelate Ferrous Ions from Flos Sophorae Immaturus (Flos Sophorae). Molecules 2019; 24:molecules24173052. [PMID: 31443451 PMCID: PMC6749251 DOI: 10.3390/molecules24173052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
An efficient microwave-assisted extraction (MAE) combined with in-capillary [Fe(ferrozine)3]2+-capillary electrophoresis-Diode Array Detector (in-capillary [Fe(ferrozine)3]2+-CE-DAD) was developed to screen active components with the ability to chelate ferrous ions and determine the total antioxidant activity. The MAE conditions, including methanol concentration, extraction power, extraction time, and the ratio of material to liquid, were optimized by an L9(34) orthogonal experiment. Background buffer, voltage, and cartridge temperature that affect the separation of six compounds were optimized. It was found that rutin and quercetin were the main components chelating ferrous ions in Flos Sophorae Immaturus (Flos Sophorae) by the in-capillary [Fe(ferrozine)3]2+-CE-DAD. The recoveries were ranged from 95.2% to 104%. It was concluded that the MAE combined with in-capillary [Fe(ferrozine)3]2+-CE-DAD method was a simple, reliable, and efficient tool for screening active components from the complex traditional Chinese medicine samples and evaluating their ability to chelate ferrous ions.
Collapse
Affiliation(s)
- Tao Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shanshan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hua Jin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
15
|
Babich O, Prosekov A, Zaushintsena A, Sukhikh A, Dyshlyuk L, Ivanova S. Identification and quantification of phenolic compounds of Western Siberia Astragalus danicus in different regions. Heliyon 2019; 5:e02245. [PMID: 31453402 PMCID: PMC6700501 DOI: 10.1016/j.heliyon.2019.e02245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/24/2018] [Accepted: 08/05/2019] [Indexed: 12/31/2022] Open
Abstract
The potential of phenolic compounds of medicinal plants including Astragalus danicus L is determined by but not limited to their antioxidant activity. Their anti-inflammatory, antitumor, and other useful properties are known, which allows using these phytochemicals within preventive activities to reduce the risk of many serious diseases. Chromatographic analysis of the Astragalus danicus L. biomaterial from the plant samples collected in three regions of the Kemerovo region (Western Siberia, Russia) established the presence of compounds of flavonols (isorhamnetin glucoside, kaempferol glucoside), flavones (apigenin 7-glucoside), phenylpropanoids (chlorogenic acid) in the aerial part of plants. The total content of phenolic compounds in plant samples ranged from 100.75 ± 3.87 mg/g (Yashkinsky district) to 190.95 ± 7.34 mg/g (Belovsky district). The content of chlorogenic acid in the studied samples was from 0.14 ± 0.01 mg/g to 1.16 ± 0.04 mg/g. Isorhamnetin glucoside was found only in samples of plants from two districts - Prokopievsky (41.39 ± 1.58 mg/g) and Belovsky (95.0 ± 3.66 mg/g). The content of glucosides of kaempferol ranged from 0.38 ± 0.01 mg/g to 0.55 ± 0.02 mg/g. Its content is almost twice as high as the content in the well-known analogues of Astragalus. Apigenin-7-glucoside was isolated in Astragalus samples for the first time, in a small amount (3.34 ± 0.13 mg/g) in a sample of plants of one growing zone. Studies have confirmed that the content of flavonoids in plants significantly depends not only on the genetic characteristics of plants, but also on the hydrothermal regime, the climatic conditions of different botanical and geographical areas of the habitat. This work shows that Astragalus danicus L. growing in Kemerovo region is a promising raw material for pharmacological preparations.
Collapse
Affiliation(s)
- Olga Babich
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Alexandra Zaushintsena
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Andrey Sukhikh
- Central Research Laboratory, Kemerovo State Medical University, 22a Voroshilova Street, Kemerovo, 650056, Russia
| | - Lyubov Dyshlyuk
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Svetlana Ivanova
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Corresponding author.
| |
Collapse
|
16
|
Butkutė B, Taujenis L, Norkevičienė E. Small-Seeded Legumes as a Novel Food Source. Variation of Nutritional, Mineral and Phytochemical Profiles in the Chain: Raw Seeds-Sprouted Seeds-Microgreens. Molecules 2018; 24:E133. [PMID: 30602699 PMCID: PMC6337440 DOI: 10.3390/molecules24010133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/30/2022] Open
Abstract
Growing public concerns about health haves prompted the search for novel food sources. The study is focused on the seeds, sprouted seeds and microgreens of Trifolium pratense, T. medium, Medicago sativa, M. lupulina, Onobrychis viciifolia, Astragalus glycyphyllos and A. cicer species as a potential source of value-added food ingredientsr. The samples were analysed for nutritional (wet chemistry, standard methods) and mineral (atomic absorption spectroscopy, UV-Vis spectrophotometry) profiles, isoflavones (ultra-performance liquid with diode array detector ⁻UPLC-DAD), coumestrol (UPLC-DAD), condensed tannins (CT) (vanillin-H₂SO₄ assay) and triterpene saponins (UPLC with triple-stage quadrupole MS). In our study, each species displayed high, but species-dependent nutritional, mineral and phytochemical value. All counterparts of legumes were mineral and protein rich. A. glycyphyllos samples, especially seeds, were abundant in iron. Trifolium spp. were found to be important sources of isoflavones, Medicago spp. of coumestrol and saponins, and O. viciifolia of CT. The protein and phytochemical contents increased and total carbohydrates decreased from seeds to microgreens.Our findings proved for the first time that seeds, sprouted seeds, and especially microgreens of small-seeded legumes are promising new sources of ingredients for fortification of staple foods with bioactive compounds, minerals and nutrients.
Collapse
Affiliation(s)
- Bronislava Butkutė
- Chemical Research Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344 Kėdainių r., Lithuania.
| | - Lukas Taujenis
- Department of Analytical and Environmental Chemistry, Vilnius University, 01513 Vilnius, Lithuania.
| | - Eglė Norkevičienė
- Department of Grass Breeding, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, 58344 Kėdainių r., Lithuania.
| |
Collapse
|
17
|
Pancratium triflorum Roxb. (Amaryllidaceae) and Molineria trichocarpa (Wight) N.P. Balakr (Hypoxidaceae): Cytotoxic and antioxidant activities. Food Chem Toxicol 2018; 119:290-295. [PMID: 29596974 DOI: 10.1016/j.fct.2018.02.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 11/23/2022]
Abstract
The present investigation was carried out to evaluate the antioxidant and cytotoxic activities of Pancratium triflorum Roxb and Molineria trichocarpa were collected from South Vagaikulam, Tirunelveli district, Tamil Nadu, India. The antioxidant activities of P. triflorum extracts were as follows with the IC50 values methanol (228.13 μg/mL) > chloroform (311.33 μg/mL) > acetone (398.08 μg/mL) > petroleum ether (410.16 μg/mL). The antioxidant activities of P. triflorum and M. trichocarpa extracts were as follows with the IC50 values methanol (80.93 μg/mL) > acetone (98.02 μg/mL) > chloroform (186.84 μg/mL) > petroleum ether (209.64 μg/mL). Among the various extracts of P. triflorum, methanolic extracts showed the strongest phosphomolybdenum reduction (140.56 g AA/100 g). Among the tested extracts, acetone extracts of M. trichocarpa showed maximum inhibition with 71.36 ± 5.86%. In P. triflorum, chloroform extracts showed maximum inhibition (69.51%). The petroleum ether extract of M. trichocarpa was found to be most effective at which 50% mortality (LC50) and 90% mortality (LC90) of brine shrimp nauplii were found to be 29.22 and 184.82 mg/mL. This study results revealed the antioxidant and cytotoxic properties of P. triflorum and M. trichocarpa. Further investigations are needed to isolate and validate the active principles of the extract responsible various pharmacological properties.
Collapse
|