1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Azar BKY, Vakhshiteh F. The Pre-metastatic Niche: How Cancer Stem Cell-Derived Exosomal MicroRNA Fit into the Puzzle. Stem Cell Rev Rep 2025:10.1007/s12015-025-10866-z. [PMID: 40095238 DOI: 10.1007/s12015-025-10866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Cancer metastasis is a complicated biological process that critically affects cancer progression, patient outcomes, and treatment plans. A significant step in metastasis is the formation of a pre-metastatic niche (PMN). A small subset of cells within tumors, known as cancer stem cells (CSCs), possess unique characteristics including, differentiation into different cell types within the tumor, self-renewal, and resistance to conventional therapies, that enable them to initiate tumors and drive metastasis. PMN plays an important role in preparing secondary organs for the arrival and proliferation of CSCs, thereby facilitating metastasis. CSC-derived exosomes are crucial components in the complex interplay between CSCs and the tumor microenvironment. These exosomes function as transporters of various substances that can promote cancer progression, metastasis, and modulation of pre-metastatic environments by delivering microRNA (miRNA, miR) cargo. This review aims to illustrate how exosomal miRNAs (exo-miRs) secreted by CSCs can predispose PMN and promote angiogenesis and metastasis.
Collapse
Affiliation(s)
- Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
López RR, Ben El Khyat CZ, Chen Y, Tsering T, Dickinson K, Bustamante P, Erzingatzian A, Bartolomucci A, Ferrier ST, Douanne N, Mounier C, Stiharu I, Nerguizian V, Burnier JV. A synthetic model of bioinspired liposomes to study cancer-cell derived extracellular vesicles and their uptake by recipient cells. Sci Rep 2025; 15:8430. [PMID: 40069225 PMCID: PMC11897354 DOI: 10.1038/s41598-025-91873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Extracellular vesicles (EVs) are secreted by most cell types and play a central role in cell-cell communication. These naturally occurring nanoparticles have been particularly implicated in cancer, but EV heterogeneity and lengthy isolation methods with low yield make them difficult to study. To circumvent the challenges in EV research, we aimed to develop a unique synthetic model by engineering bioinspired liposomes to study EV properties and their impact on cellular uptake. We produced EV-like liposomes mimicking the physicochemical properties as cancer EVs. First, using a panel of cancer and non-cancer cell lines, small EVs were isolated by ultracentrifugation and characterized by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Cancer EVs ranged in mean size from 107.9 to 161 nm by NTA, hydrodynamic diameter from 152 to 355 nm by DLS, with a zeta potential ranging from - 25 to -6 mV. EV markers TSG101 and CD81 were positive on all EVs. Using a microfluidics bottom-up approach, liposomes were produced using the nanoprecipitation method adapted to micromixers developed by our group. A library of liposome formulations was created that mimicked the ranges of size (90-222 nm) and zeta potential (anionic [-47 mV] to neutral [-1 mV]) at a production throughput of up to 41 mL/h and yielding a concentration of 1 × 1012 particles per mL. EV size and zeta potential were reproduced by controlling the flow conditions and lipid composition set by a statistical model based on the response surface methodology. The model was fairly accurate with an R-squared > 70% for both parameters between the targeted EV and the obtained liposomes. Finally, the internalization of fluorescently labeled EV-like liposomes was assessed by confocal microscopy and flow cytometry, and correlated with decreasing liposome size and less negative zeta potential, providing insights into the effects of key EV physicochemical properties. Our data demonstrated that liposomes can be used as a powerful synthetic model of EVs. By mimicking cancer cell-derived EV properties, the effects on cellular internalization can be assessed individually and in combination. Taken together, we present a novel system that can accelerate research on the effects of EVs in cancer models.
Collapse
Grants
- 312831, 344929, 306252, 330312, 330509 Fonds de Recherche du Québec - Santé
- 312831, 344929, 306252, 330312, 330509 Fonds de Recherche du Québec - Santé
- 312831, 344929, 306252, 330312, 330509 Fonds de Recherche du Québec - Santé
- 190179 Canadian Institutes for Health Research
- 190179 Canadian Institutes for Health Research
- 177808 National Sciences and Engineering Research Council of Canada (NSERC)
- NFRFE-2019-01587 Government of Canada's New Frontiers in Research Fund (NFRF)
- Government of Canada’s New Frontiers in Research Fund (NFRF)
Collapse
Affiliation(s)
- Rubén R López
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Chaymaa Zouggari Ben El Khyat
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Armen Erzingatzian
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Sarah Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Noélie Douanne
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Catherine Mounier
- Department of biological sciences, Université du Québec à Montréal, 141 avenue du président Kennedy, Montreal, QC, H2X 1Y4, Canada
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC, H3G 1M8, Canada
| | - Ion Stiharu
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, QC, H4A 3T2, Canada
| | - Vahé Nerguizian
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Department of Pathology, McGill University, Quebec, Canada.
| |
Collapse
|
4
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
5
|
Rakhmatullina AR, Zolotykh MA, Filina YV, Mingaleeva RN, Sagdeeva AR, Boulygina EA, Gafurbaeva DU, Bulatov ER, Rizvanov AA, Miftakhova RR. Development of a novel prostate Cancer-Stroma Sphere (CSS) model for In Vitro tumor microenvironment studies. Transl Oncol 2024; 44:101930. [PMID: 38520912 PMCID: PMC10981155 DOI: 10.1016/j.tranon.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
Tumor employs non-cancerous cells to gain beneficial features that promote growth and survival of cancer cells. Despite intensive research in the area of tumor microenvironment, there is still a lack of reliable and reproducible in vitro model for tumor and tumor-microenvironment cell interaction studies. Herein we report the successful development of a heterogeneous cancer-stroma sphere (CSS) model composed of prostate adenocarcinoma PC3 cells and immortalized mesenchymal stem cells (MSC). The CSS model demonstrated a structured spatial layout of the cells, with stromal cells concentrated at the center of the spheres and tumor cells located on the periphery. Significant increase in the levels of VEGFA, IL-10, and IL1a has been detected in the conditioned media of CSS as compared to PC3 spheres. Single cell RNA sequencing data revealed that VEGFA was secreted by MSC cells within heterogeneous spheroids. Enhanced expression of extracellular membrane (ECM) proteins was also shown for CSS-derived MSCs. Furthermore, we demonstrated that the multicellular architecture altered cancer cell response to chemotherapeutic agents: the inhibition of sphere formation by topotecan was 74.92 ± 4.56 % for PC3 spheres and 45.95 ± 7.84 % for CSS spheres (p < 0.01), docetaxel showed 37,51± 20,88 % and 15,67± 14,08 % inhibition, respectively (p < 0.05). Thus, CSS present an effective in vitro model for examining the extracellular matrix composition and cell-to-cell interactions within the tumor, as well as for evaluating the antitumor activity of drugs.
Collapse
Affiliation(s)
- Aigul R Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Maria A Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yulia V Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Rimma N Mingaleeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aisylu R Sagdeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Eugenia A Boulygina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dina U Gafurbaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil R Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, 420013, Kazan, Russia; I.K. Akhunbaev Kyrgyz state medical academy, 720020, Bishkek, Kyrgyzstan
| | - Regina R Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| |
Collapse
|
6
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
7
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Marzban H, Pedram N, Amini P, Gholampour Y, Saranjam N, Moradi S, Rahvarian J. Immunobiology of cancer stem cells and their immunoevasion mechanisms. Mol Biol Rep 2023; 50:9559-9573. [PMID: 37776412 DOI: 10.1007/s11033-023-08768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 10/02/2023]
Abstract
Cancer stem cells (CSCs) defined as a small fraction of cells within malignancies have been isolated from tumors with different histological origins with stem related characteristics such as self-replicating potential, tumorigenesis, and therapy resistance. The dynamic communication between CSCs and tumor microenvironment particularly immune cells orchestrates their fate and plasticity as well as the patient outcome. According to recent evidence, it has been reported that they harness different immunological pathways to escape immunosurveillance and express aberrantly immunomodulatory agents or decreased levels of factors forming antigen presenting machinery (APM), subsequently followed by impaired antigen presentation and suppressed immune detection. As effective therapies are expected to be able to eradicate CSCs, mechanistic understanding of such interactions can provide insights into causes of therapy failure particularly in immunotherapy. Also, it can contribute to enhance the practical interventions against CSCs and their immunomodulatory features resulting in CSCs eradication and improving patient clinical outcome. The aim of this review is to explain the present knowledge regarding the immunobiology of CSCs and the immunoevasion mechanisms they use.
Collapse
Affiliation(s)
- Havva Marzban
- Department of Immunology, Mayo Clinic, Scottsdale, US.
| | - Nastaran Pedram
- Faculty of Veterinary Medicine, Department of Clinical Science, Shiraz University, Shiraz, Iran
| | - Parnian Amini
- Department of Veterinary Laboratory Science, Islamic Azad University, Rasht Branch, Rasht, Iran
| | - Yasaman Gholampour
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Razi University, Kermanshah, Iran
| | | | - Samira Moradi
- Faculty of Medical Science, Department of Medicine, Hormozgan University, Bandar Abbas, Iran
| | - Jeiran Rahvarian
- Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
11
|
Selvaraj C, Panwar U, Ramalingam KR, Vijayakumar R, Singh SK. Exploring the macromolecules for secretory pathway in cancer disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:55-83. [PMID: 36707206 DOI: 10.1016/bs.apcsb.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Secretory proteins play an important role in the tumor microenvironment and are widely distributed throughout tumor tissues. Tumor cells secrete a protein that mediates communication between tumor cells and stromal cells, thereby controlling tumor growth and affecting the success of cancer treatments in the clinic. The cancer secretome is produced by various secretory pathways and has a wide range of applications in oncoproteomics. Secretory proteins are involved in cancer development and tumor cell migration, and thus serve as biomarkers or effective therapeutic targets for a variety of cancers. Several proteomic strategies have recently been used for the analysis of cancer secretomes in order to gain a better understanding and elaborate interpretation. For instance, the development of exosome proteomics, degradomics, and tumor-host cell interaction provide clear information regarding the mechanism of cancer pathobiology. In this chapter, we emphasize the recent advances in secretory protein and the challenges in the field of secretome analysis and their clinical applications.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Karthik Raja Ramalingam
- Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
12
|
Shahidi S, Rostamizadeh K, Fathi M, Nedaei K, Ramazani A. Combination of Quercetin or/and siRNA-loaded DDAB-mPEG-PCL hybrid nanoparticles reverse resistance to Regorafenib in colon cancer cells. BMC Complement Med Ther 2022; 22:340. [PMID: 36575448 PMCID: PMC9793538 DOI: 10.1186/s12906-022-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer death. Although Regorafenib showed survival benefits in patients with CRC, reports imply the recurrence of malignant phenotype resulting from chemotherapy. Evidence demonstrated that a5β1 integrin plays an important role in the Regorafenib treatment, which, may be led to resistance. In this study, the effects of /siRNA or/ and Quercetin loaded DDAB-mPEG-PCLnanoparticles could reverse this resistance phenotype in colon cancer cells in vitro. METHODS Regorafenib-resistant Ls-180 colon cancer cell line was developed by long-term exposure to Regorafenib. Quercetin and Regorafenib were separately encapsulated into mPEG-PCL micelles through the nano-precipitation method and characterized by DLS. Optimized doses of Quercetin and Regorafenib were used for combination therapy of resistant cells followed cytotoxicity study using MTT. Gene expression levels of the β1 subunit of integrin were determined by the real-time method of RT-PCR. RESULTS Developed Regorafenib resistant LS-180 showed to have Regorafenib IC50 of 38.96 ± 1.72 µM whereas IC50 in non-resistant cells were 8.51 ± 0.29 µM, which meaningful was lower statistically compared to that of a resistant one. The β1 mRNA level of whole α5β1 integrin was significantly higher in the resistant cells compared to those of non-resistant ones. Gene expression levels in each siRNA-loaded nanoparticle and Quercetin-loaded one were lower than that in mock experiments. Finally, when these two types of nanoparticles were used to treat resistant cells, gene expression decrease of integrin indicated a greater effect that could be capable of reverse resistancy. CONCLUSION Results of this study demonstrated another confirmation of involving integrins in cancer resistance following chemotherapy using Regorafenib. Also, it indicated how using siRNA targeting integrin could enhance the plant derivatives like Quercetin effects to reverse resistance in vitro.
Collapse
Affiliation(s)
- Shabnam Shahidi
- grid.469309.10000 0004 0612 8427Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojtaba Fathi
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.412606.70000 0004 0405 433XDepartment of Biochemistry and Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Keivan Nedaei
- grid.469309.10000 0004 0612 8427Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Cancer secretome: finding out hidden messages in extracellular secretions. Clin Transl Oncol 2022; 25:1145-1155. [PMID: 36525229 DOI: 10.1007/s12094-022-03027-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Secretome analysis has gained popularity recently as a very well-designed proteomic approach that is being used to study various interactions and their effects on cellular activity. This analysis is especially helpful while studying the effects of the cells on their microenvironment, paracrine and autocrine processes, their therapeutic purposes, and as a new diagnostic perspective. Cancer is a condition rather than a specific type of disease and is still yet to be fully understood. Cancer secretome is a fairly new concept that is being implemented to examine the interactions taking place in the tumor microenvironment and can help to understand the phenomena like induction of tumorigenesis, stimulation of immune cells, etc. The secretome analysis helps to gain a different perspective on the existing knowledge on cancer and its effects. The recent advances in secretome studies are directed toward secreted components as drug targets, biomarkers, and companion tools for diagnostic and prognostic purposes in cancer. This review aims to find the interactors in different types of cancer and understand the existing unstructured secretome data and its application in prognosis, diagnosis, and in biomarker study.
Collapse
|
14
|
Cui G, Wang Z, Liu H, Pang Z. Cytokine-mediated crosstalk between cancer stem cells and their inflammatory niche from the colorectal precancerous adenoma stage to the cancerous stage: Mechanisms and clinical implications. Front Immunol 2022; 13:1057181. [PMID: 36466926 PMCID: PMC9714270 DOI: 10.3389/fimmu.2022.1057181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 10/15/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are thought to arise from precancerous adenomas. Upon exposure to diverse microenvironmental factors, precancerous stem cells (pCSCs) undergo complex genetic/molecular changes and gradually progress to form cancer stem cells (CSCs). Accumulative evidence suggests that the pCSC/CSC niche is an inflammatory dominated milieu that contains different cytokines that function as the key communicators between pCSCs/CSCs and their niche and have a decisive role in promoting CRC development, progression, and metastasis. In view of the importance and increasing data about cytokines in modulating pCSCs/CSC stemness properties and their significance in CRC, this review summarizes current new insights of cytokines, such as interleukin (IL)-4, IL-6, IL-8, IL-17A, IL-22, IL-23, IL-33 and interferon (IFN)-γ, involving in the modulation of pCSC/CSC properties and features in precancerous and cancerous lesions and discusses the possible mechanisms of adenoma progression to CRCs and their therapeutic potential.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Faculty of Health Science, Nord University, Levanger, Norway
| | - Ziqi Wang
- College of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
NCAPG2 Maintains Cancer Stemness and Promotes Erlotinib Resistance in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184395. [PMID: 36139554 PMCID: PMC9497119 DOI: 10.3390/cancers14184395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary This study investigated the relationship between erlotinib resistance and stemness in lung adenocarcinoma. NCAPG2 was identified as an erlotinib resistance gene and maintained the stemness of lung adenocarcinoma. Abstract Erlotinib is a highly specific and reversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), but resistance inevitably develops as the disease progresses. Erlotinib resistance and cancer stem cells (CSCs) are poor factors hindering the prognosis of patients with lung adenocarcinoma (LUAD). Although studies have shown that erlotinib resistance and CSCs can jointly promote cancer development, the mechanism is currently unclear. Here, we investigated the potential biomarker and molecular mechanism of erlotinib resistance and cancer stemness in LUAD. An erlotinib resistance model based on four genes was constructed from The Cancer Genome Atlas (TCGA), the GEO database, the Cancer Cell Line Encyclopedia (CCLE), and the Genomics of Drug Sensitivity in Cancer (GDSC). Through multiple bioinformatic analyses, NCAPG2 was identified as a key gene for erlotinib resistance and stemness in LUAD. Further in vitro experiments demonstrated that NCAPG2 maintains stemness and contributes to erlotinib resistance in LUAD. In summary, NCAPG2 plays a vital role in stemness and erlotinib resistance in LUAD.
Collapse
|
16
|
Cui G, Li G, Pang Z, Florholmen J, Goll R. The presentation and regulation of the IL-8 network in the epithelial cancer stem-like cell niche in patients with colorectal cancer. Biomed Pharmacother 2022; 152:113252. [PMID: 35687912 DOI: 10.1016/j.biopha.2022.113252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accumulative evidence suggests that the biological behavior of cancer stem-like cells (CSCs) is regulated by their surrounding niche, in which cytokines function as one of the main mediators for the interaction between CSCs and their microenvironment in the colorectal cancer (CRC). METHODS We characterized the presentation of CSCs and the interleukin (IL)- 8 network in the adenoma/CRC epithelium using quantitative real-time PCR (q-PCR), immunohistochemistry (IHC) and double immunofluorescence. In addition, the capacity of IL-1β to stimulate epithelial IL-8 production in colon cancer Caco-2 cells was examined in vitro and the IL-8 product was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS IHC observation showed increased expression of both CSCs and IL-8 in the adenoma and CRC epithelium, and q-PCR results revealed that increased expression of IL-1β transcript was strongly correlated with increased IL-8 transcript levels in both adenoma and CRC tissues. Double immunofluorescence images demonstrated the coexpression of the IL-8 receptors IL-8RA and IL-8RB with LGR5 labeled CSCs in CRC tissue sections. Consistently, in vitro experiments showed that coculture of Caco-2 cells with IL-1β at concentrations of 1, 5, 10 and 20 ng/ml resulted in a dose-dependent release of IL-8, which could be specifically inhibited by cotreatment with the IL-1β receptor antagonist. CONCLUSIONS These results demonstrate activation of the IL-8 network in the niche of CSCs from the precancerous adenoma stage to the CRC stage, which is potentially stimulated by IL-1β in CRC cells.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Faculty of Health Science, Nord University, Campus Levanger, Levanger, Norway.
| | - Gui Li
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jon Florholmen
- Department of Gastroenterology, University Hospital of North Norway, University of Tromsø, Tromsø, Norway
| | - Rasmus Goll
- Department of Gastroenterology, University Hospital of North Norway, University of Tromsø, Tromsø, Norway
| |
Collapse
|
17
|
Ponomarev A, Gilazieva Z, Solovyeva V, Allegrucci C, Rizvanov A. Intrinsic and Extrinsic Factors Impacting Cancer Stemness and Tumor Progression. Cancers (Basel) 2022; 14:970. [PMID: 35205716 PMCID: PMC8869813 DOI: 10.3390/cancers14040970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Tumor heterogeneity represents an important limitation to the development of effective cancer therapies. The presence of cancer stem cells (CSCs) and their differentiation hierarchies contribute to cancer complexity and confer tumors the ability to grow, resist treatment, survive unfavorable conditions, and invade neighboring and distant tissues. A large body of research is currently focusing on understanding the properties of CSCs, including their cellular and molecular origin, as well as their biological behavior in different tumor types. In turn, this knowledge informs strategies for targeting these tumor initiating cells and related cancer stemness. Cancer stemness is modulated by the tumor microenvironment, which influences CSC function and survival. Several advanced in vitro models are currently being developed to study cancer stemness in order to advance new knowledge of the key molecular pathways involved in CSC self-renewal and dormancy, as well as to mimic the complexity of patients' tumors in pre-clinical drug testing. In this review, we discuss CSCs and the modulation of cancer stemness by the tumor microenvironment, stemness factors and signaling pathways. In addition, we introduce current models that allow the study of CSCs for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alexey Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| | - Zarema Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| |
Collapse
|
18
|
Hsu MT, Wang YK, Tseng YJ. Exosomal Proteins and Lipids as Potential Biomarkers for Lung Cancer Diagnosis, Prognosis, and Treatment. Cancers (Basel) 2022; 14:cancers14030732. [PMID: 35158999 PMCID: PMC8833740 DOI: 10.3390/cancers14030732] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Exosomes (or extracellular vesicles) are known to mediate intercellular communication and to transmit molecular signals between cells. Molecules carried by exosomes have their own molecular roles in affecting surrounding and distant environment, as well as recipient cells. Molecular components of exosomes can be used as cancer biomarkers for diagnosis and prognosis, being promising therapeutic targets for the interruption of cellular signals. Therefore, the understanding of the molecular compositions and their functional indications of exosomes has the potential to help doctors to diagnose and monitor diseases and to allow researchers to design and develop potential targeted therapies. This review aims to provide a comprehensive protein and lipid characterization of lung cancer exosomes and to explore their molecular functions and mechanisms regulating physiological and pathological processes. This organization offers informative insight for lung cancer diagnosis and treatment. Abstract Exosomes participate in cell–cell communication by transferring molecular components between cells. Previous studies have shown that exosomal molecules derived from cancer cells and liquid biopsies can serve as biomarkers for cancer diagnosis and prognosis. The exploration of the molecules transferred by lung cancer-derived exosomes can advance the understanding of exosome-mediated signaling pathways and mechanisms. However, the molecular characterization and functional indications of exosomal proteins and lipids have not been comprehensively organized. This review thoroughly collected data concerning exosomal proteins and lipids from various lung cancer samples, including cancer cell lines and cancer patients. As potential diagnostic and prognostic biomarkers, exosomal proteins and lipids are available for clinical use in lung cancer. Potential therapeutic targets are mentioned for the future development of lung cancer therapy. Molecular functions implying their possible roles in exosome-mediated signaling are also discussed. Finally, we emphasized the importance and value of lung cancer stem cell-derived exosomes in lung cancer therapy. In summary, this review presents a comprehensive description of the protein and lipid composition and function of lung cancer-derived exosomes for lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Ming-Tsung Hsu
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yu-Ke Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yufeng Jane Tseng
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Wang Y, Gong X, Li J, Wang H, Xu X, Wu Y, Wang J, Wang S, Li Y, Zhang Z. M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. J Nanobiotechnology 2021; 19:397. [PMID: 34838042 PMCID: PMC8627085 DOI: 10.1186/s12951-021-01143-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cells and cancer stem cells (CSCs) are the major players of cancer malignancy and metastasis, but they are extremely difficult to access. Inspired by the vital role of macrophages and microvesicle-mediated cell–cell communication in tumors, we herein designed M2 macrophage microvesicle-inspired nanovehicle of cabazitaxel (M-CFN) to promote accessibility to cancer cells and CSCs in tumors. In the 4T1 tumor model, M-CFN flexibly permeated the tumor mass, accessed cancer cells and CD90-positive cells, and significantly promoted their entry into CSC fractions in tumors. Moreover, M-CFN treatment profoundly eliminated aldehyde dehydrogenase (ALDH)-expressing CSCs in 4T1 and MCF-7 tumors, produced notable depression of tumor growth and caused 93.86% suppression of lung metastasis in 4T1 models. Therefore, the M2 macrophage microvesicle-inspired nanovehicle provides an encouraging strategy to penetrate the tumor tissues and access these insult cells in tumors for effective cancer therapy. ![]()
Collapse
Affiliation(s)
- Yuqi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China.
| |
Collapse
|
20
|
Mammes A, Pasquier J, Mammes O, Conti M, Douard R, Loric S. Extracellular vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal cancer. World J Gastrointest Oncol 2021; 13:1561-1598. [PMID: 34853637 PMCID: PMC8603448 DOI: 10.4251/wjgo.v13.i11.1561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
In the world, among all type of cancers, colorectal cancer (CRC) is the third most commonly diagnosed in males and the second in females. In most of cases, (RP1) patients’ prognosis limitation with malignant tumors can be attributed to delayed diagnosis of the disease. Identification of patients with early-stage disease leads to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches are mandatory as they may lead to an increase in progression-free and overall survival rates. For the last decade, the interest in extracellular vesicles (EVs) research has exponentially increased as EVs generation appears to be a universal feature of every cell that is strongly involved in many mechanisms of cell-cell communication either in physiological or pathological situations. EVs can cargo biomolecules, such as lipids, proteins, nucleic acids and generate transmission signal through the intercellular transfer of their content. By this mechanism, tumor cells can recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. This review intends to cover the most recent literature on the role of EVs production in colorectal normal and cancer tissues. Specific attention is paid to the use of EVs for early CRC diagnosis, follow-up, and prognosis as EVs have come into the spotlight of research as a high potential source of ‘liquid biopsies’. The use of EVs as new targets or nanovectors as drug delivery systems for CRC therapy is also summarized.
Collapse
Affiliation(s)
- Aurelien Mammes
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | - Jennifer Pasquier
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | | | - Marc Conti
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
- Metabolism Research Unit, Integracell SAS, Longjumeau 91160, France
| | - Richard Douard
- UCBM, Necker University Hospital, Paris 75015, France
- Gastrointestinal Surgery Department, Clinique Bizet, Paris 75016, France
| | - Sylvain Loric
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| |
Collapse
|
21
|
Chung WM, Molony RD, Lee YF. Non-stem bladder cancer cell-derived extracellular vesicles promote cancer stem cell survival in response to chemotherapy. Stem Cell Res Ther 2021; 12:533. [PMID: 34627375 PMCID: PMC8502272 DOI: 10.1186/s13287-021-02600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemosenstive non-stem cancer cells (NSCCs) constitute the bulk of tumors and are considered as part of the cancer stem cell (CSC) niche in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (EVs) mediate the communication between tumors and the TME. In this study, we sought to investigate the impacts of EVs released by NSCCs on the maintenance of CSC properties and chemoresistance. METHODS We employed murine MB49 bladder cancer (BC) sub-lines representing CSCs and NSCCs as a model system. Chemotherapy drugs were used to treat NSCCs in order to collect conditioned EVs. The impacts of NSCC-derived EVs on CSC progression were evaluated through sphere formation, cytotoxicity, migration, and invasion assays, and by analyzing surface marker expression on these BC cells. Differential proteomic analyses were conducted to identify cargo protein candidates involved in the EV-mediated communication between NSCCs and CSCs. RESULTS NSCC-derived EVs contained cargo proteins enriched in proteostasis-related functions, and significantly altered the development of CSCs such that they were more intrinsically chemoresistant, aggressive, and better able to undergo self-renewal. CONCLUSIONS We thus identified a novel communication mechanism whereby NSCC-EVs can alter the relative fitness of CSCs to promote disease progression and the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Wei-Min Chung
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Ryan D Molony
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Yi-Fen Lee
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA.
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
22
|
Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021; 9:biomedicines9091245. [PMID: 34572431 PMCID: PMC8468168 DOI: 10.3390/biomedicines9091245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
"Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
Collapse
Affiliation(s)
- Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Asma Abdullah Nurul
- School of Health Science, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre, UKM, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
23
|
Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther 2021; 6:109. [PMID: 33678805 PMCID: PMC7937675 DOI: 10.1038/s41392-021-00499-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs), the subpopulation of cancer cells, have the capability of proliferation, self-renewal, and differentiation. The presence of CSCs is a key factor leading to tumor progression and metastasis. Extracellular vesicles (EVs) are nano-sized particles released by different kinds of cells and have the capacity to deliver certain cargoes, such as nucleic acids, proteins, and lipids, which have been recognized as a vital mediator in cell-to-cell communication. Recently, more and more studies have reported that EVs shed by CSCs make a significant contribution to tumor progression. CSCs-derived EVs are involved in tumor resistance, metastasis, angiogenesis, as well as the maintenance of stemness phenotype and tumor immunosuppression microenvironment. Here, we summarized the molecular mechanism by which CSCs-derived EVs in tumor progression. We believed that the fully understanding of the roles of CSCs-derived EVs in tumor development will definitely provide new ideas for CSCs-based therapeutic strategies.
Collapse
Affiliation(s)
- Chaoyue Su
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China ,grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jianye Zhang
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liwu Fu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
24
|
Naseri M, Zöller M, Hadjati J, Ghods R, Ranaei Pirmardan E, Kiani J, Eini L, Bozorgmehr M, Madjd Z. Dendritic cells loaded with exosomes derived from cancer stem cell-enriched spheroids as a potential immunotherapeutic option. J Cell Mol Med 2021; 25:3312-3326. [PMID: 33634564 PMCID: PMC8034455 DOI: 10.1111/jcmm.16401] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)‐based therapeutic strategies against CSCs. Here, in an in vitro model using the HT‐29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC‐enriched colonospheres (CSCenr‐EXOs) as an antigen source in activating CSC‐specific T‐cell responses. HT‐29 lysate, HT‐29‐EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr‐EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen‐pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr‐EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr‐EXOs significantly increased the IL‐12/IL‐10 ratio in supernatants of mature DCs. CSCenr‐EXO‐loaded DCs effectively promoted T‐cell proliferation. Importantly, T cells stimulated with CSCenr‐EXOs disrupted spheroids' structure. Thus, CSCenr‐EXOs present a novel and promising antigen source that in combination with conventional tumour bulk‐derived antigens should be further explored in pre‐clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.
Collapse
Affiliation(s)
- Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Radiology, Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Basic Science, Faculty of Veterinary, Science and Research Branch of Islamic, Azad University, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
25
|
Castelli V, Giordano A, Benedetti E, Giansanti F, Quintiliani M, Cimini A, d’Angelo M. The Great Escape: The Power of Cancer Stem Cells to Evade Programmed Cell Death. Cancers (Basel) 2021; 13:328. [PMID: 33477367 PMCID: PMC7830655 DOI: 10.3390/cancers13020328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the primary causes of death worldwide. Tumour malignancy is related to tumor heterogeneity, which has been suggested to be due to a small subpopulation of tumor cells named cancer stem cells (CSCs). CSCs exert a key role in metastasis development, tumor recurrence, and also epithelial-mesenchymal transition, apoptotic resistance, self-renewal, tumorigenesis, differentiation, and drug resistance. Several current therapies fail to eradicate tumors due to the ability of CSCs to escape different programmed cell deaths. Thus, developing CSC-selective and programmed death-inducing therapeutic approaches appears to be of primary importance. In this review, we discuss the main programmed cell death occurring in cancer and the promising CSC-targeting agents developed in recent years. Even if the reported studies are encouraging, further investigations are necessary to establish a combination of agents able to eradicate CSCs or inhibit their growth and proliferation.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| |
Collapse
|
26
|
Cha H, Hong S, Park JH, Park HH. Stem Cell-Derived Exosomes and Nanovesicles: Promotion of Cell Proliferation, Migration, and Anti-Senescence for Treatment of Wound Damage and Skin Ageing. Pharmaceutics 2020; 12:E1135. [PMID: 33255430 PMCID: PMC7761250 DOI: 10.3390/pharmaceutics12121135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are nano-sized vesicles derived from endocytic membranes and contain biomolecules such as proteins, lipids, RNAs, and DNAs for the transfer of signals to recipient cells, playing significant roles in cell-to-cell communication. Discovery of exosomes has attracted attention for possible use as next generation therapies in clinical applications; however, several studies suggest that cells secrete exosomes that perform as mediators in the tumor niche and play several roles in tumorigenesis, angiogenesis, and metastasis. Recently, stem cell-derived exosomes have been suggested as a desirable source for regenerative medicine due to their roles in the promotion of angiogenesis via migratory and proliferative mechanisms. This review is aimed at demonstrating the present knowledge of stem cell-derived exosomes and cell-engineered nanovesicles (CNVs) as proliferative, migratory, and anti-senescent therapeutic biomaterial for use in tissue regeneration; wound healing and anti-ageing are explained. We conclude this review by discussing the future perspectives of stem cell-derived exosomes and CNVs as a platform in therapeutic strategies for treatment of wound damage and skin aging.
Collapse
Affiliation(s)
- Hyeonjin Cha
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
| | - Seyoung Hong
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
| | - Hee Ho Park
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| |
Collapse
|
27
|
Angiogenesis Inhibition in Prostate Cancer: An Update. Cancers (Basel) 2020; 12:cancers12092382. [PMID: 32842503 PMCID: PMC7564110 DOI: 10.3390/cancers12092382] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa), like all other solid tumors, relies on angiogenesis for growth, progression, and the dissemination of tumor cells to other parts of the body. Despite data from in vitro and in vivo preclinical studies, as well as human specimen studies indicating the crucial role played by angiogenesis in PCa, angiogenesis inhibition in clinical settings has not shown significant benefits to patients, thus challenging the inclusion and usefulness of antiangiogenic agents for the treatment of PCa. However, one of the apparent reasons why these antiangiogenic agents failed to meet expectations in PCa can be due to the choice of the antiangiogenic agents, because the majority of these drugs target vascular endothelial growth factor-A (VEGFA) and its receptors. The other relevant causes might be inappropriate drug combinations, the duration of treatment, and the method of endpoint determination. In this review, we will first discuss the role of angiogenesis in PCa growth and progression. We will then summarize the different angiogenic growth factors that influence PCa growth dynamics and review the outcomes of clinical trials conducted with antiangiogenic agents in PCa patients and, finally, critically assess the current status and fate of antiangiogenic therapy in this disease.
Collapse
|
28
|
Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology 2020; 9:1779991. [PMID: 32934883 PMCID: PMC7466856 DOI: 10.1080/2162402x.2020.1779991] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of immunogenic tumor antigens that are efficiently processed and delivered by dendritic cells to prime the immune system and to induce an appropriate immune response is a research hotspot in the field of cancer vaccine development. High biosafety is an additional demand. Tumor-derived exosomes (TEXs) are nanosized lipid bilayer encapsulated vesicles that shuttle bioactive information to the tumor microenvironment facilitating tumor progression. However, accumulating evidence points toward the capacity of TEXs to efficiently stimulate immune responses against tumors provided they are appropriately administered. After briefly describing the function of exosomes in cancer biology and their communication with immune cells, we summarize in this review in vitro and preclinical studies eliciting the potency of TEXs in inducing effective anti-tumor responses and recently modified strategies further improving TEX-vaccination efficacy. We interpret the available data as TEXs becoming a lead in cancer vaccination based on tumor antigen-selective high immunogenicity.
Collapse
Affiliation(s)
- Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang D, Yu W, Lian J, Wu Q, Liu S, Yang L, Li F, Huang L, Chen X, Zhang Z, Li A, Liu J, Sun Z, Wang J, Yuan W, Zhang Y. Th17 cells inhibit CD8 + T cell migration by systematically downregulating CXCR3 expression via IL-17A/STAT3 in advanced-stage colorectal cancer patients. J Hematol Oncol 2020; 13:68. [PMID: 32503584 PMCID: PMC7275425 DOI: 10.1186/s13045-020-00897-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background CD8+ T cell trafficking to the tumor site is essential for effective colorectal cancer (CRC) immunotherapy. However, the mechanism underlying CD8+ T cell infiltration in colorectal tumor tissues is not fully understood. In the present study, we investigated CD8+ T cell infiltration in CRC tissues and the role of chemokine–chemokine receptor signaling in regulation of T cell recruitment. Methods We screened chemokines and cytokines in healthy donor and CRC tissues from early- and advanced-stage patients using multiplex assays and PCR screening. We also utilized transcription factor activation profiling arrays and established a xenograft mouse model. Results Compared with tumor tissues of early-stage CRC patients, CD8+ T cell density was lower in advanced-stage tumor tissues. PCR screening showed that CXCL10 levels were significantly increased in advanced-stage tumor tissues. CXCR3 (the receptor of CXCL10) expression on CD8+ T cells was lower in the peripheral blood of advanced-stage patients. The migratory ability of CD8+ T cells to CXCL10 depended on CXCR3 expression. Multiplex arrays showed that IL-17A was increased in advanced-stage patient sera, which markedly downregulated CXCR3 expression via activating STAT3 signaling and reduced CD8+ T cell migration. Similar results were found after CD8+ T cells were treated with Th17 cell supernatant. Adding anti-IL-17A or the STAT3 inhibitor, Stattic, rescued these effects in vitro and in vivo. Moreover, survival analysis showed that patients with low CD8 and CXCR3 expression and high IL-17A levels had significantly worse prognosis. Conclusions CD8+ T cell infiltration in advanced-stage tumor was systematically inhibited by Th17 cells via IL-17A/STAT3/CXCR3 axis. Our findings indicate that the T cell infiltration in the tumor microenvironment may be improved by inhibiting STAT3 signaling.
Collapse
Affiliation(s)
- Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qian Wu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Aitian Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Junxia Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
30
|
Castagnoli L, De Santis F, Volpari T, Vernieri C, Tagliabue E, Di Nicola M, Pupa SM. Cancer Stem Cells: Devil or Savior-Looking behind the Scenes of Immunotherapy Failure. Cells 2020; 9:E555. [PMID: 32120774 PMCID: PMC7140486 DOI: 10.3390/cells9030555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Although the introduction of immunotherapy has tremendously improved the prognosis of patients with metastatic cancers of different histological origins, some tumors fail to respond or develop resistance. Broadening the clinical efficacy of currently available immunotherapy strategies requires an improved understanding of the biological mechanisms underlying cancer immune escape. Globally, tumor cells evade immune attack using two main strategies: avoiding recognition by immune cells and instigating an immunosuppressive tumor microenvironment. Emerging data suggest that the clinical efficacy of chemotherapy or molecularly targeted therapy is related to the ability of these therapies to target cancer stem cells (CSCs). However, little is known about the role of CSCs in mediating tumor resistance to immunotherapy. Due to their immunomodulating features and plasticity, CSCs can be especially proficient at evading immune surveillance, thus potentially representing the most prominent malignant cell component implicated in primary or acquired resistance to immunotherapy. The identification of immunomodulatory properties of CSCs that include mechanisms that regulate their interactions with immune cells, such as bidirectional release of particular cytokines/chemokines, fusion of CSCs with fusogenic stromal cells, and cell-to-cell communication exerted by extracellular vesicles, may significantly improve the efficacy of current immunotherapy strategies. The purpose of this review is to discuss the current scientific evidence linking CSC biological, immunological, and epigenetic features to tumor resistance to immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Castagnoli
- Department of Research, Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| | - Francesca De Santis
- Department of Medical Oncology and Hematology, Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy; (F.D.S.); (T.V.); (M.D.N.)
| | - Tatiana Volpari
- Department of Medical Oncology and Hematology, Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy; (F.D.S.); (T.V.); (M.D.N.)
| | - Claudio Vernieri
- Department of Medical Oncology and Hematology, FIRC Institute of Molecular Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- IFOM, FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy
| | - Elda Tagliabue
- Department of Research, Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| | - Massimo Di Nicola
- Department of Medical Oncology and Hematology, Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy; (F.D.S.); (T.V.); (M.D.N.)
| | - Serenella M. Pupa
- Department of Research, Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| |
Collapse
|
31
|
Li E, Zhang T, Sun X, Li Y, Geng H, Yu D, Zhong C. Sonic hedgehog pathway mediates genistein inhibition of renal cancer stem cells. Oncol Lett 2019; 18:3081-3091. [PMID: 31452785 PMCID: PMC6704282 DOI: 10.3892/ol.2019.10657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/02/2019] [Indexed: 02/03/2023] Open
Abstract
Cancer stem cells (CSCs) have been implicated in the genesis, progression and recurrence of renal cancer. The sonic hedgehog (Shh) pathway serves a critical role in maintaining the stemness of CSCs. Genistein, a major isoflavone component extracted from soybeans and soy products, has been demonstrated to possess anticancer activity. However, the effects of genistein on renal CSCs and its underlying mechanisms remain to be fully elucidated. The aim of the present study was to investigate the role of the Shh pathway in genistein inhibition of renal CSCs. The results of the present study demonstrated that expression levels of renal CSC markers were markedly upregulated in the sphere-forming cells, which were isolated and enriched from 786-O and ACHN cells in a tumor sphere formation assay, and more cells were arrested at the G0/G1 phase instead of the S1 phase compared with the adherent cells. Furthermore, the present study demonstrated that genistein could effectively diminish the activity of renal CSCs by suppressing tumor sphere formation, decreasing renal CSCs markers, inhibiting proliferation and inducing apoptosis. Additionally, the downregulation of Shh pathway activity could inhibit renal CSCs. Genistein exhibited an inhibitory effect on renal CSCs by attenuating the activation of the Shh pathway. In conclusion, the results illustrated the role of the Shh pathway in regulating renal CSC traits and the intervention of renal CSCs by genistein, which could provide novel insights into the molecular mechanisms of renal CSC intervention.
Collapse
Affiliation(s)
- Enlai Li
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianchao Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
32
|
Role of the Microenvironment in Regulating Normal and Cancer Stem Cell Activity: Implications for Breast Cancer Progression and Therapy Response. Cancers (Basel) 2019; 11:cancers11091240. [PMID: 31450577 PMCID: PMC6770706 DOI: 10.3390/cancers11091240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial cells in an adult woman’s breast tissue are continuously replaced throughout their reproductive life during pregnancy and estrus cycles. Such extensive epithelial cell turnover is governed by the primitive mammary stem cells (MaSCs) that proliferate and differentiate into bipotential and lineage-restricted progenitors that ultimately generate the mature breast epithelial cells. These cellular processes are orchestrated by tightly-regulated paracrine signals and crosstalk between breast epithelial cells and their tissue microenvironment. However, current evidence suggests that alterations to the communication between MaSCs, epithelial progenitors and their microenvironment plays an important role in breast carcinogenesis. In this article, we review the current knowledge regarding the role of the breast tissue microenvironment in regulating the special functions of normal and cancer stem cells. Understanding the crosstalk between MaSCs and their microenvironment will provide new insights into how an altered breast tissue microenvironment could contribute to breast cancer development, progression and therapy response and the implications of this for the development of novel therapeutic strategies to target cancer stem cells.
Collapse
|
33
|
Ciardiello C, Leone A, Lanuti P, Roca MS, Moccia T, Minciacchi VR, Minopoli M, Gigantino V, De Cecio R, Rippa M, Petti L, Capone F, Vitagliano C, Milone MR, Pucci B, Lombardi R, Iannelli F, Di Gennaro E, Bruzzese F, Marchisio M, Carriero MV, Di Vizio D, Budillon A. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:317. [PMID: 31319863 PMCID: PMC6639931 DOI: 10.1186/s13046-019-1317-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype. METHODS Immunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry. RESULTS We found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status. CONCLUSIONS Overall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.
Collapse
Affiliation(s)
- Chiara Ciardiello
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Paola Lanuti
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University "G.d'Annunzio", Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Maria S Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Valentina R Minciacchi
- Georg-Speyer-Haus Institute for Tumor biology and Experimental Therapy, Frankfurt, Germany
| | - Michele Minopoli
- Neoplastic Progression Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello' of CNR, Pozzuoli, Italy
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello' of CNR, Pozzuoli, Italy
| | - Francesca Capone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Maria R Milone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Marco Marchisio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University "G.d'Annunzio", Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Maria V Carriero
- Neoplastic Progression Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Dolores Di Vizio
- Departments of Surgery, Pathology & Lab Medicine, and Biochemical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
34
|
Cancer-testis antigens MAGEA proteins are incorporated into extracellular vesicles released by cells. Oncotarget 2019; 10:3694-3708. [PMID: 31217903 PMCID: PMC6557214 DOI: 10.18632/oncotarget.26979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Melanoma-associated antigen A (MAGEA) family proteins represent a class of tumor antigens that are expressed in a variety of malignant tumors, but their expression in normal tissues is restricted to germ cells. MAGEA family consists of eleven proteins that are highly conserved sharing the common MAGE homology domain (MHD). In the current study, we show that MAGEA4 and MAGEA10 proteins are incorporated into extracellular vesicles released by mouse fibroblast and human osteosarcoma U2OS cells and are expressed, at least partly, on the surface of released EVs. The C-terminal part of the protein containing MHD domain is required for this activity. Expression of MAGEA proteins induced the budding of cells and formation of extracellular vesicles with 150 to 1500 nm in diameter. Our data suggest that the release of MAGEA-positive EVs is at least to some extent induced by the expression of MAGEA proteins itself. This may be one of the mechanisms of MAGEA proteins to induce cancer formation and progression.
Collapse
|