1
|
Huete-Acevedo J, Mas-Bargues C, Arnal-Forné M, Atencia-Rabadán S, Sanz-Ros J, Borrás C. Role of Redox Homeostasis in the Communication Between Brain and Liver Through Extracellular Vesicles. Antioxidants (Basel) 2024; 13:1493. [PMID: 39765821 PMCID: PMC11672896 DOI: 10.3390/antiox13121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound particles secreted by cells into the extracellular environment, playing an increasingly recognized role in inter-organ communication and the regulation of various physiological processes. Regarding the redox homeostasis context, EVs play a pivotal role in propagating and mitigating oxidative stress signals across different organs. Cells under oxidative stress release EVs containing signaling molecules that can influence the redox status of distant cells and tissues. EVs are starting to be recognized as contributors to brain-liver communication. Therefore, in this review, we show how redox imbalance can affect the release of EVs in the brain and liver. We propose EVs as mediators of redox homeostasis in the brain-liver axis.
Collapse
Affiliation(s)
- Javier Huete-Acevedo
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Cristina Mas-Bargues
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Marta Arnal-Forné
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Sandra Atencia-Rabadán
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| | - Jorge Sanz-Ros
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Consuelo Borrás
- MiniAging Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, 46010 Valencia, Spain; (J.H.-A.); (C.M.-B.); (M.A.-F.); (S.A.-R.)
| |
Collapse
|
2
|
Li Y, Liu Y, He Z, Li Z, Xiang H. Circadian Alterations in Brain Metabolism Linked to Cognitive Deficits During Hepatic Ischemia-Reperfusion Injury Using [ 1H- 13C]-NMR Metabolomics. Biomedicines 2024; 12:2536. [PMID: 39595102 PMCID: PMC11592224 DOI: 10.3390/biomedicines12112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Hepatic ischemia-reperfusion injury (HIRI) is known to affect cognitive functions, with particular concern for its impact on brain metabolic dynamics. Circadian rhythms, as a crucial mechanism for internal time regulation within organisms, significantly influence metabolic processes in the brain. This study aims to explore how HIRI affects hippocampal metabolism and its circadian rhythm differences in mice, and to analyze how these changes are associated with cognitive impairments. Methods: A C57BL/6 male mouse model was used, simulating HIRI through hepatic ischemia-reperfusion surgery, with a sham operation conducted for the control group. Cognitive functions were evaluated using open field tests, Y-maze tests, and novel object recognition tests. Magnetic resonance spectroscopic imaging (MRSI) technology, combined with intravenous injection of [2-13C]-acetate and [1-13C]-glucose, was utilized to analyze metabolic changes in the hippocampus of HIRI mice at different circadian time points (Zeitgeber Time ZT0, 8:00 and ZT12, 20:00). Circadian rhythms regulate behavioral, physiological, and metabolic rhythms through transcriptional feedback loops, with ZT0 at dawn (lights on) and ZT12 at dusk (lights off). Results: HIRI mice exhibited significant cognitive impairments in behavioral tests, particularly in spatial memory and learning abilities. MRSI analysis revealed significant circadian rhythm differences in the concentration of metabolites in the hippocampus, with the enrichment concentrations of lactate, alanine, glutamate, and taurine showing different trends at ZT0 compared to ZT12, highlighting the important influence of circadian rhythms on metabolic dysregulation induced by HIRI. Conclusions: This study highlights the significant impact of HIRI on brain metabolic dynamics in mice, especially in the hippocampal area, and for the first time reveals the differences in these effects within circadian rhythms. These findings not only emphasize the association between HIRI-induced cognitive impairments and changes in brain metabolism but also point out the crucial role of circadian rhythms in this process, offering new metabolic targets and timing considerations for therapeutic strategies against HIRI-related cognitive disorders.
Collapse
Affiliation(s)
- Yijing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (Y.L.); (Z.H.)
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
3
|
Zhang CH, Lu DC, Liu Y, Wang L, Sethi G, Ma Z. The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases. Int Immunopharmacol 2024; 138:112633. [PMID: 38986299 DOI: 10.1016/j.intimp.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Department of Oncology, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404100, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
4
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
5
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Cabrera-Pastor A. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int J Mol Sci 2024; 25:7041. [PMID: 39000150 PMCID: PMC11241119 DOI: 10.3390/ijms25137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; or
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
7
|
Cappe B, Vandenabeele P, Riquet FB. A guide to the expanding field of extracellular vesicles and their release in regulated cell death programs. FEBS J 2024; 291:2068-2090. [PMID: 37872002 DOI: 10.1111/febs.16981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Homeostasis disruption is visible at the molecular and cellular levels and may often lead to cell death. This vital process allows us to maintain the more extensive system's integrity by keeping the different features (genetic, metabolic, physiologic, and individual) intact. Interestingly, while cells can die in different manners, dying cells still communicate with their environment. This communication was, for a long time, perceived as only driven by the release of soluble factors. However, it has now been reconsidered with the increasing interest in extracellular vesicles (EVs), which are discovered to be released during different regulated cell death programs, with the observation of specific effects. EVs are game changers in the paradigm of cell-cell communication with tremendous implications in fundamental research with regard to noncell autonomous functions, as well as in biomarkers research, all of which are geared toward diagnostic and therapeutic purposes. This review is composed of two main parts. The first is a comprehensive presentation of the state of the art of the EV field at large. In the second part, we focus on EVs discovered to be released during different regulated cell death programs, also known as cell death EVs (cdEVs), and EV-associated specific effects on recipient cells in the context of cell death and inflammation/inflammatory responses.
Collapse
Affiliation(s)
- Benjamin Cappe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- University of Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, France
| |
Collapse
|
8
|
Lyu J, Sheng M, Cao Y, Jia L, Zhang C, Weng Y, Yu W. Ischemia and reperfusion-injured liver-derived exosomes elicit acute lung injury through miR-122-5p regulated alveolar macrophage polarization. Int Immunopharmacol 2024; 131:111853. [PMID: 38503014 DOI: 10.1016/j.intimp.2024.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Acute lung injury (ALI) is a common postoperative complication, particularly in pediatric patients after liver transplantation. Hepatic ischemia-reperfusion (HIR) increases the release of exosomes (IR-Exos) in peripheral circulation. However, the role of IR-Exos in the pathogenesis of ALI induced by HIR remains unclear. Here, we explored the role of exosomes derived from the HIR-injured liver in ALI development. Intravenous injection of IR-Exos caused lung inflammation in naive rats, whereas pretreatment with an inhibitor of exosomal secretion (GW4869) attenuated HIR-related lung injury. In vivo and in vitro results show that IR-Exos promoted proinflammatory responses and M1 macrophage polarization. Furthermore, miRNA profiling of serum identified miR-122-5p as the exosomal miRNA with the highest increase in young rats with HIR compared with controls. Additionally, IR-Exos transferred miR-122-5p to macrophages and promoted proinflammatory responses and M1 phenotype polarization by targeting suppressor of cytokine signaling protein 1(SOCS-1)/nuclear factor (NF)-κB. Importantly, the pathological role of exosomal miR-122-5p in initiating lung inflammation was reversed by inhibition of miR-122-5p. Clinically, high levels of miR-122-5p were found in serum and correlated to the severity of lung injury in pediatric living-donor liver transplant recipients with ALI. Taken together, our findings reveal that IR-Exos transfer liver-specific miR-122-5p to alveolar macrophages and elicit ALI by inducing M1 macrophage polarization via the SOCS-1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jingshu Lyu
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China; Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Henan University People's Hospital, Henan Provincial People's Hospital, 450000 Zhengzhou, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Yingli Cao
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Chen Zhang
- Department of Anesthesiology, The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China; School of Medicine, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
9
|
Xiong M, Chen Z, Tian J, Peng Y, Song D, Zhang L, Jin Y. Exosomes derived from programmed cell death: mechanism and biological significance. Cell Commun Signal 2024; 22:156. [PMID: 38424607 PMCID: PMC10905887 DOI: 10.1186/s12964-024-01521-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles present in bodily fluids that mediate intercellular communication by transferring bioactive molecules, thereby regulating a range of physiological and pathological processes. Exosomes can be secreted from nearly all cell types, and the biological function of exosomes is heterogeneous and depends on the donor cell type and state. Recent research has revealed that the levels of exosomes released from the endosomal system increase in cells undergoing programmed cell death. These exosomes play crucial roles in diseases, such as inflammation, tumors, and autoimmune diseases. However, there is currently a lack of systematic research on the differences in the biogenesis, secretion mechanisms, and composition of exosomes under different programmed cell death modalities. This review underscores the potential of exosomes as vital mediators of programmed cell death processes, highlighting the interconnection between exosome biosynthesis and the regulatory mechanisms governing cell death processes. Furthermore, we accentuate the prospect of leveraging exosomes for the development of innovative biomarkers and therapeutic strategies across various diseases.
Collapse
Affiliation(s)
- Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Zhen Chen
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Yanjie Peng
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Key Laboratory of Coal Health and Safety, Tangshan, 063000, China.
| |
Collapse
|
10
|
Li X, Ji LJ, Feng KD, Huang H, Liang MR, Cheng SJ, Meng XD. Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome. World J Gastroenterol 2024; 30:527-541. [PMID: 38463022 PMCID: PMC10921143 DOI: 10.3748/wjg.v30.i6.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β (IL-1β) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.
Collapse
Affiliation(s)
- Xin Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Kai-Di Feng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Rou Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jin Cheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Dong Meng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
11
|
Chang H, Chen E, Zhu T, Liu J, Chen C. Communication Regarding the Myocardial Ischemia/Reperfusion and Cognitive Impairment: A Narrative Literature Review. J Alzheimers Dis 2024; 97:1545-1570. [PMID: 38277294 PMCID: PMC10894588 DOI: 10.3233/jad-230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erya Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Wang Y, Jia L, Wei M, Lyu J, Sheng M, Sun Y, Dong Z, Han W, Ren Y, Weng Y, Yu W. Circulating Exosomes Mediate Neurodegeneration Following Hepatic Ischemia-reperfusion Through Inducing Microglial Pyroptosis in the Developing Hippocampus. Transplantation 2023; 107:2364-2376. [PMID: 37291725 PMCID: PMC10593148 DOI: 10.1097/tp.0000000000004664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Poor neurodevelopmental outcomes after pediatric liver transplantation seriously affect the long-term quality of life of recipients, in whom hepatic ischemia reperfusion (HIR) is considered to play a pivotal role. However, the link between HIR and brain injury remains unclear. Because circulating exosomes are considered as the key mediators of information transmission over long distances, we aimed to assess the role of circulating exosomes in HIR-induced hippocampal injury in young rats. METHODS We administered exosomes extracted from the sera of HIR model rats to normal young rats via the tail vein. Western blotting, enzyme-linked immunosorbent assay, histological examination, and real-time quantitative polymerase chain reaction were used to evaluate the role of exosomes in neuronal injury and activation of microglial pyroptosis in the developing hippocampus. Primary microglial cells were cocultured with exosomes to further assess the effect of exosomes on microglia. To further explore the potential mechanism, GW4869 or MCC950 was used to block exosome biogenesis or nod-like receptor family protein 3, respectively. RESULTS Serum-derived exosomes played a crucial role in linking HIR with neuronal degeneration in the developing hippocampus. Microglia were found to be the target cells of ischemia-reperfusion derived exosomes (I/R-exosomes). I/R-exosomes were taken up by microglia and promoted the occurrence of microglial pyroptosis in vivo and in vitro. Moreover, the exosome-induced neuronal injury was alleviated by suppressing the occurrence of pyroptosis in the developing hippocampus. CONCLUSIONS Microglial pyroptosis induced by circulating exosomes plays a vital role in developing hippocampal neuron injury during HIR in young rats.
Collapse
Affiliation(s)
- Yidan Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Min Wei
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Jingshu Lyu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Ying Sun
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhonglan Dong
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Wenhui Han
- School of Medicine, Nankai University, Tianjin, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
13
|
Huo S, Zhang X, Xu J, Zhang J, Du J, Li B, Song M, Shao B, Li Y, Xu F. Parkin-mediated mitophagy protects against aluminum trichloride-induced hippocampal apoptosis in mice via the mtROS-NLRP3 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115459. [PMID: 37703808 DOI: 10.1016/j.ecoenv.2023.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Aluminum is a neurotoxic food contaminant. Aluminum trichloride (AlCl3) causes hippocampal mitochondrial damage, leading to hippocampal injury. Damaged mitochondria can release mitochondrial reactive oxygen species (mtROS) and activate nucleotide-binding oligomerization domain-like receptor-containing 3 (NLRP3) inflammasomes and apoptosis. E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy can attenuate mitochondrial damage. However, the role of mitophagy in AlCl3-induced mice hippocampal damage and its regulatory mechanism remain elusive. First, C57BL/6 N mice were treated with 0, 44.825, 89.65, and 179.3 mg/kg body weight AlCl3 drinking water for 90 d. Apoptosis, NLRP3-inflammasome activation and mitochondrial damage were increased in AlCl3-induced hippocampal damage. In addition, Parkin-mediated mitophagy peaked in the middle-dose group and was slightly attenuated in the high-dose group. Subsequently, we used wild-type and Parkin knockout (Parkin-/-) mice to investigate the AlCl3-induced hippocampal damage. The results showed that Parkin-/- inhibited mitophagy, and aggravated AlCl3-induced mitochondrial damage, NLRP3-inflammasome activation, apoptosis and hippocampal damage. Finally, we administered MitoQ (mtROS inhibitor) and MCC950 (NLRP3 inhibitor) to AlCl3-treated Parkin-/- mice to investigate the mechanism of Parkin-mediated mitophagy. The results showed that inhibition of mtROS and NLRP3 attenuated hippocampal NLRP3-inflammasome activation, apoptosis, and damage in AlCl3-treated Parkin-/- mice. These findings indicate that Parkin-mediated mitophagy protects against AlCl3-induced hippocampal apoptosis in mice via the mtROS-NLRP3 pathway.
Collapse
Affiliation(s)
- Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinyu Xu
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Feibo Xu
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
14
|
Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res 2023; 72:1839-1859. [PMID: 37725102 DOI: 10.1007/s00011-023-01790-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiao-Dong Liu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Zhong L, Wang J, Wang P, Liu X, Liu P, Cheng X, Cao L, Wu H, Chen J, Zhou L. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res Ther 2023; 14:198. [PMID: 37553595 PMCID: PMC10408078 DOI: 10.1186/s13287-023-03409-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Regenerative repair of the brain after traumatic brain injury (TBI) remains an extensive clinical challenge, inspiring intensified interest in therapeutic approaches to explore superior repair strategies. Exosome therapy is another research hotspot following stem cell alternative therapy. Prior research verified that exosomes produced by neural stem cells can participate in the physiological and pathological changes associated with TBI and have potential neuroregulatory and repair functions. In comparison with their parental stem cells, exosomes have superior stability and immune tolerance and lower tumorigenic risk. In addition, they can readily penetrate the blood‒brain barrier, which makes their treatment efficiency superior to that of transplanted stem cells. Exosomes secreted by neural stem cells present a promising strategy for the development of novel regenerative therapies. Their tissue regeneration and immunomodulatory potential have made them encouraging candidates for TBI repair. The present review addresses the challenges, applications and potential mechanisms of neural stem cell exosomes in regenerating damaged brains.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Peng Wang
- Department of Health Management, Tianjin Hospital, Tianjin, 300211, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lujia Cao
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hongwei Wu
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Zhou W, Zhao L, Mao Z, Wang Z, Zhang Z, Li M. Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles. Cell Mol Neurobiol 2023; 43:2675-2696. [PMID: 37067749 PMCID: PMC10106324 DOI: 10.1007/s10571-023-01345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
A number of substances released by the brain under physiological and pathological conditions exert effects on other organs. In turn, substances produced primarily by organs such as bone marrow, adipose tissue, or the heart may have an impact on the metabolism and function and metabolism of the healthy and diseased brain. Despite a mounting amount of evidence supports such bidirectional communication between the brain and other organs, research on the function of molecular mediators carried by extracellular vesicles (EVs) is in the early stages. In addition to being able to target or reach practically any organ, EVs have the ability to cross the blood-brain barrier to transport a range of substances (lipids, peptides, proteins, and nucleic acids) to recipient cells, exerting biological effects. Here, we review the function of EVs in bidirectional communication between the brain and other organs. In a small number of cases, the role has been explicitly proven; yet, in most cases, it relies on indirect evidence from EVs in cell culture or animal models. There is a dearth of research currently available on the function of EVs-carrying mediators in the bidirectional communication between the brain and bone marrow, adipose tissue, liver, heart, lungs, and gut. Therefore, more studies are needed to determine how EVs facilitate communication between the brain and other organs.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Lihong Zhao
- Department of Radiotherapy, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130012, Jilin, China
| | - Zelu Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Yeni Y, Taghizadehghalehjoughi A, Genc S, Hacimuftuoglu A, Yildirim S, Bolat I. Glioblastoma cell-derived exosomes induce cell death and oxidative stress in primary cultures of olfactory neurons. Role of redox stress. Mol Biol Rep 2023; 50:3999-4009. [PMID: 36849859 DOI: 10.1007/s11033-023-08256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/04/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Glioblastoma multiforme, described as glioblastoma, is a malignancy originating from glial progenitors in the central nervous system and is the most malignant subtype of brain tumors which attracted researcher's attention due to their high recurrence and mortality despite optimal treatments. In the study, we aimed to research whether glioblastoma-originated exosomes play a role in olfactory nerve cell toxicity. METHODS AND RESULTS For this aim, exosomes obtained from U373 and T98G cells were applied to olfactory nerve cell culture at distinct doses. Then, glutathione (GSH), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT), total oxidant status (TOS) and Immunofluorescence analyzes were performed. We found that both glioblastoma-derived exosomes decreased cell viability in olfactory neurons with increasing doses. According to the obtained data, the olfactory neuron vitality rate was 71% in T98G-exosome, but the decrease in U373-exosome was more obvious (48%). In particular, the 100 µg/ml dose exacerbated oxidative stress by increasing TOS. It also increased cellular apoptosis compared to the control group due to LDH leakage. However, the results of GSH and TAS showed that antioxidant levels were significantly reduced. CONCLUSION In the microenvironment of olfactory neurons, GBM-derived exosomes increased oxidative stress-induced toxicity by reducing TAC and GSH levels. Therefore, glioblastoma cells by induction of exosome-based stress support malignant growth.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210, Malatya, Turkey
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey.
| | - Sidika Genc
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
18
|
Extracellular vesicles: Critical bilateral communicators in periphery-brain crosstalk in central nervous system disorders. Biomed Pharmacother 2023; 160:114354. [PMID: 36753954 DOI: 10.1016/j.biopha.2023.114354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Growing evidence shows that there is a comorbid mechanism between the central nervous system (CNS) and the peripheral organs. The bilateral transmission of signal molecules in periphery-brain crosstalk plays an important role in the underlying mechanism, which result from complex networks of neurohumoral circuits. Secreted by almost all cells and considered innovative information transport systems, extracellular vesicles (EVs) encapsulate and deliver nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), they are also identified primarily as essential communicators between the periphery and the CNS. In addition to transporting molecules under physiological or pathological conditions, EVs also show novel potential in targeted drug delivery. In this review, we discuss the mechanisms implicated in the transport of EVs in crosstalk between the peripheral and the central immune systems as well as in crosstalk between the peripheral organs and the brain in CNS disorders, especially in neurodegenerative diseases, stroke, and trauma. This work will help in elucidating the contributions of EVs to brain health and disorders, and promote the development of new strategies for minimally invasive treatment.
Collapse
|
19
|
Hering C, Shetty AK. Extracellular Vesicles Derived From Neural Stem Cells, Astrocytes, and Microglia as Therapeutics for Easing TBI-Induced Brain Dysfunction. Stem Cells Transl Med 2023; 12:140-153. [PMID: 36847078 PMCID: PMC10021503 DOI: 10.1093/stcltm/szad004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Extracellular vesicles (EVs) derived from neural stem cells (NSC-EVs), astrocytes (ADEVs), and microglia (MDEVs) have neuroregenerative properties. This review discusses the therapeutic efficacy of NSC-EVs, ADEVs, and MDEVs in traumatic brain injury (TBI) models. The translational value and future directions for such EV therapy are also deliberated. Studies have demonstrated that NSC-EV or ADEV therapy can mediate neuroprotective effects and improve motor and cognitive function after TBI. Furthermore, NSC-EVs or ADEVs generated after priming parental cells with growth factors or brain-injury extracts can mediate improved therapeutic benefits. However, the therapeutic effects of naïve MDEVs are yet to be tested rigorously in TBI models. Studies using activated MDEVs have reported both adverse and beneficial effects. NSC-EV, ADEV, or MDEV therapy for TBI is not ready for clinical translation. Rigorous testing of their efficacy for preventing chronic neuroinflammatory cascades and enduring motor and cognitive impairments after treatment in the acute phase of TBI, an exhaustive evaluation of their miRNA or protein cargo, and the effects of delayed EV administration post-TBI for reversing chronic neuroinflammation and enduring brain impairments, are needed. Moreover, the most beneficial route of administration for targeting EVs into different neural cells in the brain after TBI and the efficacy of well-characterized EVs from NSCs, astrocytes, or microglia derived from human pluripotent stem cells need to be evaluated. EV isolation methods for generating clinical-grade EVs must also be developed. Overall, NSC-EVs and ADEVs promise to mitigate TBI-induced brain dysfunction, but additional preclinical studies are needed before their clinical translation.
Collapse
Affiliation(s)
- Catherine Hering
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Corresponding author: Ashok K. Shetty, MSc., PhD, Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843-1114, USA. Tel: +1 979 436 9653;
| |
Collapse
|
20
|
Barreto Chang OL, Possin KL, Maze M. Age-Related Perioperative Neurocognitive Disorders: Experimental Models and Druggable Targets. Annu Rev Pharmacol Toxicol 2023; 63:321-340. [PMID: 36100220 DOI: 10.1146/annurev-pharmtox-051921-112525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the worldwide increase in life span, surgical patients are becoming older and have a greater propensity for postoperative cognitive impairment, either new onset or through deterioration of an existing condition; in both conditions, knowledge of the patient's preoperative cognitive function and postoperative cognitive trajectory is imperative. We describe the clinical utility of a tablet-based technique for rapid assessment of the memory and attentiveness domains required for executive function. The pathogenic mechanisms for perioperative neurocognitive disorders have been investigated in animal models in which excessive and/or prolonged postoperative neuroinflammation has emerged as a likely contender. The cellular and molecular species involved in postoperative neuroinflammation are the putative targets for future therapeutic interventions that are efficacious and do not interfere with the surgical patient's healing process.
Collapse
Affiliation(s)
- Odmara L Barreto Chang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA;
| | - Katherine L Possin
- Memory and Aging Center, Department of Neurology, and Global Brain Health Institute, University of California San Francisco, San Francisco, California, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA; .,Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Zhao J, Chen XD, Yan ZZ, Huang WF, Liu KX, Li C. Gut-Derived Exosomes Induce Liver Injury After Intestinal Ischemia/Reperfusion by Promoting Hepatic Macrophage Polarization. Inflammation 2022; 45:2325-2338. [PMID: 35701685 DOI: 10.1007/s10753-022-01695-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 12/17/2022]
Abstract
Liver injury induced by intestinal ischemia/reperfusion (I/R) is accompanied by the polarization of Kupffer cells, which are specialized macrophages located in the liver. However, the causes of hepatic macrophage polarization after intestinal I/R remain unknown. This study investigated whether gut-derived exosomes contribute to the pathogenesis of liver injury triggered by intestinal I/R in a murine model and explored the underlying mechanisms. Intestinal I/R models were established by temporally clamping the superior mesenteric arteries of mice. Exosomes were isolated from the intestinal tissue of mice that underwent intestinal I/R or sham surgery according to a centrifugation-based protocol. Exosomes were co-cultured with RAW 264.7 macrophages or injected intravenously in mice. Liposomal clodronate was administered intraperitoneally to deplete the macrophages. Macrophage polarization was determined by flow cytometry, immunohistochemistry, and quantitative polymerase chain reaction. Liver injury was assessed by histological morphology and increased serum aspartate aminotransferase and alanine aminotransferase levels. Exosomes from mice intestines subjected to I/R (IR-Exo) promoted macrophage activation in vitro. Intravenous injection of IR-Exo caused hepatic M1 macrophage polarization and led to liver injury in mice. Depleting macrophages ameliorated liver injury caused by intestinal I/R or the injection of IR-Exo. Furthermore, inhibiting exosome release improved intestinal injury, liver function, and survival rates of mice subjected to intestinal I/R. Our study provides evidence that gut-derived exosomes induce liver injury after intestinal I/R by promoting hepatic M1 macrophage polarization. Inhibition of exosome secretion could be a therapeutic target for preventing hepatic impairment after intestinal I/R.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Xiao-Dong Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Zheng-Zheng Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Wen-Fang Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China.
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Effects and Mechanisms of Exosomes from Different Sources in Cerebral Ischemia. Cells 2022; 11:cells11223623. [PMID: 36429051 PMCID: PMC9688936 DOI: 10.3390/cells11223623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral ischemia refers to the symptom of insufficient blood supply to the brain. Cells of many different origins participate in the process of repairing damage after cerebral ischemia occurs, in which exosomes secreted by the cells play important roles. For their characteristics, such as small molecular weight, low immunogenicity, and the easy penetration of the blood-brain barrier (BBB), exosomes can mediate cell-to-cell communication under pathophysiological conditions. In cerebral ischemia, exosomes can reduce neuronal damage and improve the brain microenvironment by regulating inflammation, mediating pyroptosis, promoting axonal growth, and stimulating vascular remodeling. Therefore, exosomes have an excellent application prospect for the treatment of cerebral ischemia. This article reviews the roles and mechanisms of exosomes from different sources in cerebral ischemia and provides new ideas for the prevention and treatment of cerebral ischemia.
Collapse
|
23
|
Piao C, Sang J, Kou Z, Wang Y, Liu T, Lu X, Jiao Z, Wang H. Effects of Exosomes Derived from Adipose-Derived Mesenchymal Stem Cells on Pyroptosis and Regeneration of Injured Liver. Int J Mol Sci 2022; 23:12065. [PMID: 36292924 PMCID: PMC9602906 DOI: 10.3390/ijms232012065] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 09/01/2023] Open
Abstract
Although accumulating evidence indicates that exosomes have a positive therapeutic effect on hepatic ischemia-reperfusion injury (HIRI), studies focusing on the alleviation of liver injury by exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exo) based on the inhibition of cell pyroptosis have not yet been reported. Exosomes contain different kinds of biologically active substances such as proteins, lipids, mRNAs, miRNAs, and signaling molecules. These molecules are widely involved in cell-cell communication, cell signal transmission, proliferation, migration, and apoptosis. Therefore, we investigated the positive effects exerted by ADSCs-Exo after hepatic ischemia-reperfusion with partial resection injury in rats. In this study, we found that the post-operative tail vein injection of ADSCs-Exo could effectively inhibit the expression of pyroptosis-related factors such as NLRP3, ASC, caspase-1, and GSDMD-N, and promote the expression of regeneration-related factors such as Cyclin D1 and VEGF. Moreover, we found that the above cellular activities were associated with the NF-κB and Wnt/β-catenin signaling pathways. According to the results, ADSCs and ADSCs-Exo can reduce pyroptosis in the injured liver and promote the expression of those factors related to liver regeneration, while they can inhibit the NF-κB pathway and activate the Wnt/β-catenin pathway. However, although adipose-derived mesenchymal stem cell (ADSC) transplantation can reduce liver injury, it leads to a significant increase in the pyroptosis-related protein GSDMD-N expression. In conclusion, our study shows that ADSCs-Exo has unique advantages and significance as a cell-free therapy to replace stem cells and still has a broad research prospect in the clinical diagnosis and treatment of liver injuries.
Collapse
Affiliation(s)
- Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinfang Sang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhipeng Kou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
24
|
The Neuroprotection Effects of Exosome in Central Nervous System Injuries: a New Target for Therapeutic Intervention. Mol Neurobiol 2022; 59:7152-7169. [DOI: 10.1007/s12035-022-03028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
|
25
|
Crosstalk between Oxidative Stress and Exosomes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3553617. [PMID: 36082080 PMCID: PMC9448575 DOI: 10.1155/2022/3553617] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022]
Abstract
Mammals have several organs comprising various cells with different functions. Furthermore, eukaryotic cells are compartmentalized into functionally distinct organelles. Thus, for good organismal health, exosomes, which play an important role in cell-to-cell communication, interact closely with oxidative stress. Oxidative stress, which is recognized as a type of intracellular second signal, is aggravated by reactive species. As a subtype of reactive species, reactive oxygen species (ROS) can be produced on the extracellular face of the plasma membrane by NADPH oxidases, via the mitochondrial electron transport chain, in peroxisomes, and in the lumen of the endoplasmic reticulum. The scavenging of ROS is mainly dependent on peroxiredoxins, including GSH peroxidases, peroxiredoxins 3 and 5, and thioredoxin reductase. Intracellular ROS increase the number of intracellular multivesicular bodies (MVBs) by restraining their degradation in lysosomes, thereby enhancing the release of exosomes under the synergy of the depletion of exofacial GSH, which can be regulated by oxidative stress. In contrast, higher ROS levels can decrease the yield of exosomes by activating cellular autophagy to degrade MVBs. Moreover, exosomes can transfer the characteristics of parent cells to recipient cells. Here, we review the interaction between oxidative stress and exosomes in the hope of providing insights into their interplay.
Collapse
|
26
|
Zan X, Fan K, Chen K, Zhi Y, Li L, Yang Y, Hu K, Lin L, Tang L, Liu G, Zhang L. Activation of GPR81 Aggravates Remote Organ Injury During Hepatic Ischemia-Reperfusion Injury. Transplant Proc 2022; 54:1992-1997. [PMID: 35902290 DOI: 10.1016/j.transproceed.2022.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/13/2022] [Indexed: 10/16/2022]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a serious situation with high morbidity and mortality, which is usually accompanied with hyperlactatemia due to impaired lactate clearance in liver. G-protein-coupled receptor 81 (GPR81) has recently been identified as the bioactive receptor of lactate. GPR81 is profoundly involved in the modulation of metabolism and inflammation, but its significance in HIRI remains unclear. The present study investigated the potential roles of GPR81 in HIRI by using the GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA). The results indicated that treatment with CHBA had no obvious effects on HIRI-induced histologic abnormalities and elevation of serum aspartate aminotransferase, alanine aminotransferase. However, CHBA significantly upregulated the serum level of tumor necrosis factor alpha and interleukin-6 in mice with HIRI. Administration of CHBA also exacerbated HIRI-induced histologic lesions in lung, increased the level of myeloperoxidase in lung tissue and the protein concentration in bronchoalveolar lavage fluid. In addition, the serum levels of brain natriuretic peptide and creatinine also increased in CHBA-treated mice. The results indicate that activation of GPR81 might aggravate HIRI-induced remote organ injury and result in serious outcomes.
Collapse
Affiliation(s)
- Xinyan Zan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kerui Fan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kun Chen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Ying Zhi
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Wu T, Zhang C, Shao T, Chen J, Chen D. The Role of NLRP3 Inflammasome Activation Pathway of Hepatic Macrophages in Liver Ischemia-Reperfusion Injury. Front Immunol 2022; 13:905423. [PMID: 35757691 PMCID: PMC9229592 DOI: 10.3389/fimmu.2022.905423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is considered an inherent component involved in liver transplantation, which induce early organ dysfunction and failure. And the accumulating evidences indicate that the activation of host innate immune system, especially hepatic macrophages, play a pivotal role in the progression of LIRI. Inflammasomes is a kind of intracellular multimolecular complexes that actively participate in the innate immune responses and proinflammatory signaling pathways. Among them, NLRP3 inflammasome is the best characterized and correspond to regulate caspase-1 activation and the secretion of proinflammatory cytokines in response to various pathogen-derived as well as danger-associated signals. Additionally, NLRP3 is highly expressed in hepatic macrophages, and the assembly of NLRP3 inflammasome could lead to LIRI, which makes it a promising therapeutic target. However, detailed mechanisms about NLRP3 inflammasome involving in the hepatic macrophages-related LIRI is rarely summarized. Here, we review the potential role of the NLRP3 inflammasome pathway of hepatic macrophages in LIRI, with highlights on currently available therapeutic options.
Collapse
Affiliation(s)
- Tong Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianfeng Shao
- Department of General Practice, Shaoxing Yuecheng District Tashan Street Community Health Service Center, Shaoxing, China
| | - Jianzhong Chen
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Gong X, Li Y, He Y, Zhou F. USP7-SOX9-miR-96-5p-NLRP3 network regulates myocardial injury and cardiomyocyte pyroptosis in sepsis. Hum Gene Ther 2022; 33:1073-1090. [PMID: 35686454 DOI: 10.1089/hum.2022.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a common life-threatening pathology. This study investigated the role of transcription factor sex-determining region Y (SRY)-box 9 (SOX9) in sepsis-induced cardiomyocyte pyroptosis. A murine model of sepsis was established, followed by detection of cardiac functions and myocardial injury. HL-1 cells were induced by lipopolysaccharides (LPS). The levels of IL-18, IL-1β, TNF-α, IL-6, MDA, and SOD in myocardial tissues and HL-1 cells were determined. SOX9 ubiquitination level was measured. The binding relationships between SOX9-miR-96-5p and miR-96-5p-NLRP3 were analyzed, and the interaction between ubiquitin-specific peptidase 7 (USP7) and SOX9 was measured. SOX9 was highly expressed in septic mice and LPS-induced HL-1 cells. SOX9 silencing improved cardiac function, alleviated myocardial injury, reduced the levels of IL-1β, IL-18, cleaved caspase-1, GSDMD-N, TNF-α, IL-6, and MDA in myocardial tissues and HL-1 cells, increased the level of SOD, and alleviated cardiomyocyte pyroptosis. USP7 upregulated SOX9 expression through deubiquitination. SOX9 inhibited miR-96-5p expression and miR-96-5p targeted NLRP3. miR-96-5p silencing or USP7 overexpression reversed the inhibitory effect of SOX9 silencing on cardiomyocyte pyroptosis. Collectively, USP7 upregulated SOX9 expression through deubiquitination, and SOX9 suppressed miR-96-5p expression by binding to the miR-96-5p promoter region, thereby promoting NLRP3 expression and then exacerbating sepsis-induced myocardial injury and cardiomyocyte pyroptosis.
Collapse
Affiliation(s)
- Xinran Gong
- Sichuan Academy of Medical Sciences • Sichuan Provincial People's Hospital, Department of Anesthesiology, Chengdu City, Sichuan Province, China;
| | - Yao Li
- Sichuan Academy of Medical Sciences • Sichuan Provincial People's Hospital, Department of Anesthesiology, Chengdu City, Sichuan Province, China;
| | - Yu He
- Sichuan Academy of Medical Sciences • Sichuan Provincial People's Hospital, Department of Anesthesiology, Chengdu City, Sichuan Province, China;
| | - Fang Zhou
- Sichuan Academy of Medical Sciences • Sichuan Provincial People's Hospital, Department of Anesthesiology, 32# W.Sec 2,1st Ring Rd, Qingyang District, Chengdu City, Sichuan Province, China, 610072;
| |
Collapse
|
29
|
Zhou H, Wu J, Gong Y, Zhou Z, Wang J. Isoquercetin alleviates sleep deprivation dependent hippocampal neurons damage by suppressing NLRP3-induced pyroptosis. Immunopharmacol Immunotoxicol 2022; 44:766-772. [PMID: 35620829 DOI: 10.1080/08923973.2022.2082976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sleep deprivation (SD) leads to memory and cognitive impairment due to damage to the hippocampus. Isoquercetin possesses neuron-protective properties. Our study aimed to investigate the effects of isoquercetin on SD-induced hippocampal neurons damage and the underlying mechanism. Herein, the cognitive competence was evaluated by Morris water maze (MWM) test after SD. The morphology of the hippocampus was observed after Nissl staining. Moreover, the level of NLRP3 was detected by Immunofluorescent staining and western blot. In vitro study, pyroptosis was tested by TUNEL assay and flow cytometry. The levels of pyroptosis-related factors were measured by western blot. The results indicated that isoquercetin improved spatial memory and prevented change of hippocampal neurons of SD mice. Moreover, SD upregulated NLRP3 level, which was downregulated by isoquercetin. Additionally, isoquercetin rescued the increase of pyroptosis and the upregulation of NLRP3, caspase-1, ASC, IL-1β, IL-18, and GSDMD levels induced by LPS. In conclusion, isoquercetin improved learning and cognitive capability of SD mice via suppressing NLRP3-induced pyroptosis of hippocampal neurons cells, suggesting that isoquercetin might be an efficacious drug for memory disorders caused by SD.
Collapse
Affiliation(s)
- Hairui Zhou
- College of Basic Medicine, Jiamusi University, Jiamusi 154002, China
| | - Jingru Wu
- College of Basic Medicine, Jiamusi University, Jiamusi 154002, China
| | - Yu Gong
- College of Basic Medicine, Jiamusi University, Jiamusi 154002, China
| | - Zilong Zhou
- College of Basic Medicine, Jiamusi University, Jiamusi 154002, China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154002, China
| |
Collapse
|
30
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
31
|
Xia X, Zhang L, Wu H, Chen F, Liu X, Xu H, Cui Y, Zhu Q, Wang M, Hao H, Li DP, Fay WP, Martinez-Lemus LA, Hill MA, Xu C, Liu Z. CagA+Helicobacter pylori, Not CagA–Helicobacter pylori, Infection Impairs Endothelial Function Through Exosomes-Mediated ROS Formation. Front Cardiovasc Med 2022; 9:881372. [PMID: 35433874 PMCID: PMC9008404 DOI: 10.3389/fcvm.2022.881372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundHelicobacter pylori (H. pylori) infection increases the risk for atherosclerosis, and ROS are critical to endothelial dysfunction and atherosclerosis. CagA is a major H. pylori virulence factor associated with atherosclerosis. The present study aimed to test the hypothesis that CagA+H. pylori effectively colonizes gastric mucosa, and CagA+H. pylori, but not CagA–H. pylori, infection impairs endothelial function through exosomes-mediated ROS formation.MethodsC57BL/6 were used to determine the colonization ability of CagA+H. pylori and CagA–H. pylori. ROS production, endothelial function of thoracic aorta and atherosclerosis were measured in CagA+H. pylori and CagA–H. pylori infected mice. Exosomes from CagA+H. pylori and CagA–H. pylori or without H. pylori infected mouse serum or GES-1 were isolated and co-cultured with bEND.3 and HUVECs to determine how CagA+H. pylori infection impairs endothelial function. Further, GW4869 was used to determine if CagA+H. pylori infection could lead to endothelial dysfunction and atherosclerosis through an exosomes-mediated mechanism.ResultsCagA+H. pylori colonized gastric mucosa more effectively than CagA–H. pylori in mice. CagA+H. pylori, not CagA–H. pylori, infection significantly increased aortic ROS production, decreased ACh-induced aortic relaxation, and enhanced early atherosclerosis formation, which were prevented with N-acetylcysteine treatment. Treatment with CagA-containing exosomes significantly increased intracellular ROS production in endothelial cells and impaired their function. Inhibition of exosomes secretion with GW4869 effectively prevented excessive aortic ROS production, endothelial dysfunction, and atherosclerosis in mice with CagA+H. pylori infection.ConclusionThese data suggest that CagA+H. pylori effectively colonizes gastric mucosa, impairs endothelial function, and enhances atherosclerosis via exosomes-mediated ROS formation in mice.
Collapse
Affiliation(s)
- Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linfang Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Huifang Xu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - De-Pei Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - William P. Fay
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, Columbia, MO, United States
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- *Correspondence: Zhenguo Liu,
| |
Collapse
|
32
|
Ren L, Yan H. Targeting AGEs-RAGE pathway inhibits inflammation and presents neuroprotective effect against hepatic ischemia-reperfusion induced hippocampus damage. Clin Res Hepatol Gastroenterol 2022; 46:101792. [PMID: 34400367 DOI: 10.1016/j.clinre.2021.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The present study aimed to investigate the role of AGEs-RAGE signaling and its potential as a treatment target in hepatic ischemia-reperfusion (HIR)-induced hippocampus damage. METHODS HIR operation was conducted in mice, followed by collection of hippocampus tissue at 1 day, 3 days and 7 days. Additionally, low dose, moderate dose and high dose FPS-ZM1 (RAGE inhibitor) was intraperitoneally injected into HIR mice. Besides, sham operation was conduced in mice which served as control. RESULTS HIR increased the hippocampal damage and enhanced its neuron apoptosis within 3 days, which recovered to some extent from day 3 to day 7 post operation. Meanwhile, the expressions of AGEs, RAGE, the downstream proteins in AGEs-RAGE signaling pathway (including PI3K, pAKT, pNKκB p65 and pERK1/2), and the inflammatory cytokines (including IL-1β, IL-6, TNF-α) were increased within 3 days, but were reduced from day 3 to day 7 post operation by HIR. Notably, moderate and high dose of FPS-ZM1 attenuated hippocampal damage, inhibited its neuron apoptosis, inactivated AGEs-RAGE signaling, and suppressed the expressions of inflammatory cytokines (including IL-1β, IL-6, TNF-α); but lose dose of FPS-ZM1 failed to achieve these effects. CONCLUSIONS Targeting AGEs-RAGE pathway inhibits inflammation and presents neuroprotective effect against HIR-induced hippocampus damage.
Collapse
Affiliation(s)
- Lingyun Ren
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
33
|
He GH, Ma YX, Dong M, Chen S, Wang YC, Gao X, Wu B, Wang J, Wang JH. Mesenchymal stem cell-derived exosomes inhibit the VEGF-A expression in human retinal vascular endothelial cells induced by high glucose. Int J Ophthalmol 2021; 14:1820-1827. [PMID: 34926194 PMCID: PMC8640780 DOI: 10.18240/ijo.2021.12.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSCs) on the expression of vascular endothelial growth factor A (VEGF-A) in human retinal vascular endothelial cells (HRECs). METHODS Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy, Western blotting and nanoparticle tracking analysis. HRECs were randomly divided into a normal control group (group A), a high glucose model group (group B), a high glucose group with 25 µg/mL (group C), 50 µg/mL (group D), and 100 µg/mL exosomes (group E). Twenty-four hours after coculture, the cell proliferation rate was detected using flow cytometry, and the VEGF-A level was detected using immunofluorescence. After coculture 8, 16, and 24h, the expression levels of VEGF-A in each group were detected using PCR and Western blots. RESULTS The characteristic morphology (membrane structured vesicles) and size (diameter between 50 and 200 nm) were observed under transmission electron microscopy. The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis (NTA). The exosomal markers CD9, CD63, and HSP70 were strongly detected. The proliferation rate of the cells in group B increased after 24h of coculture. Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes (F=39.03, P<0.01). The upregulation of VEGF-A protein (group C: F=7.96; group D: F=17.29; group E: F=11.89; 8h: F=9.45; 16h: F=12.86; 24h: F=42.28, P<0.05) and mRNA (group C: F=4.137; group D: F=13.64; group E: F=22.19; 8h: F=7.253; 16h: F=16.98; 24h: F=22.62, P<0.05) in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes (P<0.05). CONCLUSION hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner.
Collapse
Affiliation(s)
- Guang-Hui He
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
- Ophthalmic Center of Xinjiang Production and Construction Corps Hospital, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
| | - Ying-Xue Ma
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Meng Dong
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Song Chen
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Yu-Chuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Xiang Gao
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
- Medical College of NanKai University, Tianjin 300000, China
| | - Bin Wu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Jian Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Jun-Hua Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| |
Collapse
|
34
|
Zou J, Zheng Y, Huang Y, Tang D, Kang R, Chen R. The Versatile Gasdermin Family: Their Function and Roles in Diseases. Front Immunol 2021; 12:751533. [PMID: 34858408 PMCID: PMC8632255 DOI: 10.3389/fimmu.2021.751533] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
The gasdermin (GSDM) family, a novel group of structure-related proteins, consists of GSDMA, GSDMB, GSDMC, GSDMD, GSDME/DNFA5, and PVJK/GSDMF. GSDMs possess a C-terminal repressor domain, cytotoxic N-terminal domain, and flexible linker domain (except for GSDMF). The GSDM-NT domain can be cleaved and released to form large oligomeric pores in the membrane that facilitate pyroptosis. The emerging roles of GSDMs include the regulation of various physiological and pathological processes, such as cell differentiation, coagulation, inflammation, and tumorigenesis. Here, we introduce the basic structure, activation, and expression patterns of GSDMs, summarize their biological and pathological functions, and explore their regulatory mechanisms in health and disease. This review provides a reference for the development of GSDM-targeted drugs to treat various inflammatory and tissue damage-related conditions.
Collapse
Affiliation(s)
- Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Pauwels MJ, Vandendriessche C, Vandenbroucke RE. Special delEVery: Extracellular Vesicles as Promising Delivery Platform to the Brain. Biomedicines 2021; 9:1734. [PMID: 34829963 PMCID: PMC8615927 DOI: 10.3390/biomedicines9111734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of central nervous system (CNS) pathologies is severely hampered by the presence of tightly regulated CNS barriers that restrict drug delivery to the brain. An increasing amount of data suggests that extracellular vesicles (EVs), i.e., membrane derived vesicles that inherently protect and transfer biological cargoes between cells, naturally cross the CNS barriers. Moreover, EVs can be engineered with targeting ligands to obtain enriched tissue targeting and delivery capacities. In this review, we provide a detailed overview of the literature describing a natural and engineered CNS targeting and therapeutic efficiency of different cell type derived EVs. Hereby, we specifically focus on peripheral administration routes in a broad range of CNS diseases. Furthermore, we underline the potential of research aimed at elucidating the vesicular transport mechanisms across the different CNS barriers. Finally, we elaborate on the practical considerations towards the application of EVs as a brain drug delivery system.
Collapse
Affiliation(s)
- Marie J. Pauwels
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
36
|
MCC950, the NLRP3 Inhibitor, Protects against Cartilage Degradation in a Mouse Model of Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4139048. [PMID: 34777685 PMCID: PMC8580635 DOI: 10.1155/2021/4139048] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA), characterized by chronic systemic low-level inflammation and cartilage degeneration, is a type of arthritis closely associated with aging. Inflammation and aging play a pivotal role in the occurrence and progression of OA. NLRP3 inflammasome is involved in many inflammatory and aging diseases, and NLRP3 inhibitor MCC950 has anti-inflammatory and antisenescence effects on some diseases such as Alzheimer's disease. In the present study, we found that NLRP3 protein was upregulated in human and mouse OA cartilage. Moreover, NLRP3 and Caspase1 expression induced by IL-1β in chondrocytes was blocked by MCC950. In addition, MCC950 inhibited the expression of inflammatory mediators, matrix-degrading enzymes, senescence marker protein P16 (INK4A), and β-galactosidase, as well as excessive production of ROS. Meanwhile, MCC950 promoted autophagy-related protein expression and autophagy flux under the inflammatory condition. However, autophagy inhibitor 3-MA reversed anti-inflammatory and anticatabolic effects of MCC950. In in vivo experiments, intra-articular administration of MCC950 further showed its protective effect on cartilage degeneration. Bioinformatic analysis and in vitro experimental results revealed that MCC950 might play a protective role in cartilage by regulating Nrf2/HO-1/NQO1, PI3k/Akt/mTOR, P38/MAPK, and JNK/MAPK pathways. In conclusion, our work demonstrated that NLRP3 inhibitor MCC950 might serve as a promising strategy for OA treatment.
Collapse
|
37
|
Yan B, Liu T, Yao C, Liu X, Du Q, Pan L. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition. J Transl Med 2021; 101:1427-1438. [PMID: 34389797 DOI: 10.1038/s41374-021-00635-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
The mechanisms underlying atrial fibrillation (AF), a type of heart arrhythmia, have not been fully identified. Long noncoding RNAs (lncRNAs) have been implicated in the progression of AF. The current study aimed to ascertain the means by which X-inactive specific transcript (XIST), a lncRNA, contributes to the pathogenesis of AF in an animal model or in atrial myocytes. Extracellular vesicles (EVs) derived from mouse adipose tissue-derived mesenchymal stem cells (AMSCs) were isolated, transfected with XIST, and either injected into AF mouse models or incubated with atrial myocytes. The in vitro and in vivo effects of EV-derived XIST on myocardial pyroptosis were determined by Western blot analysis of pyroptosis-related protein and an ELISA for inflammatory factors. Bioinformatics analysis revealed a relationship between XIST, microRNA (miR)-214-3p, and Arl2, which was subsequently verified by a dual luciferase assay and RNA immunoprecipitation. Functional experiments were performed to elucidate whether changes in miR-214-3p or Arl2 regulated the effect of XIST on myocardial pyroptosis. Overexpressed XIST from AMSC-EVs were found to decrease myocardial pyroptosis while alleviating inflammation, which was demonstrated by reduced expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), cleared-caspase-1/caspase-1 and gasdermin D (GSDMD), as well as the amount of interleukin (IL)-1β and IL-18 in both the cardiomyocytes and AF mouse tissues. Mechanistically, XIST is a competing endogenous RNA (ceRNA) of miR-214-3p, triggering upregulation of its target gene Arl2. Silencing of Arl2 or overexpression miR-214-3p reversed the effects of XIST on inflammation and pyroptosis. Taken together, the key findings of our study suggest that XIST may blunt myocardial pyroptosis by absorbing miR-214-3p to promote Arl2 expression, providing encouraging insight into XIST-based targeted therapy for AF.
Collapse
Affiliation(s)
- Boyu Yan
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Ting Liu
- Department of Pharmacy, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Chang Yao
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Xinglong Liu
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Qian Du
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Lihua Pan
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.
| |
Collapse
|
38
|
Wu Y, Qiu G, Zhang H, Zhu L, Cheng G, Wang Y, Li Y, Wu W. Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway. J Cell Mol Med 2021; 25:9983-9994. [PMID: 34664412 PMCID: PMC8572787 DOI: 10.1111/jcmm.16871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatic ischaemia-reperfusion (I/R) injury constitutes a tough difficulty in liver surgery. Dexmedetomidine (Dex) plays a protective role in I/R injury. This study investigated protective mechanism of Dex in hepatic I/R injury. The human hepatocyte line L02 received hypoxia/reoxygenation (H/R) treatment to stimulate cell model of hepatic I/R. The levels of pyroptosis proteins and inflammatory factors were detected. Functional rescue experiments were performed to confirm the effects of miR-494 and JUND on hepatic I/R injury. The levels of JUND, PI3K/p-PI3K, AKT/p-AKT, Nrf2, and NLRP3 activation were detected. The rat model of hepatic I/R injury was established to confirm the effect of Dex in vivo. Dex reduced pyroptosis and inflammation in H/R cells. Dex increased miR-494 expression, and miR-494 targeted JUND. miR-494 inhibition or JUND upregulation reversed the protective effect of Dex. Dex repressed NLRP3 inflammasome by activating the PI3K/AKT/Nrf2 pathway. In vivo experiments confirmed the protective effect of Dex on hepatic I/R injury. Overall, Dex repressed NLRP3 inflammasome and alleviated hepatic I/R injury via the miR-494/JUND/PI3K/AKT/Nrf2 axis.
Collapse
Affiliation(s)
- Yan Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Gaolin Qiu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hainie Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Leilei Zhu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Gao Cheng
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yiqiao Wang
- Department of AnesthesiologyAnhui NO.2 Provincial People's HospitalHefeiChina
| | - Yuanhai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Weiwei Wu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
39
|
Astrocyte-derived exosomes protect hippocampal neurons after traumatic brain injury by suppressing mitochondrial oxidative stress and apoptosis. Aging (Albany NY) 2021; 13:21642-21658. [PMID: 34516406 PMCID: PMC8457605 DOI: 10.18632/aging.203508] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
In this study, we investigated the mechanisms through which astrocyte-derived exosomes (AS-Exos) alleviate traumatic brain injury (TBI)-induced neuronal defects in TBI model rats and mice. Treatment with AS-Exos alleviated neurobehavioral deficits, cognitive impairment, and brain edema in TBI rats. AS-Exos also significantly reduced neuronal cell loss and atrophy in the TBI rats. AS-Exos significantly reduced oxidative stress and mitochondrial H2O2 levels by increasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in the hippocampal neurons of TBI rats. TUNEL-staining assays showed that AS-Exos significantly reduced TBI-induced neuronal apoptosis. Mechanistically, AS-Exos ameliorated oxidative stress by activating Nrf2/HO-1 signaling in the hippocampus of TBI rats. In addition, the neuroprotective effects of AS-Exos were abrogated in brain-specific Nrf2-knockout mice subjected to TBI. These findings demonstrate that AS-Exos protects against TBI-induced oxidative stress and neuronal apoptosis by activating Nrf2 signaling in both rat and mouse models.
Collapse
|
40
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Liu H, Man K. New Insights in Mechanisms and Therapeutics for Short- and Long-Term Impacts of Hepatic Ischemia Reperfusion Injury Post Liver Transplantation. Int J Mol Sci 2021; 22:ijms22158210. [PMID: 34360975 PMCID: PMC8348697 DOI: 10.3390/ijms22158210] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.
Collapse
|
42
|
Ye Z, Hu J, Xu H, Sun B, Jin Y, Zhang Y, Zhang J. Serum Exosomal microRNA-27-3p Aggravates Cerebral Injury and Inflammation in Patients with Acute Cerebral Infarction by Targeting PPARγ. Inflammation 2021; 44:1035-1048. [PMID: 33394189 DOI: 10.1007/s10753-020-01399-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Acute cerebral infarction (ACI) possesses high mortality. Exosomes present in serum have potential application value in ACI diagnosis. This study investigated the mechanism of serum exosomes in ACI. Serum exosomes isolated from ACI patients and normal people were identified and then injected into the established middle cerebral artery occlusion (MCAO) rat model to evaluate cerebral injury and inflammation. Exosomal microRNA (miR)-27-3p expression was detected and interfered to analyze rat cerebral inflammation. The binding relationship between miR-27-3p and PPARγ was predicted and verified. The lipopolysaccharide (LPS)-treated microglia model was established and intervened with miR-27-3p to detect PPARγ, Iba-1, and inflammation-related factor expressions. After overexpressing PPARγ, rat cerebral inflammation was evaluated. The clinical significance of serum exosomal miR-27-3p in ACI was evaluated. Serum exosomes from ACI patients caused exacerbated MCAO rat cerebral injury and poor behavior recovery, as well as promoted cerebral inflammation. Serum exosomal miR-27-3p deepened rat brain inflammation. miR-27-3p targeted PPARγ to promote microglia activation and inflammation-related factor expressions in MCAO rats, and overexpressing PPARγ attenuated MCAO rat cerebral inflammation. Serum exosomal miR-27-3p promised to be a biomarker for ACI. We proved that serum exosomes from ACI patients aggravated ACI patient cerebral inflammation via the miR-27-3p/PPARγ axis.
Collapse
Affiliation(s)
- Zhinan Ye
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jingchun Hu
- Department of Anesthesiology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Wenzhou, 323000, Zhejiang Province, China
| | - Hao Xu
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Bin Sun
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yong Jin
- Department of Neurosurgery, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yaping Zhang
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jianli Zhang
- Department of Neurology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, No.289 Kuocang Road, Liandu District of Lishui City, Wenzhou, 323000, Zhejiang Province, China.
| |
Collapse
|
43
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
44
|
He J, Zhang X, He W, Xie Y, Chen Y, Yang Y, Chen R. Neuroprotective effects of zonisamide on cerebral ischemia injury via inhibition of neuronal apoptosis. ACTA ACUST UNITED AC 2021; 54:e10498. [PMID: 33656055 PMCID: PMC7917778 DOI: 10.1590/1414-431x202010498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
It is known that neuronal apoptosis contributes to pathology of cerebral ischemia injury. Zonisamide (ZNS) has shown anti-apoptosis effects in recent studies. The present study investigated whether the anti-apoptotic effect can account for the neuroprotective action of ZNS on cerebral ischemia. Neuronal cells were maintained under oxygen-glucose deprivation conditions to simulate cerebral ischemia and treated with ZNS simultaneously. The apoptosis of the cells and expression of apoptosis-related proteins were investigated by flow cytometry and western blot analysis, respectively. A cerebral ischemia mouse model was created via middle cerebral artery occlusion, and the mice were treated with ZNS. Neurological deficit scores and infarct volumes of the cerebral ischemia mice were measured. The apoptosis status of the neuronal cells was evaluated by TUNEL staining. In vitro, the ZNS treatment inhibited both the apoptosis of the neuronal cells and apoptosis-related protein expression (caspase-3, caspase-8, and calpain-1) induced by the oxygen-glucose deprivation. The anti-apoptosis effect of ZNS could occur through the blocking of reactive oxygen species. Moreover, ZNS treatment significantly ameliorated neurological deficits and reduced infarct volumes in the cerebral ischemia mice model. In this study, ZNS exerted neuroprotective effects by inhibition of apoptosis in neuronal cells in cerebral ischemia. Therefore, ZNS might be a promising therapy for cerebral ischemia.
Collapse
Affiliation(s)
- Junna He
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanzhao Xie
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanxia Chen
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Yang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| |
Collapse
|
45
|
Bottino LZMF, Rodrigues-Junior DM, Farias ISD, Branco LM, Iyer NG, de Albuquerque GE, Vettore AL, Bortoluci KR. Extracellular vesicles derived from head and neck squamous cells carcinoma inhibit NLRP3 inflammasomes. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:175-183. [PMID: 35492395 PMCID: PMC9040134 DOI: 10.1016/j.crimmu.2021.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
The content of tumor-derived extracellular vesicles (EVs) can regulate the tumor microenvironment and functionally acts in favor of cancer aggressiveness. To better elucidate the role of EVs in the interplay between immune system and tumor microenvironment, the purpose of this study was to analyze the effect of head and neck squamous cells carcinoma (HNSCC)-derived EVs on the modulation of inflammasomes - mediators of pyroptosis and secretion of inflammatory factors by macrophages. Our results showed that macrophages treated with the Vesicular Secretome Fraction (VSF) isolated from patient-derived HNSCC presented a reduction in the secretion of mature IL-1β and caspase-1 without affecting cell viability. An analysis of the protein content of HNSCC-derived VSF by antibody array revealed that some of the most expressed proteins share a correlation with Transforming Growth Factor-beta (TGF-β) activity. Since TGF-β is related to the inhibition of the NF-kB-related pathways, including those required for the priming phase of the inflammasomes, we sought to evalute the interference of the VSF in the induction of inflammasome components. In fact, HNSCC-derived VSF inhibited the induction of pro-IL-1β and pro-caspase-1 proteins and NLRP3 gene expression during the priming phase of inflammasome activation. Thus, our findings contribute to a better understanding of how tumor-derived EVs modulate inflammatory response by demonstrating their role in inhibiting NLRP3 inflammasomes. Vesicular Secretome Fraction (VSF) from HNSCC inhibits macrophage responses to the NLRP3 inflammasomes agonists. HNSCC-derived VSF is enriched with proteins correlated with the Transforming Growth Factor-b pathway. HNSCC-derived VSF affects the priming phase of inflammasome activation.
Collapse
|
46
|
Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z. Roles of Exosomes in Ocular Diseases. Int J Nanomedicine 2020; 15:10519-10538. [PMID: 33402823 PMCID: PMC7778680 DOI: 10.2147/ijn.s277190] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes, nanoscale vesicles with a diameter of 30 to 150 nm, are composed of a lipid bilayer, protein, and genetic material. Exosomes are secreted by virtually all types of cells in the human body. They have key functions in cell-to-cell communication, immune regulation, inflammatory response, and neovascularization. Mounting evidence indicates that exosomes play an important role in various diseases, such as cancer, cardiovascular diseases, and brain diseases; however, the role that exosomes play in eye diseases has not yet been rigorously studied. This review covers current exosome research as it relates to ocular diseases including diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, glaucoma, traumatic optic neuropathies, corneal diseases, retinopathy of prematurity, and uveal melanoma. In addition, we discuss recent advances in the biological functions of exosomes, focusing on the toxicity of exosomes and the use of exosomes as biomarkers and drug delivery vesicles. Finally, we summarize the primary considerations and challenges to be taken into account for the effective applications of exosomes.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yicheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xuefeng Shi
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, 300020, People's Republic of China.,School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, People's Republic of China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
47
|
Dexmedetomidine Ameliorates Hippocampus Injury and Cognitive Dysfunction Induced by Hepatic Ischemia/Reperfusion by Activating SIRT3-Mediated Mitophagy and Inhibiting Activation of the NLRP3 Inflammasome in Young Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7385458. [PMID: 34493950 PMCID: PMC8418694 DOI: 10.1155/2020/7385458] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Hepatic ischemia-reperfusion (HIR) has been proven to trigger oxidative stress and pyroptosis in the hippocampus. Sirtuin 3 (SIRT3) is an essential mitochondrial protein deacetylase regulating oxidative stress and mitophagy. Dexmedetomidine (Dex) has been demonstrated to confer neuroprotection in different brain injury models. However, whether the protective effects of Dex following HIR are orchestrated by activation of SIRT3-mediated mitophagy and inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome activation remains unknown. Herein, two-week-old rats were treated with Dex or a selective SIRT3 inhibitor (3-TYP)/autophagy inhibitor (3-MA) and then subjected to HIR. The results revealed that Dex treatment effectively attenuated neuroinflammation and cognitive deficits via upregulating SIRT3 expression and activity. Furthermore, Dex treatment inhibited the activation of NLRP3 inflammasome, while 3-TYP and 3-MA eliminated the protective effects of Dex, suggesting that SIRT3-mediated mitophagy executes the protective effects of Dex. Moreover, 3-TYP treatment downregulated the expression level of SIRT3 downstream proteins: forkhead-box-protein 3α (FOXO3α), superoxide dismutase 2 (SOD2), peroxiredoxin 3 (PRDX3), and cyclophilin D (CYP-D), which were barely influenced by 3-MA treatment. Notably, both 3-TYP and 3-MA were able to offset the antioxidative and antiapoptosis effects of Dex, indicating that SIRT3-mediated mitophagy may be the last step and the major pathway executing the neuroprotective effects of Dex. In conclusion, Dex inhibits HIR-induced NLRP3 inflammasome activation mainly by triggering SIRT3-mediated mitophagy.
Collapse
|
48
|
Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation 2020; 17:330. [PMID: 33153475 PMCID: PMC7643474 DOI: 10.1186/s12974-020-01988-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Inflammatory response has been recognized as a pivotal pathophysiological process during cerebral ischemic stroke. NLRP3 inflammasome, involved in the regulation of inflammatory cascade, can simultaneously lead to GSDMD-executed pyroptosis in cerebral ischemia. Low-density lipoprotein receptor (LDLR), responsible for cholesterol uptake, was noted to exert potential anti-inflammatory bioactivities. Nevertheless, the role of LDLR in neuroinflammation mobilized by cerebral ischemia/reperfusion (I/R) has not been investigated. METHODS Ischemic stroke mice model was accomplished by middle cerebral artery occlusion. Oxygen-glucose deprivation was employed after primary cortical neuron was extracted and cultured. A pharmacological inhibitor of NLRP3 (CY-09) was administered to suppress NLPR3 activation. Histological and biochemical analysis were performed to assess the neuronal death both in vitro and in vivo. In addition, neurological deficits and behavioral deterioration were evaluated in mice. RESULTS The expression of LDLR was downregulated following cerebral I/R injury. Genetic knockout of Ldlr enhanced caspase-1-dependent cleavage of GSDMD and resulted in severe neuronal pyroptosis. LDLR deficiency contributed to excessive NLRP3-mediated maturation and release of IL-1β and IL-18 under in vitro and in vivo ischemic conditions. These influences ultimately led to aggravated neurological deficits and long-term cognitive dysfunction. Blockade of NLRP3 substantially retarded neuronal pyroptosis in Ldlr-/- mice and cultured Ldlr-/- neuron after experimental stroke. CONCLUSIONS These results demonstrated that LDLR modulates NLRP3-mediated neuronal pyroptosis and neuroinflammation following ischemic stroke. Our findings characterize a novel role for LDLR as a potential therapeutic target in neuroinflammatory responses to acute cerebral ischemic injury.
Collapse
|
49
|
Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics 2020; 12:pharmaceutics12111006. [PMID: 33105857 PMCID: PMC7690579 DOI: 10.3390/pharmaceutics12111006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.
Collapse
|
50
|
Ye A, Li W, Zhou L, Ao L, Fang W, Li Y. Targeting pyroptosis to regulate ischemic stroke injury: Molecular mechanisms and preclinical evidences. Brain Res Bull 2020; 165:146-160. [PMID: 33065175 DOI: 10.1016/j.brainresbull.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Stroke is one of the leading causes of death worldwide with limited therapies. After ischemic stroke occurs, a robust sterile inflammatory response happens and lasts for days and determines neurological prognosis. Pyroptosis is an inflammatory programmed cell death characterized by cleavage of pore-forming proteins gasdermins as a result of activating caspases and inflammasomes. It has morphological characteristics of rapid plasma-membrane rupture and release of proinflammatory intracellular contents as well as cytokines. Recent researches implicate pyroptosis involvement in the pathogenesis of ischemic stroke and inhibition of pyroptosis attenuates ischemic brain injury. In this review, we discussed molecular mechanisms of pyroptosis, evidences for pyroptosis involvement in different kinds of the central nervous system cells, as well as potential inhibitors for intervention of pyroptosis. Based on the review, we hypothesize the feasibility of therapeutic strategies targeting pyroptosis in the context of ischemic stroke.
Collapse
Affiliation(s)
- Anqi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wanting Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|