1
|
Drago L, De La Motte LR, Deflorio L, Sansico DF, Salvatici M, Micaglio E, Biazzo M, Giarritiello F. Systematic review of bidirectional interaction between gut microbiome, miRNAs, and human pathologies. Front Microbiol 2025; 16:1540943. [PMID: 39973938 PMCID: PMC11835932 DOI: 10.3389/fmicb.2025.1540943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
MicroRNAs (miRNAs) and the gut microbiome are key regulators of human health, with emerging evidence highlighting their complex, bidirectional interactions in chronic diseases. miRNAs, influence gene expression and can modulate the composition and function of the gut microbiome, impacting metabolic and immune processes. Conversely, the microbiome can affect host miRNA expression, influencing inflammatory pathways and disease susceptibility. This systematic review examines recent studies (2020-2024) focusing exclusively on human subjects, selected through rigorous inclusion and exclusion criteria. Studies were included if they investigated the interaction between miRNAs and the gut microbiome in the context of gastrointestinal diseases, obesity, autoimmune diseases, cognitive and neurodegenerative disorders, and autism. In vitro, in vivo and in silico analyses were excluded to ensure a strong translational focus on human pathophysiology. Notably, miRNAs, stable and abundant in patients, are emerging as promising biomarkers of microbiome-driven inflammation. This systematic review provides an overview of miRNAs, their regulatory effects on bacterial strains, and their associations with specific diseases. It also explores therapeutic advances and the potential of miRNA-based therapies to restore microbial balance and reduce inflammation.
Collapse
Affiliation(s)
- Lorenzo Drago
- UOC Laboratory of Clinical Medicine with Specialized Areas, IRCCS MultiMedica, Milan, Italy
- Clinical Microbiology and Microbiome Laboratory, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Loredana Deflorio
- UOC Laboratory of Clinical Medicine with Specialized Areas, IRCCS MultiMedica, Milan, Italy
| | | | - Michela Salvatici
- UOC Laboratory of Clinical Medicine with Specialized Areas, IRCCS MultiMedica, Milan, Italy
| | | | | | - Fabiana Giarritiello
- UOC Laboratory of Clinical Medicine with Specialized Areas, IRCCS MultiMedica, Milan, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| |
Collapse
|
2
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024; 82:3091-3108. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
Yuan Z, Zhang Y, He X, Wang X, Wang X, Ren S, Su J, Shen J, Li X, Xiao Z. Engineering mesenchymal stem cells for premature ovarian failure: overcoming challenges and innovating therapeutic strategies. Theranostics 2024; 14:6487-6515. [PMID: 39479455 PMCID: PMC11519806 DOI: 10.7150/thno.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of infertility in women, causing significant psychological and physical distress. Current therapeutic options are limited, necessitating the exploration of new treatments. Mesenchymal stem cells (MSCs), known for their remarkable homing and regenerative properties, have emerged as a promising intervention for POF. However, their clinical efficacy has been inconsistent. This paper aims to address these challenges by examining the cellular heterogeneity within MSC populations, which is crucial for identifying and selecting specific functional subpopulations for clinical applications. Understanding this heterogeneity can enhance therapeutic efficacy and ensure treatment stability. Additionally, this review comprehensively examines the literature on the effectiveness, safety, and ethical considerations of MSCs for ovarian regeneration, with a focus on preclinical and clinical trials. We also discuss potential strategies involving genetically and tissue-engineered MSCs. By integrating insights from these studies, we propose new directions for the design of targeted MSC treatments for POF and related disorders, potentially improving outcomes, addressing safety concerns, and expanding therapeutic options while ensuring ethical compliance.
Collapse
Affiliation(s)
- Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiang Li
- Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
- Luzhou People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Quesada S, Rosso AD, Mascardi F, Soler-Rivero V, Aguilera P, Mascuka SN, Boiro A, Arenielo E, Vijoditz G, Ferreyra-Mufarregue LR, Caputo MF, Cimolai MC, Coluccio Leskow F, Penas-Steinhardt A, Belforte FS. Integrative analysis of systemic lupus erythematosus biomarkers: Role of fecal hsa-mir-223-3p and gut microbiota in transkingdom dynamics. Mol Immunol 2024; 171:77-92. [PMID: 38795687 DOI: 10.1016/j.molimm.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Systemic lupus erythematosus (SLE) involves a florid set of clinical manifestations whose autoreactive origin is characterized by an overactivation of the immune system and the production of a large number of autoantibodies. Because it is a complex pathology with an inflammatory component, its pathogenesis is not yet fully understood, assuming both genetic and environmental predisposing factors. Currently, it is known that the role of the human microbiome is crucial in maintaining the transkingdom balance between commensal microorganisms and the immune system. In the present work we study the intestinal microbiota of Argentine patients with different stages of SLE receiving or not different treatments. Microbiota composition and fecal miRNAs were assessed by 16 S sequencing and qPCR. hsa-miR-223-3p, a miRNA involved in several inflammation regulation pathways, was found underexpressed in SLE patients without immunosuppressive treatment. In terms of microbiota there were clear differences in population structure (Weighted and Unweighted Unifrac distances, p-value <0.05) and core microbiome between cases and controls. In addition, Collinsella, Bifidobacterium, Streptococcus genera and aromatics degradation metabolisms were overrepresented in the SLE group. Medical treatment was also determinant as several microbial metabolic pathways were influenced by immunosuppressive therapy. Particularly, allantoin degradation metabolism was differentially expressed in the group of patients receiving immunosuppressants. Finally, we performed a logistic regression model (LASSO: least absolute shrinkage and selection operator) considering the expression levels of the fecal hsa-miR223-3p; the core microbiota; the differentially abundant bacterial taxa and the differentially abundant metabolic pathways (p<0.05). The model predicted that SLE patients could be associated with greater relative abundance of the formaldehyde oxidation pathway (RUMP_PWY). On the contrary, the preponderance of the ketodeoxyoctonate (Kdo) biosynthesis and activation route (PWY_1269) and the genera Lachnospiraceae_UCG_004, Lachnospira, Victivallis and UCG_003 (genus belonging to the family Oscillospiraceae of the class Clostridia) were associated with a control phenotype. Overall, the present work could contribute to the development of integral diagnostic tools for the comprehensive phenotyping of patients with SLE. In this sense, studying the commensal microbial profile and possible pathobionts associated with SLE in our population proposes more effective and precise strategies to explore possible treatments based on the microbiota of SLE patients.
Collapse
Affiliation(s)
- Sofía Quesada
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ayelén Daiana Rosso
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Florencia Mascardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Valeria Soler-Rivero
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Pablo Aguilera
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sebastian Nicolas Mascuka
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Andrea Boiro
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Evangelina Arenielo
- Sección Inmunología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gustavo Vijoditz
- Sección Inmunología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | | | - Marina Flavia Caputo
- Sección Inmunología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - María Cecilia Cimolai
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Federico Coluccio Leskow
- Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alberto Penas-Steinhardt
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fiorella Sabrina Belforte
- Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina.
| |
Collapse
|
5
|
Ma L, Liu H, Shao P, Lv Q. Upregulated miR-146b-3p predicted rheumatoid arthritis development and regulated TNF-α-induced excessive proliferation, motility, and inflammation in MH7A cells. BMC Immunol 2024; 25:36. [PMID: 38902605 PMCID: PMC11188492 DOI: 10.1186/s12865-024-00629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic immune system disease with a high disability rate threatening the living quality of patients. Identifying potential biomarkers for RA is of necessity to improve the prevention and management of RA. OBJECTIVES This study focused on miR-146b-3p evaluating its clinical significance and revealing the underlying regulatory mechanisms. MATERIALS AND METHODS A total of 107 RA patients were enrolled, and both serum and synovial tissues were collected. Another 78 osteoarthritis patients (OA, providing synovial tissues), and 72 healthy individuals (providing serum samples) were enrolled as the control group. The expression of miR-146b-3p was analyzed by PCR and analyzed with ROC and Pearson correlation analyses evaluating its significance in diagnosis and development prediction of RA patients. In vitro, MH7A cells were treated with TNF-α. The regulation of cell proliferation, motility, and inflammation by miR-146b-3p was assessed by CCK8, Transwell, and ELISA assays. RESULTS Significant upregulation of miR-146b-3p was observed in serum and synovial tissues of RA patients, which distinguished RA patients and were positively correlated with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), anti-cyclic citrullinated peptide antibodies (anti-CCP), and rheumatoid factor (RF) of RA patients. TNF-α promoted the proliferation and motility of MH7A cells and induced significant inflammation in cells. Silencing miR-146b-3p alleviated the effect of TNF-α and negatively regulated the expression of HMGCR. The knockdown of HMGCR reversed the protective effect of miR-146b-3p silencing on TNF-α-stimulated MH7A cells. CONCLUSIONS Increased miR-146b-3p served as a biomarker for the diagnosis and severity of RA. Silencing miR-146b-3p could suppress TNF-α-induced excessive proliferation, motility, and inflammation via regulating HMGCR in MH7A cells.
Collapse
Affiliation(s)
- Linxiao Ma
- Department of Rheumatology, The First People's Hospital of Lianyungang, No.6 Zhenhua East Road, Lianyungang, 222000, Jiangsu, China
| | - Huijie Liu
- Department of Rheumatology, The First People's Hospital of Lianyungang, No.6 Zhenhua East Road, Lianyungang, 222000, Jiangsu, China
| | - Ping Shao
- Department of Rheumatology, The First People's Hospital of Lianyungang, No.6 Zhenhua East Road, Lianyungang, 222000, Jiangsu, China
| | - Qian Lv
- Department of Rheumatology, The First People's Hospital of Lianyungang, No.6 Zhenhua East Road, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
6
|
Liao HJ, Hsu PN. Immunomodulatory effects of extracellular vesicles from mesenchymal stromal cells: Implication for therapeutic approach in autoimmune diseases. Kaohsiung J Med Sci 2024; 40:520-529. [PMID: 38712483 DOI: 10.1002/kjm2.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Autoimmune disease is characterized by the proliferation of harmful immune cells, inducing tissue inflammation and ultimately causing organ damage. Current treatments often lack specificity, necessitating high doses, prolonged usage, and high recurrence rates. Therefore, the identification of innovative and safe therapeutic strategies is urgently required. Recent preclinical studies and clinical trials on inflammatory and autoimmune diseases have evidenced the immunosuppressive properties of mesenchymal stromal cells (MSCs). Studies have demonstrated that extracellular vesicles (EV) derived from MSCs can mitigate abnormal autoinflammation while maintaining safety within the diseased microenvironment. This study conducted a systematic review to elucidate the crucial role of MSC-EVs in alleviating autoimmune diseases, particularly focusing on their impact on the underlying mechanisms of autoimmune conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). By specifically examining the regulatory functions of microRNAs (miRNAs) derived from MSC-EVs, the comprehensive study aimed to enhance the understanding related to disease mechanisms and identify potential diagnostic markers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Zhou S, Huang J, Zhang Y, Yu H, Wang X. Exosomes in Action: Unraveling Their Role in Autoimmune Diseases and Exploring Potential Therapeutic Applications. Immune Netw 2024; 24:e12. [PMID: 38725675 PMCID: PMC11076296 DOI: 10.4110/in.2024.24.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes are double phospholipid membrane vesicles that are synthesized and secreted by a variety of cells, including T cells, B cells, dendritic cells, immune cells, are extracellular vesicles. Recent studies have revealed that exosomes can play a significant role in under both physiological and pathological conditions. They have been implicated in regulation of inflammatory responses, immune response, angiogenesis, tissue repair, and antioxidant activities, particularly in modulating immunity in autoimmune diseases (AIDs). Moreover, variations in the expression of exosome-related substances, such as miRNA and proteins, may not only offer valuable perspectives for the early warning, and prognostic assessment of various AIDs, but may also serve as novel markers for disease diagnosis. This article examines the impact of exosomes on the development of AIDs and explores their potential for therapeutic application.
Collapse
Affiliation(s)
- Shuanglong Zhou
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Yi Zhang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Xin Wang
- School of Basic Medical Sciences, Zunyi Medical University, Guizhou 563002, China
| |
Collapse
|
8
|
Trovato F, Ceccarelli S, Michelini S, Vespasiani G, Guida S, Galadari HI, Nisticò SP, Colonna L, Pellacani G. Advancements in Regenerative Medicine for Aesthetic Dermatology: A Comprehensive Review and Future Trends. COSMETICS 2024; 11:49. [DOI: 10.3390/cosmetics11020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The growing interest in maintaining a youthful appearance has encouraged an accelerated development of innovative, minimally invasive aesthetic treatments for facial rejuvenation and regeneration. The close correlation between tissue repair, regeneration, and aging has paved the way for the application of regenerative medicine principles in cosmetic dermatology. The theoretical substrates of regenerative medicine applications in dermo-aesthetics are plentiful. However, regenerative dermatology is an emerging field and needs more data and in vivo trials to reach a consensus on the standardization of methods. In this review, we summarize the principles of regenerative medicine and techniques as they apply to cosmetic dermatology, suggesting unexplored fields and future directions.
Collapse
Affiliation(s)
- Federica Trovato
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Stefano Ceccarelli
- Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Simone Michelini
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Giordano Vespasiani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Stefania Guida
- Dermatology Department, Vita-Salute San Raffaele University, Via Olgettina n. 60, 20132 Milano, Italy
| | - Hassan Ibrahim Galadari
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Steven Paul Nisticò
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Laura Colonna
- Dermatology Unit, Istituto Dermopatico dell’Immacolata IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| |
Collapse
|
9
|
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol 2024; 15:1355845. [PMID: 38390327 PMCID: PMC10881725 DOI: 10.3389/fimmu.2024.1355845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.
Collapse
Affiliation(s)
- Christophe Wong
- EVerZom, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Ivana Stoilova
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | | |
Collapse
|
10
|
Zhang R, Wei Y, Wang T, Nie X, Shi Z, Deng Y, Li D. Exosomal miRNAs in autoimmune skin diseases. Front Immunol 2023; 14:1307455. [PMID: 38106405 PMCID: PMC10722155 DOI: 10.3389/fimmu.2023.1307455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Exosomes, bilaterally phospholipid-coated small vesicles, are produced and released by nearly all cells, which comprise diverse biological macromolecules, including proteins, DNA, RNA, and others, that participate in the regulation of their biological functions. An increasing number of studies have revealed that the contents of exosomes, particularly microRNA(miRNA), play a significant role in the pathogenesis of various diseases, including autoimmune skin diseases. MiRNA is a class of single-stranded non-coding RNA molecules that possess approximately 22 nucleotides in length with the capability of binding to the untranslated as well as coding regions of target mRNA to regulate gene expression precisely at the post-transcriptional level. Various exosomal miRNAs have been found to be significantly expressed in some autoimmune skin diseases and involved in the pathogenesis of conditions via regulating the secretion of crucial pathogenic cytokines and the direction of immune cell differentiation. Thus, exosomal miRNAs might be promising biomarkers for monitoring disease progression, relapse and reflection to treatment based on their functions and changes. This review summarized the current studies on exosomal miRNAs in several common autoimmune skin diseases, aiming to dissect the underlying mechanism from a new perspective, seek novel biomarkers for disease monitoring and lay the foundation for developing innovative target therapy in the future.
Collapse
Affiliation(s)
- Ri Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujia Wei
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingmei Wang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Nie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeqi Shi
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunhua Deng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Yan S, Huang Z, Chen X, Chen H, Yang X, Gao M, Zhang X. Metabolic profiling of urinary exosomes for systemic lupus erythematosus discrimination based on HPL-SEC/MALDI-TOF MS. Anal Bioanal Chem 2023; 415:6411-6420. [PMID: 37644324 DOI: 10.1007/s00216-023-04916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which leads to the formation of immune complex deposits in multiple organs and has heterogeneous clinical manifestations. Currently, exosomes for liquid biopsy have been applied in diagnosis and monitoring of diseases, whereas SLE discrimination based on exosomes at the metabolic level is rarely reported. Herein, we constructed a protocol for metabolomic study of urinary exosomes from SLE patients and healthy controls (HCs) with high efficiency and throughput. Exosomes were first obtained by high-performance liquid size-exclusion chromatography (HPL-SEC), and then metabolic fingerprints of urinary exosomes were extracted by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with high throughput and high efficency. With the statistical analysis by orthogonal partial least-squares discriminant analysis (OPLS-DA) model, SLE patients were efficiently distinguished from HCs, the area under the curve (AUC) of the receiver characteristic curve (ROC) was 1.00, and the accuracy of the unsupervised clustering heatmap was 90.32%. In addition, potential biomarkers and related metabolic pathways were analyzed. This method, with the characteristics of high throughput, high efficiency, and high accuracy, will provide the broad prospect of exosome-driven precision medicine and large-scale screening in clinical applications.
Collapse
Affiliation(s)
- Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Zhongzhou Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofei Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Haolin Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Xue Yang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
12
|
Wu Y, Dong HR, Liu LT, Peng ML, Su XL. Advances in the study of exosome-derived miRNAs in the pathogenesis, diagnosis, and treatment of systemic lupus erythematosus. Lupus 2023; 32:1475-1485. [PMID: 37906972 PMCID: PMC10666474 DOI: 10.1177/09612033231212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disease caused by autoantibodies, with high morbidity and mortality. It involves multiple systems, particularly the renal, which can lead to lupus nephritis (LN); its multi-system effects have a significant impact on the physical and mental health of patients. Exosomes are vesicles that are secreted during cell activity and carry a variety of nucleic acids, proteins, and lipids. They are distributed through body fluids for cellular communication. MicroRNAs (miRNAs) are nucleic acids that are packaged within the exosome that are taken up and released in response to changes in plasma membrane structure. MiRNAs are potential participants in immune and inflammatory responses, which are transported to target cells and can inhibit gene expression in receptor cells. It has been suggested that exosomal miRNA can regulate the pathogenesis of SLE and, as such, they are of value in diagnosis and treatment. In this paper, we focus on the research progress into exosomal miRNA in SLE and inspire new directions for SLE related research.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | | | - Li Tin Liu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mei Lin Peng
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiu Lan Su
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
13
|
Zhao Z, Zhang L, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cell-derived exosome in epigenetic modifications in inflammatory diseases. Front Immunol 2023; 14:1166536. [PMID: 37261347 PMCID: PMC10227589 DOI: 10.3389/fimmu.2023.1166536] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Epigenetic modification is a complex process of reversible and heritable alterations in gene function, and the combination of epigenetic and metabolic alterations is recognized as an important causative factor in diseases such as inflammatory bowel disease (IBD), osteoarthritis (OA), systemic lupus erythematosus (SLE), and even tumors. Mesenchymal stem cell (MSC) and MSC-derived exosome (MSC-EXO) are widely studied in the treatment of inflammatory diseases, where they appear to be promising therapeutic agents, partly through the potent regulation of epigenetic modifications such as DNA methylation, acetylation, phosphorylation, and expression of regulatory non-coding RNAs, which affects the occurrence and development of inflammatory diseases. In this review, we summarize the current research on the role of MSC-EXO in inflammatory diseases through their modulation of epigenetic modifications and discuss its potential application in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Choi D, Kim J, Yang JW, Kim JH, Park S, Shin JI. Dysregulated MicroRNAs in the Pathogenesis of Systemic Lupus Erythematosus: A Comprehensive Review. Int J Biol Sci 2023; 19:2495-2514. [PMID: 37215992 PMCID: PMC10197884 DOI: 10.7150/ijbs.74315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/11/2022] [Indexed: 05/24/2023] Open
Abstract
Systemic lupus erythematosus is a chronic autoimmune disease of which clinical presentation is vastly heterogeneous, ranging from mild skin rashes to severe renal diseases. Treatment goal of this illness is to minimize disease activity and prevent further organ damage. In recent years, much research has been done on the epigenetic aspects of SLE pathogenesis, for among the various factors known to contribute to the pathogenic process, epigenetic factors, especially microRNAs, bear the most therapeutic potential that can be altered unlike congenital genetic factors. This article reviews and updates what has been discovered so far about the pathogenesis of lupus, while focusing on the dysregulation of microRNAs in lupus patients in comparison to healthy controls along with the potentially pathogenic roles of the microRNAs commonly reported to be either upregulated or downregulated. Furthermore, this review includes microRNAs of which results are controversial, suggesting possible explanations for such discrepancies and directions for future research. Moreover, we aimed to emphasize the point that had been overlooked so far in studies regarding microRNA expression levels; that is, which specimen was used to assess the dysregulation of microRNAs. To our surprise, a vast number of studies have not considered this factor and have analyzed the potential role of microRNAs in general. Despite extensive investigations done on microRNA levels, their significance and potential role remain a mystery, which calls for further studies on this particular subject in regard of which specimen is used for assessment.
Collapse
Affiliation(s)
- Daeun Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Cabello P, Torres-Ruiz S, Adam-Artigues A, Forés-Martos J, Martínez MT, Hernando C, Zazo S, Madoz-Gúrpide J, Rovira A, Burgués O, Rojo F, Albanell J, Lluch A, Bermejo B, Cejalvo JM, Eroles P. miR-146a-5p Promotes Angiogenesis and Confers Trastuzumab Resistance in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:cancers15072138. [PMID: 37046799 PMCID: PMC10093389 DOI: 10.3390/cancers15072138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells’ exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- International University of Valencia—VIU, 46002 Valencia, Spain
| | | | | | | | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | | | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Pathology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Federico Rojo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
18
|
Abbasi Sourki P, Pourfathollah AA, Kaviani S, Soufi Zomorrod M, Ajami M, Wollenberg B, Multhoff G, Bashiri Dezfouli A. The profile of circulating extracellular vesicles depending on the age of the donor potentially drives the rejuvenation or senescence fate of hematopoietic stem cells. Exp Gerontol 2023; 175:112142. [PMID: 36921675 DOI: 10.1016/j.exger.2023.112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Blood donor age has become a major concern due to the age-associated variations in the content and concentration of circulating extracellular nano-sized vesicles (EVs), including exosomes. These EVs mirror the state of their parental cells and transfer it to the recipient cells via biological messengers such as microRNAs (miRNAs, miRs). Since the behavior of hematopoietic stem cells (HSCs) is potentially affected by the miRs of plasma-derived EVs, a better understanding of the content of EVs is important for the safety and efficacy perspectives in blood transfusion medicine. Herein, we investigated whether the plasma-derived EVs of young (18-25 years) and elderly human donors (45-60 years) can deliver "youth" or "aging" signals into human umbilical cord blood (hUCB)-derived HSCs in vitro. The results showed that EVs altered the growth functionality and differentiation of HSCs depending on the age of the donor from which they are derived. EVs of young donors could ameliorate the proliferation and self-renewal potential of HSCs whereas those of aged donors induced senescence-associated differentiation in the target cells, particularly toward the myeloid lineage. These findings were confirmed by flow cytometric analysis of surface markers and microarray profiling of genes related to stemness (e.g., SOX-1, Nanog) and differentiation (e.g., PU-1). The results displayed an up-regulation of miR-29 and miR-96 and a down-regulation of miR-146 in EVs derived from elderly donors. The higher expression of miR-29 and miR-96 contributed to the diminished expression of CDK-6 and CDKN1A (p21), promoting senescence fate via cell growth suppression, while the lower expression of miR-146 positively regulates TRAF-6 expression to accelerate biological aging. Our findings reveal that plasma-derived EVs from young donors can reverse the aging-associated changes in HSCs, while vice versa, the EVs from elderly donors rather promote the senescence process.
Collapse
Affiliation(s)
- Parvaneh Abbasi Sourki
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University Tehran, Iran.
| | - Saeed Kaviani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Cell Science, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Munich, Germany.
| | - Ali Bashiri Dezfouli
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany; Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
19
|
Corbin D, Christian L, Rapp CM, Liu L, Rohan CA, Travers JB. New concepts on abnormal UV reactions in systemic lupus erythematosus and a screening tool for assessment of photosensitivity. Skin Res Technol 2023; 29:e13247. [PMID: 36973991 PMCID: PMC10059080 DOI: 10.1111/srt.13247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 03/09/2023]
Affiliation(s)
- Danielle Corbin
- Department of Pharmacology & ToxicologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
| | - Lea Christian
- Department of Pharmacology & ToxicologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
| | - Christine M. Rapp
- Department of Pharmacology & ToxicologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
| | - Langni Liu
- Department of Pharmacology & ToxicologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
| | - Craig A. Rohan
- Department of Pharmacology & ToxicologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
- Department of DermatologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
- Department of Medicine (Dermatology)Dayton Veterans Administration Medical CenterDaytonOhioUSA
| | - Jeffrey B. Travers
- Department of Pharmacology & ToxicologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
- Department of DermatologyBoonshoft School of Medicine at Wright State UniversityDaytonOhioUSA
- Department of Medicine (Dermatology)Dayton Veterans Administration Medical CenterDaytonOhioUSA
| |
Collapse
|
20
|
Zhu Y, Liu L, Chu L, Lan J, Wei J, Li W, Xue C. Microscopic polyangiitis plasma-derived exosomal miR-1287-5p induces endothelial inflammatory injury and neutrophil adhesion by targeting CBL. PeerJ 2023; 11:e14579. [PMID: 36726727 PMCID: PMC9885867 DOI: 10.7717/peerj.14579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Background An inflammatory environment around the vessel wall caused by leukocyte infiltration is one of the characteristic histopathological features of microscopic polyangiitis (MPA); however, the pathogenic mechanisms are not fully understood. Studies have found that circulating microRNA (miRNA) can be used as potential biomarkers for the diagnosis and classification of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides (AAV), and the E3 ubiquitin ligase casitas B-lineage lymphoma (CBL) seems to be associated with inflammation. In addition, evidence indicates that miRNA can be tracked into exosomes and transferred into recipient cells to mediate the process of vascular endothelial injury. Herein, we aimed to identify the profiles of exosomal miRNA, and determine the effect of exosomal miR-1287-5p and its target gene CBL on vascular endothelial cells in MPA. Method We isolated plasma exosomes from patients with MPA (MPA-exo) and healthy controls (HC-exo) by ultracentrifugation and conducted exosome small-RNA sequencing to screen differential miRNA expression in MPA-exo (n = 3) compared to HC-exo (n = 3). We measured the expression levels of miR-1303, miR-1287-5p, and miR-129-1-3p using quantitative reverse transcription-polymerase chain reaction (qRT-PCR, n = 6) and performed dual luciferase reporter gene assays to confirm the downstream target gene of miR-1287-5p. In addition, we treated human umbilical vein endothelial cell (HUVEC) with MPA-exo, or transfected them with miR-1287-5p mimic/inhibitor or with CBL-siRNA/CBL-siRNA+ miR-1287-5p inhibitor. After cell culture, we evaluated the effects on vascular endothelial cells by examining the mRNA levels of IL-6, IL-8, MCP-1, ICAM-1 and E-selectin using qRT-PCR and performed neutrophil adhesion assay with haematoxylin staining. Result Transmission electron microscopy, Western blot and nanoparticle tracking analysis showed that we successfully purified exosomes and MPA-exo could be absorbed into HUVEC. We screened a total of 1,077 miRNA by sequencing and observed a high abundance of miR-1287-5p in the exosomes obtained from MPA plasma. The dual luciferase reporter assay identified CBL as a downstream target gene of miR-1287-5p, and the results revealed that MPA-exo decreased CBL protein expression in HUVEC. In addition, treatment with MPA-exo, up-regulating miR-1287-5p or silencing of CBL in HUVEC significantly increased the mRNA expression of inflammatory factors (including IL-6, IL-8, and MCP-1) and adhesion molecules (including ICAM-1 and E-selection) and promoted the adhesion of neutrophils to HUVEC. However, down-regulating miR-1287-5p had the opposite effect. Conclusion Our study revealed that MPA-exo was involved in the intercellular transfer of miR-1287-5p and subsequently promote the development of acute endothelial injury in MPA. MiR-1287-5p and CBL agonists may be promising therapeutic approach for MPA-induced vascular inflammatory injury.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liu Liu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liepeng Chu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingjing Lan
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingsi Wei
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Higazi AM, Kamel HM, Nasr MH, Keryakos HK, AbdEl-Hamid NM, Soliman SA. Potential role of circulating miRNA-146a and serum kallikrein 1 as biomarkers of renal disease in biopsy-proven lupus nephritis patients. THE EGYPTIAN RHEUMATOLOGIST 2023. [DOI: 10.1016/j.ejr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Afrashteh Nour M, Ghorbaninezhad F, Asadzadeh Z, Baghbanzadeh A, Hassanian H, Leone P, Jafarlou M, Alizadeh N, Racanelli V, Baradaran B. The emerging role of noncoding RNAs in systemic lupus erythematosus: new insights into the master regulators of disease pathogenesis. Ther Adv Chronic Dis 2023; 14:20406223231153572. [PMID: 37035097 PMCID: PMC10074641 DOI: 10.1177/20406223231153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/11/2023] [Indexed: 04/11/2023] Open
Abstract
Auto-immune diseases are a form of chronic disorders in which the immune system destroys the body's cells due to a loss of tolerance to self-antigens. Systemic lupus erythematosus (SLE), identified by the production of autoantibodies in different body parts, is one of the most well-known examples of these diseases. Although the etiology of SLE is unclear, the disease's progression may be affected by genetic and environmental factors. As studies in twins provide adequate evidence for genetic involvement in the SLE, other phenomena such as metallization, histone modifications, and alterations in the expression of noncoding RNAs (ncRNAs) also indicate the involvement of epigenetic factors in this disease. Among all the epigenetic alterations, ncRNAs appear to have the most crucial contribution to the pathogenesis of SLE. The ncRNAs' length and size are divided into three main classes: micro RNAs, long noncoding RNAs (LncRNA), and circular RNAs (circRNAs). Accumulating evidence suggests that dysregulations in these ncRNAs contributed to the pathogenesis of SLE. Hence, clarifying the function of these groups of ncRNAs in the pathophysiology of SLE provides a deeper understanding of the disease. It also opens up new opportunities to develop targeted therapies for this disease.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine,
Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Student Research Committee, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Patrizia Leone
- Department of Interdisciplinary Medicine,
University of Bari ‘Aldo Moro’, Bari, Italy
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
23
|
Teng J, Yang F, Li X. miR‑146a‑5p protects against renal injury in MRL/lpr mice via improvement of the Treg/Th17 imbalance by targeting the TRAF6/NF‑κB axis. Exp Ther Med 2023; 25:21. [PMID: 38895650 PMCID: PMC11184638 DOI: 10.3892/etm.2022.11720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Dysregulated microRNA (miRNA or miR) expression is an important cause of immune homeostasis disorder in patients with systemic lupus erythematosus and lupus nephritis (LN). The present study evaluated the possibility of using miR-146a-5p as a therapeutic target for treating LN. The effects of miR-146a-5p on lupus syndrome in MRL/lpr mice were evaluated. MRL/lpr mice were injected with miR-146a-5p agomir (M146AG) or agomir negative control (NC). Renal function index, pathology and protein expression levels of inflammatory factors in MRL/lpr mice were evaluated after M146AG or agomir NC treatment. Reverse transcription-quantitative PCR, western blotting and immunofluorescence were used to assess the effect of M146AG on mRNA and protein expression levels of (tumor necrosis factor receptor-associated factor 6) TRAF6/NF-κB axis components. A luciferase dual reporter system was used to assess the mechanism of regulation of TRAF6/NF-κB axis expression. Finally, flow cytometry was used to assess the regulatory effect of M146AG on regulatory T cell (Treg)/T helper 17 (Th17) balance. The findings demonstrated that M146AG ameliorated renal lesions and the inflammatory response in MRL/lpr mice. TRAF6 was demonstrated to be targeted and significantly negatively regulated by miR-146a-5p. M146AG intervention significantly increased expression of miR-146a-5p and significantly downregulated the mRNA and protein expression levels of TRAF6 and NF-κB in CD4+ T cells of MRL/lpr mice. Furthermore, M146AG intervention alleviated Treg/Th17 imbalance in MRL/lpr mice peripheral blood. The present findings demonstrated that M146AG improved Treg/Th17 imbalance and alleviated renal lesions in MRL/lpr mice by targeting the TRAF6/NF-κB axis. This may provide a new theoretical basis for the clinical diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Jiajia Teng
- Department of Nephropathy, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Feng Yang
- Department of Rheumatology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Xiaoling Li
- Department of Rheumatology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
24
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Oh C, Koh D, Jeon HB, Kim KM. The Role of Extracellular Vesicles in Senescence. Mol Cells 2022; 45:603-609. [PMID: 36058888 PMCID: PMC9448646 DOI: 10.14348/molcells.2022.0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.
Collapse
Affiliation(s)
- Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Dahyeon Koh
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hyeong Bin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
26
|
Prajzlerová K, Šenolt L, Filková M. Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases? Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
28
|
Evaluation of the Therapeutic Potential of Mesenchymal Stem Cells (MSCs) in Preclinical Models of Autoimmune Diseases. Stem Cells Int 2022; 2022:6379161. [PMID: 35935180 PMCID: PMC9352490 DOI: 10.1155/2022/6379161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/08/2022] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases, chronic in nature, are generally hard to alleviate. Present long-term treatments with available drugs such as steroids, immune-suppressive drugs, or antibodies have several debilitating side effects. Therefore, new treatment options are urgently needed. Stem cells, in general, have the potential to reduce immune-mediated damage through immunomodulation and T cell regulation (T regs) by inhibiting the proliferation of dendritic cells and T and B cells and reducing inflammation through the generation of immunosuppressive biomolecules like interleukin 10 (IL-10), transforming growth factor-β (TGF-β), nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 (PGE2). Many stem cell-based therapeutics have been evaluated in the clinic, but the overall clinical outcomes in terms of efficacy and the longevity of therapeutic benefits seem to be variable and inconsistent with the postulated benefits. This emphasizes a greater need for building robust preclinical models and models that can better predict the clinical translation of stem cell-based therapeutics. Stem cell therapy based on MSCs having the definitive potential to regulate the immune system and control inflammation is emerging as a promising tool for the treatment of autoimmune disorders while promoting tissue regeneration. MSCs, derived from bone marrow, umbilical cord, and adipose tissue, have been shown to be highly immunomodulatory and anti-inflammatory and shown to enhance tissue repair and regeneration in preclinical models as well as in clinical settings. In this article, a review on the status of MSC-based preclinical disease models with emphasis on understanding disease mechanisms in chronic inflammatory disorders caused by exaggerated host immune response in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) was carried out. We also emphasized various factors that better predict the translation of stem cell therapeutic outcomes from preclinical disease models to human patients.
Collapse
|
29
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
30
|
Shen J, Zhang M, Peng M. Progress of exosome research in systemic lupus erythematosus. Cytokine X 2022; 4:100066. [PMID: 35656386 PMCID: PMC9151726 DOI: 10.1016/j.cytox.2022.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/27/2022] [Accepted: 05/14/2022] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a global chronic autoimmune disease that invades most organs of the body, with kidney injury being the most prominent feature. Exosomes are extracellular vesicles that carry a variety of proteins, lipids and genetic material, participate in the exchange of local and intersystem information, and play an important immunoregulatory role in a variety of autoimmune diseases. At the same time, the use of exosomes as disease biomarkers and drug delivery carriers also shows great application prospects. This article reviews current progress in the application of exosomes in the pathogenesis, diagnosis and treatment of SLE.
Collapse
Key Words
- CfDNA, Circulating free DNA
- Diagnostic role
- Exosomes
- HMGB1, High mobility group box 1
- Immunomodulation
- LN, Lupus nephritis
- MSC, Mesenchymal stem cells (MSC)
- MiRNAs, Microribonucleic acids
- Microribonucleic acid
- PAMPs, Pathogen-associated molecular patterns
- PDCs, Plasmacytoid dendritic cells
- SLE, Systemic lupus erythematosus
- Systemic lupus erythematosus
- TLR, Recombinant Toll Like Receptor
- Therapeutic potential
- Treg, Regulatory T cells
Collapse
Affiliation(s)
- Jie Shen
- Weifang Medical University, Weifang 261053, China
| | - Mengyu Zhang
- Weifang Medical University, Weifang 261053, China
| | - Meiyu Peng
- Weifang Medical University, Weifang 261053, China
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
31
|
Huang Y, Chen L, Chen D, Fan P, Yu H. Exosomal microRNA-140-3p from human umbilical cord mesenchymal stem cells attenuates joint injury of rats with rheumatoid arthritis by silencing SGK1. Mol Med 2022; 28:36. [PMID: 35303795 PMCID: PMC8932126 DOI: 10.1186/s10020-022-00451-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/04/2022] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Over the years, microRNAs (miRNAs) have been involved in the pathogenesis of rheumatoid arthritis (RA). We aim to investigate the role of human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomal miR-140-3p in RA development. METHODS Exosomes(exo) were isolated from human umbilical cord-derived mesenchymal stem cells (HUCMSCs), and this isolation was followed by the transfer of miR-140-3p. RA rat models were constructed by collagen II adjuvant and respectively treated with HUCMSCs-exo or HUCMSCs-exo carrying miR-140-3p mimic/inhibitor, and expression of miR-140-3p and serum- and glucocorticoid-inducible kinase 1 (SGK1) was assessed. Then, RA score and inflammation scoring, fibrosis degree and apoptosis, serum inflammatory response and oxidative stress in joint tissues were determined. The RA synovial fibroblasts (RASFs) were extracted from rats and identified. Conducted with relative treatment, the migration, proliferation and apoptosis in RASFs were determined. RESULTS MiR-140-3p was decreased while SGK1 was increased in RA rats. HUCMSCs-exo or upregulated exosomal miR-140-3p improved pathological changes and suppressed inflammation, oxidative stress and fibrosis in RA rats, and also constrained and RASF growth. Overexpression of SGK1 reversed the inhibition of RASF growth caused by overexpression of miR-140-3p. CONCLUSION Upregulated exosomal miR-140-3p attenuated joint injury of RA rats by silencing SGK1. This research provided further understanding of the role of exosomal miR-140-3p in RA development.
Collapse
Affiliation(s)
- Yijiang Huang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Liang Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Daosen Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Pei Fan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Huachen Yu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
32
|
Zheng C, Xie L, Qin H, Liu X, Chen X, Lv F, Wang L, Zhu X, Xu J. The Role of Extracellular Vesicles in Systemic Lupus Erythematosus. Front Cell Dev Biol 2022; 10:835566. [PMID: 35309937 PMCID: PMC8924487 DOI: 10.3389/fcell.2022.835566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular Vesicles (EVs) are small vesicles that can be actively secreted by most cell types into the extracellular environment. Evidence indicates that EVs can carry microRNAs (miRNAs), long non-coding RNAs (lncRNAs), tRNA-derived small RNAs (tsRNAs), proteins, and lipids to target cells or tissue organizations. Latest studies show that EVs play a vital role in the immune modulation and may contribute to the pathogenesis of autoimmune diseases. Systemic lupus erythematosus (SLE) is a common autoimmune disease characterized by abnormal T cell activation and sustained production of autoantibodies against self-antigens, resulting in inflammation and damage to multiple systems. Pathogenic mechanisms of SLE, however, are still not well understood. In this review, we summarize the latest research advances on the functions and mechanisms of EVs, and its role in the pathogenesis, diagnosis, and treatment of SLE.
Collapse
Affiliation(s)
| | - Lin Xie
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| | | | | | | | | | | | - Xiaohua Zhu
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| | - Jinhua Xu
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| |
Collapse
|
33
|
Hasse S, Julien AS, Duchez AC, Zhao C, Boilard E, Fortin PR, Bourgoin SG. Red blood cell-derived phosphatidylserine positive extracellular vesicles are associated with past thrombotic events in patients with systemic erythematous lupus. Lupus Sci Med 2022; 9:9/1/e000605. [PMID: 35260475 PMCID: PMC8905995 DOI: 10.1136/lupus-2021-000605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Background Extracellular vesicles (EVs) released by blood cells have proinflammation and procoagulant action. Patients with systemic lupus erythematosus (SLE) present high vascular inflammation and are prone to develop cardiovascular diseases. Therefore, we postulated that the EV populations found in blood, including platelet EVs (PEVs) and red blood cell EVs (REVs), are associated with SLE disease activity and SLE-associated cardiovascular accidents. Method We assessed autotaxin (ATX) plasma levels by ELISA, the platelet activation markers PAC1 and CD62P, ATX bound to platelets and the amounts of plasma PEVs and REVs by flow cytometry in a cohort of 102 patients with SLE, including 29 incident cases of SLE and 30 controls. Correlation analyses explored the associations with the clinical parameters. Result Platelet activation markers were increased in patients with SLE compared with healthy control, with the marker CD62P associated with the SLE disease activity index (SLEDAI). The incident cases show additional associations between platelet markers (CD62P/ATX and PAC1/CD62P) and the SLEDAI. Compared with controls, patients with SLE presented higher levels of PEVs, phosphatidylserine positive (PS+) PEVs, REVs and PS+ REVs, but there is no association with disease activity. When stratified according to the plasma level of PS+ REVs, the group of patients with SLE with a high level of PS+ REVs presented a higher number of past thrombosis events and higher ATX levels. Conclusion Incident and prevalent forms of SLE cases present similar levels of platelet activation markers, with CD62P correlating with disease activity. Though EVs are not associated with disease activity, the incidence of past thrombotic events is higher in patients with a high level of PS+ REVs.
Collapse
Affiliation(s)
- Stephan Hasse
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Anne-Sophie Julien
- Département de mathématiques et statistique, Université Laval, Quebec city, Quebec, Canada
| | - Anne-Claire Duchez
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Chenqi Zhao
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Eric Boilard
- Département de microbiologie-infectiologie et immunologie, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Paul R Fortin
- Département de Médecine, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Sylvain G Bourgoin
- Département de microbiologie-infectiologie et immunologie, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| |
Collapse
|
34
|
Wang W, Yue C, Gao S, Li S, Zhou J, Chen J, Fu J, Sun W, Hua C. Promising Roles of Exosomal microRNAs in Systemic Lupus Erythematosus. Front Immunol 2021; 12:757096. [PMID: 34966383 PMCID: PMC8710456 DOI: 10.3389/fimmu.2021.757096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous kinds of biological fluids and their specific contents are considered as hallmarks of autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ from those of the healthy controls making them as attractive biomarkers for renal injury. Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs can be functionally transferred by exosomes from donor cells to recipient cells, displaying their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-κB activation and the secretion of inflammatory cytokines. The present Review mainly focuses on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can become non-invasive diagnostic molecules and potential therapeutic strategies for the management of SLE.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianan Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiaqing Chen
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiahong Fu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Chuang HC, Chen MH, Chen YM, Yang HY, Ciou YR, Hsueh CH, Tsai CY, Tan TH. BPI overexpression suppresses Treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus. Theranostics 2021; 11:9953-9966. [PMID: 34815797 PMCID: PMC8581436 DOI: 10.7150/thno.63743] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Serum-derived exosomes are correlated with disease severity of human systemic lupus erythematosus (SLE). The proteins in the T-cell-derived exosomes from SLE patients could contribute to inflammation. Methods: We characterized proteins of T cell-derived exosomes from SLE patients and healthy controls by proteomics. To study the potential pathogenic role of the identified exosomal protein, we generated and characterized T-cell-specific transgenic mice that overexpressed the identified protein in T cells using immunohistochemistry, immunoblotting, and single-cell RNA sequencing. Results: We identified an overexpressed protein, bactericidal/permeability-increasing protein (BPI), in SLE T cells and T-cell-derived exosomes. T-cell-specific BPI transgenic (Lck-BPI Tg) mice showed multi-tissue inflammation with early induction of serum IL-1β levels, as well as serum triglyceride and creatinine levels. Interestingly, exosomes of Lck-BPI Tg T cells stimulated IL-1β expression of wild-type recipient macrophages. Remarkably, adoptive transfer of BPI-containing exosomes increased serum IL-1β and autoantibody levels in recipient mice. The transferred exosomes infiltrated into multiple tissues of recipient mice, resulting in hepatitis, nephritis, and arthritis. ScRNA-seq showed that Lck-BPI Tg T cells displayed a decrease of Treg population, which was concomitant with ZFP36L2 upregulation and Helios downregulation. Furthermore, in vitro Treg differentiation was reduced by BPI transgene and enhanced by BPI knockout. Conclusions: BPI is a negative regulator of Treg differentiation. BPI overexpression in T-cell-derived exosomes or peripheral blood T cells may be a biomarker and pathogenic factor for human SLE nephritis, hepatitis, and arthritis.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Han Chen
- Division of Allergy, Immunology, and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Huang-Yu Yang
- Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ru Ciou
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Hsin Hsueh
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ching-Yi Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Yang C, Sun J, Tian Y, Li H, Zhang L, Yang J, Wang J, Zhang J, Yan S, Xu D. Immunomodulatory Effect of MSCs and MSCs-Derived Extracellular Vesicles in Systemic Lupus Erythematosus. Front Immunol 2021; 12:714832. [PMID: 34603289 PMCID: PMC8481702 DOI: 10.3389/fimmu.2021.714832] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune connective tissue disease with unclear etiology and pathogenesis. Mesenchymal stem cell (MSC) and MSC derived extracellular vesicles (EVs) play important roles in regulating innate and adaptive immunity, which are involved in many physiological and pathological processes and contribute to the immune homeostasis in SLE. The effects of MSCs and EVs on SLE have been drawing more and more attention during the past few years. This article reviews the immunomodulatory effects and underlying mechanisms of MSC/MSC-EVs in SLE, which provides novel insight into understanding SLE pathogenesis and guiding the biological therapy.
Collapse
Affiliation(s)
- Chunjuan Yang
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China.,Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jianmei Sun
- Department of Chemistry, School of Applied Chemistry, Food and Drug, Weifang Engineering Vocational College, Qingzhou, China
| | - Yipeng Tian
- Material Procurement Office of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Haibo Li
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China.,Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinghua Wang
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China.,Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jiaojiao Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China.,Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| |
Collapse
|
37
|
Li Y, Xiao Q, Tang J, Xiong L, Li L. Extracellular Vesicles: Emerging Therapeutics in Cutaneous Lesions. Int J Nanomedicine 2021; 16:6183-6202. [PMID: 34522095 PMCID: PMC8434831 DOI: 10.2147/ijn.s322356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs), as nanoscale membranous vesicles containing DNAs, RNAs, lipids and proteins, have emerged as promising diagnostic and therapeutic agents for skin diseases. Here, we summarize the basic physiology of the skin and the biological characteristic of EVs. Further, we describe the applications of EVs in the treatment of dermatological conditions such as skin infection, inflammatory skin diseases, skin repair and rejuvenation and skin cancer. In particular, plant-derived EVs and clinical trials are discussed. In addition, challenges and perspectives related to the preclinical and clinical applications of EVs are highlighted.
Collapse
Affiliation(s)
- Yu Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China
| | - Qing Xiao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China
| | - Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| |
Collapse
|
38
|
Mirzaei R, Zamani F, Hajibaba M, Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR, Jalalifar S, Ajdarkosh H, Abedi SH, Keyvani H, Karampoor S. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol 2021; 358:577640. [PMID: 34224949 DOI: 10.1016/j.jneuroim.2021.577640] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassnan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
MicroRNAs in mesenchymal stem cells: the key to decoding systemic lupus erythematosus. Cell Mol Immunol 2021; 18:2286-2287. [PMID: 34321620 DOI: 10.1038/s41423-021-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/09/2022] Open
|
40
|
Chen X, Luo X, Wei Y, Sun H, Dai L, Tangzhou Y, Jin H, Yin Z. LncRNA H19 induces immune dysregulation of BMMSCs, at least partly, by inhibiting IL-2 production. Mol Med 2021; 27:61. [PMID: 34130625 PMCID: PMC8207721 DOI: 10.1186/s10020-021-00326-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a representative systemic autoimmune disease. LncRNA H19 has been identified to participate in various biological processes in human diseases. However, the role of H19 in SLE remains unclear. METHODS In this study, we first examined H19 expression in SLE patients by RT-qPCR and found that H19 expression was significantly upregulated in the serum and bone marrow-derived mesenchymal stem cells (BMMSCs) of SLE patients and positively associated with SLE disease activity index. We then performed gain-of-function and loss-of-function using mimic-H19 (H19-OE) and inhibitor-H19 (H19-KD) to examine the effects of H19 on BMMSC differentiation, proliferation, migration, and apoptosis using flow cytometry, DAPI staining, and migration and apoptosis assays. RESULTS The results showed that H19 inhibited proliferation and migration but promoted apoptosis of BMMSCs, interfered with BMMSCs-mediated Treg cell proliferation and differentiation, and regulated BMMSCs-mediated Tfh/Treg cell balance. Dual-luciferase reporter assay confirmed the in silico prediction of interaction between H19 and IL-2. Furthermore, RT-qPCR showed that H19 directly inhibited IL-2 transcription in BMMSCs. ELISA showed that both active and total IL-2 protein levels were significantly lower in SLE BMMSCs. More importantly, we found that IL-2 significantly enhanced H19-OE-induced Treg cell differentiation and migration of BMMSCs, and these effects were reversed by anti-IL-2 antibody. CONCLUSION Overall, our study indicates that LncRNA H19 induces immune dysregulation of BMMSCs, at least partly, by inhibiting IL-2 production and might be a novel therapeutic target for SLE.
Collapse
MESH Headings
- Apoptosis/genetics
- Biomarkers
- Case-Control Studies
- Cell Differentiation/genetics
- Cell Movement
- Cells, Cultured
- Coculture Techniques
- Disease Susceptibility
- Gene Expression Regulation
- Humans
- Immunomodulation/genetics
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lupus Erythematosus, Systemic/etiology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Mesenchymal Stem Cells/metabolism
- RNA, Long Noncoding/genetics
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Xinpeng Chen
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China
| | - Xiuxia Luo
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China
| | - Yazhi Wei
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China
| | - Hualin Sun
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China
| | - Liping Dai
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China
| | - Yidou Tangzhou
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China
| | - Huijie Jin
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China
| | - Zhihua Yin
- Rheumatology Department, Shenzhen Futian Hospital for Rheumatic Diseases, Nonglin Road 22#, Futian District, Shenzhen, 518040, Guangdong, China.
| |
Collapse
|
41
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wang Y, Tang H, Wu M, Wu Y. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res 2021; 166:105490. [PMID: 33582246 DOI: 10.1016/j.phrs.2021.105490] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Exposure to the external environment may lead to instability and dysfunction of the skin, resulting in refractory wound, skin aging, pigmented dermatosis, hair loss, some immune-mediated dermatoses, and connective tissue diseases. Nowadays, many skin treatments have not achieved a commendable balance between medical recovery and cosmetic needs. Exosomes are cell-derived nanoscale vesicles carrying various biomolecules, including proteins, nucleic acids, and lipids, with the capability to communicate with adjacent or distant cells. Recent studies have demonstrated that endogenic multiple kinds of exosomes are crucial orchestrators in shaping physiological and pathological development of the skin. Besides, exogenous exosomes, such as stem cell exosomes, can serve as novel treatment options to repair, regenerate, and rejuvenate skin tissue. Herein, we review new insights into the role of endogenic and exogenous exosomes in the skin microenvironment and recent advances in applications of exosomes related to dermatology and cutaneous medical aesthetics. The deep understanding of the mechanisms by which exosomes perform biological functions in skin is of great potential to establish attractive therapeutic methods for the skin.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hongbo Tang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| |
Collapse
|
42
|
Zhang B, Zhao M, Lu Q. Extracellular Vesicles in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Functions and Applications. Front Immunol 2021; 11:575712. [PMID: 33519800 PMCID: PMC7841259 DOI: 10.3389/fimmu.2020.575712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
In the last two decades, extracellular vesicles (EVs) have aroused wide interest among researchers in basic and clinical research. EVs, small membrane vesicles are released by almost all kinds of cells into the extracellular environment. According to many recent studies, EVs participate in immunomodulation and play an important role in the pathogenesis of autoimmune diseases. In addition, EVs have great potential in the diagnosis and therapy of autoimmune diseases. Here, we reviewed the latest research advances on the functions and mechanisms of EVs and their roles in the pathogenesis, diagnosis, and treatment of rheumatoid arthritis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| |
Collapse
|
43
|
Khan AQ, Akhtar S, Prabhu KS, Zarif L, Khan R, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. Int J Mol Sci 2020; 21:9264. [PMID: 33291683 PMCID: PMC7730213 DOI: 10.3390/ijms21239264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest human organ and is continuously exposed to various exogenous and endogenous trigger factors affecting body homeostasis. A number of mechanisms, including genetic, inflammatory and autoimmune ones, have been implicated in the pathogenesis of cutaneous diseases. Recently, there has been considerable interest in the role that extracellular vesicles, particularly exosomes, play in human diseases, through their modulation of multiple signaling pathways. Exosomes are nano-sized vesicles secreted by all cell types. They function as cargo carriers shuttling proteins, nucleic acids, lipids etc., thus impacting the cell-cell communications and transfer of vital information/moieties critical for skin homeostasis and disease pathogenesis. This review summarizes the available knowledge on how exosomes affect pathogenesis of cutaneous diseases, and highlights their potential as future targets for the therapy of various skin diseases.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Sabah Akhtar
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Lubna Zarif
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India;
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- College of Medicine, Qatar University, Doha 2713, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
44
|
The Role of Extracellular Vesicles (EVs) in the Epigenetic Regulation of Bone Metabolism and Osteoporosis. Int J Mol Sci 2020; 21:ijms21228682. [PMID: 33213099 PMCID: PMC7698531 DOI: 10.3390/ijms21228682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are complex phospholipidic structures actively released by cells. EVs are recognized as powerful means of intercellular communication since they contain many signaling molecules (including lipids, proteins, and nucleic acids). In parallel, changes in epigenetic processes can lead to changes in gene function and finally lead to disease onset and progression. Recent breakthroughs have revealed the complex roles of non-coding RNAs (microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)) in epigenetic regulation. Moreover, a substantial body of evidence demonstrates that non-coding RNAs can be shuttled among the cells and tissues via EVs, allowing non-coding RNAs to reach distant cells and exert systemic effects. Resident bone cells, including osteoclasts, osteoblasts, osteocytes, and endothelial cells, are tightly regulated by non-coding RNAs, and many of them can be exported from the cells to neighboring ones through EVs, triggering pathological conditions. For these reasons, researchers have also started to exploit EVs as a theranostic tool to address osteoporosis. In this review, we summarize some recent findings regarding the EVs’ involvement in the fine regulation of non-coding RNAs in the context of bone metabolism and osteoporosis.
Collapse
|
45
|
Tavasolian F, Hosseini AZ, Soudi S, Naderi M. miRNA-146a Improves Immunomodulatory Effects of MSC-derived Exosomes in Rheumatoid Arthritis. Curr Gene Ther 2020; 20:297-312. [DOI: 10.2174/1566523220666200916120708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Background:
Rheumatoid arthritis (RA) is a severe inflammatory joint disorder, and several
studies have taken note of the probability that microRNAs (miRNAs) play an important role in
RA pathogenesis. MiR-146 and miR-155 arose as primary immune response regulators. Mesenchymal
stem cells (MSCs) immunomodulatory function is primarily regulated by paracrine factors,
such as exosomes. Exosomes, which serve as carriers of genetic information in cell-to-cell communication,
transmit miRNAs between cells and have been studied as vehicles for the delivery of therapeutic
molecules.
Aims:
The current research aimed to investigate the therapeutic effect of miR-146a/miR-155 transduced
mesenchymal stem cells (MSC)-derived exosomes on the immune response.
Methods:
Here, exosomes were extracted from normal MSCs with over-expressed
miR-146a/miR-155; Splenocytes were isolated from collagen-induced arthritis (CIA) and control
mice. Expression levels miR-146a and miR-155 were then monitored. Flow cytometry was performed
to assess the impact of the exosomes on regulatory T-cell (Treg) levels. Expression of some
key autoimmune response genes and their protein products, including retinoic acid-related orphan
receptor (ROR)-γt, tumor necrosis factor (TNF)-α, interleukin (IL)-17, -6, -10, and transforming
growth factor (TGF)-β in the Splenocytes was determined using both quantitative real-time PCR
and ELISA. The results showed that miR-146a was mainly down-regulated in CIA mice. Treatment
with MSC-derived exosomes and miR-146a/miR-155-transduced MSC-derived exosomes significantly
altered the CIA mice Treg cell levels compared to in control mice.
Results:
Ultimately, such modulation may promote the recovery of appropriate T-cell responses in
inflammatory situations such as RA.
Conclusion:
miR-146a-transduced MSC-derived exosomes also increased forkhead box P3 (Fox-
P3), TGFβ and IL-10 gene expression in the CIA mice; miR-155 further increased the gene expressions
of RORγt, IL-17, and IL-6 in these mice. Based on the findings here, Exosomes appears to
promote the direct intracellular transfer of miRNAs between cells and to represent a possible therapeutic
strategy for RA. The manipulation of MSC-derived exosomes with anti-inflammatory miRNA
may increase Treg cell populations and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Sciences, Tehran, Iran
| |
Collapse
|
46
|
Urinary exosomal miR-146a as a marker of albuminuria, activity changes and disease flares in lupus nephritis. J Nephrol 2020; 34:1157-1167. [PMID: 32803682 DOI: 10.1007/s40620-020-00832-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/08/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Urinary exosomes, especially microRNAs (miRNAs) packaged within, are ideal sources of renal damage markers. We investigated the association between exosomal miR-146a, (anti-inflammatory regulator) and disease activity, proteinuria and systemic lupus erythematosus (SLE) flares over a 36-month follow-up period. METHODS We isolated urinary exosomes from 41 SLE patients, 27 with lupus nephritis (LN) and 20 healthy controls, and exosomal miR-146a, quantified by the real-time quantitative polymerase chain reaction (RT-qPCR), was correlated with histological features in 13 renal biopsies. We also analysed the association between the exosomal miR-146a and TRAF6 axis. RESULTS Exosomal miR-146a showed an inverse association with circulating C3 and C4 complement components, proteinuria, and with histological features such as chronicity index. This marker was able to identify LN with an AUC of 0.82 (p = 0.001). Basal exosomal miR-146a was associated with disease activity and proteinuria changes and was an independent marker of 36-month follow-up flares (OR 7.08, p = 0.02). Pathway analysis identified IRAK1 and TRAF6 as miR-146a target genes. Finally, in vitro experiments suggested that miR-146a exerts a protective effect through negative regulation of inflammation by suppressing IRAK1 and TRAF6. CONCLUSIONS Urinary exosomal miR-146a levels are correlated with lupus activity, proteinuria and histological features, discriminating patients with LN and being a good baseline marker of SLE flares. We have identified a relevant biological miR-146a-TRAF6 axis association in LN renal fibrosis progression.
Collapse
|
47
|
Shao S, Fang H, Li Q, Wang G. Extracellular vesicles in Inflammatory Skin Disorders: from Pathophysiology to Treatment. Am J Cancer Res 2020; 10:9937-9955. [PMID: 32929326 PMCID: PMC7481415 DOI: 10.7150/thno.45488] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by almost all known cell types into extracellular space, can transfer their bioactive cargos of nucleic acids and proteins to recipient cells, mediating cell-cell communication. Thus, they participate in many pathogenic processes including immune regulation, cell proliferation and differentiation, cell death, angiogenesis, among others. Cumulative evidence has shown the important regulatory effects of EVs on the initiation and progression of inflammation, autoimmunity, and cancer. In dermatology, recent studies indicate that EVs play key immunomodulatory roles in inflammatory skin disorders, including psoriasis, atopic dermatitis, lichen planus, bullous pemphigoid, systemic lupus erythematosus, and wound healing. Importantly, EVs can be used as biomarkers of pathophysiological states and/or therapeutic agents, both as carriers of drugs or even as a drug by themselves. In this review, we will summarize current research advances of EVs from different cells and their implications in inflammatory skin disorders, and further discuss their future applications, updated techniques, and challenges in clinical translational medicine.
Collapse
|
48
|
Ma X, Zheng Q, Zhao G, Yuan W, Liu W. Regulation of cellular senescence by microRNAs. Mech Ageing Dev 2020; 189:111264. [PMID: 32450085 DOI: 10.1016/j.mad.2020.111264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Cellular senescence is mainly characterized as a stable proliferation arrest and a senescence associated secretory phenotype (SASP). Senescence is triggered by diverse stimuli such as telomere shortening, oxidative stress, oncogene activation and DNA damage, and consequently contributes to multiple physiology and pathology outcomes, including embryonic development, wound healing and tumor suppression as well as aging or age-associated diseases. Interestingly, therapeutic clearance of senescent cells in tissues has recently been demonstrated to be beneficial for extending a healthy lifespan and for improving numerous age-related disorders. However the molecular mechanisms of senescence regulation remain partially understood. Theoretically, senescence is tightly regulated by a vast number of molecules, among which the p16 and p53 pathways are the most classical. In addition, intracellular cellular calcium signaling has emerged as a key regulator of senescence. In the last few decades, a growing number of studies have demonstrated that microRNAs (miRNAs, small non-coding RNAs) are strongly implicated in controlling senescence, especially at the transcriptional and post-transcriptional levels. In this review we will discuss the involvement of miRNAs in modulating senescence through the major p16, p53, SASP and calcium signaling pathways, thus aiming to reveal the mechanisms of how miRNAs regulate cellular senescence.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Qingbin Zheng
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guangming Zhao
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenjie Yuan
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
49
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Serum Exosomal miRNAs for Grading Hepatic Fibrosis Due to Schistosomiasis. Int J Mol Sci 2020; 21:ijms21103560. [PMID: 32443549 PMCID: PMC7278994 DOI: 10.3390/ijms21103560] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic infection with Schistosoma japonicum or Schistosoma mansoni results in hepatic fibrosis of the human host. The staging of fibrosis is crucial for prognosis and to determine the need for treatment of patients with schistosomiasis. This study aimed to determine whether there is a correlation between the levels of serum exosomal micro-ribonucleic acids (miRNAs) (exomiRs) and fibrosis progression in schistosomiasis. Reference gene (RG) validation was initially carried out for the analysis of serum exomiRs expression in staging liver fibrosis caused by schistosome infection. The expression levels of liver fibrosis-associated exomiRs in serum were determined in a murine schistosomiasis model and in a cohort of Filipino schistosomiasis japonica patients (n = 104) with different liver fibrosis grades. Of twelve RG candidates validated, miR-103a-3p and miR-425-5p were determined to be the most stable genes in the murine schistosomiasis model and subjects from the schistosomiasis-endemic area, respectively. The temporal expression profiles of nine fibrosis-associated serum exomiRs, as well as their correlations with the liver pathologies, were determined in C57BL/6 mice during S. japonicum infection. The serum levels of three exomiRs (miR-92a-3p, miR-146a-5p and miR-532-5p) were able to distinguish subjects with fibrosis grades I-III from those with no fibrosis, but only the serum level of exosomal miR-146a-5p showed potential for distinguishing patients with mild (grades 0–I) versus severe fibrosis (grades II–III). The current data imply that serum exomiRs can be a supplementary tool for grading liver fibrosis in hepatosplenic schistosomiasis with moderate accuracy.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
- Correspondence: (P.C.); (D.P.M.); Tel.: +61-7-3362-0406 (P.C.); +61-7-3362-0401 (D.P.M.)
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
| | - Remigio M. Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila 1781, Philippines;
| | - Allen G. Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia; (A.G.R.); (D.U.O.)
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh
| | - David U. Olveda
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia; (A.G.R.); (D.U.O.)
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
- Correspondence: (P.C.); (D.P.M.); Tel.: +61-7-3362-0406 (P.C.); +61-7-3362-0401 (D.P.M.)
| |
Collapse
|
50
|
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, Yi YW, Cho BS. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells 2020; 9:E1157. [PMID: 32392899 PMCID: PMC7290908 DOI: 10.3390/cells9051157] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized vesicles that serve as mediators for cell-to-cell communication. With their unique nucleic acids, proteins, and lipids cargo compositions that reflect the characteristics of producer cells, exosomes can be utilized as cell-free therapeutics. Among exosomes derived from various cellular origins, mesenchymal stem cell-derived exosomes (MSC-exosomes) have gained great attention due to their immunomodulatory and regenerative functions. Indeed, many studies have shown anti-inflammatory, anti-aging and wound healing effects of MSC-exosomes in various in vitro and in vivo models. In addition, recent advances in the field of exosome biology have enabled development of specific guidelines and quality control methods, which will ultimately lead to clinical application of exosomes. This review highlights recent studies that investigate therapeutic potential of MSC-exosomes and relevant mode of actions for skin diseases, as well as quality control measures required for development of exosome-derived therapeutics.
Collapse
Affiliation(s)
- Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Joon Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | | | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwasweong-si, Gyeonggi-do 18450, Korea;
| | | | | | | | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Sumi Sung
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| |
Collapse
|