1
|
Liang Q, Zhang C, Lv P, Huang Y, Zhao H, Jiang S, Xu W. The important role of the Wnt/β-catenin signaling pathway in small molecules mediated gingival mesenchymal stem cells transdifferentiate into neuron-like cells. Arch Oral Biol 2025; 169:106115. [PMID: 39488928 DOI: 10.1016/j.archoralbio.2024.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Given their neural crest origin, gingival mesenchymal stem cells (GMSCs) possess high neurogenic potential, which makes them suitable for cell replacement therapy against neurodegenerative diseases. This study investigated whether GMSCs can be transdifferentiated into neurons in vitro using a protocol involving small molecules VCRFY (VPA, CHIR99021, Repsox, Forskolin, and Y-27632). The regulatory mechanisms of key signaling pathways were also investigated. METHODS Neuronal induction of GMSCs was conducted using a small molecules-based protocol over 7 days, which included the evaluation of cell morphology, proliferation, expressions of neurogenic markers, and intracellular calcium oscillation. The activation of canonical the Wnt signaling pathway was assessed by examining the protein content and subcellular localization of β-catenin. RESULTS Small molecules-treated GMSCs displayed neuronal morphology and increased expression of neurogenic markers, including class III beta-tubulin (TUJ1), neuron-specific enolase (NSE), microtube-associated protein 2 (MAP2), and neurofilament medium (NFM), verified through RT-qPCR, western blotting, and immunocytochemistry. Based on the results of Fluo-4 AM calcium flux assay, small molecules-treated GMSCs exhibited enhanced electrophysiological activity. GMSC proliferation halted after 2 days of treatment. Among the small molecules, CHIR99021 exhibited the highest neuronal induction efficiency. Furthermore, activation of the Wnt/β-catenin signaling pathway augmented neuronal differentiation. CONCLUSIONS Small molecule-based cellular reprogramming can efficiently generate neurons from GMSCs, with Wnt/β-catenin signaling to play a critical role in neuronal induction.
Collapse
Affiliation(s)
- Qiuying Liang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Chuhan Zhang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Peiyi Lv
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Yongmao Huang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Hang Zhao
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Shan Jiang
- Department of Periodontics and Oral Medicine, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
| | - Wenan Xu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
| |
Collapse
|
2
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
3
|
Coccini T, Schicchi A, Locatelli CA, Caloni F, Negri S, Grignani E, De Simone U. Methylglyoxal-induced neurotoxic effects in primary neuronal-like cells transdifferentiated from human mesenchymal stem cells: Impact of low concentrations. J Appl Toxicol 2023; 43:1819-1839. [PMID: 37431083 DOI: 10.1002/jat.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In the last decades, advanced glycation end-products (AGEs) have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes including various neurological disorders and cognitive decline age related. Methylglyoxal (MG) is one of the reactive dicarbonyl precursors of AGEs, mainly generated as a by-product of glycolysis, whose accumulation induces neurotoxicity. In our study, MG cytotoxicity was evaluated employing a human stem cell-derived model, namely, neuron-like cells (hNLCs) transdifferentiated from mesenchymal stem/stromal cells, which served as a source of human based species-specific "healthy" cells. MG increased ROS production and induced the first characteristic apoptotic hallmarks already at low concentrations (≥10 μM), decreased the cell growth (≥5-10 μM) and viability (≥25 μM), altered Glo-1 and Glo-2 enzymes (≥25 μM), and markedly affected the neuronal markers MAP-2 and NSE causing their loss at low MG concentrations (≥10 μM). Morphological alterations started at 100 μM, followed by even more marked effects and cell death after few hours (5 h) from 200 μM MG addition. Substantially, most effects occurred as low as 10 μM, concentration much lower than that reported from previous observations using different in vitro cell-based models (e.g., human neuroblastoma cell lines, primary animal cells, and human iPSCs). Remarkably, this low effective concentration approaches the level range measured in biological samples of pathological subjects. The use of a suitable cellular model, that is, human primary neurons, can provide an additional valuable tool, mimicking better the physiological and biochemical properties of brain cells, in order to evaluate the mechanistic basis of molecular and cellular alterations in CNS.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Azzurra Schicchi
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Sara Negri
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
4
|
Gupta V, Mahata T, Roy R, Gharai PK, Jana A, Garg S, Ghosh S. Discovery of imidazole-based GSK-3 β inhibitors for transdifferentiation of human mesenchymal stem cells to neurons: A potential single-molecule neurotherapeutic foresight. Front Mol Neurosci 2022; 15:1002419. [PMID: 36590911 PMCID: PMC9797524 DOI: 10.3389/fnmol.2022.1002419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 12/16/2022] Open
Abstract
The transdifferentiation of human mesenchymal stem cells (hMSC) to functional neurons is crucial for the development of future neuro-regenerative therapeutics. Currently, transdifferentiation of hMSCs to neurons requires a "chemical cocktail" along with neural growth factors. The role of the individual molecules present in a "chemical cocktail" is poorly understood and may cause unwanted toxicity or adverse effects. Toward, this goal, we have showcased the discovery of an imidazole-based "single-molecule" transdifferentiation initiator SG-145C. This discovery was achieved via screening of a small molecule library through extensive in silico studies to shortlist the best-fitting molecules. This discovery evolved through a careful selection to target Glycogen synthase kinase-3β (GSK-3β), which is one of the important proteins responsible for neurogenesis. Rigorous computational experiments, as well as extensive biological assays, confirmed that SG-145C has significant potential to transdifferentiate hMSCs to neurons. Interestingly, our results suggest that SG-145C can inhibit the proteasomal degradation of phosphorylated β-catenin, in turn promoting transdifferentiation of hMSCs into neurons via the Wnt pathway.
Collapse
Affiliation(s)
- Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanushree Mahata
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India,Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India,Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India,*Correspondence: Surajit Ghosh,
| |
Collapse
|
5
|
Coccini T, Spinillo A, Roccio M, Lenta E, Valsecchi C, De Simone U. Human Umbilical Cord Mesenchymal Stem Cell-Based in vitro Model for Neurotoxicity Testing. Curr Protoc 2022; 2:e423. [PMID: 35471597 DOI: 10.1002/cpz1.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurotoxicity (NT) testing for regulatory purposes is based on in vivo animal testing. There is general consensus, however, about the need for the development of alternative methodologies to allow researchers to more rapidly and cost effectively screen large numbers of chemicals for their potential to cause NT, or to investigate their mode of action. In vitro assays are considered an important source of information for making regulatory decisions, and human cell-based systems are recommended as one of the most relevant models in toxicity testing, to reduce uncertainty in the extrapolation of results from animal-based models. Human neuronal models range from various neuroblastoma cell lines to stem cell-derived systems, including those derived from mesenchymal stem/stromal cells (hMSC). hMSCs exhibit numerous advantages, including the fact that they can be obtained in high yield from healthy human adult tissues, can be cultured with a minimal laboratory setup and without genetic manipulations, are able of continuous and repeated self-renewal, are nontumorigenic, and can form large populations of stably differentiated cells representative of different tissues, including neuronal cells. hMSCs derived from human umbilical cord (hUC) in particular possess several prominent advantages, including a painless, non-invasive, and ethically acceptable collection procedure, simple and convenient preparation, and high proliferation capacity. In addition, hMSCs can be efficiently differentiated into neuron-like cells (hNLCs), which can then be used for the assessment of neuronal toxicity of potential neurotoxic compounds in humans. Here, we describe a step-by-step procedure to use hMSCs from the umbilical cord for in vitro neurotoxicity testing. First, we describe how to isolate, amplify, and store hMSCs derived from the umbilical cord. We then outline the steps to transdifferentiate these cells into hNLCs, and then use the hNLCs for neurotoxicity testing by employing multiple common cytotoxicity assays after treatment with test compounds. The approach follows the most updated guidance on using human cell-based systems. These protocols will allow investigators to implement an alternative system for obtaining primary NLCs of human origin, and support advancement in neurotoxicity research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and maintenance of human mesenchymal stem/stromal cells (hMSCs) obtained from the umbilical cord lining membrane Basic Protocol 2: Transdifferentiation of hMSCs into neuron-like cells (hNLCs) and basic neurotoxicity assessment.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
6
|
Abstract
Background Hepatic and adrenocortical choristomas are unusual findings in the placenta. This meta-analysis includes our own case report and 23 previously reported cases. We searched for patterns of associated placental, fetal and maternal aberrations in order to determine whether these choristomas are clinically relevant. Case report: In our case, abortion was induced due to fetal central nervous system and renal malformations. In the placenta a hepatic choristoma (<0.1 cm), thrombangiitis obliterans and a single umbilical artery were found. Results: In the literature, the majority of lesions were ≤1.0 cm (n = 21/24, 87.5%) and two hepatic choristomas manifested within chorangiomas. In a subfraction of cases, we found an association with twin/triple pregnancies (n = 6/24, 25%) and heterogeneous non-hepatic/non-adrenal malformations in fetuses (n = 4/24, 17%). Conclusion: Hepatic and adrenocortical choristomas are benign, could be based on focal epigenetic changes and might be related to chorangiomas but are not associated with a particular disease pattern or risk profile.
Collapse
Affiliation(s)
- Nora Schaumann
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Kais Hussein
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| |
Collapse
|
7
|
De Simone U, Croce AC, Pignatti P, Buscaglia E, Caloni F, Coccini T. Three dimensional spheroid cell culture of human MSC‐derived neuron‐like cells: new in vitro model to assess magnetite nanoparticle‐induced neurotoxicity effects. J Appl Toxicol 2022; 42:1230-1252. [DOI: 10.1002/jat.4292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR) Pavia Italy
- Department of Biology & Biotechnology University of Pavia Pavia Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Francesca Caloni
- Department of Health, Animal Science and Food Safety Universitá degli Studi di Milano Milan Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| |
Collapse
|
8
|
Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies. Cells 2021; 10:cells10102558. [PMID: 34685537 PMCID: PMC8533873 DOI: 10.3390/cells10102558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cell transdifferentiation and reprogramming approaches in recent times have enabled the manipulation of cell fate by enrolling exogenous/artificial controls. The chemical/small molecule and regulatory components of transcription machinery serve as potential tools to execute cell transdifferentiation and have thereby uncovered new avenues for disease modeling and drug discovery. At the advanced stage, one can believe these methods can pave the way to develop efficient and sensitive gene therapy and regenerative medicine approaches. As we are beginning to learn about the utility of cell transdifferentiation and reprogramming, speculations about its applications in translational therapeutics are being largely anticipated. Although clinicians and researchers are endeavoring to scale these processes, we lack a comprehensive understanding of their mechanism(s), and the promises these offer for targeted and personalized therapeutics are scarce. In the present report, we endeavored to provide a detailed review of the original concept, methods and modalities enrolled in the field of cellular transdifferentiation and reprogramming. A special focus is given to the neuronal and cardiac systems/diseases towards scaling their utility in disease modeling and drug discovery.
Collapse
|
9
|
Mukhopadhyay A, Das A, Mukherjee S, Rajput M, Gope A, Chaudhary A, Choudhury K, Barui A, Chatterjee J, Mukherjee R. Improved Mesenchymal Stem Cell Proliferation, Differentiation, Epithelial Transition, and Restrained Senescence on Hierarchically Patterned Porous Honey Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2021; 4:4328-4344. [PMID: 35006845 DOI: 10.1021/acsabm.1c00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a significant improvement of adipose-derived mesenchymal stem cells' (ADMSCs) biocompatibility and proliferation on hierarchically patterned porous honey-incorporated silk fibroin scaffolds fabricated using a combination of soft lithography and freeze-drying techniques. Parametric variations show enhanced surface roughness, swelling, and degradation rate with good pore interconnectivity, porosity, and mechanical strength for soft-lithographically fabricated biomimetic microdome arrays on the 2% honey silk fibroin scaffold (PHSF2) as compared to its other variants, which eventually made PHSF2 more comparable to the native environment required for stem cell adhesion and proliferation. PHSF2 also exhibits sustained honey release with remarkable antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Honey incorporation (biochemical cue) influences microdome structural features, that is, biophysical cues (height, width, and periodicity), which further allows ADMSCs pseudopods (filopodia) to grasp the microdomes for efficient cell-cell communication and cell-matrix interaction and regulates ADMSCs behavior by altering their cytoskeletal rearrangement and thereby increases the cellular spreading area and cell sheet formation. The synergistic effect of biochemical (honey) and biophysical (patterns) cues on ADMSCs studied by the nitro blue tetrazolium assay and DCFDA fluorescence spectroscopy reveals limited free radical generation within cells. Molecular expression studies show a decrease in p53 and p21 expressions validating ADMSCs senescence inhibition, which is further correlated with a decrease in cellular senescence-associated β galactosidase activity. We also show that an increase in CDH1 and CK19 molecular expressions along with an increase in SOX9, RUNX2, and PPARγ molecular expressions supported by PHSF2 justify the substrate's efficacy of underpinning mesenchymal to epithelial transition and multilineage trans-differentiation. This work highlights the fabrication of a naturally healing nutraceutical (honey)-embedded patterned porous stand-alone tool with the potential to be used as smart stem cells delivering regenerative healing implant.
Collapse
Affiliation(s)
- Anurup Mukhopadhyay
- Multimodal Imaging and Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Suranjana Mukherjee
- Multimodal Imaging and Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Monika Rajput
- Multimodal Imaging and Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.,Biomaterials and Tissue Engineering Laboratory, Department of Materials Engineering, Indian Institute of Science Bangalore, Bengaluru, Karnataka 560012, India
| | - Ayan Gope
- Multimodal Imaging and Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amrita Chaudhary
- Multimodal Imaging and Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kabita Choudhury
- Department of Microbiology, Nil Ratan Sircar Medical College and Hospital, Sealdah, Kolkata, West Bengal 700014, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Jyotirmoy Chatterjee
- Multimodal Imaging and Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
10
|
Phenotypical Characterization and Neurogenic Differentiation of Rabbit Adipose Tissue-Derived Mesenchymal Stem Cells. Genes (Basel) 2021; 12:genes12030431. [PMID: 33802902 PMCID: PMC8002684 DOI: 10.3390/genes12030431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Although the rabbit is a frequently used biological model, the phenotype of rabbit adipose-derived mesenchymal stem cells (rAT-MSCs) is not well characterized. One of the reasons is the absence of specific anti-rabbit antibodies. The study aimed to characterize rAT-MSCs using flow cytometry and PCR methods, especially digital droplet PCR, which confirmed the expression of selected markers at the mRNA level. A combination of these methods validated the expression of MSCs markers (CD29, CD44, CD73, CD90 and CD105). In addition, cells were also positive for CD49f, vimentin, desmin, α-SMA, ALDH and also for the pluripotent markers: NANOG, OCT4 and SOX2. Moreover, the present study proved the ability of rAT-MSCs to differentiate into a neurogenic lineage based on the confirmed expression of neuronal markers ENO2 and MAP2. Obtained results suggest that rAT-MSCs have, despite the slight differences in marker expression, the similar phenotype as human AT-MSCs and possess the neurodifferentiation ability. Accordingly, rAT-MSCs should be subjected to further studies with potential application in veterinary medicine but also, in case of their cryopreservation, as a source of genetic information of endangered species stored in the gene bank.
Collapse
|
11
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
12
|
Karakaş N, Bay S, Türkel N, Öztunç N, Öncül M, Bilgen H, Shah K, Şahin F, Öztürk G. Neurons from human mesenchymal stem cells display both spontaneous and stimuli responsive activity. PLoS One 2020; 15:e0228510. [PMID: 32407317 PMCID: PMC7224507 DOI: 10.1371/journal.pone.0228510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have the ability to transdifferentiate into neurons and therefore one of the potential adult stem cell source for neuronal tissue regeneration applications and understanding neurodevelopmental processes. In many studies on human mesenchymal stem cell (hMSC) derived neurons, success in neuronal differentiation was limited to neuronal protein expressions which is not statisfactory in terms of neuronal activity. Established neuronal networks seen in culture have to be investigated in terms of synaptic signal transmission ability to develop a culture model for human neurons and further studying the mechanism of neuronal differentiation and neurological pathologies. Accordingly, in this study, we analysed the functionality of bone marrow hMSCs differentiated into neurons by a single step cytokine-based induction protocol. Neurons from both primary hMSCs and hMSC cell line displayed spontaneous activity (≥75%) as demonstrated by Ca++ imaging. Furthermore, when electrically stimulated, hMSC derived neurons (hMd-Neurons) matched the response of a typical neuron in the process of maturation. Our results reveal that a combination of neuronal inducers enhance differentiation capacity of bone marrow hMSCs into high yielding functional neurons with spontaneous activity and mature into electrophysiologically active state. Conceptually, we suggest these functional hMd-Neurons to be used as a tool for disease modelling of neuropathologies and neuronal differentiation studies.
Collapse
Affiliation(s)
- Nihal Karakaş
- Medical Biology Department, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- * E-mail:
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Nezaket Türkel
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Nurşah Öztunç
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- Medical Biology and Genetics Program, Graduate School of Health Sciences, İstanbul Medipol University, İstanbul, Turkey
| | - Merve Öncül
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Hülya Bilgen
- Center for Bone Marrow Transplantation, İstanbul Medipol University Hospital, İstanbul, Turkey
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Woman’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fikrettin Şahin
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- Physiology Department, International School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
13
|
Garzon I, Chato-Astrain J, Campos F, Fernandez-Valades R, Sanchez-Montesinos I, Campos A, Alaminos M, D'Souza RN, Martin-Piedra MA. Expanded Differentiation Capability of Human Wharton's Jelly Stem Cells Toward Pluripotency: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:301-312. [PMID: 32085697 DOI: 10.1089/ten.teb.2019.0257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human Wharton's jelly stem cells (HWJSC) can be efficiently isolated from the umbilical cord, and numerous reports have demonstrated that these cells can differentiate into several cell lineages. This fact, coupled with the high proliferation potential of HWJSC, makes them a promising source of stem cells for use in tissue engineering and regenerative medicine. However, their real potentiality has not been established to date. In the present study, we carried out a systematic review to determine the multilineage differentiation potential of HWJSC. After a systematic literature search, we selected 32 publications focused on the differentiation potential of these cells. Analysis of these studies showed that HWJSC display expanded differentiation potential toward some cell types corresponding to all three embryonic cell layers (ectodermal, mesodermal, and endodermal), which is consistent with their constitutive expression of key pluripotency markers such as OCT4, SOX2, and NANOG, and the embryonic marker SSEA4. We conclude that HWJSC can be considered cells in an intermediate state between multipotentiality and pluripotentiality, since their proliferation capability is not unlimited and differentiation to all cell types has not been demonstrated thus far. These findings support the clinical use of HWJSC for the treatment of diseases affecting not only mesoderm-type tissues but also other cell lineages. Impact statement Human Wharton's jelly stem cells (HWJSC) are mesenchymal stem cells that are easy to isolate and handle, and that readily proliferate. Their wide range of differentiation capabilities supports the view that these cells can be considered pluripotent. Accordingly, HWJSC are one of the most promising cell sources for clinical applications in advanced therapies.
Collapse
Affiliation(s)
- Ingrid Garzon
- Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,ibs.GRANADA, Biohealth Institute, Granada, Spain
| | - Jesus Chato-Astrain
- Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,ibs.GRANADA, Biohealth Institute, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,ibs.GRANADA, Biohealth Institute, Granada, Spain
| | - Ricardo Fernandez-Valades
- ibs.GRANADA, Biohealth Institute, Granada, Spain.,Division of Pediatric Surgery, University of Granada Hospital Complex, Granada, Spain
| | - Indalecio Sanchez-Montesinos
- ibs.GRANADA, Biohealth Institute, Granada, Spain.,Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Campos
- Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,ibs.GRANADA, Biohealth Institute, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,ibs.GRANADA, Biohealth Institute, Granada, Spain
| | - Rena N D'Souza
- Department of Dentistry, School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Miguel A Martin-Piedra
- Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,ibs.GRANADA, Biohealth Institute, Granada, Spain
| |
Collapse
|
14
|
De Simone U, Spinillo A, Caloni F, Gribaldo L, Coccini T. Neuron-Like Cells Generated from Human Umbilical Cord Lining-Derived Mesenchymal Stem Cells as a New In Vitro Model for Neuronal Toxicity Screening: Using Magnetite Nanoparticles as an Example. Int J Mol Sci 2019; 21:E271. [PMID: 31906090 PMCID: PMC6982086 DOI: 10.3390/ijms21010271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
The wide employment of iron nanoparticles in environmental and occupational settings underlines their potential to enter the brain. Human cell-based systems are recommended as relevant models to reduce uncertainty and to improve prediction of human toxicity. This study aimed at demonstrating the in vitro differentiation of the human umbilical cord lining-derived-mesenchymal stem cells (hCL-MSCs) into neuron-like cells (hNLCs) and the benefit of using them as an ideal primary cell source of human origin for the neuronal toxicity of Fe3O4NPs (magnetite-nanoparticles). Neuron-like phenotype was confirmed by: live morphology; Nissl body staining; protein expression of different neuronal-specific markers (immunofluorescent staining), at different maturation stages (i.e., day-3-early and day-8-full differentiated), namely β-tubulin III, MAP-2, enolase (NSE), glial protein, and almost no nestin and SOX-2 expression. Synaptic makers (SYN, GAP43, and PSD95) were also expressed. Fe3O4NPs determined a concentration- and time-dependent reduction of hNLCs viability (by ATP and the Trypan Blue test). Cell density decreased (20-50%) and apoptotic effects were detected at ≥10 μg/mL in both types of differentiated hNLCs. Three-day-differentiated hNLCs were more susceptible (toxicity appeared early and lasted for up to 48 h) than 8-day-differentiated cells (delayed effects). The study demonstrated that (i) hCL-MSCs easily differentiated into neuronal-like cells; (ii) the hNCLs susceptibility to Fe3O4NPs; and (iii) human primary cultures of neurons are new in vitro model for NP evaluation.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy;
| | - Francesca Caloni
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 20133 Milano, Italy;
| | - Laura Gribaldo
- Chemical Safety and Alternative Methods Unit, Directorate F—Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, 21027 Ispra, Italy;
| | - Teresa Coccini
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| |
Collapse
|
15
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|