1
|
Alharbi S, Aldubayan MA, Alhowail AH, Almogbel YS, Emara AM. Co-abuse of amphetamine and alcohol harms kidney and liver. Sci Rep 2024; 14:23400. [PMID: 39379507 PMCID: PMC11461853 DOI: 10.1038/s41598-024-74459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The prevalence of alcohol use disorder was found 75% higher among amphetamine dependent patients. Alcohol and amphetamine alone have nephrotoxicity and hepatoxicity. But, the degree of risk with coabuse of alcohol and amphetamine is unknown. The objective of this study was to assess toxic effects of amphetamine-alcohol co-abuse on the liver and kidney. he present study was a cross-sectional study conducted et al. Amal Hospital for Mental Health, Qassim region, KSA and include one hundred participants. Seventy-five participants were patients hospitalized for the treatment of abuse, and twenty-five participants, were healthy voluntaries, have no history of abuse. An experienced psychiatrist conducted patient interviews and assessed the patients using the DSM-5 criteria. The data from healthy participants were considered as a control. The abuse group was paired with the control group by age and lifestyle. Participants were split into: Group I: Control group (n = 25); Group II: Amphetamine (AMP) abuser group (n = 25); Group III: Alcohol abuser group (n = 25) and Group IV: Combined drug abuser group (AMP and alcohol) (n = 25). The socio-demographic data was collected. Complete medical examination, Body Mass Index and samples of blood and urine were collected from all participants for analytical tests; determination of alcohol and AMP levels, kidney functions and liver functions. The mean BMI values in groups II, III, and IV showed no significant change from the control group. The serum level of albumin and alkaline phosphatase showed significant decrease in all abuser groups. While, alanine transaminase (ALT), Aspartate transaminase (AST) and osteopontin levels showed significant increase in all abuser groups. Fasting blood sugar values showed significant increase in alcohol abusers. On the other hand, it revealed no significant change in AMP and combined groups. The mean values of urea showed no significant change in AMP and alcohol abusers and significant increase in combined drug abuser group. The serum creatinine and all abuser groups showed significant increase in Cystatin C. The alteration in the most of studied biochemical parameters were more than two folds in combined group compared with that of AMP or alcohol groups. Study reveals synergistic liver and kidney toxicity. Amphetamine-alcohol co-abuse significantly heightens kidney and liver toxicity.
Collapse
Affiliation(s)
- Sharifah Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Maha A Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia
| | - Yasser S Almogbel
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ashraf M Emara
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, 51452, Buraydah, Saudi Arabia.
| |
Collapse
|
2
|
Sherefedin U, Belay A, Gudishe K, Kebede A, Kumela AG, Wakjira TL, Asemare S, Gurumurthi T, Gelanu D. Investigating the effects of solvent polarity and temperature on the molecular, photophysical, and thermodynamic properties of sinapic acid using DFT and TDDFT. RSC Adv 2024; 14:23364-23377. [PMID: 39049890 PMCID: PMC11267253 DOI: 10.1039/d4ra04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Sinapic acid (SA) is widely used in cosmetics, foods, and pharmaceuticals due to its antioxidant, anti-inflammatory, neuroprotective, antimicrobial, antifungal, anticancer, and cardioprotective properties. However, environmental factors such as solvent polarity and temperature can influence its biological activity. This work determined how solvent polarity and temperature affected the molecular, photophysical, and thermodynamic properties of SA in gas and various solvents using semi-empirical (MP6), Hartree-Fock (HF) with the B3LYP method and a 6-311++G(d,p) basis set, and density functional theory (DFT) with various basis sets, such as 3TO-3G*, 3-21G+, 6-31G++G(d,p), 6-311++G(d,p), aug-CC-PVDZ, LanL2DZ, SDD, and DGD2VP. The results indicated that solvent polarity influences molecular and spectroscopic properties, such as bond angles, dihedral angles, bond lengths, FTIR spectra, solvation energy, dipole moments, HOMO-LUMO band gaps, chemical reactivity, and thermodynamic properties, resulting from interactions between the drug and solvent molecules. The findings suggested that increasing the temperature within the range of 100 to 1000 Kelvin leads to an increase in heat capacity, enthalpy, and entropy due to molecular vibrations, ultimately causing degradation and instability in SA. Furthermore, the results showed that SA underwent a redshift in the absorption peak (from 320.18 to 356.26 nm) and a shift in the fluorescence peak (from 381 to 429 nm) in the solvent phase compared to those in the gas phase. Overall, this study provides background knowledge on how solvent polarity and temperature affect the properties of SA molecules.
Collapse
Affiliation(s)
- Umer Sherefedin
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Abebe Belay
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Kusse Gudishe
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University Jinka Ethiopia
| | - Alemu Kebede
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University Tullu Awulia Ethiopia
| | - Tadesse Lemma Wakjira
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Semahegn Asemare
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - T Gurumurthi
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Dereje Gelanu
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| |
Collapse
|
3
|
Alhadrami HA, El-Din ASGS, Hassan HM, Sayed AM, Alhadrami AH, Rateb ME, Naguib DM. Development and Evaluation of a Self-Nanoemulsifying Drug Delivery System for Sinapic Acid with Improved Antiviral Efficacy against SARS-CoV-2. Pharmaceutics 2023; 15:2531. [PMID: 38004511 PMCID: PMC10674535 DOI: 10.3390/pharmaceutics15112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to develop a self-nanoemulsifying drug delivery system (SNE) for sinapic acid (SA) to improve its solubility and antiviral activity. Optimal components for the SA-SNE formulation were selected, including Labrafil as the oil, Cremophor EL as the surfactant, and Transcutol as the co-surfactant. The formulation was optimized using surface response design, and the optimized SA-SNE formulation exhibited a small globule size of 83.6 nm, high solubility up to 127.1 ± 3.3, and a 100% transmittance. In vitro release studies demonstrated rapid and high SA release from the formulation. Pharmacokinetic analysis showed improved bioavailability by 2.43 times, and the optimized SA-SNE formulation exhibited potent antiviral activity against SARS-CoV-2. The developed SA-SNE formulation can enhance SA's therapeutic efficacy by improving its solubility, bioavailability, and antiviral activity. Further in silico, modeling, and Gaussian accelerated molecular dynamics (GaMD)-based studies revealed that SA could interact with and inhibit the viral main protease (Mpro). This research contributes to developing effective drug delivery systems for poorly soluble drugs like SA, opening new possibilities for their application via nebulization in SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- Molecular Diagnostics Laboratory, King Abdulaziz University Hospital, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed S G Srag El-Din
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City 35712, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Albaraa H Alhadrami
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Demiana M Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62513, Egypt
| |
Collapse
|
4
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, AlRashdi AS, Najmaldin SK, Zainel MA. RETRACTED: Sinapic Acid Attenuate Liver Injury by Modulating Antioxidant Activity and Inflammatory Cytokines in Thioacetamide-Induced Liver Cirrhosis in Rats. Biomedicines 2023; 11:1447. [PMID: 37239118 PMCID: PMC10216417 DOI: 10.3390/biomedicines11051447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Sinapic acid (SA) is a natural pharmacological active compound found in berries, nuts, and cereals. The current study aimed to investigate the protective effects of SA against thioacetamide (TAA) fibrosis in rats by histopathological and immunohistochemical assays. The albino rats (30) were randomly divided into five groups (G). G1 was injected with distilled water 3 times/week and fed orally daily with 10% Tween 20 for two months. G2-5 were injected with 200 mg/kg TAA three times weekly for two months and fed with 10% Tween 20, 50 mg/kg silymarin, 20, and 40 mg/kg of SA daily for 2 months, respectively. The results showed that rats treated with SA had fewer hepatocyte injuries with lower liver index (serum bilirubin, total protein, albumin, and liver enzymes (ALP, ALT, and AST) and were similar to that of control and silymarin-treated rats. Acute toxicity for 2 and 4 g/kg SA showed to be safe without any toxic signs in treated rats. Macroscopic examination showed that hepatotoxic liver had an irregular, rough surface with micro and macro nodules and histopathology expressed by Hematoxylin and Eosin, and Masson Trichrome revealed severe inflammation and infiltration of focal necrosis, fibrosis, lymphocytes, and proliferation bile duct. In contrast, rats fed with SA had significantly lower TAA toxicity in gross and histology and liver tissues as presented by less liver tissue disruption, lesser fibrosis, and minimum in filtered hepatocytes. Immunohistochemistry of rats receiving SA showed significant up-regulation of HSP 70% and down-regulation of alpha-smooth muscle actin (α-SMA) protein expression compared to positive control rats. The homogenized liver tissues showed a notable rise in the antioxidant enzymes (SOD and CAT) actions with significantly lower malondialdehyde (MDA) levels compared to that of the positive control group. Furthermore, the SA-treated rats had significantly lower TNF-a, IL-6, and higher IL-10 levels than the positive control rats. Thus, the findings suggest SA as a hepatoprotective compound due to its inhibitory effects on fibrosis, hepatotoxicity, liver cell proliferation, up-regulation of HSP 70, and downregulation of α-SMA expression, inhibiting lipid peroxidation (MDA), while retaining the liver index and antioxidant enzymes to normal.
Collapse
Affiliation(s)
- Ahmed A. J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Zaenah Zuhair Alamri
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Sciences, Cihan University-Erbil, Erbil 44001, Iraq;
| | - Ahmed S. AlRashdi
- Central Public Health Laboratories, Ministry of Health, P.O. Box 2294, Muscat 111, Oman;
| | - Soran Kayfi Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Iraq;
| | | |
Collapse
|
5
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
6
|
Liu X, Tian R, Tao H, Wu J, Yang L, Zhang Y, Meng X. The cardioprotective potentials and the involved mechanisms of phenolic acids in drug-induced cardiotoxicity. Eur J Pharmacol 2022; 936:175362. [DOI: 10.1016/j.ejphar.2022.175362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
7
|
Yan J, Honglei Y, Yun W, Sheng D, Yun H, Anhua Z, Na F, Min L, Dandan S, Jing W, Junming T, Wenjun Z, Xiju H. Puerarin ameliorates myocardial remodeling of spontaneously hypertensive rats through inhibiting TRPC6-CaN-NFATc3 pathway. Eur J Pharmacol 2022; 933:175254. [PMID: 36087696 DOI: 10.1016/j.ejphar.2022.175254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Puerarin (Pue) has been widely used in the treatment of hypertension and cardiovascular diseases, but the basic mechanism of Pue on myocardial remodeling (MR) of hypertension is not clear. The purpose of this study was to investigate the effect and mechanism of Pue on MR and provide the basis for the clinical application. Thirty male spontaneously hypertensive rats (SHR) and six male Wistar Kyoto rats (WKY) aged 3 months were used in this study, SHR rats were randomly divided into 5 groups, Pue (40 or 80 mg/kg/d, ip) and telmisartan (TELMI) (30 mg/kg/d, ig) were administrated for 12 weeks. We used Echocardiography to detect the cardiac function. Morphology and structure of myocardium were observed. H9C2 cells were subjected to 1 μM Ang Ⅱ in vitro, 100 μM Pue, 0.5 μM Calmodulin-dependent calcineurin (CaN) inhibitor Cyclosporin A (CsA) and 1 μM specific transient receptor potential channel 6 (TRPC6) inhibitor SAR7334 were used in H9C2 cells. Long-term administration of Pue could significantly improve cardiac function, improve morphology and structure of myocardium in vivo. Pue could reduce MR related proteins expression (ACTC1, TGF-β1, CTGF, β-MHC and BNP), attenuate ROS, restore MMP and decrease Ca2+-overload in vitro. Further study indicated that Pue could decrease TRPC6 expression and inhibit nuclear factor of activated T cells 3 (NFATc3) nuclear translocation in vitro. These results suggested that puerarin could ameliorate myocardial remodeling through inhibiting TRPC6-CaN-NFATc3 in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Jiang Yan
- Department of Ultrasound, Taihe Hospital, Jinzhou Medicical University Union Training Base, Shiyan, 442000, China
| | - Yu Honglei
- Department of Ultrasound, Taihe Hospital, Jinzhou Medicical University Union Training Base, Shiyan, 442000, China
| | - Wu Yun
- Department of Ultrasound, Wuhan Asia General Hospital, Wuhan, 430000, China
| | - Dong Sheng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - He Yun
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhang Anhua
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Feng Na
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Lu Min
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Shi Dandan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Wang Jing
- School of Public Health and Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Tang Junming
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhang Wenjun
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - He Xiju
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China; Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
8
|
Zubcevic J, Watkins J, Lin C, Bautista B, Hatch HM, Tevosian SG, Hayward LF. Nicotine Exposure during Rodent Pregnancy Alters the Composition of Maternal Gut Microbiota and Abundance of Maternal and Amniotic Short Chain Fatty Acids. Metabolites 2022; 12:metabo12080735. [PMID: 36005607 PMCID: PMC9414314 DOI: 10.3390/metabo12080735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tobacco smoking is the leading cause of preventable death. Numerous reports link smoking in pregnancy with serious adverse outcomes, such as miscarriage, stillbirth, prematurity, low birth weight, perinatal morbidity, and infant mortality. Corollaries of consuming nicotine in pregnancy, separate from smoking, are less explored, and the mechanisms of nicotine action on maternal–fetal communication are poorly understood. This study examined alterations in the maternal gut microbiome in response to nicotine exposure during pregnancy. We report that changes in the maternal gut microbiota milieu are an important intermediary that may mediate the prenatal nicotine exposure effects, affect gene expression, and alter fetal exposure to circulating short-chain fatty acids (SCFAs) and leptin during in utero development.
Collapse
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Correspondence: (J.Z.); (S.G.T.)
| | - Jacqueline Watkins
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Cindy Lin
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Byrell Bautista
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Heather M. Hatch
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
- Correspondence: (J.Z.); (S.G.T.)
| | - Linda F. Hayward
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med 2022; 9:915903. [PMID: 35898278 PMCID: PMC9309384 DOI: 10.3389/fcvm.2022.915903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage polarization is an important regulatory mechanism of ventricular remodeling. Studies have shown that sinapic acid (SA) exerts an anti-inflammatory effect. However, the effect of SA on macrophages is still unclear. Objectives The purpose of the study was to investigate the role of SA in macrophage polarization and ventricular remodeling after myocardial infarction (MI). Methods An MI model was established by ligating the left coronary artery. The rats with MI were treated with SA for 1 or 4 weeks after MI. The effect of SA on bone marrow-derived macrophages (BMDMs) was also observed in vitro. Results Cardiac systolic dysfunction was significantly improved after SA treatment. SA reduced MCP-1 and CCR2 expression and macrophage infiltration. SA decreased the levels of the inflammatory factors TNF-α, IL-1α, IL-1β, and iNOS and increased the levels of the M2 macrophage markers CD206, Arg-1, IL-10, Ym-1, Fizz-1, and TGF-β at 1 week after MI. SA significantly increased CD68+/CD206+ macrophage infiltration. Myocardial interstitial fibrosis and MMP-2 and MMP-9 levels were decreased, and the sympathetic nerve marker TH and nerve sprouting marker GAP43 were suppressed after SA treatment at 4 weeks after MI. The PPARγ level was notably upregulated after SA treatment. In vitro, SA also increased the expression of PPARγ mRNA in BMDMs and IL-4-treated BMDMs in a concentration-dependent manner. SA enhanced Arg1 and IL-10 expression in BMDMs, and the PPARγ antagonist GW9662 attenuated M2 macrophage marker expression. Conclusions Our results demonstrated that SA attenuated structural and neural remodeling by promoting macrophage M2 polarization via PPARγ activation after MI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingyan Zhao
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Ke Hu
| |
Collapse
|
10
|
Huang Z, Chen H, Tan P, Huang M, Shi H, Sun B, Cheng Y, Li T, Mou Z, Li Q, Fu W. Sinapic acid inhibits pancreatic cancer proliferation, migration, and invasion via downregulation of the AKT/Gsk-3β signal pathway. Drug Dev Res 2022; 83:721-734. [PMID: 34859906 DOI: 10.1002/ddr.21904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
Among digestive system cancers, the extremely poor prognosis of pancreatic cancer (PC) is a pressing concern. Nonoperative treatments such as targeted and immunotherapy, have improved the current situation, however, the accompanying side effects of these chemicals should not be ignored. Here, we discovered a novel hydroxycinnamic acid named sinapic acid (SA) derived from fruits, vegetables, cereals, and oil crops as an effective anti-PC molecule. Both the in vitro and in vivo models we designed showed that SA exhibited anticancer activities but not apoptosis induction. Research on the underlying mechanisms illustrated that AKT phosphorylation was blocked by SA, and the downstream Gsk-3β was downregulated subsequently. Our study revealed the inhibitory activity and underlying mechanisms of SA, providing evidence that SA is a potential strategy for cancer research and can be a promising option of PC chemotherapy.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Chen
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Meizhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Shi
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Sun
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yonglang Cheng
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tongxi Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhiqiang Mou
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiu Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Bunaim MK, Kamisah Y, Mohd Mustazil MN, Fadhlullah Zuhair JS, Juliana AH, Muhammad N. Centella asiatica (L.) Urb. Prevents Hypertension and Protects the Heart in Chronic Nitric Oxide Deficiency Rat Model. Front Pharmacol 2021; 12:742562. [PMID: 34925007 PMCID: PMC8678489 DOI: 10.3389/fphar.2021.742562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hypertension is a major risk factor for cardiovascular disease (CVD), which is the number one cause of global mortality. The potential use of natural products to alleviate high blood pressure has been demonstrated to exert a cardioprotective effect. Centella asiatica (L.) Urb. belongs to the plant family Apiaceae (Umbelliferae). It contains a high amount of triterpenoid and flavonoid that have antioxidant properties and are involved in the renin-angiotensin-aldosterone system which is an important hormonal system for blood pressure regulation. Objective: This study aimed to investigate the effects of C. asiatica ethanolic extract on blood pressure and heart in a hypertensive rat model, which was induced using oral N(G)-nitro-l-arginine methyl ester (l-NAME). Methods: Male Sprague-Dawley rats were divided into five groups and were given different treatments for 8 weeks. Group 1 only received deionized water. Groups 2, 4, and 5 were given l-NAME (40 mg/kg, orally). Groups 4 and 5 concurrently received C. asiatica extract (500 mg/kg, orally) and captopril (5 mg/kg, orally), respectively. Group 3 only received C. asiatica extract (500 mg/kg body weight, orally). Systolic blood pressure (SBP) was measured at weeks 0, 4, and 8, while serum nitric oxide (NO) was measured at weeks 0 and 8. At necropsy, cardiac and aortic malondialdehyde (MDA) contents, cardiac angiotensin-converting enzyme (ACE) activity, and serum level of brain natriuretic peptide (BNP) were measured. Results: After 8 weeks, the administrations of C. asiatica extract and captopril showed significant (p < 0.05) effects on preventing the elevation of SBP, reducing the serum nitric oxide level, as well as increasing the cardiac and aortic MDA content, cardiac ACE activity, and serum brain natriuretic peptide level. Conclusion: C. asiatica extract can prevent the development of hypertension and cardiac damage induced by l-NAME, and these effects were comparable to captopril.
Collapse
Affiliation(s)
- Mohd Khairulanwar Bunaim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Noor Mohd Mustazil
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Abdul Hamid Juliana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Chu J, Yan R, Wang S, Li G, Kang X, Hu Y, Lin M, Shan W, Zhao Y, Wang Z, Sun R, Yao J, Zhang N. Sinapic Acid Reduces Oxidative Stress and Pyroptosis via Inhibition of BRD4 in Alcoholic Liver Disease. Front Pharmacol 2021; 12:668708. [PMID: 34149421 PMCID: PMC8212038 DOI: 10.3389/fphar.2021.668708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Alcoholic liver disease (ALD) is one of the main causes of death in chronic liver disease. Oxidative stress and pyroptosis are important factors leading to ALD. Bromodomain-containing protein 4 (BRD4) is a factor that we have confirmed to regulate ALD. As a phenolic acid compound, sinapic acid (SA) has significant effects in antioxidant, anti-inflammatory and liver protection. In this study, we explored whether SA regulates oxidative stress and pyroptosis through BRD4 to play a protective effect in ALD. Male C57BL/6 mice and AML-12 cells were used for experiments. We found that SA treatment largely abolished the up-regulation of BRD4 and key proteins of the canonical pyroptosis signalling in the liver of mice fed with alcohol, while conversely enhanced the antioxidant response. Consistantly, both SA pretreatment and BRD4 knockdown inhibited oxidative stress, pyroptosis, and liver cell damage in vitro. More importantly, the expression levels of BRD4 and pyroptosis indicators increased significantly in ALD patients. Molecule docking analysis revealed a potent binding of SA with BRD4. In conclusion, this study demonstrates that SA reduces ALD through BRD4, which is a valuable lead compound that prevents the ALD process.
Collapse
Affiliation(s)
- Junyi Chu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ran Yan
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Sai Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Guoyang Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Hu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Musen Lin
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wen Shan
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacy, The Third Hospital of Dalian Medical University, Dalian, China
| | - Yan Zhao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhecheng Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ruimin Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jihong Yao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ning Zhang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Na J, Hwang HJ, Shin MS, Kang M, Lee J, Bang G, Kim YJ, Hwang YJ, Hwang KA, Park YH. Extract of radish (R. Sativus Linn) promotes anti-atherosclerotic effect using urine metabolomics in ApoE−/− mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Vitamin B17 Ameliorates Methotrexate-Induced Reproductive Toxicity, Oxidative Stress, and Testicular Injury in Male Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4372719. [PMID: 33194002 PMCID: PMC7641263 DOI: 10.1155/2020/4372719] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Methotrexate (MTX; 4-amino-10-methylfolic acid) is a folic acid reductase inhibitor used to treat autoimmune diseases and certain types of cancer. Testicular toxicity resulting from MTX is a significant side effect that may cause subsequent infertility. The present study was conducted to examine the ameliorating effects of vitamin B17 (VitB17) against testicular toxicity induced by MTX in male rats. A total of 50 male albino rats were equally divided into five groups [control group; vitamin B17 group (VitB17) administered VitB17 only; methotrexate group administered MTX only; cotreated group, (VitB17+MTX) and posttreated group (MTX+VitB17)]. In methotrexate group (MTX), a significant decrease was observed in body weight and the testicular weight, as well as the levels of plasma testosterone, luteinizing hormone and follicle-stimulating hormone compared with control. The sperm count, viability, morphology index, total motility, and progressive motility also decreased in MTX rats compared with control. Furthermore, the levels of reduced glutathione, catalase, and superoxide dismutase, as well as proliferating cell nuclear antigen protein expression, in the testicular tissue decreased in MTX compared with control. In addition, MTX caused a significant increase in DNA and tissue damage compared with control. However, VitB17 ameliorated these effects, indicating that it has a preventative and curative effect against MTX-induced reproductive toxicity in male rats. The protective effect of VitB17 may be associated to its antioxidant properties as it possibly acts as a free-radical scavenger and lipid peroxidation inhibitor, as well as its protective effect on the levels of GSH, SOD, and CAT.
Collapse
|