1
|
Feng Q, Yu X, Xie J, Liu F, Zhang X, Li S, Wang Y, Pan S, Liu D, Liu Z. Phillygenin improves diabetic nephropathy by inhibiting inflammation and apoptosis via regulating TLR4/MyD88/NF-κB and PI3K/AKT/GSK3β signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156314. [PMID: 39647467 DOI: 10.1016/j.phymed.2024.156314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Phillygenin (PHI), a main bioactive compound found in the fruit of Forsythia suspensa, exhibits antiviral, antioxidant, anti-inflammatory, and antihypertensive activities. However, the molecular mechanisms underlying its effects on diabetic nephropathy (DN) remain unclear. PURPOSE To evaluate the therapeutic effects of PHI on DN and elucidate the molecular mechanisms involved. METHODS Cell viability assays and RNA-seq analyses were performed to identify potential mechanisms through which PHI regulates HG-induced MPCs. The therapeutic efficacy of PHI was assessed in both DN cells and mouse models. Cytokine levels were measured using ELISA, while the expression levels of key signaling pathways, including TLR4/MyD88/NF-κB and PI3K/AKT/GSK3β along with downstream effectors were analyzed via immunoblotting, immunofluorescence, and immunohistochemical staining. RESULTS PHI inhibited inflammatory responses and alleviated apoptosis by reducing the expression levels of IL-6, TNF-α, IL-1β, TLR4, MyD88, NF-κB, and cleaved caspase-3, while enhancing the phosphorylation of PI3K, AKT, GSK3β (Ser9), and pro-caspase-3 in MPCs under HG conditions in vitro. Additionally, in vivo experiments demonstrated that treatment with PHI (50 mg/kg) in db/db mice effectively improved renal function and attenuated kidney injury by reducing the urinary albumin-to-creatinine ratio (UACR), mitigating podocyte apoptosis, and inhibiting inflammatory via modulation of the TLR4/MyD88/NF-κB and PI3K/AKT/GSK3β signaling pathways. CONCLUSION PHI inhibits inflammation and apoptosis in vitro and alleviates diabetic kidney injury in db/db mice by interfering TLR4/MyD88/NF-κB and PI3K/AKT/GSK3β signaling pathways. Thus, this study reveals for the first time that PHI is a potential novel therapeutic agent for DN.
Collapse
Affiliation(s)
- Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xiaoyue Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, PR China
| | - Junwei Xie
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xiaonan Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shiyang Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yixue Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
2
|
Efiong EE, Bazireh H, Fuchs M, Amadi PU, Effa E, Sharma S, Schmaderer C. Crosstalk of Hyperglycaemia and Cellular Mechanisms in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2024; 25:10882. [PMID: 39456664 PMCID: PMC11507194 DOI: 10.3390/ijms252010882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Among all nephropathies, diabetic kidney disease (DKD) is the most common cause of kidney impairment advancement to end-stage renal disease (ESRD). Although DKD has no cure, the disease is commonly managed by strict control of blood glucose and blood pressure, and in most of these cases, kidney function often deteriorates, resulting in dialysis, kidney replacement therapy, and high mortality. The difficulties in finding a cure for DKD are mainly due to a poor understanding of the underpinning complex cellular mechanisms that could be identified as druggable targets for the treatment of this disease. The review is thus aimed at giving insight into the interconnection between chronic hyperglycaemia and cellular mechanistic perturbations of nephropathy in diabetes. A comprehensive literature review of observational studies on DKD published within the past ten years, with 57 percent published within the past three years was carried out. The article search focused on original research studies and reviews published in English. The articles were explored using Google Scholar, Medline, Web of Science, and PubMed databases based on keywords, titles, and abstracts related to the topic. This article provides a detailed relationship between hyperglycaemia, oxidative stress, and various cellular mechanisms that underlie the onset and progression of the disease. Moreover, it also shows how these mechanisms affect organelle dysfunction, resulting in fibrosis and podocyte impairment. The advances in understanding the complexity of DKD mechanisms discussed in this review will expedite opportunities to develop new interventions for treating the disease.
Collapse
Affiliation(s)
- Esienanwan Esien Efiong
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Biochemistry, Faculty of Science, Federal University of Lafia, PMB 146, Lafia 950101, Nigeria
| | - Homa Bazireh
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians-University München, 81377 München, Germany
| | - Markéta Fuchs
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Peter Uchenna Amadi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Biochemistry, Imo State University, Owerri 460222, Nigeria
| | - Emmanuel Effa
- Division of Nephrology, Department of Internal Medicine, Faculty of Clinical Sciences, University of Calabar, PMB 1115, Calabar 540271, Nigeria
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Research Center for Environmental Health, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Schmaderer
- Abteilung für Nephrologie, Klinikum Rechts der Isar, der Technischen Universität München, 81675 München, Germany
| |
Collapse
|
3
|
Kopp W. Aging and "Age-Related" Diseases - What Is the Relation? Aging Dis 2024:AD.2024.0570. [PMID: 39012663 DOI: 10.14336/ad.2024.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The study explores the intricate relationship between aging and the development of noncommunicable diseases [NCDs], focusing on whether these diseases are inevitable consequences of aging or primarily driven by lifestyle factors. By examining epidemiological data, particularly from hunter-gatherer societies, the study highlights that many NCDs prevalent in modern populations are rare in these societies, suggesting a significant influence of lifestyle choices. It delves into the mechanisms through which poor diet, smoking, and other lifestyle factors contribute to systemic physiological imbalances, characterized by oxidative stress, insulin resistance and hyperinsulinemia, and dysregulation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and the immune system. The interplay between this pattern and individual factors such as genetic susceptibility, biological variability, epigenetic changes and the microbiome is proposed to play a crucial role in the development of a range of age-related NCDs. Modified biomolecules such as oxysterols and advanced glycation end products also contribute to their development. Specific diseases such as benign prostatic hyperplasia, Parkinson's disease, glaucoma and osteoarthritis are analyzed to illustrate these mechanisms. The study concludes that while aging contributes to the risk of NCDs, lifestyle factors play a crucial role, offering potential avenues for prevention and intervention through healthier living practices. One possible approach could be to try to restore the physiological balance, e.g. through dietary measures [e.g. Mediterranean diet, Okinawan diet or Paleolithic diet] in conjunction with [a combination of] pharmacological interventions and other lifestyle changes.
Collapse
|
4
|
Huang X, Zhang H, Liu J, Yang X, Liu Z. Screening candidate diagnostic biomarkers for diabetic kidney disease. J Clin Lab Anal 2024; 38:e25000. [PMID: 38299750 PMCID: PMC10873681 DOI: 10.1002/jcla.25000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/25/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND There are big differences in treatments and prognosis between diabetic kidney disease (DKD) and non-diabetic renal disease (NDRD). However, DKD patients couldn't be diagnosed early due to lack of special biomarkers. Urine is an ideal non-invasive sample for screening DKD biomarkers. This study aims to explore DKD special biomarkers by urinary proteomics. MATERIALS AND METHODS According to the result of renal biopsy, 142 type 2 diabetes mellitus (T2DM) patients were divided into 2 groups: DKD (n = 83) and NDRD (n = 59). Ten patients were selected from each group to define urinary protein profiles by label-free quantitative proteomics. The candidate proteins were further verifyied by parallel reaction monitoring (PRM) methods (n = 40). Proteins which perform the same trend both in PRM and proteomics were verified by enzyme-linked immunosorbent assays (ELISA) with expanding the sample size (n = 82). The area under the receiver operating characteristic curve (AUC) was used to evaluate the accuracy of diagnostic biomarkers. RESULTS We identified 417 peptides in urinary proteins showing significant difference between DKD and NDRD. PRM verification identified C7, SERPINA4, IGHG1, SEMG2, PGLS, GGT1, CDH2, CDH1 was consistent with the proteomic results and p < 0.05. Three potential biomarkers for DKD, C7, SERPINA4, and gGT1, were verified by ELISA. The combinatied SERPINA4/Ucr and gGT1/Ucr (AUC = 0.758, p = 0.001) displayed higher diagnostic efficiency than C7/Ucr (AUC = 0.632, p = 0.048), SERPINA4/Ucr (AUC = 0.661, p = 0.032), and gGT1/Ucr (AUC = 0.661, p = 0.029) respectively. CONCLUSIONS The combined index SERPINA4/Ucr and gGT1/Ucr can be considered as candidate biomarkers for diabetic nephropathy after adjusting by urine creatinine.
Collapse
Affiliation(s)
- Xinying Huang
- Department of Clinical Laboratorythe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Innovation Team of Clinical Laboratory and DiagnosisFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Hui Zhang
- Department of Clinical Laboratorythe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Innovation Team of Clinical Laboratory and DiagnosisFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jihong Liu
- Department of Clinical Laboratorythe Third People's Hospital of KunmingKunmingChina
| | - Xuejiao Yang
- Department of Clinical Laboratorythe People's Hospital of ChuXiong Yi Autonomous PrefectureChuXiongChina
| | - Zijie Liu
- Department of Clinical Laboratorythe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Innovation Team of Clinical Laboratory and DiagnosisFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
5
|
Kiyomoto K, Matsuo I, Suita K, Ohnuki Y, Ishikawa M, Ito A, Mototani Y, Tsunoda M, Morii A, Nariyama M, Hayakawa Y, Amitani Y, Gomi K, Okumura S. Oral angiotensin-converting enzyme inhibitor captopril protects the heart from Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS One 2023; 18:e0292624. [PMID: 37983238 PMCID: PMC10659197 DOI: 10.1371/journal.pone.0292624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
Abstract
Although angiotensin converting enzyme (ACE) inhibitors are considered useful for the treatment of human heart failure, some experimental failing-heart models have shown little beneficial effect of ACE inhibitors in animals with poor oral health, particularly periodontitis. In this study, we examined the effects of the ACE inhibitor captopril (Cap; 0.1 mg/mL in drinking water) on cardiac dysfunction in mice treated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS) at a dose (0.8 mg/kg/day) equivalent to the circulating level in patients with periodontal disease. Mice were divided into four groups: 1) Control, 2) PG-LPS, 3) Cap, and 4) PG-LPS + Cap. After1 week, we evaluated cardiac function by echocardiography. The left ventricular ejection fraction was significantly decreased in PG-LPS-treated mice compared to the control (from 66 ± 1.8 to 59 ± 2.5%), while Cap ameliorated the dysfunction (63 ± 1.1%). The area of cardiac fibrosis was significantly increased (approximately 2.9-fold) and the number of apoptotic myocytes was significantly increased (approximately 5.6-fold) in the heart of PG-LPS-treated group versus the control, and these changes were suppressed by Cap. The impairment of cardiac function in PG-LPS-treated mice was associated with protein kinase C δ phosphorylation (Tyr-311), leading to upregulation of NADPH oxidase 4 and xanthine oxidase, and calmodulin kinase II phosphorylation (Thr-286) with increased phospholamban phosphorylation (Thr-17). These changes were also suppressed by Cap. Our results suggest that the renin-angiotensin system might play an important role in the development of cardiac diseases induced by PG-LPS.
Collapse
Affiliation(s)
- Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasuharu Amitani
- Department of Mathematics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Shelke V, Dagar N, Gaikwad AB. Phloretin as an add-on therapy to losartan attenuates diabetes-induced AKI in rats: A potential therapeutic approach targeting TLR4-induced inflammation. Life Sci 2023; 332:122095. [PMID: 37722590 DOI: 10.1016/j.lfs.2023.122095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
AIM Targeting Toll-like receptor 4 (TLR4) and Angiotensin II type 1 receptor (AT1R) could provide renoprotection during acute kidney injury (AKI) mainly by regulating inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Phloretin (TLR4 inhibitor) as an add-on therapy to losartan (AT1R inhibitor) could provide more therapeutic benefits against AKI under diabetic condition. We aimed to study the effect of phloretin as an add-on therapy to losartan against AKI under diabetic condition. MAIN METHODS To mimic diabetic AKI condition, bilateral ischemia-reperfusion injury (BIRI) was done in diabetic male Wistar rats, and sodium azide treatment was given to high glucose NRK52E cells to mimic hypoxia-reperfusion injury. In diabetic rats, phloretin (50 mg/kg/per os (p.o.)) and losartan (10 mg/kg/p.o.) treatment was given for 4 days and 1 h prior to surgery while in NRK52E cells, both drugs (phloretin 50 μM and losartan 10 μM) were given 24 h prior to the hypoxia condition. The in vivo and in vitro samples were further used for different experiments. KEY FINDINGS Treatment with phloretin and losartan decreased diabetic and AKI biomarkers such as plasma creatinine, blood urea nitrogen (BUN), and kidney injury molecular 1 (KIM1). Moreover, a combination of phloretin and losartan significantly preserved ΔΨm and kidney morphology potentially by inhibiting TLR4-associated inflammation and AT1R-associated mitochondrial dysfunction, thereby oxidative stress. SIGNIFICANCE Combination therapy of phloretin and losartan was more effective than monotherapies. Both drugs target TLR4/MyD88/NF-κB pathway and reduce inflammation and mitochondrial dysfunction in AKI under diabetic condition.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
7
|
贾 玉, 屈 永, 许 夏, 王 册, 郭 明. [The role of TLR4/NF-κB signaling pathway in sleep deprivation induced Meniere's disease]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2023; 37:790-795. [PMID: 37828881 PMCID: PMC10803234 DOI: 10.13201/j.issn.2096-7993.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 10/14/2023]
Abstract
Objective:By detecting the levels of proteins in the Toll-like receptor-4/nuclear factor-κB (TLR4/NF-κB) signaling pathway and downstream proinflammatory cytokines in peripheral blood of patients with Meniere's disease (MD), Pittsburgh Sleep Quality Index (PSQI) scores were collected to investigate the correlation between sleep disorders and MD and the role of TLR4/NF-κB signaling pathway in mediating sleep disorders inducing MD. Methods:Thirty-two MD patients and 20 family members of patients without middle ear and inner ear related diseases were selected. Basic data, PSQI and fasting peripheral blood of all subjects were collected. Enzyme linked immunosorbent assay.The levels of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), monocyte chemokine-1(MCP-1), Toll-like receptor 4(TLR4) and nuclear factor-κB(NF-κB) in peripheral blood were detected by ELISA, and the data were statistically analyzed. Results:①PSQI score of MD group was higher than that of normal control group, and the difference was statistically significant(P<0.01); The scores of every factors of PSQI in MD group were higher than those in normal control group, and the scores of factors 2, 4 and 6 were significantly different from those in normal control group. ②In the MD group, there were 18 patients with sleep disorders, with a prevalence rate of 56.25%, including 6 males with a prevalence rate of 50.00% and 12 females with a prevalence rate of 60.00%. ③The levels of five test indexes in MD group, sleep disorder group and non-sleep disorder group were higher than those in control group, and the levels of TLR4 and NF-κB in MD group were significantly different from those in control group(P<0.05). The levels of IL-1β, TNF-α, TLR4 and NF-κB in sleep disorder group were significantly different from those in control group(P<0.05). The levels of five test indexes in non-sleep disorder group were not statistically significant compared with those in control group. The levels of five test indexes in the MD sleep disorder group were higher than those in the MD group and the non-sleep disorder group, with no statistical significance. The levels of five test indexes in MD group were higher than those in non-sleep disorder group, with no statistical significance(P>0.05). Conclusion:①Sleep disorders may be one of the important predisposing factors of some MD, and the effects of sleep disorders on MD are different between the sexes. ②Sleep disorders may activate TLR4/NF-κB signaling pathway to induce MD. The selection of TLR4/NF-κB signaling pathway related proteins and downstream pro-inflammatory factor inhibitors to intervene MD may provide a new idea for protecting the hearing balance function of MD.
Collapse
Affiliation(s)
- 玉其 贾
- 河北省胸科医院耳鼻咽喉科(石家庄,050041)Department of Otolaryngology, Hebei Province Chest Hospital, Shijiazhuang, 050041, China
| | - 永涛 屈
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| | - 夏 许
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| | - 册 王
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| | - 明丽 郭
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| |
Collapse
|
8
|
Elzinga SE, Eid SA, McGregor BA, Jang DG, Hinder LM, Dauch JR, Hayes JM, Zhang H, Guo K, Pennathur S, Kretzler M, Brosius FC, Koubek EJ, Feldman EL, Hur J. Transcriptomic analysis of diabetic kidney disease and neuropathy in mouse models of type 1 and type 2 diabetes. Dis Model Mech 2023; 16:dmm050080. [PMID: 37791586 PMCID: PMC10565109 DOI: 10.1242/dmm.050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying pathogenesis of these complications are unclear. In this study, we optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background. Glomeruli and sciatic nerve transcriptomic data from T1D and T2D mice were analyzed by self-organizing map and differential gene expression analysis. Consistent with prior literature, pathways related to immune function and inflammation were dysregulated in both complications in T1D and T2D mice. Gene-level analysis identified a high degree of concordance in shared differentially expressed genes (DEGs) in both complications and across diabetes type when using mice from the same cohort and genetic background. As we have previously shown a low concordance of shared DEGs in DPN when using mice from different cohorts and genetic backgrounds, this suggests that genetic background may influence diabetic complications. Collectively, these findings support the role of inflammation and indicate that genetic background is important in complications of both T1D and T2D.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brett A. McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank C. Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
9
|
Guo M, Gao J, Jiang L, Dai Y. Astragalus Polysaccharide Ameliorates Renal Inflammatory Responses in a Diabetic Nephropathy by Suppressing the TLR4/NF-κB Pathway. Drug Des Devel Ther 2023; 17:2107-2118. [PMID: 37489175 PMCID: PMC10363349 DOI: 10.2147/dddt.s411211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Background Diabetic nephropathy (DN), as a chronic inflammatory complication of diabetes, is characterized by hyperglycemia, albuminuria and edema, which ultimately becomes the leading cause of end-stage renal disease (ESRD). Astragalus polysaccharide (APS), extracted from the Astragalus membranaceus, was widely used in the treatment of diabetes mellitus. However, the functional roles of APS ameliorate inflammatory responses in DN, which remain poorly understood. Therefore, the purpose of this study was to explore the molecular mechanism of APS on DN in vivo and vitro models. Methods We explored the beneficial effects of APS in streptozotocin (STZ)-induced DN rat model and high glucose (HG)-treated glomerular podocyte model. The fasting blood glucose (FBG) and ratio of kidney weight to body weight were measured after 4 weeks of APS treatment. The renal injury parameters containing serum creatinine (Scr), blood urea nitrogen (BUN) and 24 h urinary protein were evaluated. The renal pathological examination was observed by hematoxylin-eosin (HE) staining. The levels of IL-1β, IL-6 and MCP-1 were evaluated by ELISA assay. The proliferation of podocytes was determined using CCK-8 assay and flow cytometry. qRT-PCR and Western blot analysis were performed to determine the amounts of TLR4/NF-κB-related gene expression. Results Our results indicated that APS effectively decreased the levels of FBG, BUN, Scr and renal pathological damage when compared with STZ-induced DN model group. Additionally, APS significantly ameliorated renal injury by reducing inflammatory cytokines IL-1β, IL-6, MCP-1 expression and inhibiting the TLR4/NF-κB pathway activity in DN rats. Consistent with the results in vitro, the HG-induced inflammatory response and proliferation of glomerular podocytes were also alleviated through APS administration. Conclusion We found that APS ameliorated DN renal injury, and the mechanisms perhaps related to relieving inflammatory responses and attenuating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mingfei Guo
- Department of Scientific Research, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, Anhui, People's Republic of China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Lei Jiang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, People's Republic of China
| | - Yaji Dai
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, People's Republic of China
| |
Collapse
|
10
|
Feng Q, Yang Y, Ren K, Qiao Y, Sun Z, Pan S, Liu F, Liu Y, Huo J, Liu D, Liu Z. Broadening horizons: the multifaceted functions of ferroptosis in kidney diseases. Int J Biol Sci 2023; 19:3726-3743. [PMID: 37564215 PMCID: PMC10411478 DOI: 10.7150/ijbs.85674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death pattern that is characterized by iron overload, reactive oxygen species (ROS) accumulation and lipid peroxidation. Growing viewpoints support that the imbalance of iron homeostasis and the disturbance of lipid metabolism contribute to tissue or organ injury in various kidney diseases by triggering ferroptosis. At present, the key regulators and complicated network mechanisms associated with ferroptosis have been deeply studied; however, its role in the initiation and progression of kidney diseases has not been fully revealed. Herein, we aim to discuss the features, key regulators and complicated network mechanisms associated with ferroptosis, explore the emerging roles of organelles in ferroptosis, gather its pharmacological progress, and systematically summarize the most recent discoveries about the crosstalk between ferroptosis and kidney diseases, including renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), autosomal dominant polycystic kidney disease (ADPKD), renal fibrosis, lupus nephritis (LN) and IgA nephropathy. We further conclude the potential therapeutic strategies by targeting ferroptosis for the prevention and treatment of kidney diseases and hope that this work will provide insight for the further study of ferroptosis in the pathogenesis of kidney-related diseases.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Fengxun Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jinling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
11
|
Tong J, Chen Y, He M, Wang W, Wang Y, Li N, Xia Q. The triangle relationship between human genome, gut microbiome, and COVID-19: opening of a Pandora's box. Front Microbiol 2023; 14:1190939. [PMID: 37455722 PMCID: PMC10344606 DOI: 10.3389/fmicb.2023.1190939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Since the pandemic started, the coronavirus disease 2019 (COVID-19) has spread worldwide. In patients with COVID-19, the gut microbiome (GM) has been supposed to be closely related to the progress of the disease. The gut microbiota composition and human genetic variation are also connected in COVID-19 patients, assuming a triangular relationship between the genome, GM, and COVID-19. Here, we reviewed the recent developments in the study of the relationship between gut microbiota and COVID-19. The keywords "COVID-19," "microbiome," and "genome" were used to search the literature in the PubMed database. We first found that the composition of the GM in COVID-19 patients varies according to the severity of the illness. Most obviously, Candida albicans abnormally increased while the probiotic Bifidobacterium decreased in severe cases of COVID-19. Interestingly, clinical studies have consistently emphasized that the family Lachnospiraceae plays a critical role in patients with COVID-19. Additionally, we have demonstrated the impact of microbiome-related genes on COVID-19. Specially, we focused on angiotensin-converting enzyme 2's dual functions in SARS-CoV-2 infection and gut microbiota alternation. In summary, these studies showed that the diversity of GMs is closely connected to COVID-19. A triangular relationship exists between COVID-19, the human genome, and the gut flora, suggesting that human genetic variations may offer a chance for a precise diagnosis of COVID-19, and the important relationships between genetic makeup and microbiome regulation may affect the therapy of COVID-19.
Collapse
Affiliation(s)
- Jie Tong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yuran Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Mei He
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenjing Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yiyang Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Na Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
13
|
Wang H, Liu D, Zheng B, Yang Y, Qiao Y, Li S, Pan S, Liu Y, Feng Q, Liu Z. Emerging Role of Ferroptosis in Diabetic Kidney Disease: Molecular Mechanisms and Therapeutic Opportunities. Int J Biol Sci 2023; 19:2678-2694. [PMID: 37324941 PMCID: PMC10266077 DOI: 10.7150/ijbs.81892] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common and severe microvascular complications of diabetes mellitus (DM), and has become the leading cause of end-stage renal disease (ESRD) worldwide. Although the exact pathogenic mechanism of DKD is still unclear, programmed cell death has been demonstrated to participate in the occurrence and development of diabetic kidney injury, including ferroptosis. Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, has been identified to play a vital role in the development and therapeutic responses of a variety of kidney diseases, such as acute kidney injury (AKI), renal cell carcinoma and DKD. In the past two years, ferroptosis has been well investigated in DKD patients and animal models, but the specific mechanisms and therapeutic effects have not been fully revealed. Herein, we reviewed the regulatory mechanisms of ferroptosis, summarized the recent findings associated with the involvement of ferroptosis in DKD, and discussed the potential of ferroptosis as a promising target for DKD treatment, thereby providing a valuable reference for basic study and clinical therapy of DKD.
Collapse
Affiliation(s)
- Hui Wang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shiyang Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
14
|
Feng Q, Yang Y, Qiao Y, Zheng Y, Yu X, Liu F, Wang H, Zheng B, Pan S, Ren K, Liu D, Liu Z. Quercetin Ameliorates Diabetic Kidney Injury by Inhibiting Ferroptosis via Activating Nrf2/HO-1 Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:997-1018. [PMID: 37046368 DOI: 10.1142/s0192415x23500465] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Diabetic nephropathy (DN) is thought to be the major cause of end-stage renal disease. Due to its complicated pathogenesis and the low efficacy of DN treatment, a deep understanding of new etiological factors may be useful. Ferroptosis, a nonapoptotic form of cell death, is characterized by the accumulation of iron-dependent lipid peroxides to lethal levels. Ferroptosis-triggered renal tubular injury is reported to participate in the development of DN, and blocking ferroptosis might be an effective strategy to prevent the development of DN. Quercetin (QCT), a natural flavonoid that is present in a variety of fruits and vegetables, has been reported to ameliorate DN. However, its underlying nephroprotective mechanism is unclear. Herein, we explored the antiferroptosic effect of QCT and verified its nephroprotective effect using DN mice and high glucose (HG)-incubated renal tubular epithelial cell models. We found HG-induced abnormal activation of ferroptosis of renal tubular epithelial cells, and QCT treatment inhibited ferroptosis by downregulating the expression of transferrin receptor 1 (TFR-1) and upregulating the expression of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH-1), and the cystine/glutamate reverse antiporter solute carrier family 7 member (SLC7A11) in DN mice and HG-incubated HK-2 cells. Subsequently, both in vitro and in vivo results confirmed that QCT activated the NFE2-related factor 2 (Nrf2)/Heme oxygenase-1(HO-1) signaling pathway by increasing the levels of Nrf2 and HO-1. Therefore, this study supports that QCT inhibits the ferroptosis of renal tubular epithelial cells by regulating the Nrf2/HO-1 signaling pathway, providing a novel insight into the protective mechanism of QCT in DN treatment.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - Xiaoyue Yu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Fengxun Liu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Hui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, P. R. China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
15
|
Liu Y, Zhang M, Zhong H, Xie N, Wang Y, Ding S, Su X. LncRNA SNHG16 regulates RAS and NF-κB pathway-mediated NLRP3 inflammasome activation to aggravate diabetes nephropathy through stabilizing TLR4. Acta Diabetol 2023; 60:563-577. [PMID: 36658449 DOI: 10.1007/s00592-022-02021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
AIMS LncRNA SNHG16 and Toll-like receptor-4 (TLR4) participate in diabetes nephropathy. This study investigated whether SNHG16 regulates diabetic renal injury (DRI) via TLR4 and its related mechanism. METHODS Diabetic mice and high glucose (HG)-induced HRMCs were used to examine the expressions of SNHG16 and TLR4. The SNHG16 expression, cytokines, reactive oxygen species, MDA, SOD, GSH, and fibrosis-related proteins were evaluated in HG-induced HRMCs transfected with sh-NC or sh-SHNG16. RNA immunoprecipitation and RNA pull-down determined the interaction between SNHG16 and EIF4A3 or TLR4 and EIF4A3. We used HG-treated HRMCs or diabetic mice to investigate the roles of TLR4 or SNHG16 in renal injuries. RESULTS Both SNHG16 and TLR4 were upregulated in diabetic conditions. HG increased serum Scr and BUN, led to significant fibrosis, increased inflammation- and renal fibrosis-related proteins in mice, and increased ROS, MDA, and decreased SOD and GSH in HRMCs. SNHG16 silencing diminished HG-upregulated SNHG16, decreased HG-increased cytokines secretion, ROS, MDA, and fibrosis but increased SOD and GSH. RIP and RNA pull-down confirmed that SNHG16 recruits EIF4A3 to stabilize TLR4 mRNA. TLR4 knockdown alleviated HG-induced renal injuries by suppressing RAS and NF-κB-mediated activation of NLRP3 inflammasomes. SNHG16 knockdown alleviated HG-induced renal injuries in HG-induced HRMCs or diabetic mice. Interestingly, TLR4 overexpression reversed the effects of SNHG16 knockdown. Mechanistically, SNHG16 knockdown alleviated HG-induced renal injuries by suppressing TLR4. CONCLUSION SNHG16 accelerated HG-induced renal injuries via recruiting EIF4A3 to enhance the stabilization of TLR4 mRNA. The SNGHG16/ELF4A3/TLR4 axis might be a novel target for treating DRI.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Mengbi Zhang
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Haowen Zhong
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Na Xie
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Yamei Wang
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Su Ding
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Xiaoyan Su
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China.
| |
Collapse
|
16
|
Kanannejad Z, Soleimanian S, Ghahramani Z, Sepahi N, Mohkam M, Alyasin S, Kheshtchin N. Immune checkpoint molecules in prevention and development of asthma. Front Immunol 2023; 14:1070779. [PMID: 36865540 PMCID: PMC9972681 DOI: 10.3389/fimmu.2023.1070779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Allergic asthma is a respiratory disease initiated by type-2 immune responses characterized by secretion of alarmins, interleukin-4 (IL-4), IL-5, and IL-13, eosinophilic inflammation, and airway hyperresponsiveness (AHR). Immune checkpoints (ICPs) are inhibitory or stimulatory molecules expressed on different immune cells, tumor cells, or other cell types that regulate immune system activation and maintain immune homeostasis. Compelling evidence indicates a key role for ICPs in both the progression and prevention of asthma. There is also evidence of asthma development or exacerbation in some cancer patients receiving ICP therapy. The aim of this review is to provide an updated overview of ICPs and their roles in asthma pathogenesis, and to assess their implications as therapeutic targets in asthma.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Kheshtchin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Vaez H, Soraya H, Garjani A, Gholikhani T. Toll-Like Receptor 4 (TLR4) and AMPK Relevance in Cardiovascular Disease. Adv Pharm Bull 2023; 13:36-47. [PMID: 36721803 PMCID: PMC9871286 DOI: 10.34172/apb.2023.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Toll-like receptors (TLRs) are essential receptors of the innate immune system, playing a significant role in cardiovascular diseases. TLR4, with the highest expression among TLRs in the heart, has been investigated extensively for its critical role in different myocardial inflammatory conditions. Studies suggest that inhibition of TLR4 signaling pathways reduces inflammatory responses and even prevents additional injuries to the already damaged myocardium. Recent research results have led to a hypothesis that there may be a relation between TLR4 expression and 5' adenosine monophosphate-activated protein kinase (AMPK) signaling in various inflammatory conditions, including cardiovascular diseases. AMPK, as a cellular energy sensor, has been reported to show anti-inflammatory effects in various models of inflammatory diseases. AMPK, in addition to its physiological acts in the heart, plays an essential role in myocardial ischemia and hypoxia by activating various energy production pathways. Herein we will discuss the role of TLR4 and AMPK in cardiovascular diseases and a possible relation between TLRs and AMPK as a novel therapeutic target. In our opinion, AMPK-related TLR modulators will find application in treating different immune-mediated inflammatory disorders, especially inflammatory cardiac diseases, and present an option that will be widely used in clinical practice in the future.
Collapse
Affiliation(s)
- Haleh Vaez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Author: Haleh Vaez, Tel:+984133344798, Fax:+984133344798,
| | - Hamid Soraya
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Garjani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Nanora Pharmaceuticals Ltd, Tabriz, Iran
| |
Collapse
|
18
|
Vogel SN, Richard K, Shirey KA, Sylla FY, Boukhvalova MS, Blanco JC. Evidence for Interplay Between the Renin-Angiotensin System and Toll-Like Receptor 4 Signaling Pathways in the Induction of Virus-Induced Acute Lung Injury. J Interferon Cytokine Res 2022; 42:618-623. [PMID: 36206057 PMCID: PMC9805881 DOI: 10.1089/jir.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 01/13/2023] Open
Abstract
Dedication: This article is dedicated to Howard Young, an exceptional scientist who has provided outstanding mentorship to many postbaccalaureates, graduate students, and postdoctoral fellows during his career. Howard has been a colleague to many and was never tired of learning new things. He has brought "thinking out of the box" to the level of an art form and has always provided thoughtful and constructive suggestions to those who have sought his counsel. I am personally greatly indebted to Howard for his guidance in molecular biology over the past 30 years, and hope that we will continue to share a passion for learning and mentoring others for years to come. Thank you, Howard! -Stephanie N. Vogel The SARS-CoV-2 pandemic has led to an unprecedented explosion in studies that have sought to identify key mechanisms that underlie the ravaging aspects of this disease on individuals. SARS-CoV-2 virus gains access to cells by (1) binding of the viral spike (S) protein to cell-associated angiotensin-converting enzyme 2 (ACE2), a key receptor in the renin-angiotensin system (RAS), followed by (2) cleavage of S protein by a cellular serine protease ("S protein priming") to facilitate viral entry. Dysregulation of the RAS system has been implicated in the spectrum of clinical symptoms associated with SARS-CoV-2, including hypercytokinemia, elevated markers of endothelial injury and thrombosis, and both localized and systemic inflammation. However, the underlying mechanisms have yet to be fully delineated.
Collapse
Affiliation(s)
- Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
19
|
Cao Y, Zhong Q, Tang F, Yao X, Liu Z, Zhang X. Anethole ameliorates inflammation induced by monosodium urate in an acute gouty arthritis model via inhibiting TLRs/MyD88 pathway. Allergol Immunopathol (Madr) 2022; 50:107-114. [PMID: 36335453 DOI: 10.15586/aei.v50i6.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To assess the effects of anethole on monosodium urate (MSU)-induced inflammatory response, investigate its role in acute gouty arthritis (AGA), and verify its molecular mechanism. METHODS Hematoxylin and eosin staining assay and time-dependent detection of degree of ankle swelling were performed to assess the effects of anethole on joint injury in MSU-induced AGA mice. Enzyme-linked-immunosorbent serologic assay was performed to demonstrate the production levels of inflammatory factors (interleukin 1β [IL-1β], interleukin 6 [IL-6], interleukin 8 [IL-8], tumor necrosis factor α [TNF-α], and monocyte chemo-attractant protein-1 [MCP-1]) in MSU-induced AGA mice. Western blot assays were used to confirm the effects of anethole on oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activity and the activation of toll-like receptors (TLRs)-myeloid differentiation factor 88 (MyD88) pathway in MSU-induced AGA mice. RESULTS We observed that a significant joint injury occurred in MSU-induced AGA mice. Anethole could alleviate the pathological injury of the synovium in MSU-induced AGA mice and suppressed ankle swelling. In addition, we observed that anethole could inhibit MSU-induced inflammatory response and inflammasome activation in MSU-induced AGA mice. Moreover, we discovered that anethole enabled to inhibit the activation of TLRs/MyD88 pathway in MSU-induced AGA mice. Our findings further confirmed that anethole contributed to the inhibitory effects on progression in MSU-induced AGA mice. CONCLUSION It confirmed that anethole ameliorated the MSU-induced inflammatory response in AGA mice in vivo via inhibiting TLRs-MyD88 pathway.
Collapse
Affiliation(s)
- Yuepeng Cao
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Qin Zhong
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Fang Tang
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Zhengqi Liu
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China;
| | - Xiaodong Zhang
- Second Clinical School of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| |
Collapse
|
20
|
Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. BIOLOGY 2022; 11:biology11071006. [PMID: 36101387 PMCID: PMC9312130 DOI: 10.3390/biology11071006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
Electrolyte balance is essential to maintain homeostasis in the body. The most crucial electrolytes are sodium (Na+), potassium (K+), magnesium (Mg2+), chloride (Cl−), and calcium (Ca2+). These ions maintain the volume of body fluids, and blood pressure, participate in muscle contractions, and nerve conduction, and are important in enzymatic reactions. The balance is mainly ensured by the kidneys, which are an important organ that regulates the volume and composition of urine, together with which excess electrolytes are excreted. They are also important in the reproductive system, where they play a key role. In the male reproductive system, electrolytes are important in acrosomal reaction and sperm motility. Sodium, calcium, magnesium, and chloride are related to sperm capacitation. Moreover, Mg2+, Ca2+, and Na+ play a key role in spermatogenesis and the maintenance of morphologically normal spermatozoa. Infertility problems are becoming more common. It is known that disturbances in the electrolyte balance lead to reproductive dysfunction. In men, there is a decrease in sperm motility, loss of sperm capacitation, and male infertility. In the female reproductive system, sodium is associated with estrogen synthesis. In the contraction and relaxation of the uterus, there is sodium, potassium, and calcium. Calcium is associated with oocyte activation. In turn, in women, changes in the composition of the follicular fluid are observed, leading to a restriction of follicular growth. Imbalance of oocyte electrolytes, resulting in a lack of oocyte activation and, consequently, infertility.
Collapse
|
21
|
Mani A, Kushwaha K, Khurana N, Gupta J. p-Coumaric acid attenuates high-fat diet-induced oxidative stress and nephropathy in diabetic rats. J Anim Physiol Anim Nutr (Berl) 2022; 106:872-880. [PMID: 34596925 DOI: 10.1111/jpn.13645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/14/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022]
Abstract
The prevalence of persistent hyperglycaemia during diabetes, impair antioxidant defence system and generate reactive oxygen species, which majorly contribute to its progression and associated complications. Phytochemicals were suggested to scavenge-free radicals and exert antioxidant effects required to improve insulin sensitivity and reduce the occurrence of diabetes-associated complications. We hypothesise that a phenolic phytochemical p-coumaric can reduce diabetes-induced oxidative stress and improve diabetes-associated nephropathy in rats. The aim of this study is to analyse the protective effects of p-coumaric acid against diabetes-induced oxidative stress and nephropathy in high-fat diet-induced diabetic rats. The oral feeding of p-coumaric acid (20 mg/kg for 12 weeks) was found to significantly decrease the elevated levels of blood glucose in high-fat diet-induced type 2 diabetic rats. p-Coumaric acid treatment also decreases the kidney weight whilst increasing the total body weight of diabetic rats. Furthermore whilst evaluation of the different renal functioning tests, p-coumaric acid significantly improves histopathological changes and the levels of urea, creatinine and uric acid in serum of diabetic rats, which was otherwise elevated under diabetic conditions. Our results also highlight that p-coumaric acid is an efficient compound with antioxidant properties and improves the diabetes-induced change in lipid peroxidation and activities of antioxidant enzymes: catalase, glutathione-S-transferase and superoxide dismutase. p-Coumaric acid thus possesses the potential to prevent diabetic nephropathy by reducing oxidative stress and can thus serve as a potential drug target for pharmaceutical companies.
Collapse
Affiliation(s)
- Akhand Mani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kriti Kushwaha
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
22
|
Role of olmesartan in ameliorating diabetic nephropathy in rats by targeting the AGE/PKC, TLR4/P38-MAPK and SIRT-1 autophagic signaling pathways. Eur J Pharmacol 2022; 928:175117. [PMID: 35752350 DOI: 10.1016/j.ejphar.2022.175117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
Diabetic nephropathy (DN) is one of the most serious consequences of diabetes and the most common reason for end-stage renal disease. The current study was set out to investigate the ability of olmesartan medoxomil (OM) to treat DN by evaluating the reno-protective effects of this drug on fat/fructose/streptozotocin (F/Fr/STZ)-induced diabetic rat model. This model was induced by feeding rats high F/Fr diet for 7 weeks followed by injection of a single sub-diabetogenic dose of STZ (35mg/kg; i.p). The F/Fr/STZ-induced diabetic rats were orally treated with either OM (10 mg/kg) or pioglitazone (10 mg/kg); as a standard drug daily for four consecutive weeks. F/Fr/STZ-induced diabetic rats propagated inflammatory, oxidative, and fibrotic events. OM was able to oppose the injurious effects of diabetes; it significantly reduced the elevated levels of advanced glycated end products (AGEs) and downregulated PKC gene expression, therefore, indicating its antioxidant capacity evidenced by mitigation in GSH, MDA renal content. Moreover, OM impaired the inflammatory cascade by suppressing the elevated level of renal TLR4 as well as diminished the inflammatory profibrotic cytokine TGF-β1. Additionally, OM was able to turn off the MAPK cascade mediated by an upsurge in renal angiotensin 1-7 content and decrease the level of renal tubular injury marker, KIM-1. Furthermore, OM enhanced the autophagic activity pathway by upregulating of gene expression of SIRT-1. The histopathological examination confirmed these results. Finally, OM protected against type 2 diabetes-related nephropathy complications by altering inflammatory pathways, oxidative, fibrotic, and autophagic processes triggered by renal glucose overload. This study shows that OM has a reno-protective effect against DN in rats by inhibiting the AGE/PKC, TLR4/P38-MAPK, and SIRT-1 autophagic signaling pathways.
Collapse
|
23
|
Feng Q, Yu X, Qiao Y, Pan S, Wang R, Zheng B, Wang H, Ren KD, Liu H, Yang Y. Ferroptosis and Acute Kidney Injury (AKI): Molecular Mechanisms and Therapeutic Potentials. Front Pharmacol 2022; 13:858676. [PMID: 35517803 PMCID: PMC9061968 DOI: 10.3389/fphar.2022.858676] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common and serious clinical kidney syndrome with high incidence and mortality, is caused by multiple pathogenic factors, such as ischemia, nephrotoxic drugs, oxidative stress, inflammation, and urinary tract obstruction. Cell death, which is divided into several types, is critical for normal growth and development and maintaining dynamic balance. Ferroptosis, an iron-dependent nonapoptotic type of cell death, is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. Recently, growing evidence demonstrated the important role of ferroptosis in the development of various kidney diseases, including renal clear cell carcinoma, diabetic nephropathy, and AKI. However, the exact mechanism of ferroptosis participating in the initiation and progression of AKI has not been fully revealed. Herein, we aim to systematically discuss the definition of ferroptosis, the associated mechanisms and key regulators, and pharmacological progress and summarize the most recent discoveries about the role and mechanism of ferroptosis in AKI development. We further conclude its potential therapeutic strategies in AKI.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Yu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Role of NOD-Like Receptors in a Miniature Pig Model of Diabetic Renal Injuries. Mediators Inflamm 2022; 2022:5515305. [PMID: 35399795 PMCID: PMC8986423 DOI: 10.1155/2022/5515305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Activation of NOD-like receptor (NLR) signaling pathway can promote downstream cytokine and proinflammatory cytokines release, and inflammation induced by excess nutrients leads to renal metabolic injury. How the NLRs influence metabolic progress and then lead to the renal injury remains poorly investigated. Compared with rodents, minipigs are more similar to humans and are more ideal animal models for human disease research. In this study, we established a diabetic minipig model through a high-sugar and high-fat diet combined with streptozotocin (STZ) injection. Blood biological markers and renal pathological markers, expression of NLRP subfamily members (NLRP1 and NLRP3) and their downstream cytokines (precursors of IL-1β and IL-18 and mature forms of IL-1β and IL-18), expression of NLRC subfamily members (NLRC1, NLRC2, and NLRC5) and their downstream nuclear factor-κB (NF-κB) signaling pathway molecules (IKKβ, IκBα, and NF-κB p65), and inflammatory cytokines (TNF-α and interleukin-6 (IL-6)) were systematically evaluated. The expression of NLRP3 and its downstream cytokine signaling molecules, the precursors of IL-1β and IL-18, and the mature forms of IL-1β and IL-18 was significantly upregulated. The expression levels of NLRC1, NLRC2, and NLRC5 and activation of the downstream NF-κB pathway molecules phospho-IKKβ, phospho-IκBα, NF-κB p65, and phospho-NF-κB p65 were significantly increased. The TNF-α and IL-6 levels were significantly increased in diabetic pig kidneys. The TGF-β/Smad signaling molecules, TGF-β and P-SMAD2/3, were also increased. These results suggested that the metabolic inflammation activated by NLRs might play an important role in diabetic renal injuries.
Collapse
|
25
|
Wan B, Qin L, Ma W, Wang H. Construction and immune effect of an HPV16/18/58 trivalent therapeutic adenovirus vector vaccine. Infect Agent Cancer 2022; 17:5. [PMID: 35197089 PMCID: PMC8867827 DOI: 10.1186/s13027-022-00417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
Objective This study aims to prepare candidate vaccines for cervical cancer immunotherapy by inserting the fused genes of human papillomavirus (HPV)16/18/58 mE6E7 lacking transforming activity into an adenovirus vector and to verify its efficiency in model mice with tumor expressing the associated HPV genes. Methods The E6/E7 genes of HPV16/18/58 were point-mutated to abolish their transforming activity, and adenovirus (AD)-HPV16/18/58 mE6E7 adenovirus vaccine was constructed. The immune effect of the adenovirus vaccine against HPV16/18/58-type tumors was analyzed by tumor morphology, enzyme linked immunosorbent assay, enzyme-linked immunospot and specific cytotoxic T lymphocyte (CTL) and T lymphocyte subsets. Results The HPV16/18/58 mE6E7 plasmid containing point mutations was verified by quantitative real-time polymerase chain reaction (qRT-PCR), enzyme digestion and electrophoresis, and gene sequencing. qRT-PCR and Western blots verified that AD-HPV16/18/58 mE6E7 could express the HPV16 mE6E7, HPV18 mE6E7 and HPV58 mE6E7 fusion genes and proteins in cells. The results of animal experiments were as follows: In the vaccine group, the tumors formed later, the incubation period was longer, the growth was slower, growth was inhibited, and the survival period was significantly prolonged. The immunological results all showed that the vaccine could induce effective humoral and cellular immunity in mice with three types of tumors, compared with the phosphate buffered saline (PBS) group and the adenovirus-negative control (AD-NC) group, the differences were statistically significant (P < 0.05). Conclusion We successfully constructed the HPV16/18/58 trivalent therapeutic adenovirus vaccine AD-HPV16/18/58 mE6E7. The AD-HPV16/18/58 mE6E7 adenovirus vaccine can protect immunized mice to a certain extent from TC-1, U14/LV-HPV18 E6E7 and U14/LV-HPV58 E6E7 cells, which contain HPV16, 18 and 58 E6 and/or E7 genes, respectively.
Collapse
Affiliation(s)
- Bing Wan
- Gynecologist Tumor Department, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Zhong Shan Street, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lu Qin
- Gynecologist Tumor Department, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Zhong Shan Street, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Weihong Ma
- Gynecologist Tumor Department, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Zhong Shan Street, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - He Wang
- Gynecologist Tumor Department, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Zhong Shan Street, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
26
|
Aghamiri SH, Komlakh K, Ghaffari M. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy. Inflammopharmacology 2022; 30:51-60. [PMID: 35020096 DOI: 10.1007/s10787-021-00919-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Diabetes is correlated with organ failures as a consequence of microvascular diabetic complications, including neuropathy, nephropathy, and retinopathy. These difficulties come with serious clinical manifestations and high medical costs. Diabetic neuropathy (DN) is one of the most prevalent diabetes complications, affecting at least 50% of diabetic patients with long disease duration. DN has serious effects on patients' life since it interferes with their daily physical activities and causes psychological comorbidities. There are some potential risk factors for the development of neuropathic injuries. It has been shown that inflammatory mechanisms play a pivotal role in the progression of DN. Among inflammatory players, TLR2 and TLR4 have gained immense importance because of their ability in recognizing distinct molecular patterns of invading pathogens and also damage-associated molecular patterns (DAMPs) providing inflammatory context for the progression of a wide array of disorders. We, therefore, sought to explore the possible role of TLR2 and TLR4 in DN pathogenesis and if whether manipulating TLRs is likely to be successful in fighting off DN.
Collapse
Affiliation(s)
- Seyed Hossein Aghamiri
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khalil Komlakh
- Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehran Ghaffari
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Sayed AM, Abdel-Fattah MM, Arab HH, Mohamed WR, Hassanein EHM. Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem Biol Interact 2022; 351:109732. [PMID: 34737150 DOI: 10.1016/j.cbi.2021.109732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/06/2023]
Abstract
AIMS The use of methotrexate (MTX), a classical immunosuppressant and anti-cancer agent, is associated with multiple organ toxicities, including the intestinal injury. Components of the renin-angiotensin system are expressed in the intestinal epithelium and mucosal immune cells where they provoke pro-inflammatory and pro-oxidant action. The present study was conducted to investigate the potential ability of perindopril (PER), an angiotensin-converting enzyme inhibitor (ACEI), to attenuate MTX-induced intestinal injury with emphasis on the role of the pro-inflammatory TLR4/NF-κB and c-Fos/c-Jun pathways alongside PPAR-γ and SIRT1 cytoprotective signals. MATERIALS AND METHODS The intestinal injury was induced by a single-dose injection of 20 mg/kg of MTX i.p at the end of the 5th day. PER was administrated once daily in a dose of 1 mg/kg, i.p, for five days before MTX and five days later. RESULTS Herein, perindopril attenuated the intestinal injury as seen by lowering the histopathological aberrations and preserving the goblet cells in villi/crypts. These beneficial actions were associated with downregulating the expression of the pro-inflammatory angiotensin II, TNF-α, IL-1β, and IL-6 cytokines, alongside upregulating the anti-inflammatory angiotensin (1-7) and IL-10. At the molecular level, perindopril downregulated the TLR4/NF-κB and c-Fos/c-Jun pathways in inflamed intestine of rats. Moreover, it attenuated the pro-oxidant events by lowering intestinal MDA and boosting GSH, SOD, and GST antioxidants together with PPAR-γ and SIRT1 cytoprotective signals. The aforementioned findings were also highlighted using molecular docking and network pharmacology analysis. CONCLUSIONS Perindopril demonstrated notable mitigation of MTX-induced intestinal injury through suppression of TLR4/NF-κB and c-Fos/c-Jun pathways alongside the augmentation of PPAR-γ/SIRT1 cytoprotective signals.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71515, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
28
|
Bai Y, Mu Q, Bao X, Zuo J, Fang X, Hua J, Zhang D, Jiang G, Li P, Gao S, Zhao D. Targeting NLRP3 Inflammasome in the Treatment Of Diabetes and Diabetic Complications: Role of Natural Compounds from Herbal Medicine. Aging Dis 2021; 12:1587-1604. [PMID: 34631209 PMCID: PMC8460305 DOI: 10.14336/ad.2021.0318] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes, a common metabolic disease with various complications, is becoming a serious global health pandemic. So far there are many approaches in the management of diabetes; however, it still remains irreversible due to its complicated pathogenesis. Recent studies have revealed that nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a vital role in the progression of diabetes and many of its complications, making it a promising therapeutic target in pharmaceutical design. Natural derived herbal medicine, known for its utilization of natural products such as herbs or its bioactive ingredients, is shown to be able to ameliorate hyperglycemia-associated symptoms and to postpone the progression of diabetic complications due to its anti-inflammatory and anti-oxidative properties. In this review, we summarized the role of NLRP3 inflammasome in diabetes and several diabetic complications, as well as 31 active compounds that exert therapeutic effect on diabetic complications via inhibiting NLRP3 inflammasome. Improving our understanding of these promising candidates from natural compounds in herbal medicine targeting NLRP3 inflammasome inspires us the relationship between inflammation and metabolic disorders, and also sheds light on searching potential agents or therapies in the treatment of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Ying Bai
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Mu
- 2Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiacheng Zuo
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Fang
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Hua
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sihua Gao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Audzeyenka I, Rachubik P, Typiak M, Kulesza T, Topolewska A, Rogacka D, Angielski S, Saleem MA, Piwkowska A. Hyperglycemia alters mitochondrial respiration efficiency and mitophagy in human podocytes. Exp Cell Res 2021; 407:112758. [PMID: 34437881 DOI: 10.1016/j.yexcr.2021.112758] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
Podocytes constitute the outer layer of the renal glomerular filtration barrier. Their energy requirements strongly depend on efficient oxidative respiration, which is tightly connected with mitochondrial dynamics. We hypothesized that hyperglycemia modulates energy metabolism in glomeruli and podocytes and contributes to the development of diabetic kidney disease. We found that oxygen consumption rates were severely reduced in glomeruli from diabetic rats and in human podocytes that were cultured in high glucose concentration (30 mM; HG). In these models, all of the mitochondrial respiratory parameters, including basal and maximal respiration, ATP production, and spare respiratory capacity, were significantly decreased. Podocytes that were treated with HG showed a fragmented mitochondrial network, together with a decrease in expression of the mitochondrial fusion markers MFN1, MFN2, and OPA1, and an increase in the activity of the fission marker DRP1. We showed that markers of mitochondrial biogenesis, such as PGC-1α and TFAM, decreased in HG-treated podocytes. Moreover, PINK1/parkin-dependent mitophagy was inhibited in these cells. These results provide evidence that hyperglycemia impairs mitochondrial dynamics and turnover, which may underlie the remarkable deterioration of mitochondrial respiration parameters in glomeruli and podocytes.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Anna Topolewska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| |
Collapse
|
30
|
Ladeira LCM, Dos Santos EC, Santos TA, da Silva J, Lima GDDA, Machado-Neves M, da Silva RC, Freitas MB, Maldonado IRDSC. Green tea infusion prevents diabetic nephropathy aggravation in recent-onset type 1 diabetes regardless of glycemic control. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114032. [PMID: 33737142 DOI: 10.1016/j.jep.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea, traditionally used as antidiabetic medicine, positively affects the diabetic nephropathy. It was assumed that these beneficial effects were due to the hypoglycemiant capacity of the tea, wich reduces the glycemic overload and, consequently, the advanced glycation end products rate and oxidative damage. However, these results are still controversial, since tea is not always able to exert a hypoglycemic action, as demonstrated by previous studies. AIM Investigate if green tea infusion can generate positive outcomes for the kidney independently of glycemic control, using a model of severe type 1 diabetes. MATERIAL AND METHODS We treated streptozotocin type 1 diabetic young rats with 100 mg/kg of green tea, daily, for 42 days, and evaluated the serum and tissue markers for stress and function. We also analyzed the ion dynamics in the organ and the morphological alterations promoted by diabetes and green tea treatment. Besides, we analyzed, by an in silico approach, the interactions of the green tea main catechins with the proteins expressed in the kidney. RESULTS Our findings reveal that the components of green tea can interact with the proteins participating in cell signaling pathways that regulate energy metabolism, including glucose and glycogen synthesis, glucose reabsorption, hypoxia management, and cell death by apoptosis. Such interaction reduces glycogen accumulation in the organ, and protects the DNA. These results also reflect in a preserved glomerulus morphology, with improvement in pathological features, and suggesting a prevention of kidney function impairment. CONCLUSION Our results show that such benefits are achieved regardless of the blood glucose status, and are not dependent on the reduction of hyperglycemia.
Collapse
Affiliation(s)
| | | | - Talita Amorim Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Janaina da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, Rennes, France.
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Renê Chagas da Silva
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | | |
Collapse
|
31
|
Shoily SS, Ahsan T, Fatema K, Sajib AA. Disparities in COVID-19 severities and casualties across ethnic groups around the globe and patterns of ACE2 and PIR variants. INFECTION GENETICS AND EVOLUTION 2021; 92:104888. [PMID: 33933634 PMCID: PMC8084605 DOI: 10.1016/j.meegid.2021.104888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mediated Coronavirus disease-19 (COVID-19) has affected millions of individuals around all corners of the globe. Symptoms and severities of infection with this highly contagious virus vary among individuals and there is disparity in the number of COVID-19-related casualties across different ethnic groups. The primary receptor for SARS-CoV-2 entry into the host cells is angiotensin-converting enzyme 2 (ACE2). Certain variants of ACE2 are known to be associated with COVID-19 comorbidities such as hypertension, cardiovascular complications, diabetes, chronic lung disease, etc. In this study, we looked into the geographic distribution of disease-associated variants of ACE2 as well as closely located PIR gene to explore any possible correlation with the disparities in COVID-19 severities and casualties across ethnic groups. Frequencies of the ACE2 variants associated with COVID-19 comorbidities are higher in the European and the admixed American populations. These variants are also present with stronger pairwise linkage disequilibrium (LD) in the European and the admixed American populations. On the other hand, the variants with protective role are more prevalent in the East and the South Asian populations. Strong pairwise LD exists among the activity modifying (modifier) variants of the PIR and ACE2 genes only in the European super-population. Absence of these PIR variants in the South Asian population may contribute to the overall lower COVID-19 case fatality rates (CFR) despite the dense population in this region.
Collapse
Affiliation(s)
- Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka 1212, Bangladesh
| | - Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
32
|
Kawanami D, Takashi Y, Takahashi H, Motonaga R, Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel) 2021; 10:246. [PMID: 33562528 PMCID: PMC7915260 DOI: 10.3390/antiox10020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Dipeptidyl peptidase (DPP)-4 inhibitors are widely used in the treatment of patients with type 2 diabetes (T2D). DPP-4 inhibitors reduce glucose levels by inhibiting degradation of incretins. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. It has been shown that an increased renal DPP-4 activity is associated with the development of DKD. A series of clinical and experimental studies showed that DPP-4 inhibitors have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by anti-fibrotic, anti-inflammatory, and anti-oxidative stress properties. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying renoprotection by DPP-4 inhibitors under diabetic conditions.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (Y.T.); (H.T.); (R.M.); (M.T.)
| | | | | | | | | |
Collapse
|
33
|
Okechukwu CC, Pirro NT, Chappell MC. Evidence that angiotensin II does not directly stimulate the MD2-TLR4 innate inflammatory pathway. Peptides 2021; 136:170436. [PMID: 33181267 PMCID: PMC7855779 DOI: 10.1016/j.peptides.2020.170436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) plays a critical role in the regulation of blood pressure. Inappropriate activation of the RAS, particularly stimulation of the ACE-Ang II-AT1 receptor axis is a key factor in hypertension and AT1R antagonists (ARBs) are first line therapies in the treatment of cardiovascular disease (CVD). Accumulating evidence suggests that the Ang II-AT1R axis may stimulate both innate and adaptive immune systems. Indeed, recent studies suggest that Ang II stimulates inflammatory events in an AT1R-independent manner by binding the MD2 accessory protein of the TLR4 complex in renal NRK-52E cells. Direct Ang II stimulation of the TLR4 complex is clinically relevant as ARBs increase circulating Ang II levels. Thus, the current study further investigated Ang II stimulation of the TLR4 pathway to release of the pro-inflammatory cytokine CCL2 under identical conditions to the TLR4 ligands LPS and palmitate in the NRK-52E cells. Although LPS (1 ng/mL) and palmitate (100 μM) stimulated CCL2 release 20-fold, Ang II (0.1-10 μM) failed to induce CCL2 release. Both the LPS and palmitate CCL2 responses were abolished by the TLR4 inhibitor Tak242 and significantly reduced by the MD2 inhibitor L48H37. Ang II (1 μM) had no additive effects on LPS (1 ng/mL) or palmitate (100 μM), and the ARB candesartan failed to attenuate CCL2 release to either agent alone. Ang II also failed to induce the release of the putative TLR4 ligand HMBG1. These studies failed to confirm that Ang II directly stimulates the MD2-TLR4 complex to induce cytokine release in NRK-52E cells.
Collapse
Affiliation(s)
- Charles C Okechukwu
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nancy T Pirro
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark C Chappell
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
34
|
Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res 2020; 226:57-69. [PMID: 32827705 PMCID: PMC7438210 DOI: 10.1016/j.trsl.2020.08.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the greatest worldwide pandemic since the 1918 flu. The consequences of the coronavirus disease 2019 (COVID-19) are devastating and represent the current major public health issue across the globe. At the onset, SARS-CoV-2 primarily attacks the respiratory system as it represents the main point of entry in the host, but it also can affect multiple organs. Although most of the patients do not present symptoms or are mildly symptomatic, some people infected with SARS-CoV-2 that experience more severe multiorgan dysfunction. The severity of COVID-19 is typically combined with a set of comorbidities such as hypertension, diabetes, obesity, and/or advanced age that seriously exacerbates the consequences of the infection. Also, SARS-CoV-2 can cause gastrointestinal symptoms, such as vomiting, diarrhea, or abdominal pain during the early phases of the disease. Intestinal dysfunction induces changes in intestinal microbes, and an increase in inflammatory cytokines. Thus, diagnosing gastrointestinal symptoms that precede respiratory problems during COVID-19 may be necessary for improved early detection and treatment. Uncovering the composition of the microbiota and its metabolic products in the context of COVID-19 can help determine novel biomarkers of the disease and help identify new therapeutic targets. Elucidating changes to the microbiome as reliable biomarkers in the context of COVID-19 represent an overlooked piece of the disease puzzle and requires further investigation.
Collapse
Key Words
- ards, acute respiratory distress syndrome
- ace2, angiotensin-converting enzyme ii
- cns, central nervous system
- covid-19, coronavirus disease 2019
- cpr, c-reactive protein
- h1n1, influenza a virus
- il, interleukin
- mers, middle east respiratory syndrome
- prs, proteomic risk score
- sars, severe acute respiratory syndrome
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- scfa, short-chain fatty acids
- ras, renin-angiotensin system
- ros, reactive oxygen species
- rt-pcr, reverse transcription-polymerase chain reaction
- tmprss2, transmembrane serine protease 2
- tnfα, tumor necrosis factor alpha
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas; Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York.
| |
Collapse
|
35
|
Novel Therapeutic Effects of Pterosin B on Ang II-Induced Cardiomyocyte Hypertrophy. Molecules 2020; 25:molecules25225279. [PMID: 33198253 PMCID: PMC7697794 DOI: 10.3390/molecules25225279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological cardiac hypertrophy is characterized by an abnormal increase in cardiac muscle mass in the left ventricle, resulting in cardiac dysfunction. Although various therapeutic approaches are being continuously developed for heart failure, several studies have suggested natural compounds as novel potential strategies. Considering relevant compounds, we investigated a new role for Pterosin B for which the potential life-affecting biological and therapeutic effects on cardiomyocyte hypertrophy are not fully known. Thus, we investigated whether Pterosin B can regulate cardiomyocyte hypertrophy induced by angiotensin II (Ang II) using H9c2 cells. The antihypertrophic effect of Pterosin B was evaluated, and the results showed that it reduced hypertrophy-related gene expression, cell size, and protein synthesis. In addition, upon Ang II stimulation, Pterosin B attenuated the activation and expression of major receptors, Ang II type 1 receptor and a receptor for advanced glycation end products, by inhibiting the phosphorylation of PKC-ERK-NF-κB pathway signaling molecules. In addition, Pterosin B showed the ability to reduce excessive intracellular reactive oxygen species, critical mediators for cardiac hypertrophy upon Ang II exposure, by regulating the expression levels of NAD(P)H oxidase 2/4. Our results demonstrate the protective role of Pterosin B in cardiomyocyte hypertrophy, suggesting it is a potential therapeutic candidate.
Collapse
|
36
|
Yehualashet AS. Toll-like Receptors as a Potential Drug Target for Diabetes Mellitus and Diabetes-associated Complications. Diabetes Metab Syndr Obes 2020; 13:4763-4777. [PMID: 33311992 PMCID: PMC7724365 DOI: 10.2147/dmso.s274844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disease distinguished by hyperglycemia due to disturbance in carbohydrate or lipid metabolism or insulin function. To date, diabetes, and its complications, is established as a global cause of morbidity and mortality. The intended aim during the management of diabetes is to maintain blood glucose close to normal because the majority of patients have poor control of their elevated blood glucose and are highly prone to severe macrovascular and microvascular complications. To decrease the burden of the disease and its complications, scientists from various disciplines are working intensively to identify novel and promising drug targets for diabetes and its complications. Increased and ongoing investigations on mechanisms relating to diabetes and associated complications could potentially consider inflammatory cascades as a promising component of the strategy in the prevention and control of diabetes and its complications. The potential of targeting mediators of inflammation like toll-like receptors (TLRs) are part of current investigation by the scientific community. Hence, the aim of the present review is to discuss the role of TLRs as a potential drug target for diabetes and diabetes associated complications.
Collapse
Affiliation(s)
- Awgichew Shewasinad Yehualashet
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
- Correspondence: Awgichew Shewasinad Yehualashet Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, EthiopiaTel +251935450290 Email
| |
Collapse
|