1
|
Woo SM, Paek K, Yoon YM, Kim H, Park SI, Kim JA. Development of a BMU-on-a-chip model based on spatiotemporal regulation of cellular interactions in the bone remodeling cycle. Mater Today Bio 2025; 32:101658. [PMID: 40206145 PMCID: PMC11979395 DOI: 10.1016/j.mtbio.2025.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Bone remodeling is essential for maintaining bone homeostasis throughout life by replacing old bone with new tissue. This dynamic process occurs continuously within basic multicellular unit (BMU) through well-coordinated interactions among osteocytes, osteoblasts, and osteoclasts. However, a precise in vitro model that accurately replicates this mechanism has not yet been developed. In this study, we created a human in vitro BMU-modeling chip platform by tri-culturing cells within a chip unit integrated into a tissue culture well plate, enabling high-throughput three-dimensional (3D) cell culture. To establish the tri-culture, human osteoblasts were isolated from human surgical bone samples and differentiated into osteocytes within collagen gel inside the chip unit. Subsequently, osteoblasts and peripheral blood mononuclear cells (PBMCs) containing osteoclast precursors were added to the chip unit. To simulate each phase of the bone remodeling cycle, we optimized the tri-culture process by adjusting the timing and using two types of osteoblasts at different stages of differentiation. The completed tri-culture model successfully mimicked the bone formation phase. When receptor activators of nuclear factor kappa-Β (RANKL) and macrophage colony-stimulating factor (M-CSF) were introduced, the cells exhibited characteristics of the reversal phase, where osteogenic and osteoclastogenic environments coexist. Additionally, using more differentiated osteoblasts within the tri-culture platform induced osteoclast differentiation, resembling the bone resorption phase. Overall, our model effectively replicates each phase of the bone remodeling cycle in BMUs, both spatially and temporally. This advancement not only facilitates the study of the intricate mechanisms of bone remodeling and cellular function but also aids drug development by providing a robust bone model for testing target drugs.
Collapse
Affiliation(s)
- Sang-Mi Woo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Kyurim Paek
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Yeo Min Yoon
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Hyang Kim
- Institute of New Horizon Regenerative Medicine, Myongji Hospital, Goyang, 10475, Republic of Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, 06973, Republic of Korea
| |
Collapse
|
2
|
Fan Y, Yu Y, Yan P. The protective effects of tectoridin on bone fractures against oxidative stress via the inhibition of NF-κB and apoptotic pathways in ovariectomized rats. Toxicol Appl Pharmacol 2025:117345. [PMID: 40246203 DOI: 10.1016/j.taap.2025.117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Oxidative stress and inflammation lead to high bone turnover, contributing to osteoporosis caused by estrogen deficiency in postmenopausal women. Tectoridin, an isoflavonoid with antioxidant and anti-inflammatory properties, was evaluated for its protective effects in ovariectomized (OVX) rats, a model of postmenopausal osteoporosis. Five groups of female rats (n = 6) were established: normal, OVX control, OVX treated with tectoridin at 10 and 20 mg/kg bw, and OVX treated with estrogen, over a four-week period. Tectoridin treatment resulted in reduced body weight and improved femur weight and thickness. Serum E2, calcium, and phosphate levels increased, while alkaline phosphatase (ALP) levels decreased after treatment. Additionally, tectoridin altered lipid profiles by decreasing total cholesterol (TC), triglycerides (TG), and low-density lipoprotein (LDL), while increasing high-density lipoprotein (HDL). The treatment elevated serum bone-specific alkaline phosphatase (BALP) and procollagen type I N-terminal propeptide (PINP) levels, and decreased levels of bone resorption markers CTX-1 and NTx. Tectoridin upregulated osteogenic markers Runx2, Osx, and BMP2, suggesting enhanced bone properties. Moreover, it reduced lipid peroxidation and increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, indicating reduced oxidative stress. Tectoridin also inhibited inflammatory proteins and exhibited anti-apoptotic effects on Bax/Caspase3 and Bcl2 expression. This study highlights the potential of tectoridin in modulating oxidative stress, inflammation, and improving bone remodeling in OVX rats, making it a candidate for managing postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yanwei Fan
- Department of Orthopedics, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaokun Yu
- Department of Orthopedics, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peng Yan
- Department of Orthopedics, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Wei LY, Chiu CM, Kok SH, Chang HH, Cheng SJ, Lin HY, Chiu WY, Lee JJ. Risk assessment and drug interruption guidelines for dentoalveolar surgery in patients with osteoporosis receiving anti-resorptive therapy. J Dent Sci 2025; 20:729-740. [PMID: 40224033 PMCID: PMC11993106 DOI: 10.1016/j.jds.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/02/2025] [Indexed: 04/15/2025] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare and challenging complication of anti-resorptive therapy. This review addresses the critical issue of risk management in patients with osteoporosis who require dentoalveolar surgery while undergoing anti-resorptive therapy. Dental practitioners should be aware of these risks; however, they should not refuse treatment based solely on them. This review discusses the risks through five major factors: invasive dentoalveolar surgeries, concomitant oral infection, type of medication, duration of medication, and preoperative drug discontinuation. Additionally, we discussed the local factors associated with dental practices. Our review underscored the importance of personalized risk assessment, considering each patient's unique drug history and oral condition. Based on a comprehensive literature review and clinical evidence, we proposed specific guidelines for preoperative drug interruption tailored to different anti-resorptive agents. These recommendations aimed to balance osteoporosis management by minimizing the risk of MRONJ during oral surgical interventions and bridging the knowledge gap in managing patients with osteoporosis requiring dental care. This review will allow clinicians to improve their practice and optimize patient outcomes by providing evidence-based strategies.
Collapse
Affiliation(s)
- Ling-Ying Wei
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Bei-hu Branch, Taipei, Taiwan
| | - Ching-Ming Chiu
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Hong Chang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Yih Chiu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Jaer Lee
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Li Q, Wang Y, Jiang S, Xie S, Wu F, Zeng X, Li S, Dai Z, Yan Q, Wang J, Hou X, Yang F, Pi Y, Zhang M, Diao Y, Wei L. Structural characterization and anti-weightless bone loss activity of an anionic polysaccharide from Dictyophora indusiata. Int J Biol Macromol 2025; 299:140006. [PMID: 39828153 DOI: 10.1016/j.ijbiomac.2025.140006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study explores the extraction and purification of polysaccharides from Dictyophora indusiata (D. indusiata) with its antioxidant and anti-weightlessness bone loss properties. An anionic polysaccharide (SADIP) with a molecular weight of 13.42 kDa was isolated and purified from D. indusiata. SADIP consists of a glucose-based sugar chain backbone. Its backbone consists of glycosidic linkages of →4)-α-D-Glcp-(1 → and →4)-β-D-Glcp-(1→, with sulfate groups attached at the O-6 position of →4)-β-D-Glcp-(1 → residues. Side chains were α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → linked at C-6 position of →4,6)-α-D-Glcp-(1 → through O-6 bonds. In vitro, SADIP scavenged up to 99.32 ± 0.24 % of 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radicals and 76.72 ± 0.34 % of hydroxyl radicals. In vivo, SADIP reduced malondialdehyde (MDA) levels induced by weightlessness and increased low levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) caused by weightlessness. Additionally, three-point mechanical bending tests and Micro-CT analysis demonstrated that SADIP has ability to alleviate bone loss induced by weightlessness. This study provides a theoretical foundation for the rational developmation of D. indusiata resources.
Collapse
Affiliation(s)
- Qiao Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yunhao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Shumin Xie
- College of Life Science, China West Normal University, Nanchong, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Xiangyin Zeng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Sen Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Qiuxin Yan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinpeng Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Hou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yaning Pi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Manrui Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Diao
- College of Life Science, China West Normal University, Nanchong, China; Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University, Nanchong, China.
| | - Lijun Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
5
|
Zijlstra H, te Velde JP, Striano BM, Groot OQ, de Groot TM, Raje N, Patel C, Husseini J, Delawi D, Kempen DHR, Verlaan JJ, Schwab JH. Remineralization Rate of Lytic Lesions of the Spine in Multiple Myeloma Patients Undergoing Radiation Therapy. Global Spine J 2025; 15:1712-1724. [PMID: 38856741 PMCID: PMC11571351 DOI: 10.1177/21925682241260651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Study DesignRetrospective cohort study.ObjectiveIn general, Multiple Myeloma (MM) patients are treated with systemic therapy including chemotherapy. Radiation therapy can have an important supportive role in the palliative management of MM-related osteolytic lesions. Our study aims to investigate the degree of radiation-induced remineralization in MM patients to gain a better understanding of its potential impact on bone mineral density and, consequently, fracture prevention. Our primary outcome measure was percent change in bone mineral density measured in Hounsfield Units (Δ% HU) between pre- and post-radiation measurements, compared to non-targeted vertebrae.MethodsWe included 119 patients with MM who underwent radiotherapy of the spine between January 2010 and June 2021 and who had a CT scan of the spine at baseline and between 3-24 months after radiation. A linear mixed effect model tested any differences in remineralization rate per month (βdifference) between targeted and non-targeted vertebrae.ResultsAnalyses of CT scans yielded 565 unique vertebrae (366 targeted and 199 non-targeted vertebrae). In both targeted and non-targeted vertebrae, there was an increase in bone density per month (βoverall = .04; P = .002) with the largest effect being between 9-18 months post-radiation. Radiation did not cause a greater increase in bone density per month compared to non-targeted vertebrae (βdifference = .67; P = .118).ConclusionOur results demonstrate that following radiation, bone density increased over time for both targeted and non-targeted vertebrae. However, no conclusive evidence was found that targeted vertebrae have a higher remineralization rate than non-targeted vertebrae in patients with MM.
Collapse
Affiliation(s)
- Hester Zijlstra
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jens P. te Velde
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Brendan M. Striano
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Olivier Q. Groot
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom M. de Groot
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Noopur Raje
- Department of Hematology/Oncology, Center for Multiple Myeloma, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Chirayu Patel
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Jad Husseini
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Diyar Delawi
- Department of Orthopedic Surgery, St. Antonius Hospital, Utrecht, Nieuwegein, The Netherlands
| | | | - Jorrit-Jan Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joseph H. Schwab
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Welc SS, Brotto M, White KE, Bonewald LF. Aging: A struggle for beneficial to overcome negative factors made by muscle and bone. Mech Ageing Dev 2025; 224:112039. [PMID: 39952614 DOI: 10.1016/j.mad.2025.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Musculoskeletal health is strongly influenced by regulatory interactions of bone and muscle. Recent discoveries have identified a number of key mechanisms through which soluble factors released during exercise by bone exert positive effects on muscle and by muscle on bone. Although exercise can delay the negative effects of aging, these beneficial effects are diminished with aging. The limited response of aged muscle and bone tissue to exercise are accompanied by a failure in bone and muscle communication. Here, we propose that exercise induced beneficial factors must battle changes in circulating endocrine and inflammatory factors that occur with aging. Furthermore, sedentary behavior results in the release of negative factors impacting the ability of bone and muscle to respond to physical activity especially with aging. In this review we report on exercise responsive factors and evidence of modification occurring with aging.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA.
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Pei B, Teng Y, Dong D, Liu L. OPG/RANK/RANKL Single-Nucleotide Polymorphisms in Rheumatoid Arthritis: Associations with Disease Susceptibility, Bone Mineral Density, and Clinical Manifestations in a Chinese Han Population. Int J Gen Med 2025; 18:815-824. [PMID: 39990301 PMCID: PMC11844317 DOI: 10.2147/ijgm.s506743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Objective The osteoprotegerin (OPG)/receptor activator of nuclear factor-κB (RANK)/receptor activator of nuclear factor-κB ligand (RANKL) system plays a pivotal role in the balance between osteoblasts and osteoclasts and is closely related to the pathogenesis of rheumatoid arthritis (RA). The present study aimed to clarify the associations of OPG/RANK/RANKL gene single-nucleotide polymorphisms (SNPs) with disease susceptibility, bone mineral density (BMD), and clinical manifestations in RA patients. Methods A case-control study including 319 RA patients and 330 healthy controls was conducted. All subjects were genotyped for rs4355801 and rs1023968 in OPG, rs10805033 in RANK, and rs9533155 and rs875625 in RANKL. BMD and clinical manifestations were recorded. Results An association was found between OPG rs4355801 and risk of RA. In recessive models, the GG genotype of rs4355801 was associated with an increased risk of RA compared with the AA/AG genotypes (OR=1.679, 95% CI: 1.062-2.655, p=0.025). A correlation between RANKL rs9533155 and BMD was found in RA patients. Patients with the GG genotype (n=108) in RANKL rs9533155 had the more decreased BMD values at lumbar level 2 (t=3.424, p=0.009), lumbar level 3 (t=3.171, p=0.019), lumbar level 4 (t=4.187, p=0.001), and total lumbar levels 2-4 (t=2.989, p=0.021) compared with CC+GC genotypes. No associations were found between the OPG, RANK, and RANKL SNPs and clinical manifestations of RA (all p>0.05). Logistic regression analysis indicated that older age (OR=1.057, 95% CI: 1.017-1.099, p=0.005), higher HAQ (OR=2.786, 95% CI: 1.329-5.841, p=0.007), and GG genotype of rs9533155 (OR=3.242, 95% CI: 1.254-8.376, p=0.015) were risk factors of lumbar osteoporosis onset in RA patients. Conclusion In summary, OPG rs4355801 is associated with susceptibility to RA and RANKL rs9533155 GG genotype potentially contributes to decreased BMD in RA. Studies with larger sample sizes are needed to confirm the present findings.
Collapse
Affiliation(s)
- Biwei Pei
- Department of Rheumatology and Immunology, Maanshan People’s Hospital, Maanshan, 243000, People’s Republic of China
| | - Yan Teng
- Department of Rheumatology and Immunology, Maanshan People’s Hospital, Maanshan, 243000, People’s Republic of China
| | - Dandan Dong
- Department of Rheumatology and Immunology, Maanshan People’s Hospital, Maanshan, 243000, People’s Republic of China
| | - Lingquan Liu
- Department of Rheumatology and Immunology, Maanshan People’s Hospital, Maanshan, 243000, People’s Republic of China
| |
Collapse
|
8
|
Wu M, Li H, Sun X, Zhong R, Cai L, Chen R, Madeniyet M, Ren K, Peng Z, Yang Y, Chen W, Tu Y, Lai M, Deng J, Wu Y, Zhao S, Ruan Q, Rao M, Xie S, Ye Y, Wan J. Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts. JCI Insight 2025; 10:e184468. [PMID: 39883525 PMCID: PMC11949034 DOI: 10.1172/jci.insight.184468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common antiresorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed. Here, we report that clinically relevant aerobic exercise significantly prevents high-turnover renal osteodystrophy in CKD mice and patients with CKD without compromising renal function. Mechanistically, 4-week aerobic exercise in CKD mice increased expression of skeletal muscle PPARγ coactivator-1α (PGC-1α) and circulating irisin. Both exercise and irisin administration significantly activated osteoblasts, but not osteoclasts, via integrin αvβ5, thereby conferring bone quality benefits. Removal of irisin-influenced thermogenic adipose tissues or genetic ablation of uncoupling protein 1 did not alter the irisin-conferred antiosteodystrophy effect. Importantly, in a pilot clinical study, 12-week aerobic exercise in patients with high-grade CKD significantly increased circulating irisin and prevented osteodystrophy progression, without detectable renal burden. The combination of irisin and current antiresorptive agents effectively rescued renal osteodystrophy in mice. Our work provides mechanistic insights into the role of exercise and irisin in renal osteodystrophy, and it highlights a clinically relevant, low-cost, kidney-friendly therapy for patients with this devastating disease.
Collapse
Affiliation(s)
- Meng Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Huilan Li
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhong
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Linli Cai
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ruibo Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Madiya Madeniyet
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kana Ren
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Peng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yujie Yang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Weiqin Chen
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanling Tu
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Miaoxin Lai
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jinxiu Deng
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yuting Wu
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shumin Zhao
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Qingyan Ruan
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Mei Rao
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Sisi Xie
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ying Ye
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, and
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Hairi HA, Jusoh RR, Sadikan MZ, Hasan WNW, Shuid AN. Exploring the Potential of Moringa oleifera in Managing Bone Loss: Insights from Preclinical Studies. Int J Med Sci 2025; 22:819-833. [PMID: 39991771 PMCID: PMC11843146 DOI: 10.7150/ijms.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Moringa oleifera (MO) is renowned for its remarkable medicinal uses, supported by claims across various cultures and growing scientific evidence. Preclinical experimental evidence indicated that MO may effectively reduce bone loss and promote bone remodelling through its effects on osteoclasts and osteoblasts. In vivo studies demonstrated that MO enhances critical aspects of bone health, such as bone volume, trabecular thickness and overall bone density. Furthermore, MO positively influenced bone biomarkers including alkaline phosphatase and procollagen type 1 N-terminal propeptide, reflecting improved bone formation. Additionally, in vitro and ex vivo studies revealed that MO boosted bone regeneration, stimulated osteoblast activity and reduced inflammation. In terms of mechanisms, MO may modulate signalling pathways related to bone metabolism, such as BMP2, PI3K/Akt/FOXO1, p38α/MAPK14 and RANKL/RANK//OPG pathways. This evidence provides a strong foundation for future clinical research and potential therapeutic applications in managing and preventing bone loss conditions.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, 75150, Melaka, Malaysia
| | - Rusdiah Ruzanna Jusoh
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, 75150, Melaka, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, 75150, Melaka, Malaysia
| | - Wan Nuraini Wan Hasan
- Faculty of Bioeconomics, Food & Health Science, University of Geomatika Malaysia, Setiawangsa, 54200, Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
10
|
Liu J, Yang J, Wu Q, Fang Z, Wang T, Wang Z, Xu D. Review of osteokines in spinal cord injury: potential biomarkers during rehabilitation. J Orthop Surg Res 2025; 20:64. [PMID: 39827357 PMCID: PMC11742232 DOI: 10.1186/s13018-024-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
After spinal cord injury (SCI), mechanical unloading, denervation, as well as negative changes in blood supply, inflammation state, and hormone levels produce significant negative effects on bone density, leading to a high prevalence of osteoporosis after SCI. It has been recently discovered that skeletal bone also has endocrine functions. Osteokines, secreted from bone tissue, could play multiple roles in regulating bone density, muscle mass, glucose metabolism, and functions of the central nervous system-changes in the osteokine levels after SCI have been detected. Therefore, bone density and osteokine levels should be stressed in clinical settings. Clinical treatment measures for bone loss after SCI include exercise training, physical agent therapy, acupuncture, and so on. According to previous studies, these treatments could affect the expression levels of osteokines. In conclusion, bone loss and changes in osteokines after SCI are worthy of great attention during the rehabilitation of SCI. Osteokines could become biomarkers during SCI rehabilitation, reflecting both bone density and systemic functions. This review summarized recent findings regarding bone loss after SCI, changes in osteokines, and the effect of rehabilitation therapies, with a particular emphasis on the local and systemic regulatory roles of osteokines, as well as their potential as biomarkers during SCI rehabilitation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China
| | - Jingyi Yang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Qi Wu
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China
| | - Zixuan Fang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Tong Wang
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Gulou District, Guangzhou Road 300th, Nanjing, 210029, China.
| | - Zun Wang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China.
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
| | - Daoming Xu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China.
| |
Collapse
|
11
|
Shaban AM, Ali EA, Tayel SG, Rizk SK, El Agamy DF. The antiosteoporotic effect of oxymatrine compared to testosterone in orchiectomized rats. J Orthop Surg Res 2025; 20:25. [PMID: 39780225 PMCID: PMC11714950 DOI: 10.1186/s13018-024-05344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities. This study aims to elucidate the antiosteoporotic effects of OMT compared to testosterone in an orchiectomized (ORX) rat model of osteoporosis. METHODS A total of 60 Wistar male rats were divided into the following groups: control (CTRL), surgery + no orchiectomy (SHAM), ORX, ORX + testosterone, and ORX + OMT. Urinary deoxypyridinoline (DPD), calcium (Ca), and phosphorus (P), as well as serum testosterone, parathormone (PTH), alkaline phosphatase (ALP), osteocalcin, N-telopeptide of type I collagen (NTX I), tartrate resistance acid phosphatase (TRAP), and total Ca and P levels were evaluated. Bone was assessed for malondialdehyde (MDA), reduced glutathione (GSH), interleukin 6 (IL-6), Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) expression, and receptor activator of nuclear factor κB ligand/ osteoprotegerin (RANKL/OPG) ratio. Bone dual-energy X-ray absorptiometry (DEXA) scan and histological and immunohistochemical studies were performed. RESULTS Testosterone or OMT treatment ameliorated the reduced bone mineral density (BMD) and bone mineral content (BMC) in the DEXA scan and the changes in PTH and Ca levels. Compared to the ORX group, bone formation, and turnover markers were also significantly reversed in the treatment groups. Treatment with testosterone or OMT significantly reduced bone MDA, IL-6, Keap1, RANKL, and RANKL/OPG ratio, and significantly elevated bone GSH, Nrf2, and HO-1. Moreover, testosterone or OMT treatment has restored cortical bone thickness and osteocyte number and reduced bone levels of TNF-α in ORX rats. Consequently, treatment with either testosterone or OMT exhibited nearly equal therapeutic efficacy; however, neither of them could normalize the measured parameters. CONCLUSION OMT treatment showed equal efficacy compared to testosterone in ameliorating osteoporosis in ORX rats, possibly by improving some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Anwaar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt.
| | - Sara G Tayel
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| | - Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Dalia F El Agamy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
12
|
Jang Y, Cho Y, Ko Y, Moon Y, Lee C, Lim W. Advanced mutant receptor activator of nuclear factor kappa-Β ligand development with low affinity for osteoprotegerin. Clin Transl Med 2025; 15:e70195. [PMID: 39821508 PMCID: PMC11740215 DOI: 10.1002/ctm2.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Affiliation(s)
- Yuria Jang
- Department of Orthopaedic SurgeryChosun UniversityGwangjuRepublic of Korea
- Laboratory of Orthopaedic ResearchChosun UniversityGwangjuRepublic of Korea
- Regional Leading Research CenterChonnam National UniversityYeosuRepublic of Korea
| | - Yongjin Cho
- Department of Orthopaedic SurgeryChosun UniversityGwangjuRepublic of Korea
- Laboratory of Orthopaedic ResearchChosun UniversityGwangjuRepublic of Korea
| | - Youngjong Ko
- Department of Orthopaedic SurgeryChosun UniversityGwangjuRepublic of Korea
- Laboratory of Orthopaedic ResearchChosun UniversityGwangjuRepublic of Korea
- Regional Leading Research CenterChonnam National UniversityYeosuRepublic of Korea
| | - Yeonhee Moon
- Department of Dental HygieneChodang UniversityMuangunRepublic of Korea
| | - Chang‐Moon Lee
- Regional Leading Research CenterChonnam National UniversityYeosuRepublic of Korea
- School of Healthcare and Biomedical EngineeringChonnam National UniversityYeosuRepublic of Korea
| | - Wonbong Lim
- Department of Orthopaedic SurgeryChosun UniversityGwangjuRepublic of Korea
- Laboratory of Orthopaedic ResearchChosun UniversityGwangjuRepublic of Korea
- Regional Leading Research CenterChonnam National UniversityYeosuRepublic of Korea
- Department of Premedical ProgramSchool of MedicineChosun UniversityGwangjuRepublic of Korea
| |
Collapse
|
13
|
Freeman C, A S MD, A S P. Unraveling the Intricacies of OPG/RANKL/RANK Biology and Its Implications in Neurological Disorders-A Comprehensive Literature Review. Mol Neurobiol 2024; 61:10656-10670. [PMID: 38777981 DOI: 10.1007/s12035-024-04227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The OPG/RANKL/RANK framework, along with its specific receptors, plays a crucial role in bone remodeling and the functioning of the central nervous system (CNS) and associated disorders. Recent research and investigations provide evidence that the components of osteoprotegerin (OPG), receptor activator of NF-kB ligand (RANKL), and receptor activator of NF-kB (RANK) are expressed in the CNS. The CNS structure encompasses cells involved in neuroinflammation, including local macrophages, inflammatory cells, and microglia that cross the blood-brain barrier. The OPG/RANKL/RANK trio modulates the neuroinflammatory response based on the molecular context. The levels of OPG/RANKL/RANK components can serve as biomarkers in the blood and cerebrospinal fluid. They act as neuroprotectants following brain injuries and also participate in the regulation of body weight, internal body temperature, brain ischemia, autoimmune encephalopathy, and energy metabolism. Although the OPG/RANKL/RANK system is primarily known for its role in bone remodeling, further exploring deeper into its multifunctional nature can uncover new functions and novel drug targets for diseases not previously associated with OPG/RANKL/RANK signaling.
Collapse
Affiliation(s)
- Chrisanne Freeman
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India.
| | - Merlyn Diana A S
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| | - Priscilla A S
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| |
Collapse
|
14
|
Naik A, Kale AA, Rajwade JM. Sensing the future: A review on emerging technologies for assessing and monitoring bone health. BIOMATERIALS ADVANCES 2024; 165:214008. [PMID: 39213957 DOI: 10.1016/j.bioadv.2024.214008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Bone health is crucial at all stages of life. Several medical conditions and changes in lifestyle affect the growth, structure, and functions of bones. This may lead to the development of bone degenerative disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc., which are major public health concerns worldwide. Accurate and reliable measurement and monitoring of bone health are important aspects for early diagnosis and interventions to prevent such disorders. Significant progress has recently been made in developing new sensing technologies that offer non-invasive, low-cost, and accurate measurements of bone health. In this review, we have described bone remodeling processes and common bone disorders. We have also compiled information on the bone turnover markers for their use as biomarkers in biosensing devices to monitor bone health. Second, this review details biosensing technology for bone health assessment, including the latest developments in various non-invasive techniques, including dual-energy X-ray absorptiometry, magnetic resonance imaging, computed tomography, and biosensors. Further, we have also discussed the potential of emerging technologies, such as biosensors based on nano- and micro-electromechanical systems and application of artificial intelligence in non-invasive techniques for improving bone health assessment. Finally, we have summarized the advantages and limitations of each technology and described clinical applications for detecting bone disorders and monitoring treatment outcomes. Overall, this review highlights the potential of emerging technologies for improving bone health assessment with the potential to revolutionize clinical practice and improve patient outcomes. The review highlights key challenges and future directions for biosensor research that pave the way for continued innovations to improve diagnosis, monitoring, and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Anup A Kale
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India.
| |
Collapse
|
15
|
Lim HK, Song IS, Choi WC, Choi YJ, Kim EY, Phan THT, Lee UL. Biocompatibility and dimensional stability through the use of 3D-printed scaffolds made by polycaprolactone and bioglass-7: An in vitro and in vivo study. Clin Implant Dent Relat Res 2024; 26:1245-1259. [PMID: 39257249 DOI: 10.1111/cid.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE This experiment aimed to observe the differences in biological properties by producing BGS-7 + PCL scaffolds with different weight fractions of BGS-7 through 3D printing and to confirm whether using the scaffold for vertical bone augmentation is effective. MATERIALS AND METHODS Cube-shaped bioglass (BGS-7) and polycaprolactone (PCL) scaffolds with different weight fractions (PCL alone, PCL with 15% and 30% BGS-7) are produced using 3D printing. The surface hydroxyapatite (HA) apposition, the pH change, proliferation and attachment assays, and various gene expression levels are assessed. After a 7-mm implant was inserted 3 mm into the rabbit calvaria, vertical bone augmentation is performed around the implant and inside the scaffold in four ways: scaffold only, scaffold+bone graft, bone graft only, and no graft. Sacrifice is performed at 6, 12, and 24 weeks, and the various parameters are compared radiographically and histologically. RESULTS HA apposition, cell proliferation, cell attachment, and expression of osteogenic genes increase as the proportion of BGS-7 increase. In the in vivo test, a higher bone-implant contact ratio, bone volume ratio, bone mineral density, and new bone area are observed when the scaffold and bone grafts were used together. CONCLUSION The 3D-printed scaffold, a mixture of BGS-7 and PCL, exhibit higher biological compatibility as the proportion of BGS-7 increase. Additionally, the use of scaffold is effective for vertical bone augmentation.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral & Maxillofacial Surgery, Korea University Guro Hospital, Seoul, Korea
| | - In-Seok Song
- Department of Oral & Maxillofacial Surgery, Korea University Anam Hospital, Seoul, Korea
| | - Won-Cheul Choi
- Department of Orthodontics, Dental Center, Chung-Ang University Hospital, Seoul, Korea
| | - Young-Jun Choi
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Thi Hong Tham Phan
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ui-Lyong Lee
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Sui L, Wang J, Jiang WG, Song X, Ye L. Molecular mechanism of bone metastasis in breast cancer. Front Oncol 2024; 14:1401113. [PMID: 39605887 PMCID: PMC11599183 DOI: 10.3389/fonc.2024.1401113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Bone metastasis is a debilitating complication that frequently occurs in the advanced stages of breast cancer. However, the underlying molecular and cellular mechanisms of the bone metastasis remain unclear. Here, we elucidate how bone metastasis arises from tumor cells that detach from the primary lesions and infiltrate into the surrounding tissue, as well as how these cells disseminate to distant sites. Specifically, we elaborate how tumor cells preferentially grow within the bone micro-environment and interact with bone cells to facilitate bone destruction, characterized as osteoclastic bone metastasis, as well as new bone matrix deposition, characterized as osteoblastic bone metastasis. We also updated the current understanding of the molecular mechanisms underlying bone metastasis and reasons for relapse in breast cancer, and also opportunities of developing novel diagnostic approaches and treatment.
Collapse
Affiliation(s)
- Laijian Sui
- Department of Orthopedics, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jing Wang
- Department of Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Xicheng Song
- Department of Otorhinolaryngol and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
17
|
Galliera E, Massaccesi L, Mangiavini L, De Vecchi E, Villa F, Corsi Romanelli MM, Peretti G. Effects of COVID-19 on bone fragility: a new perspective from osteoimmunological biomarkers. Front Immunol 2024; 15:1493643. [PMID: 39582872 PMCID: PMC11582977 DOI: 10.3389/fimmu.2024.1493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction While there is an increasing understanding of COVID-19's effect on different organs, little is known about the effect of the disease on bone turnover and remodeling so far. Osteoimmunological biomarkers have been described as potential indicators of bone remodeling in inflammatory conditions, but their potential role in evaluating the effect of COVID-19 on bone fragility has not been explored so far. Methods The present study aims to measure the osteoimmunological biomarkers in elderly patients undergoing orthopedic surgery, to evaluate the potential effect of COVID-19 on the bone response to the surgery. Results In our patients, the RANKL/OPG ratio indicated an increase of bone resorption in COVID-19-positive patients, confirming a strong diagnostic and prognostic value. RANKL/OPG displays a good correlation with the bone fragility maker FGF23, indicating that this parameter is a reliable maker of bone fragility in COVID-19 patients and could provide useful and comprehensive information about inflammation-induced bone loss. Consistently, the RANKL/OPG ratio showed a good correlation also with the two inflammatory markers IL-6 and sRAGE. Discussion Taken together these results indicate that the use of an osteoimmunological biomarker like the RANKL/OPG ratio could provide a significant improvement in the clinical evaluation of the COVID-19 effect on bone loss. This aspect is extremely important in elderly patients undergoing orthopedic surgery, which can manifest more severe effects of COVID-19 and present an increased level of age-induced bone fragility.
Collapse
Affiliation(s)
- Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Laboratorio sperimentale ricerche Biomarcatori Danno d'Organo, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | | | | | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | |
Collapse
|
18
|
Ma Y, Wang Y, Tong S, Wang Y, Wang Z, Sui R, Yang K, Witte F, Yang S. Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing. J Orthop Translat 2024; 49:135-155. [PMID: 40226784 PMCID: PMC11993841 DOI: 10.1016/j.jot.2024.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 04/15/2025] Open
Abstract
Background Porous metal materials have been widely studied for applications in orthopedic field, owing to their excellent features and properties in bone healing. Porous metal materials with different compositions, manufacturing methods, and porosities have been developed. Whereas, the systematic mechanisms on how porous metal materials promote bone healing still remain unclear. Methods This review is concerned on the porous metal materials from three aspects with accounts of specific mechanisms, inflammatory regulation, angiogenesis and osteogenesis. We place great emphasis on different cells regulated by porous metal materials, including mesenchymal stem cells (MSCs), macrophages, endothelial cells (ECs), etc. Result The design of porous metal materials is diversified, with its varying pore sizes, porosity material types, modification methods and coatings help researchers create the most experimentally suitable and clinically effective scaffolds. Related signal pathways presented from different functions showed that porous metal materials could change the behavior of cells and the amount of cytokines, achieving good influence on osteogenesis. Conclusion This article summarizes the current progress achieved in the mechanism of porous metal materials promoting bone healing. By modulating the cellular behavior and physiological status of a spectrum of cellular constituents, such as macrophages, osteoblasts, and osteoclasts, porous metal materials are capable of activating different pathways and releasing regulatory factors, thus exerting pivotal influence on improving the bone healing effect. The translational potential of this article Porous metal materials play a vital role in the treatment of bone defects. Unfortunately, although an increasing number of studies have been concentrated on the effect of porous metal materials on osteogenesis-related cells, the comprehensive regulation of porous metal materials on the host cell functions during bone regeneration and the related intrinsic mechanisms remain unclear. This review summarizes different design methods for porous metal materials to fabricate the most suitable scaffolds for bone remodeling, and systematically reviews the corresponding mechanisms on inflammation, angiogenesis and osteogenesis of porous metal materials. This review can provide more theoretical framework and innovative optimization for the application of porous metal materials in orthopedics, dentistry, and other areas, thereby advancing their clinical utility and efficacy.
Collapse
Affiliation(s)
- Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehan Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Zhuoya Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Rongze Sui
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Medical University, Assmannshauser Strasse 4–6, 14197, Berlin, Germany
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
19
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
20
|
Li Q, Wang J, Zhao C. From Genomics to Metabolomics: Molecular Insights into Osteoporosis for Enhanced Diagnostic and Therapeutic Approaches. Biomedicines 2024; 12:2389. [PMID: 39457701 PMCID: PMC11505085 DOI: 10.3390/biomedicines12102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The advancements in omics technologies-genomics, transcriptomics, proteomics, and metabolomics-have provided significant insights into the molecular mechanisms driving OP. These technologies offer critical perspectives on genetic predispositions, gene expression regulation, protein signatures, and metabolic alterations, enabling the identification of novel biomarkers for diagnosis and therapeutic targets. This review underscores the potential of these multi-omics approaches to bridge the gap between basic research and clinical applications, paving the way for precision medicine in OP management. By integrating these technologies, researchers can contribute to improved diagnostics, preventative strategies, and treatments for patients suffering from OP and related conditions.
Collapse
Affiliation(s)
- Qingmei Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Congzhe Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
21
|
Singh M, Singh P, Singh B, Sharma K, Kumar N, Singh D, Mastana S. Molecular Signaling Pathways and MicroRNAs in Bone Remodeling: A Narrative Review. Diseases 2024; 12:252. [PMID: 39452495 PMCID: PMC11507001 DOI: 10.3390/diseases12100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Bone remodeling is an intricate process executed throughout one's whole life via the cross-talk of several cellular events, progenitor cells and signaling pathways. It is an imperative mechanism for regaining bone loss, recovering damaged tissue and repairing fractures. To achieve this, molecular signaling pathways play a central role in regulating pathological and causal mechanisms in different diseases. Similarly, microRNAs (miRNAs) have shown promising results in disease management by mediating mRNA targeted gene expression and post-transcriptional gene function. However, the role and relevance of these miRNAs in signaling processes, which regulate the delicate balance between bone formation and bone resorption, are unclear. This review aims to summarize current knowledge of bone remodeling from two perspectives: firstly, we outline the modus operandi of five major molecular signaling pathways, i.e.,the receptor activator of nuclear factor kappa-B (RANK)-osteoprotegrin (OPG) and RANK ligand (RANK-OPG-RANKL), macrophage colony-stimulating factor (M-CSF), Wnt/β-catenin, Jagged/Notch and bone morphogenetic protein (BMP) pathways in regards to bone cell formation and function; and secondly, the miRNAs that participate in these pathways are introduced. Probing the miRNA-mediated regulation of these pathways may help in preparing the foundation for developing targeted strategies in bone remodeling, repair and regeneration.
Collapse
Affiliation(s)
- Monica Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Baani Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Kirti Sharma
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Nitin Kumar
- Department of Human Genetics, Punjabi University, Patiala 147002, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Deepinder Singh
- VardhmanMahavir Health Care, Urban Estate Ph-II, Patiala 147002, India;
| | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
22
|
Di Cicco G, Marzano E, Mastrostefano A, Pitocco D, Castilho RS, Zambelli R, Mascio A, Greco T, Cinelli V, Comisi C, Maccauro G, Perisano C. The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies. Biomedicines 2024; 12:2292. [PMID: 39457605 PMCID: PMC11505501 DOI: 10.3390/biomedicines12102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is the most common degenerative joint disease and affects millions of people worldwide, particularly the elderly population. The pathophysiology of OA is complex and involves multiple factors. Methods: Several studies have emphasized the crucial role of inflammation in this process. The receptor activator of NF-κB ligand (RANKL), the receptor activator of NF-κB (RANK), and osteoprotegerin (OPG) trigger a signaling cascade that leads to the excessive production of RANKL in the serum. Conclusions: The aim of this narrative review is (i) to assess the role of the RANK/RANKL/OPG signaling pathway in the context of OA progression, focusing especially on the physiopathology and on all the mechanisms leading to the activation of the inflammatory cascade, and (ii) to evaluate all the potential therapeutic strategies currently available that restore balance to bone formation and resorption, reducing structural abnormalities and relieving pain in patients with OA.
Collapse
Affiliation(s)
- Gabriele Di Cicco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Emanuela Marzano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Andrea Mastrostefano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Dario Pitocco
- Diabetes Care Unit, Endocrinology, University Hospital “A. Gemelli”, Catholic University of the Sacred Heart, 00136 Rome, Italy
| | - Rodrigo Simões Castilho
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Roberto Zambelli
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Antonio Mascio
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Tommaso Greco
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
- Department of Life Sciences, Health, and Healthcare Professions, Link Campus University, 00165 Rome, Italy
| | - Virginia Cinelli
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Chiara Comisi
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Giulio Maccauro
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Carlo Perisano
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| |
Collapse
|
23
|
de A Cruz M, Sousa KSJ, Avanzi IR, de Souza A, Martignago CCS, Delpupo FVB, Simões MC, Parisi JR, Assis L, De Oliveira F, Granito RN, Laakso EL, Renno A. In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1053-1066. [PMID: 39153015 DOI: 10.1007/s10126-024-10356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.
Collapse
Affiliation(s)
- Matheus de A Cruz
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Karolyne S J Sousa
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Ingrid R Avanzi
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil.
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Cintia C S Martignago
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Fernanda V B Delpupo
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Mariana C Simões
- Department of Physiotherapy, Metropolitan University of Santos - UNIMES, Santos, São Paulo, Brazil
| | - Julia R Parisi
- Department of Physiotherapy, Metropolitan University of Santos - UNIMES, Santos, São Paulo, Brazil
| | - Livia Assis
- Post-Graduate Program in Biomedical Engineering, Brasil University, São Paulo, São Paulo, Brazil
| | - Flávia De Oliveira
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Renata N Granito
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Eeva-Liisa Laakso
- Mater Research Institute, University of Queensland, South Brisbane, QLD, Australia
| | - Ana Renno
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| |
Collapse
|
24
|
Kolliopoulos V, Tiffany A, Polanek M, Harley BAC. Donor Sex and Passage Conditions Influence MSC Osteogenic Response in Mineralized Collagen Scaffolds. Adv Healthc Mater 2024; 13:e2400039. [PMID: 39036820 PMCID: PMC11518655 DOI: 10.1002/adhm.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their multi-potent potential and ability to generate a pro-regenerative secretome. While many have reported the influence of matrix environment on MSC osteogenic response, few have investigated the effects of donor and sex. Here, a well-defined mineralized collagen scaffold is used to study the influence of passage number and donor-reported sex on MSC proliferation and osteogenic potential. A library of bone marrow and adipose tissue-derived stem cells from eight donors to examine donor viability in osteogenic capacity in mineralized collagen scaffolds is obtained. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-associated variability in osteogenic capacity. Notably, MSCs from male donors displayed significantly higher cell proliferation while MSCs from female donors displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. The study highlights the essentiality of including donor-reported sex as an experimental variable and reporting culture expansion in future studies of biomaterial regenerative potential.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maxwell Polanek
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
25
|
Chen H, Xiong R, Cheng J, Ye J, Qiu Y, Huang S, Li M, Liu Z, Pang J, Zhang X, Guo S, Li H, Zhu H. Effects and Mechanisms of Polyunsaturated Fatty Acids on Age-Related Musculoskeletal Diseases: Sarcopenia, Osteoporosis, and Osteoarthritis-A Narrative Review. Nutrients 2024; 16:3130. [PMID: 39339730 PMCID: PMC11434726 DOI: 10.3390/nu16183130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The process of the globally aging population has been accelerating, leading to an increasing social burden. As people age, the musculoskeletal system will gradually go through a series of degenerative and loss of function and eventually develop age-related musculoskeletal diseases, like sarcopenia, osteoporosis, and osteoarthritis. On the other hand, several studies have shown that polyunsaturated fatty acids (PUFAs) possess various important physiological functions on the health of muscles, bones, and joints. Objective: This narrative review paper provides a summary of the literature about the effects and mechanisms of PUFAs on age-related musculoskeletal diseases for the prevention and management of these diseases. Methods: Web of Science, PubMed, Science Direct, and Scopus databases have been searched to select the relevant literature on epidemiological, cellular, and animal experiments and clinical evidence in recent decades with keywords "polyunsaturated fatty acids", "PUFAs", "omega-3", "omega-6", "musculoskeletal diseases", "sarcopenia", "osteoporosis", "osteoarthritis", and so on. Results: PUFAs could prevent and treat age-related musculoskeletal diseases (sarcopenia, osteoporosis, and osteoarthritis) by reducing oxidative stress and inflammation and controlling the growth, differentiation, apoptosis, and autophagy of cells. This review paper provides comprehensive evidence of PUFAs on age-related musculoskeletal diseases, which will be helpful for exploitation into functional foods and drugs for their prevention and treatment. Conclusions: PUFAs could play an important role in the prevention and treatment of sarcopenia, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Haoqi Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruogu Xiong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Cheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jialu Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingzhen Qiu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengchu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinzhu Pang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Guo
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Huabin Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
26
|
Lai M, Chen X, Feng J, Ruan Z, Lin J. Morinda officinalis polysaccharide boosts osteogenic differentiation of bone marrow mesenchymal stem cells by Wnt/β-catenin signaling. Am J Transl Res 2024; 16:4492-4503. [PMID: 39398614 PMCID: PMC11470318 DOI: 10.62347/wmli2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/04/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVES To investigate the role of Morinda officinalis polysaccharide (MOP) in the protein expression of the Wnt/β-catenin signaling cascade during the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and to elucidate the mechanisms by which MOP enhances osteogenic differentiation at the cellular level. METHODS BMSCs were isolated and cultured using the whole bone marrow adherence method, followed by flow cytometry for the detection of BMSC marker antigens. Two groups were prepared: a low-dose MOP (L-MOP, 10 µg/mL) group and a high-dose MOP (H-MOP, 40 µg/mL) group. MTT assays and cell clone formation assays were performed to evaluate the effects of different MOP doses on BMSC proliferation. Alizarin red staining (ARS) and alkaline phosphatase (ALP) staining were conducted to assess the impact of varying MOP doses on nodule calcification and ALP activity in BMSCs. Additionally, western blot assays were carried out to determine the effects of different MOP concentrations on the expression levels of osteogenesis-related factors and Wnt/β-catenin pathway proteins in BMSCs. RESULTS Highly purified BMSCs were successfully extracted. Subsequent assays demonstrated that BMSCs exhibited enhanced proliferation at all MOP doses, particularly at the H-MOP dose, compared to the control group. Both L-MOP and H-MOP increased calcium content and ALP activity in BMSCs, as well as elevated the expression of osteogenic factors and Wnt/β-catenin pathway proteins compared to the blank control group. However, the addition of Dickkopf-1 (DKK1) significantly reduced BMSC proliferation and osteogenic differentiation compared to the H-MOP group. CONCLUSIONS MOP can enhance BMSC proliferation and osteogenic differentiation by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Manxiang Lai
- Department of Pharmacy, Guangdong Food and Drug Vocational CollegeGuangzhou 510520, Guangdong, China
| | - Xia Chen
- Department of Nursing, Guangdong Food and Drug Vocational CollegeGuangzhou 510520, Guangdong, China
| | - Juan Feng
- Department of Health Management and Biotechnology, Guangdong Food and Drug Vocational CollegeGuangzhou 510520, Guangdong, China
| | - Zhiyan Ruan
- Department of Pharmacy, Guangdong Food and Drug Vocational CollegeGuangzhou 510520, Guangdong, China
| | - Jiwei Lin
- Prevention and Treatment Center, Shenzhen Hospital of Traditional Chinese MedicineShenzhen 518000, Guangdong, China
| |
Collapse
|
27
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
28
|
Aucella F, Amicone M, Perez Ys ADM, Aucella F, Gatta G, Prencipe MA, Riccio E, Capuano I, Pisani A, Battaglia Y. Does Physical Exercise Ameliorate Chronic Kidney Disease-Related Complications? The Case of Anaemia and Chronic Kidney Disease-Mineral Bone Disorder. Kidney Blood Press Res 2024; 49:812-820. [PMID: 39245039 DOI: 10.1159/000540659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Physical exercise (PE) can regulate inflammation, cardiovascular health, sarcopenia, anaemia, and bone health in the chronic kidney disease (CKD) population. Experimental and clinical studies both help us better understand the mechanisms that underlie the beneficial effects of the exercise, especially in renal anaemia and CKD-mineral bone disorders (CKD-MBDs). Here, we summarize this evidence, exploring the biological pathways involved, locally released substances, and crosstalk between tissues, but also the shortcomings of current knowledge. SUMMARY Anaemia: Both in healthy and CKD subjects, PE may mimic hypoxia, inhibiting PHDs; so hydroxylate HIF-α subunits may be translocated into the nucleus, resulting in dimerization of HIF-1α and HIF-1β, recruitment of p300 and CBP, and ultimately, binding to HREs at target genes to cause activation. However, in CKD subjects acute PE causes higher levels of lactate, leading to iron restriction by upregulating hepatic hepcidin expression, while chronic PE allows an increased lactate clearance and HIF-α and VEGFα levels, stimulating both erythropoiesis and angiogenesis. CKD-MBD PE may improve bone health decreasing bone resorption and increasing bone formation throughout at least three main pathways: (a) increasing osteoprotegerin and decreasing RANKL system; (b) decreasing cytokine levels; and (c) stimulating production of myokines and adipokines. KEY MESSAGES Future research needs to be defined to develop evidence-based exercise guidance to provide optimal benefit for CKD using exercise interventions as adjuvant therapy for CKD-related complications such as anaemia and CKD-MBD.
Collapse
Affiliation(s)
- Filippo Aucella
- Department of Medical Sciences, Nephrology and Dialysis Unit, Research Hospital "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo, Italy
| | - Maria Amicone
- Department of Public Health, Chair of Nephrology, University of Naples Federico II, Naples, Italy
| | - Aurora Del Mar Perez Ys
- Department of Medical Sciences, Nephrology and Dialysis Unit, Research Hospital "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo, Italy
| | - Francesco Aucella
- Department of Medical Sciences, Nephrology and Dialysis Unit, Research Hospital "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo, Italy
| | - Giuseppe Gatta
- Department of Medical Sciences, Nephrology and Dialysis Unit, Research Hospital "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo, Italy
| | - Michele Antonio Prencipe
- Department of Medical Sciences, Nephrology and Dialysis Unit, Research Hospital "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo, Italy
| | - Eleonora Riccio
- Department of Public Health, Chair of Nephrology, University of Naples Federico II, Naples, Italy
| | - Ivana Capuano
- Department of Public Health, Chair of Nephrology, University of Naples Federico II, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, Chair of Nephrology, University of Naples Federico II, Naples, Italy
| | - Yuri Battaglia
- Department of Medicine, Pederzoli Hospital, Nephrology and Dialysis Unit, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Pereira RRDS, Castro GBD, Magalhães CODE, Costa KB, Garcia BCC, Silva G, Carvalho JDCL, Machado ART, Vieira ER, Cassilhas RC, Pereira LJ, Dias-Peixoto MF, Andrade EF. High-intensity interval training mitigates the progression of periodontitis and improves behavioural aspects in rats. J Clin Periodontol 2024; 51:1222-1235. [PMID: 38798054 DOI: 10.1111/jcpe.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
AIM To investigate the effects of high-intensity interval training (HIIT) on periodontitis (PD) progression and behavioural outcomes. MATERIALS AND METHODS Forty-eight Wistar rats were divided into four groups: non-trained (NT); non-trained with PD; HIIT with PD; and HIIT. The HIIT protocol, involving daily treadmill sessions, spanned 8 weeks, with PD induced by ligature after the 6th week. Behavioural tests were conducted to assess anxiety and memory. Post euthanasia, we evaluated the systemic inflammatory profile and oxidative stress markers in the hippocampus and amygdala. A morphological evaluation and elemental composition analysis of the mandibular alveolar bone were performed. RESULTS PD exacerbated alveolar bone level, bone surface damage and alterations in calcium and phosphorus percentages on the bone surface (p < .05), while HIIT attenuated these changes (p < .05). HIIT improved systemic inflammatory markers altered by PD (tumour necrosis factor [TNF]-α, interleukin [IL]-10, TNF-α/IL-10 and IL-1β/IL-10 ratios, p < .05). PD animals exhibited lower total antioxidant capacity and levels of thiobarbituric acid reactive substances in the amygdala and hippocampus, respectively (p < .05). HIIT maintained these parameters at levels similar to those in NT animals. HIIT improved anxiety and memory outcomes altered by PD (p < .05). CONCLUSIONS HIIT attenuates systemic inflammation, anxiety and memory outcomes promoted by PD.
Collapse
Affiliation(s)
| | - Giselle Bicalho de Castro
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Karine Beatriz Costa
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Gabriela Silva
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | | | - Etel Rocha Vieira
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Luciano José Pereira
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Eric Francelino Andrade
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
30
|
Cushman CJ, Ibrahim AF, Smith AD, Hernandez EJ, MacKay B, Zumwalt M. Local and Systemic Peptide Therapies for Soft Tissue Regeneration: A Narrative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:399-413. [PMID: 39351323 PMCID: PMC11426299 DOI: 10.59249/tknm3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Background: The musculoskeletal system, due to inherent structure and function, lends itself to contributing toward joint pain, whether from inflammatory disorders such as rheumatoid arthritis, degenerative diseases such as osteoarthritis, or trauma causing soft tissue injury. Administration of peptides for treatment of joint pain or inflammation is an emerging line of therapy that seeks to offer therapeutic benefits while remaining safe and relatively non-invasive. Purpose: The purpose of this study is to review the current literature on existing oral peptide agents, intra-articular peptide agents, and new developments in human trials to assess route of administration (RoA) for drug delivery in terms of soft tissue regeneration. Study Design: Narrative Review. Methods: A comprehensive literature search was conducted using the PubMed database. The search included medical subject headings (MeSH) terms related to peptide therapy, soft tissue regeneration, and RoA. Inclusion criteria comprised articles focusing on the mechanisms of action of peptides, clinical or biochemical outcomes, and review articles. Exclusion criteria included insufficient literature or studies not meeting the set evidence level. Conclusion: The review identified various peptides demonstrating efficacy in soft tissue repair. Oral and intra-articular peptides showed distinct advantages in soft tissue regeneration, with intra-articular routes providing localized effects and oral routes offering systemic benefits. However, both routes have limitations in bioavailability and absorption. Still in their infancy, further inquiries/research into the properties and efficacy of emerging peptides will be necessary before widespread use. As a viable alternative prior to surgical intervention, peptide treatments present as promising candidates for positive outcomes in soft tissue regeneration.
Collapse
Affiliation(s)
- Caroline J. Cushman
- School of Medicine, Texas Tech University Health
Sciences Center, Lubbock, Texas, USA
| | - Andrew F. Ibrahim
- School of Medicine, Texas Tech University Health
Sciences Center, Lubbock, Texas, USA
| | - Alexander D. Smith
- School of Medicine, Texas Tech University Health
Sciences Center, Lubbock, Texas, USA
| | - Evan J. Hernandez
- Department of Orthopaedic Surgery, Texas Tech
University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Brendan MacKay
- Department of Orthopaedic Surgery, Texas Tech
University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Mimi Zumwalt
- Department of Orthopaedic Surgery, Texas Tech
University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| |
Collapse
|
31
|
Tomczyk-Warunek A, Winiarska-Mieczan A, Blicharski T, Blicharski R, Kowal F, Pano IT, Tomaszewska E, Muszyński S. Consumption of Phytoestrogens Affects Bone Health by Regulating Estrogen Metabolism. J Nutr 2024; 154:2611-2627. [PMID: 38825042 DOI: 10.1016/j.tjnut.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoporosis is a significant concern in bone health, and understanding its pathomechanism is crucial for developing effective prevention and treatment strategies. This article delves into the relationship between estrogen metabolism and bone mineralization, shedding light on how phytoestrogens can influence this intricate process. Estrogen, a hormone primarily associated with reproductive health, plays a pivotal role in maintaining bone density and structure. The article explores the positive effects of estrogen on bone mineralization, highlighting its importance in preventing conditions like osteoporosis. Phytoestrogens, naturally occurring compounds found in certain plant-based foods, are the focal point of the discussion. These compounds have the remarkable ability to mimic estrogen's actions in the body. The article investigates how phytoestrogens can modulate the activity of estrogen, thereby impacting bone health. Furthermore, the article explores the direct effects of phytoestrogens on bone mineralization and structure. By regulating estrogen metabolism, phytoestrogens can contribute to enhanced bone density and reduced risk of osteoporosis. Finally, the article emphasizes the role of plant-based diets as a source of phytoestrogens. By incorporating foods rich in phytoestrogens into one's diet, individuals may potentially bolster their bone health, adding a valuable dimension to the ongoing discourse on osteoporosis prevention. In conclusion, this article offers a comprehensive overview of 137 positions of literature on the intricate interplay between phytoestrogens, estrogen metabolism, and bone health, shedding light on their potential significance in preventing osteoporosis and promoting overall well-being.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Physiotherapy, Laboratory of Locomotor Systems Research, Medical University of Lublin, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Rudolf Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Filip Kowal
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Inés Torné Pano
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
32
|
Fogel H, Yeritsyan D, Momenzadeh K, Kheir N, Yeung CM, Abbasian M, Lozano EM, Nazarian RM, Nazarian A. The effect of cannabinoids on single-level lumbar arthrodesis outcomes in a rat model. Spine J 2024; 24:1759-1772. [PMID: 38704096 DOI: 10.1016/j.spinee.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND CONTEXT The opioid epidemic is a public health crisis affecting spine care and pain management. Medical marijuana is a potential nonopioid analgesic yet to be studied in the surgical setting since its effects on bone healing are not fully understood. Studies have demonstrated analgesic and potentially osteoinductive properties of cannabinoids with endocannabinoid receptor expression in bone tissue. PURPOSE We hypothesize that tetrahydrocannabinol (THC) and cannabidiol (CBD) will not decrease bone healing in spinal fusion. STUDY DESIGN Seventy-eight adult Sprague-Dawley rats were used for this study. Utilizing allogenic bone grafts (6 donor rats), posterolateral inter-transverse lumbar fusion at the L4-L5 level was performed. The animals were equally divided into four treatment groups, each receiving 0.1 ml intraperitoneal injections weekly as follows: placebo (saline), 5 mg/kg THC, 5 mg/kg CBD, and a combination of 5 mg/kg THC and 5mg/kg CBD (Combo). METHODS Callus tissue was harvested 2- and 8-weeks postsurgery for qPCR assessment to quantify changes in the expression of osteogenic genes. Manual palpation was done to assess the strength of the L4-L5 arthrodesis on all rats. μCT image-based callus analysis and histology were performed. One-way ANOVA followed by post hoc comparisons was performed. RESULTS μCT demonstrated no significant differences. Treatment groups had slightly increased bone volume and density compared to control. qPCR at 2 weeks indicated downregulated RANKL/OPG ratios skewing towards osteogenesis in the CBD group, with the THC and CBD+THC groups demonstrating a downward trend (p>.05). ALPL, BMP4, and SOST were significantly higher in the CBD group, with CTNNB1 and RUNX2 also showing an upregulating trend. The CBD group showed elevation in Col1A1 and MMP13. Data at eight weeks showed ALPL, RUNX2, BMP4, and SOST were downregulated for all treatment groups. In the CBD+THC group, RANK, RANKL, and OPG were downregulated. OPG downregulation reached significance for the THC and CBD+THC group compared to saline. Interestingly, the RANKL/OPG ratio showed upregulation in the CBD and CBD+THC groups. RANKL showed upregulation in the CBD group. At 2 and 8 weeks, the CBD treatment group showed superior histological progression, increasing between time points. CONCLUSION This study demonstrates that CBD and THC have no adverse effect on bone healing and the rate of spinal fusion in rats. Osteogenic factors were upregulated in the CBD-treated groups at 2 weeks, which indicates a potential for bone regeneration. In this group, compared to control, the RANKL/OPG ratio at the early healing phase demonstrates the inhibition of osteoclast differentiation, enhancing bone formation. Interestingly, it shows promoted osteoclast differentiation at the later healing phase, enhancing bone remodeling. This aligns with the physiological expectation of a lower ratio in the early phases and a higher ratio in the later remodeling phases. CLINICAL SIGNIFICANCE CBD and THC showed no inhibitory effects on bone healing in a spinal fusion model. Moreover, histologic and gene expression analysis demonstrated that CBD may, in fact, enhance bone healing. Further research is needed to confirm the safe usage of THC and CBD in the postoperative setting following spinal fusions.
Collapse
Affiliation(s)
- Harold Fogel
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215, USA
| | - Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215, USA
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215, USA
| | - Caleb M Yeung
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215, USA
| | - Edith Martinez Lozano
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215, USA
| | - Rosalynn M Nazarian
- The Pathology Service, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215, USA; Department of Orthopedic Surgery, Yerevan State Medical University, 2 Koryun Street, Yerevan, 0025, Armenia.
| |
Collapse
|
33
|
Hsu CH, Hsu CL, Langley A, Wojcik C, Iraganje E, Grygiel-Górniak B. Glucocorticoid-induced osteoporosis—from molecular mechanism to clinical practice. DRUGS & THERAPY PERSPECTIVES 2024; 40:315-329. [DOI: 10.1007/s40267-024-01079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 01/06/2025]
|
34
|
Liu YF, Tian Y, Chen XF, Zhang C, Huang L. Role of osteokines in atherosclerosis. Cell Biochem Funct 2024; 42:e4107. [PMID: 39154288 DOI: 10.1002/cbf.4107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Despite their diverse physiologies and roles, the heart, skeletal muscles, and smooth muscles all derive from a common embryonic source as bones. Moreover, bone tissue, skeletal and smooth muscles, and the heart share conserved signaling pathways. The maintenance of skeletal health is precisely regulated by osteocytes, osteoblasts, and osteoclasts through coordinated secretion of bone-derived factors known as osteokines. Increasing evidence suggests the involvement of osteokines in regulating atherosclerotic vascular disease. Therefore, this review aims to examine the evidence for the role of osteokines in atherosclerosis development and progression comprehensively. Specifically discussed are extensively studied osteokines in atherosclerosis such as osteocalcin, osteopontin, osteoprotegerin, and fibroblast growth factor 23. Additionally, we highlighted the effects of exercise on modulating these key regulators derived from bone tissue metabolism. We believe that gaining an enhanced understanding of how osteocalcin contributes to the process of atherosclerosis will enable us to develop targeted and comprehensive therapeutic strategies against diseases associated with its progression.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Xiao-Fang Chen
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liang Huang
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
35
|
Hu X, Wang Z, Wang W, Cui P, Kong C, Chen X, Lu S. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J Adv Res 2024; 62:175-186. [PMID: 37669714 PMCID: PMC11331170 DOI: 10.1016/j.jare.2023.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Osteoporosis is recognized as a skeletal disorder characterized by diminished bone tissue quality and density. Regular physical exercise is widely acknowledged to preserve and enhance bone health, but the detailed molecular mechanisms involved remain unclear. Irisin, a factor derived from muscle during exercise, influences bone and muscle. Since its discovery in 2012, irisin has been found to promote bone growth and reduce bone resorption, establishing a tangible link between muscle exertion and bone health. Consequently, the mechanism by which irisin prevents osteoporosis have attracted significant scientific interest. AIM OF THE REVIEW This study aims to elucidate the multifaceted relationship between exercise, irisin, and bone health. Focusing on irisin, a muscle-derived factor released during exercise, we seek to understand its role in promoting bone growth and inhibiting resorption. Through a review of current research article on irisin in osteoporosis, Our review provides a deep dive into existing research on influence of irisin in osteoporosis, exploring its interaction with pivotal signaling pathways and its impact on various cell death mechanisms and inflammation. We aim to uncover the molecular underpinnings of how irisin, secreted during exercise, can serve as a therapeutic strategy for osteoporosis. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Irisin, secreted during exercise, plays a vital role in bridging muscle function to bone health. It not only promotes bone growth but also inhibits bone resorption. Specifically, Irisin fosters osteoblast proliferation, differentiation, and mineralization predominantly through the ERK, p38, and AMPK signaling pathways. Concurrently, it regulates osteoclast differentiation and maturation via the JNK, Wnt/β-catenin and RANKL/RANK/OPG signaling pathways. This review further delves into the profound significance of irisin in osteoporosis and its involvement in diverse cellular death mechanisms, including apoptosis, autophagy, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
36
|
Abdalla MM, Sayed O, Lung CYK, Rajasekar V, Yiu CKY. Applications of Bioactive Strontium Compounds in Dentistry. J Funct Biomater 2024; 15:216. [PMID: 39194654 DOI: 10.3390/jfb15080216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Divalent cations have captured the interest of researchers in biomedical and dental fields due to their beneficial effects on bone formation. These metallic elements are similar to trace elements found in human bone. Strontium is a divalent cation commonly found in various biomaterials. Since strontium has a radius similar to calcium, it has been used to replace calcium in many calcium-containing biomaterials. Strontium has the ability to inhibit bone resorption and increase bone deposition, making it useful in the treatment of osteoporosis. Strontium has also been used as a radiopacifier in dentistry and has been incorporated into a variety of dental materials to improve their radiopacity. Furthermore, strontium has been shown to improve the antimicrobial and mechanical properties of dental materials, promote enamel remineralization, alleviate dentin hypersensitivity, and enhance dentin regeneration. The objective of this review is to provide a comprehensive review of the applications of strontium in dentistry.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Osama Sayed
- Faculty of Dentistry, Fayoum University, Faiyum 63514, Egypt
| | - Christie Ying Kei Lung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Vidhyashree Rajasekar
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Gheorghe SR, Crăciun AM, Ilyés T, Tisa IB, Sur L, Lupan I, Samasca G, Silaghi CN. Converging Mechanisms of Vascular and Cartilaginous Calcification. BIOLOGY 2024; 13:565. [PMID: 39194503 DOI: 10.3390/biology13080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Physiological calcification occurs in bones and epiphyseal cartilage as they grow, whereas ectopic calcification occurs in blood vessels, cartilage, and soft tissues. Although it was formerly thought to be a passive and degenerative process associated with aging, ectopic calcification has been identified as an active cell-mediated process resembling osteogenesis, and an increasing number of studies have provided evidence for this paradigm shift. A significant association between vascular calcification and cardiovascular risk has been demonstrated by various studies, which have shown that arterial calcification has predictive value for future coronary events. With respect to cartilaginous calcification, calcium phosphate or hydroxyapatite crystals can form asymptomatic deposits in joints or periarticular tissues, contributing to the pathophysiology of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, tendinitis, and bursitis. The risk factors and sequence of events that initiate ectopic calcification, as well as the mechanisms that prevent the development of this pathology, are still topics of debate. Consequently, in this review, we focus on the nexus of the mechanisms underlying vascular and cartilaginous calcifications, trying to circumscribe the similarities and disparities between them to provide more clarity in this regard.
Collapse
Affiliation(s)
- Simona R Gheorghe
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra M Crăciun
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Tamás Ilyés
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Badiu Tisa
- Department of Pediatrics III, Iuliu Hatieganu University of Medicine and Pharmacy, 400217 Cluj-Napoca, Romania
| | - Lucia Sur
- Department of Pediatrics I, Iuliu Hatieganu University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Ciprian N Silaghi
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Rusu ME, Bigman G, Ryan AS, Popa DS. Investigating the Effects and Mechanisms of Combined Vitamin D and K Supplementation in Postmenopausal Women: An Up-to-Date Comprehensive Review of Clinical Studies. Nutrients 2024; 16:2356. [PMID: 39064799 PMCID: PMC11279569 DOI: 10.3390/nu16142356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a complex process and a significant risk factor for chronic diseases. Menopause, a component of aging in women, is associated with several important cardiometabolic conditions including metabolic syndrome, osteoporosis, and cardiovascular diseases. Menopausal women could benefit from preventative strategies that may decrease morbidity and mortality and improve their quality of life. Vitamins D and K are essential nutrients required for bone health, immune function, and reducing cardiovascular risks, yet their synergistic effect is less understood in aging women. This is the first comprehensive review to summarize the evidence found in randomized clinical trials of the beneficial effects of vitamin D and K co-treatment in postmenopausal women. In our literature search across key electronic databases such as Cochrane, PubMed, and Ovid, we identified 31 pertinent studies. Overall, significant findings indicate that the combined intake of vitamins D and K may positively affect cardiovascular and bone health in postmenopausal women, emphasizing the importance of maintaining a healthy diet rich in vegetables and fermented dairy products. Given the challenges in obtaining all necessary nutrients solely through the diet, vitamin D and K supplements are recommended for postmenopausal women to promote healthy aging and well-being.
Collapse
Affiliation(s)
- Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Galya Bigman
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alice S. Ryan
- Baltimore Veterans Affairs Medical Center, Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Baltimore Geriatric Research, Education and Clinical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
39
|
Yang J, Han C, Ye J, Hu X, Wang R, Shen J, Li L, Hu G, Shi X, Jia Z, Qu X, Liu H, Zhang X, Wu Y. PM 2.5 exposure inhibits osteoblast differentiation by increasing the ubiquitination and degradation of Smad4. Toxicol Lett 2024; 398:127-139. [PMID: 38914176 DOI: 10.1016/j.toxlet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Increasing epidemiological evidence has shown that PM2.5 exposure is significantly associated with the occurrence of osteoporosis. It has been well demonstrated that PM2.5 exposure enhanced the differentiation and function of osteoclasts by indirectly causing chronic inflammation, while the mechanism in osteoblasts remains unclear. In our study, toxic effects were evaluated by direct exposure of 20-80 μg/ml PM2.5 to MC3T3-E1 cells and BMSCs. The results showed that PM2.5 exposure did not affect cell viability via proliferation and apoptosis, but significantly inhibited osteoblast differentiation in a dose-dependent manner. Osteogenic transcription factors Runx2 and Sp7 and other biomarkers Alp and Ocn decreased after PM2.5 exposure. RNA-seq revealed TGF-β signaling was involved in PM2.5 exposure inhibited osteoblast differentiation, which led to P-Smad1/5 and P-Smad2 reduction in the nucleus by increasing the ubiquitination and degradation of Smad4. At last, the inflammation response increased in MC3T3-E1 cells with PM2.5 exposure. Moreover, the mRNA levels of Mmp9 increased in bone marrow-derived macrophage cells treated with the conditional medium collected from MC3T3-E1 cells exposed to PM2.5. Overall, these results indicated that PM2.5 exposure inhibits osteoblast differentiation and concurrently increases the maturation of osteoclasts. Our study provides in-depth mechanistic insights into the direct impact of PM2.5 exposure on osteoblast, which would indicate the unrecognized role of PM2.5 on osteoporosis.
Collapse
Affiliation(s)
- Jiatao Yang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Chunqing Han
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Junxing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Xiping Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Ruijian Wang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Jin Shen
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Longfei Li
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Guoqin Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Qu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Huanliang Liu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
40
|
Muralidharan A, Gomez GA, Kesavan C, Pourteymoor S, Larkin D, Tambunan W, Sechriest VF, Mohan S. Sex-Specific Effects of THRβ Signaling on Metabolic Responses to High Fat Diet in Mice. Endocrinology 2024; 165:bqae075. [PMID: 38935021 PMCID: PMC11237353 DOI: 10.1210/endocr/bqae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Thyroid hormone (TH) plays a crucial role in regulating the functions of both bone and adipose tissue. Given that TH exerts its cholesterol-lowering effects in hepatic tissue through the TH receptor-β (TRβ), we hypothesized that TRβ agonist therapy using MGL3196 (MGL) would be effective in treating increased adiposity and bone loss in response to a 12-week high-fat diet (HFD) in adult C57BL/6J mice. Transcriptional and serum profiling revealed that HFD-induced leptin promoted weight gain in both males and females, but MGL only suppressed leptin induction and weight gain in males. In vitro studies suggest that estrogen suppresses MGL activity in adipocytes, indicating that estrogen might interfere with MGL-TRβ function. Compared to systemic adiposity, HFD reduced bone mass in male but not female mice. Paradoxically, MGL treatment reversed macroscopic bone mineral density loss in appendicular bones, but micro-CT revealed that MGL exacerbated HFD-induced trabecular bone loss, and reduced bone strength. In studies on the mechanisms for HFD effects on bone, we found that HFD induced Rankl expression in male femurs that was blocked by MGL. By ex vivo assays, we found that RANKL indirectly represses osteoblast lineage allocation of osteoprogenitors by induction of inflammatory cytokines TNFα, IL-1β, and CCL2. Finally, we found that MGL functions in both systemic adiposity and bone by nongenomic TRβ signaling, as HFD-mediated phenotypes were not rescued in TRβ147F knockout mice with normal genomic but defective nongenomic TRβ signaling. Our findings demonstrate that the negative effects of HFD on body fat and bone phenotypes are impacted by MGL in a gender-specific manner.
Collapse
Affiliation(s)
- Aruljothi Muralidharan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Gustavo A Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Destiney Larkin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - William Tambunan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - V Franklin Sechriest
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
41
|
Ko K, Choi S, Jo M, Kim C, Boonpraman N, Youm J, Yi SS. NOX4 and its association with myeloperoxidase and osteopontin in regulating endochondral ossification. J Vet Sci 2024; 25:e49. [PMID: 38910308 PMCID: PMC11291435 DOI: 10.4142/jvs.24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
IMPORTANCE Endochondral ossification plays an important role in skeletal development. Recent studies have suggested a link between increased intracellular reactive oxygen species (ROS) and skeletal disorders. Moreover, previous studies have revealed that increasing the levels of myeloperoxidase (MPO) and osteopontin (OPN) while inhibiting NADPH oxidase 4 (NOX4) can enhance bone growth. This investigation provides further evidence by showing a direct link between NOX4 and MPO, OPN in bone function. OBJECTIVE This study investigates NOX4, an enzyme producing hydrogen peroxide, in endochondral ossification and bone remodeling. NOX4's role in osteoblast formation and osteogenic signaling pathways is explored. METHODS Using NOX4-deficient (NOX4-/-) and ovariectomized (OVX) mice, we identify NOX4's potential mediators in bone maturation. RESULTS NOX4-/- mice displayed significant differences in bone mass and structure. Compared to the normal Control and OVX groups. Hematoxylin and eosin staining showed NOX4-/- mice had the highest trabecular bone volume, while OVX had the lowest. Proteomic analysis revealed significantly elevated MPO and OPN levels in bone marrow-derived cells in NOX4-/- mice. Immunohistochemistry confirmed increased MPO, OPN, and collagen II (COLII) near the epiphyseal plate. Collagen and chondrogenesis analysis supported enhanced bone development in NOX4-/- mice. CONCLUSIONS AND RELEVANCE Our results emphasize NOX4's significance in bone morphology, mesenchymal stem cell proteomics, immunohistochemistry, collagen levels, and chondrogenesis. NOX4 deficiency enhances bone development and endochondral ossification, potentially through increased MPO, OPN, and COLII expression. These findings suggest therapeutic implications for skeletal disorders.
Collapse
Affiliation(s)
- Kayoung Ko
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Seohee Choi
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Miri Jo
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Chaeyoung Kim
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Napissara Boonpraman
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Jihyun Youm
- Department of Gerontology, Graduate School of East-West Medical Science, Kyunghee University, Yongin 17104, Korea
| | - Sun Shin Yi
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- iConnectome Co., LTD, Cheonan 31168, Korea.
| |
Collapse
|
42
|
Wu YZ, Chen WY, Zeng Y, Ji QL, Yang Y, Guo XL, Wang X. Inflammation-Responsive Mesoporous Silica Nanoparticles with Synergistic Anti-inflammatory and Joint Protection Effects for Rheumatoid Arthritis Treatment. Pharm Res 2024; 41:1493-1505. [PMID: 38918308 DOI: 10.1007/s11095-024-03732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Ye-Zhen Wu
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Wen-Yu Chen
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Ying Zeng
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Qi-Lin Ji
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Yue Yang
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Xu-Liang Guo
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
| | - Xiu Wang
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
| |
Collapse
|
43
|
Ambroszkiewicz J, Gajewska J, Szamotulska K, Rowicka G, Klemarczyk W, Strucińska M, Chełchowska M. Comparative Analysis of Myokines and Bone Metabolism Markers in Prepubertal Vegetarian and Omnivorous Children. Nutrients 2024; 16:2009. [PMID: 38999757 PMCID: PMC11243178 DOI: 10.3390/nu16132009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The role of bone and muscle as endocrine organs may be important contributing factors for children's growth and development. Myokines, secreted by muscle cells, play a role in regulating bone metabolism, either directly or indirectly. Conversely, markers of bone metabolism, reflecting the balance between bone formation and bone resorption, can also influence myokine secretion. This study investigated a panel of serum myokines and their relationships with bone metabolism markers in children following vegetarian and omnivorous diets. A cohort of sixty-eight healthy prepubertal children, comprising 44 vegetarians and 24 omnivores, participated in this study. Anthropometric measurements, dietary assessments, and biochemical analyses were conducted. To evaluate the serum concentrations of bone markers and myokines, an enzyme-linked immunosorbent assay (ELISA) was used. The studied children did not differ regarding their serum myokine levels, except for a higher concentration of decorin in the vegetarian group (p = 0.020). The vegetarians demonstrated distinct pattern of bone metabolism markers compared to the omnivores, with lower levels of N-terminal propeptide of type I procollagen (P1NP) (p = 0.001) and elevated levels of C-terminal telopeptide of type I collagen (CTX-I) (p = 0.018). Consequently, the P1NP/CTX-I ratio was significantly decreased in the vegetarians. The children following a vegetarian diet showed impaired bone metabolism with reduced bone formation and increased bone resorption. Higher levels of decorin, a myokine involved in collagen fibrillogenesis and essential for tissue structure and function, may suggest a potential compensatory mechanism contributing to maintaining bone homeostasis in vegetarians. The observed significant positive correlations between myostatin and bone metabolism markers, including P1NP and soluble receptor activator of nuclear factor kappa-B ligand (sRANKL), suggest an interplay between muscle and bone metabolism, potentially through the RANK/RANKL/OPG signaling pathway.
Collapse
Affiliation(s)
- Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (J.G.); (M.C.)
| | - Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (J.G.); (M.C.)
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland;
| | - Grażyna Rowicka
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (G.R.); (W.K.); (M.S.)
| | - Witold Klemarczyk
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (G.R.); (W.K.); (M.S.)
| | - Małgorzata Strucińska
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (G.R.); (W.K.); (M.S.)
| | - Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (J.G.); (M.C.)
| |
Collapse
|
44
|
Samargandi R, Bafail A, Le Nail LR, Berhouet J. Comprehensive Insights into Chondroblastoma Metastasis: Metastatic Patterns and Therapeutic Approaches. Cancers (Basel) 2024; 16:2283. [PMID: 38927987 PMCID: PMC11201376 DOI: 10.3390/cancers16122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Chondroblastoma metastasis, though rare, represents a clinically significant and notably important aspect of bone tumors. Understanding its epidemiological characteristics, pathological features, and treatment modalities, despite its infrequency, is imperative for comprehensive patient management. This review aims to elucidate the epidemiology, molecular mechanisms, diagnostic challenges, and therapeutic strategies associated with chondroblastoma metastasis. The patterns, prognostic factors, and treatment outcomes were explored through an analysis of case studies and clinical reports. Notably, we highlighted emerging therapeutic perspectives aimed at improving patient outcomes. To the best of our knowledge, there has been no previous review addressing these matters cumulatively, highlighting a significant gap in the existing scholarly literature. By shedding light on the nuances of chondroblastoma metastasis, this review contributes to the advancement of knowledge in this field and informs clinical decision-making for improved patient care.
Collapse
Affiliation(s)
- Ramy Samargandi
- Service de Chirurgie Orthopédique et Traumatologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, 1C Avenue de la République, 37170 Chambray-les-Tours, France; (L.-R.L.N.); (J.B.)
- Department of Orthopedic Surgery, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Abrar Bafail
- Service de Médecine Nucléaire, Centre Hospitalier Régional Universitaire (CHRU) de Tours, 1C Avenue de la République, 37170 Chambray-les-Tours, France;
| | - Louis-Romée Le Nail
- Service de Chirurgie Orthopédique et Traumatologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, 1C Avenue de la République, 37170 Chambray-les-Tours, France; (L.-R.L.N.); (J.B.)
| | - Julien Berhouet
- Service de Chirurgie Orthopédique et Traumatologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, 1C Avenue de la République, 37170 Chambray-les-Tours, France; (L.-R.L.N.); (J.B.)
| |
Collapse
|
45
|
Ohta R, Tanigawa Y, Suzuki Y, Kellis M, Morishita S. A polygenic score method boosted by non-additive models. Nat Commun 2024; 15:4433. [PMID: 38811555 PMCID: PMC11522481 DOI: 10.1038/s41467-024-48654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Dominance heritability in complex traits has received increasing recognition. However, most polygenic score (PGS) approaches do not incorporate non-additive effects. Here, we present GenoBoost, a flexible PGS modeling framework capable of considering both additive and non-additive effects, specifically focusing on genetic dominance. Building on statistical boosting theory, we derive provably optimal GenoBoost scores and provide its efficient implementation for analyzing large-scale cohorts. We benchmark it against seven commonly used PGS methods and demonstrate its competitive predictive performance. GenoBoost is ranked the best for four traits and second-best for three traits among twelve tested disease outcomes in UK Biobank. We reveal that GenoBoost improves prediction for autoimmune diseases by incorporating non-additive effects localized in the MHC locus and, more broadly, works best in less polygenic traits. We further demonstrate that GenoBoost can infer the mode of genetic inheritance without requiring prior knowledge. For example, GenoBoost finds non-zero genetic dominance effects for 602 of 900 selected genetic variants, resulting in 2.5% improvements in predicting psoriasis cases. Lastly, we show that GenoBoost can prioritize genetic loci with genetic dominance not previously reported in the GWAS catalog. Our results highlight the increased accuracy and biological insights from incorporating non-additive effects in PGS models.
Collapse
Affiliation(s)
- Rikifumi Ohta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
46
|
Sánchez JF, Ramtani S, Boucetta A, Velasco MA, Vaca-González JJ, Duque-Daza CA, Garzón-Alvarado DA. Tumor growth for remodeling process: A 2D approach. J Theor Biol 2024; 585:111781. [PMID: 38432504 DOI: 10.1016/j.jtbi.2024.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
This paper aims to present a comprehensive framework for coupling tumor-bone remodeling processes in a 2-dimensional geometry. This is achieved by introducing a bio-inspired damage that represents the growing tumor, which subsequently affects the main populations involved in the remodeling process, namely, osteoclasts, osteoblasts, and bone tissue. The model is constructed using a set of differential equations based on the Komarova's and Ayati's models, modified to incorporate the bio-inspired damage that may result in tumor mass formation. Three distinct models were developed. The first two models are based on the Komarova's governing equations, with one demonstrating an osteolytic behavior and the second one an osteoblastic model. The third model is a variation of Ayati's model, where the bio-inspired damage is induced through the paracrine and autocrine parameters, exhibiting an osteolytic behavior. The obtained results are consistent with existing literature, leading us to believe that our in-silico experiments will serve as a cornerstone for paving the way towards targeted interventions and personalized treatment strategies, ultimately improving the quality of life for those affected by these conditions.
Collapse
Affiliation(s)
| | - Salah Ramtani
- Laboratoire CSPBAT, equipe LBPS, CNRS (UMR 7244), Universit e Sorbonne Paris Nord, France.
| | - Abdelkader Boucetta
- Laboratoire CSPBAT, equipe LBPS, CNRS (UMR 7244), Universit e Sorbonne Paris Nord, France
| | | | - Juan Jairo Vaca-González
- Escuela de Pregrado - Direccion Académica, Universidad Nacional de Colombia, Sede de La Paz, Colombia.
| | | | | |
Collapse
|
47
|
Chen X, Li C, Zhao J, Liu Y, Zhao Z, Wang Z, Li Y, Wang Y, Guo L, Li L, Chen C, Bai B, Wang S. mPPTMP195 nanoparticles enhance fracture recovery through HDAC4 nuclear translocation inhibition. J Nanobiotechnology 2024; 22:261. [PMID: 38760744 PMCID: PMC11100250 DOI: 10.1186/s12951-024-02436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024] Open
Abstract
Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.
Collapse
Affiliation(s)
- Xinping Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chengwei Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiyu Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yunxiang Liu
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhizhong Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhenyu Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yue Li
- Department of Biochemistry, Shanxi Medical University, Basic Medical College, Taiyuan, 030001, PR China
| | - Yunfei Wang
- Department of Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, 030032, PR China
| | - Lixia Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lu Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
48
|
Chang X, Deng J, Zhou F, Geng Z, Li X, Wang S. D-alanine suppressed osteoclastogenesis derived from bone marrow macrophages and downregulated ERK/p38 signalling pathways. Arch Oral Biol 2024; 161:105912. [PMID: 38382164 DOI: 10.1016/j.archoralbio.2024.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVES D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts. DESIGN Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA). RESULTS The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention. CONCLUSION D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.
Collapse
Affiliation(s)
- Xiaochi Chang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China; Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Deng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China
| | - Fengyi Zhou
- School of Stomatology of Qingdao University, Qingdao, China; Department of Stomatology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Zhihao Geng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China; Institute of Stomatological Research, Shenzhen University, Shenzhen, China.
| | - Shuai Wang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China.
| |
Collapse
|
49
|
Wong SK. Glycogen Synthase Kinase-3 Beta (GSK3β) as a Potential Drug Target in Regulating Osteoclastogenesis: An Updated Review on Current Evidence. Biomolecules 2024; 14:502. [PMID: 38672518 PMCID: PMC11047881 DOI: 10.3390/biom14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Glycogen synthase kinase 3-beta (GSK3β) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3β in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3β enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3β is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (β)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3β has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3β may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3β inhibitors as bone-protecting agents. Some studies demonstrated that GSK3β inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3β silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3β on osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
50
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|