1
|
Rana A, Katiyar A, Arun A, Berrios JN, Kumar G. Natural sulfur compounds in mental health and neurological disorders: insights from observational and intervention studies. Front Nutr 2025; 12:1534000. [PMID: 40271431 PMCID: PMC12014460 DOI: 10.3389/fnut.2025.1534000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Over the years, the global disease burden of neurological disorders (NDs) and mental disorders (MDs) has significantly increased, making them one of the most critical concerns and challenges to human health. In pursuit of novel therapies against MD and ND, there has been a growing focus on nutrition and health. Dietary sulfur, primarily derived from various natural sources, plays a crucial role in numerous physiological processes, including brain function. This review offers an overview of the chemical composition of several natural sources of the sulfur-rich substances such as isothiocyanates, sulforaphane, glutathione, taurine, sulfated polysaccharides, allyl sulfides, and sulfur-containing amino acids, all of which have neuroprotective properties. A multitude of studies have documented that consuming foods that are high in sulfur enhances brain function by improving cognitive parameters and reduces the severity of neuropathology by exhibiting antioxidant and anti-inflammatory properties at the molecular level. In addition, the growing role of natural sulfur compounds in repairing endothelial dysfunction, compromising blood-brain barrier and improving cerebral blood flow, are documented here. Furthermore, this review covers the encouraging results of supplementing sulfur-rich diets in many animal models and clinical investigations, along with their molecular targets in MD, such as schizophrenia, depression, anxiety, bipolar disorder, and autism spectrum disorder, and ND, such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS). The prospects of natural sulfur compounds show great promise as they have potential applications in nutraceuticals, medicines, and functional foods to enhance brain function and prevent diseases. However, additional research is required to clarify the mechanisms by which it works, enhance its bioavailability, and evaluate its long-term safety for broad use.
Collapse
Affiliation(s)
- Apeksha Rana
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| | - Ashutosh Katiyar
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| | - Alok Arun
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR, United States
- Department of Biological Sciences, California State University, Turlock, CA, United States
| | - Juan Negron Berrios
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR, United States
| | - Gaurav Kumar
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| |
Collapse
|
2
|
Fahmy MI, Sadek MA, Abdou K, El-Dessouki AM, El-Shiekh RA, Khalaf SS. Orientin: a comprehensive review of a promising bioactive flavonoid. Inflammopharmacology 2025; 33:1713-1728. [PMID: 40056319 PMCID: PMC11991976 DOI: 10.1007/s10787-025-01690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/10/2025]
Abstract
Medicinal herbs continue to play an important part in modern drugs and healthcare because customers think that most of them have fewer or milder side effects than traditional modern medicines. Bioactive compounds are typically isolated from plants before being used as a source of therapeutic medicines. As a result, extracting bioactive compounds from medicinal plants is an important step in developing plant-based medications. Orientin is a flavonoid C-glycoside found in many plants, is frequently used in bioactivity studies due to its numerous beneficial properties, which include antioxidants, antiaging, anti-inflammation, vasodilation and cardioprotective, neuroprotective, antidiabetic, hepatoprotective, and adaptogenic effects. In this review, the comprehensive search for the health benefits of orientin was traced. The findings reflected that orientin could be considered one of the important natural candidates as a potential nutraceutical. This underscores its promising attributes and potential applications in health and wellness. Further research may be guaranteed to fully elucidate its benefits and mechanisms of action.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kareem Abdou
- College of Pharmacy, Al-Ain University, Abu Dhabi, United Arab Emirates
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
3
|
Fatima M, Al-Keridis LA, Adnan M, Alshammari N, Sulieman AME, Khan MR. Jasminum humile extract mitigates carrageenan-induced paw oedema in rats by modulating inflammatory and antioxidant signalling pathways. Inflammopharmacology 2025; 33:1907-1920. [PMID: 40042724 DOI: 10.1007/s10787-025-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Jasminum humile is widely used in traditional medicines to treat hard lumps, mouth inflammation, ringworms, and other infections. Leaf decoction of the plant is known to be effective in treating various skin conditions. In addition, root juice is traditionally utilized as a remedy for ringworm infections. Studies have reported that J. humile contains various antioxidant metabolites with analgesic and anti-inflammatory properties. In this study, J. humile chloroform extract (JHC) was investigated for anti-inflammatory effects against carrageenan-induced paw oedema in rat models. METHODS High-performance liquid chromatography was used to examine phenolic compounds present in JHC. The in-vivo anti-inflammatory activities were investigated using carrageenan-induced paw oedema rat models, while indomethacin was referred to as positive control. Therapeutic properties of JHC were examined by assessing paw volumes, motility score, and inflammatory proteins in serum. The anti-inflammatory nature of JHC was further investigated by biochemical and hematological profiles along with genetic expression of inflammatory and antioxidant genes through qRT-PCR analysis. RESULTS Indomethacin at 10 mg/kg and JHC at 100, 200, and 300 mg/kg doses decreased the concentration of C-reactive protein (CRP) while upregulating the concentration of albumin and myeloperoxidase (MPO). Moreover, JHC administration reduced the expression levels of inflammatory markers, cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS) compared to the Carr-treated control. However, a significant rise was induced in nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1) levels after JHC treatment as compared to Carr-treated rats. CONCLUSION These results showed significant anti-inflammatory potential of J. humile by increasing the activity levels of enzymatic antioxidants and lowering inflammatory markers. These results confirm the beneficial use of natural plants in the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Mehreen Fatima
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, P.O. Box 45320, Islamabad, Pakistan.
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | | | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, P.O. Box 45320, Islamabad, Pakistan
| |
Collapse
|
4
|
Hassanein EHM, Alotaibi MF, Alruhaimi RS, Abd El-Ghafar OAM, Mohammad MK, Atwa AM, Mahmoud AM. Diallyl disulfide prevents cadmium-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling and upregulating SIRT1 in rats. J Trace Elem Med Biol 2024; 86:127560. [PMID: 39536426 DOI: 10.1016/j.jtemb.2024.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cadmium (Cd) is a heavy metal environmental pollutant that can cause serious health problems. Cd can cause structural changes in the testes and exposure to this heavy metal is associated with the loss of sperms and male infertility. The role of oxidative stress and inflammation in Cd toxicity has been acknowledged. Diallyl disulfide (DADS), an organo-sulfur compound found in garlic, possesses antioxidant, anti-inflammatory, and cytoprotective effects. This study evaluated the protective effect of DADS against Cd reproductive toxicity in male rats, emphasizing the involvement of redox imbalance, TLR-4/NF-κB and JAK1/STAT3 signaling, and SIRT1. METHODS DADS (10 mg/kg body weight) was administered orally to rats for 14 days and a single dose of Cd (1.2 mg/kg) was injected intraperitoneally on day 7. Blood and samples from the testes were collected for analysis. RESULTS Cd caused testicular injury manifested by multiple histopathological changes and loss of sperms from seminiferous tubules. Circulating levels of gonadotropins and testosterone were decreased in Cd-administered rats. DADS prevented Cd-induced testicular injury and ameliorated serum levels of gonadotropins and testosterone. Cd increased testicular reactive oxygen species (ROS) and malondialdehyde (MDA) and upregulated TLR-4, NF-κB, pro-inflammatory cytokines, JAK1 and STAT3 phosphorylation, Bax and caspase-3, while decreased antioxidants and Bcl-2. DADS effectively decreased ROS and MDA, downregulated TLR-4, NF-κB, JAK1, STAT3, pro-inflammatory cytokines and pro-apoptosis markers in Cd-administered rats. In addition, DADS enhanced antioxidants, Bcl-2, SIRT1 and cytoglobin in the testis of Cd-administered rats. CONCLUSION DADS prevents Cd-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling, and upregulating SIRT1 and antioxidants.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| | - Mostafa K Mohammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Assiut, New Nasser City, West of Assiut, Assiut 71523, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
5
|
Mhatre S, Anjali R, Sahai P, Auden J, Singh S, Njie Mbye YF, Ohia SE, Opere CA. Glutathione Modulates Hydrogen Sulfide Release and the Ocular Hypotensive Action of Diallyl Polysulfide Compounds. Pharmaceuticals (Basel) 2024; 17:1408. [PMID: 39459046 PMCID: PMC11510538 DOI: 10.3390/ph17101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is an endogenous transmitter with the potential to regulate aqueous humor dynamics and protect retinal neurons from degeneration. The aim of the present study was two-fold: (a) to evaluate the release of H2S from two polysulfides, diallyl disulfide (DADS), and diallyl trisulfide (DATS); and (b) to investigate their ocular hypotensive actions in normotensive male and female rabbits in the presence and absence of GSH. MATERIALS AND METHODS H2S was quantified hourly for up to 6 h using a H2S-Biosensor (World Precision Instruments, Sarasota, Fl). Intraocular pressure (IOP) was assessed in normotensive New Zealand Albino rabbits using a pneumotonometer (model 30 classic; Reichert Ophthalmic Instruments, Depew, NY, USA). RESULTS In the presence of GSH, there was an increase in the in vitro release of H2S produced by DADS and DATS. Both DADS and DATS also caused a dose-dependent reduction in IOP in male and female rabbits, in both treated and untreated eyes. For instance, in male animals, the presence of GSH (3% and 5%) significantly (p < 0.05, n = 5) enhanced the ocular hypotensive action of DADS (2%) and DATS (2%) from 14.02 ± 2.89% to 18.67 ± 5.6% and from 16.22 ± 3.48 to 23.62 ± 5.79%, respectively. CONCLUSIONS GSH enhanced both H2S release and ocular hypotensive action of the polysulfides in a manner that was dependent on the number of sulfur atoms present in each polysulfide. Furthermore, female animals were less sensitive to the IOP-lowering action of the polysulfides, when compared to their male counterparts.
Collapse
Affiliation(s)
- Susmit Mhatre
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA or (S.M.); or (R.A.); (P.S.); (J.A.); (S.S.)
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rai Anjali
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA or (S.M.); or (R.A.); (P.S.); (J.A.); (S.S.)
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pulkit Sahai
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA or (S.M.); or (R.A.); (P.S.); (J.A.); (S.S.)
| | - John Auden
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA or (S.M.); or (R.A.); (P.S.); (J.A.); (S.S.)
| | - Somnath Singh
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA or (S.M.); or (R.A.); (P.S.); (J.A.); (S.S.)
| | - Ya Fatou Njie Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (Y.F.N.M.); (S.E.O.)
| | - Sunny E. Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA; (Y.F.N.M.); (S.E.O.)
| | - Catherine A. Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA or (S.M.); or (R.A.); (P.S.); (J.A.); (S.S.)
| |
Collapse
|
6
|
Maciel JB, Liberato HR, da Silva AW, da Silva JPV, das Chagas L Pinto F, de Lima Rebouças E, da Silva FSH, Ferreira MKA, Marinho MM, Marinho ES, Pessoa ODL, de Barros Silva PG, Coelho-de-Souza AN, Guedes MIF, de Castro Gomes AF, de Menezes JESA, Dos Santos HS. Withanicandrin Isolated from Datura Ferox Promotes Antinociception by Modulating the Asics and TRPS Channels and Anti-Inflammation in Adult Zebrafish. Chem Biodivers 2024; 21:e202400538. [PMID: 38639566 DOI: 10.1002/cbdv.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i. p.) with withanicandrin (4; 20 and 40 mg/kg; 20 μL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5 % and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).
Collapse
Affiliation(s)
- Jéssica Bezerra Maciel
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Hortência Ribeiro Liberato
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Antônio Wlisses da Silva
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - João Pedro Vieira da Silva
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Francisco das Chagas L Pinto
- Laboratório de Análise Fitoquímica de Plantas Medicinais II -, LAFIPLAM II Departamento de Química Orgânica e Inorgânica -, DQOI, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Emanuela de Lima Rebouças
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Sydney Henrique da Silva
- Laboratório de Fisiologia Experimental -, LAFIEX, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Emmanuel Silva Marinho
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Grupo de Química Teórica e Eletroquímica -, GQTE, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Laboratório de Análise Fitoquímica de Plantas Medicinais II -, LAFIPLAM II Departamento de Química Orgânica e Inorgânica -, DQOI, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Goberlânio de Barros Silva
- Laboratório de Patologia,Programa de Pós-Graduação em Odontologia, Ciências Odontológicas, Centro Universitário Unichristus, Fortaleza, Ceará, Brazil
| | - Andrelina Noronha Coelho-de-Souza
- Laboratório de Fisiologia Experimental -, LAFIEX, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Maria Izabel Florindo Guedes
- Laboratório de Biotecnologia e Biologia Molecular -, LBBM, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Jane Eire Silva Alencar de Menezes
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Curso de Química, Universidade Estadual Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
7
|
Bara-Ledesma N, Jimenez-Esteban J, Fabregate M, Fabregate-Fuente R, Cymberknop LJ, Castillo-Martinez P, Navarro-Fayos MT, Gomez del Olmo V, Saban-Ruiz J. Effect of Encapsulated Purple Garlic Oil on Microvascular Function and the Components of Metabolic Syndrome: A Randomized Placebo-Controlled Study-The ENDOTALLIUM Study. Nutrients 2024; 16:1755. [PMID: 38892688 PMCID: PMC11175032 DOI: 10.3390/nu16111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial dysfunction (ED) is associated with progressive changes contributing to clinical complications related to macro- and microvascular diseases. Garlic (Allium sativum L.) and its organosulfur components have been related to beneficial cardiovascular effects and could improve endothelial function. The ENDOTALLIUM Study aimed to evaluate the effect of the regular consumption of encapsulated purple garlic oil on microvascular function, endothelial-related biomarkers, and the components of metabolic syndrome (MetS) in untreated subjects with cardiometabolic alterations. Fifty-two individuals with at least one MetS component were randomized (1:1) in a single-center, single-blind, placebo-controlled, parallel-group study. The participants received encapsulated purple garlic oil (n = 27) or placebo (n = 25) for five weeks. Skin microvascular peak flow during post-occlusive reactive hyperemia significantly increased in the purple garlic oil group compared to the placebo group (between-group difference [95%CI]: 15.4 [1.5 to 29.4] PU; p = 0.031). Likewise, hs-CRP levels decreased in the purple garlic group compared to the control group (-1.3 [-2.5 to -0.0] mg/L; p = 0.049). Furthermore, we observed a significant reduction in the mean number of MetS components in the purple garlic group after five weeks (1.7 ± 0.9 vs. 1.3 ± 1.1, p = 0.021). In summary, regular consumption of encapsulated purple garlic oil significantly improved microvascular function, subclinical inflammatory status, and the overall MetS profile in a population with cardiometabolic alterations.
Collapse
Affiliation(s)
- Nuria Bara-Ledesma
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - Judith Jimenez-Esteban
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Martin Fabregate
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Rosa Fabregate-Fuente
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Leandro Javier Cymberknop
- Group of Research and Development in Bioengineering (GIBIO), Universidad Tecnológica Nacional, Buenos Aires C1179AAQ, Argentina
| | | | | | - Vicente Gomez del Olmo
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Jose Saban-Ruiz
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| |
Collapse
|
8
|
Kaur B, Kumar N, Kumari L, Gupta AP, Sharma R, Chopra K, Saxena S. In-vitro antioxidant and anti-inflammatory potential along with p.o. pharmacokinetic profile of key bioactive phytocompounds of Snow Mountain Garlic: a comparative analysis vis-à-vis normal garlic. Inflammopharmacology 2024; 32:1871-1886. [PMID: 38564091 DOI: 10.1007/s10787-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/03/2023] [Indexed: 04/04/2024]
Abstract
Snow mountain garlic (SMG) is a trans-Himalayan medicinal plant used in the traditional medicine system for several ailments, including inflammatory arthritis. Research studies are insufficient to validate its folk medicinal applications. In the present study, the comparative abundance of its key bioactive phytocompounds, viz., S-allyl-L-cysteine (SAC), alliin, and S-methyl-L-cysteine (SMC) against normal garlic were assessed using the LC-MS/MS-MRM method. In addition, the study also explored the antioxidant and anti-inflammatory potency of crude extract of SMG and purified signature phytocompounds (i.e., SMC, SAC, and alliin) in comparison with normal garlic and dexamethasone in LPS-stimulated RAW264.7 macrophage cells. The LC-MS/MS-MRM study revealed significant differences among SMG and normal garlic, viz., alliin 22.8-fold higher in SMG, and SMC could be detected only in SMG. In the bioassays, SMG extract and purified signature phytocompounds significantly downregulated oxidative damage in activated macrophages, boosting endogenous antioxidants' activity. SMG extract-treated macrophages significantly suppressed NF-κB expression and related inflammatory indicators such as cytokines, COX-2, iNOS, and NO. Notably, the observed anti-inflammatory and antioxidant bioactivities of SMG extract were comparable to signature phytocompounds and dexamethasone. In addition, SAC being uniformly found in SMG and normal garlic, its comparative pharmacokinetics was studied to validate the pharmacodynamic superiority of SMG over normal garlic. Significantly higher plasma concentrations (Cmax), half-life (t1/2), and area under curve (AUC) of SAC following SMG extract administration than normal garlic validated the proposed hypothesis. Thus, the abundance of bioactive phytocompounds and their better pharmacokinetics in SMG extract might be underlying its medicinal merits over normal garlic.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Nitish Kumar
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
| | - Laxmi Kumari
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Ajai P Gupta
- Director, Quality Assurance, Food Safety and Standards Authority of India, Ministry of Health and Family Welfare, New Delhi, 110002, India
| | - Rajni Sharma
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
| | - Kanwaljit Chopra
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Shweta Saxena
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India.
| |
Collapse
|
9
|
Stavrakeva K, Metodieva K, Benina M, Bivolarska A, Dimov I, Choneva M, Kokova V, Alseekh S, Ivanova V, Vatov E, Gechev T, Mladenova T, Mladenov R, Todorov K, Stoyanov P, Gyuzeleva D, Popova M, Apostolova E. Metabolic Composition of Methanolic Extract of the Balkan Endemic Species Micromeria frivaldszkyana (Degen) Velen and Its Anti-Inflammatory Effect on Male Wistar Rats. Int J Mol Sci 2024; 25:5396. [PMID: 38791434 PMCID: PMC11121417 DOI: 10.3390/ijms25105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Extracts from medicinal plants are widely used in the treatment and prevention of different diseases. Micromeria frivaldszkyana is a Balkan endemic species with reported antioxidant and antimicrobial characteristics; however, its phytochemical composition is not well defined. Here, we examined the metabolome of M. frivaldszkyana by chromatography-mass spectrometry (GC-MS), ultra-performance liquid chromatography-mass spectrometry (UPLC-MS-MS), and inductively coupled plasma mass spectrometry (ICP-MS). Amino acids, organic acids, sugars, and sugar alcohols were the primary metabolites with the highest levels in the plant extract. Detailed analysis of the sugar content identified high levels of sucrose, glucose, mannose, and fructose. Lipids are primary plant metabolites, and the analysis revealed triacylglycerols as the most abundant lipid group. Potassium (K), magnesium (Mg), zinc (Zn), and calcium (Ca) were the elements with the highest content. The results showed linarin, 3-caffeoil-quinic acid, and rosmarinic acid, as well as a number of polyphenols, as the most abundant secondary metabolites. Among the flavonoids and polyphenols with a high presence were eupatorin, kaempferol, and apigenin-compounds widely known for their bioactive properties. Further, the acute toxicity and potential anti-inflammatory activity of the methanolic extract were evaluated in Wistar rats. No toxic effects were registered after a single oral application of the extract in doses of between 200 and 5000 mg/kg bw. A fourteen-day pre-treatment with methanolic extract of M. frivaldszkyana in doses of 250, 400, and 500 mg/kg bw induced anti-inflammatory activity in the 1st, 2nd, and 3rd hours after carrageenan injection in a model of rat paw edema. This effect was also present in the 4th hour only in the group treated with a dose of 500 mg/kg. In conclusion, M. frivaldszkyana extract is particularly rich in linarin, rosmarinic acid, and flavonoids (eupatorin, kaempferol, and apigenin). Its methanolic extract induced no toxicity in male Wistar rats after oral application in doses of up to 5000 mg/kg bw. Additionally, treatment with the methanolic extract for 14 days revealed anti-inflammatory potential in a model of rat paw edema on the 1st, 2nd, and 3rd hours after the carrageenan injection. These results show the anti-inflammatory potential of the plant, which might be considered for further exploration and eventual application as a phytotherapeutic agent.
Collapse
Affiliation(s)
- Kristina Stavrakeva
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.S.); (V.K.)
| | - Kalina Metodieva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.M.); (A.B.); (I.D.); (M.C.)
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.S.); (V.K.)
| | - Saleh Alseekh
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
- Max Planck Institute of Molecular Plant Physiology, 1 Am Muehlenberg, 14476 Potsdam, Germany
| | - Valentina Ivanova
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Emil Vatov
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14, Sveti Knyaz Boris I Pokrastitel, Str., 4023 Plovdiv, Bulgaria; (M.B.); (S.A.); (V.I.); (E.V.); (T.G.)
| | - Tsvetelina Mladenova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
| | - Rumen Mladenov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Krasimir Todorov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
| | - Plamen Stoyanov
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Donika Gyuzeleva
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (T.M.); (R.M.); (K.T.); (P.S.); (D.G.)
| | - Mihaela Popova
- Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria;
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria; (K.S.); (V.K.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
10
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Guenther KG, Xu Z, Romero J, Hillard CJ, Mackie K, Hohmann AG. Conditional deletion of CB2 cannabinoid receptors from peripheral sensory neurons eliminates CB2-mediated antinociceptive efficacy in a mouse model of carrageenan-induced inflammatory pain. Neuropharmacology 2023; 237:109601. [PMID: 37286073 PMCID: PMC10409300 DOI: 10.1016/j.neuropharm.2023.109601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
CB2 cannabinoid receptor agonists suppress pathological pain in animal models and lack unwanted side effects commonly associated with direct activation of CB1 receptors. However, the types of pain most responsive to CB2 agonists are incompletely understood and cell types which underlie CB2-mediated therapeutic efficacy remain largely unknown. We previously reported that the CB2 receptor agonist LY2828360 reduced neuropathic nociception induced by toxic challenge with chemotherapeutic and anti-retroviral agents in mice. Whether these findings generalize to models of inflammatory pain is not known. Here we show that LY2828360 (10 mg/kg i.p.) reversed the maintenance of carrageenan-induced mechanical allodynia in female mice. Anti-allodynic efficacy was fully preserved in global CB1 knock out (KO) mice but absent in CB2 KO mice. The anti-allodynic efficacy of LY2828360 was absent in conditional KO (cKO) mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f) and preserved in cKO mice lacking CB2 receptors in microglia/macrophages expressing C-X3-C Motif Chemokine Receptor 1 (CX3CR1CRE/+; CB2f/f). Intraplantar administration of LY2828360 (30 μg i.pl.) reversed carrageenan-induced mechanical allodynia in CB2f/f but not AdvillinCRE/+; CB2f/f mice of both sexes. Thus, CB2 receptors in peripheral sensory neurons likely underlie the therapeutic effects of LY2828360 injection in the paw. Lastly, qRT-PCR analyses revealed that LY2828360 reduced carrageenan-induced increases in IL-1β and IL-10 mRNA in paw skin. Our results suggest that LY2828360 suppresses inflammatory nociception in mice through a neuronal CB2-dependent mechanism that requires peripheral sensory neuron CB2 receptors and suggest that the clinical applications of LY2828360 as an anti-hyperalgesic agent should be re-evaluated.
Collapse
Affiliation(s)
- Kelsey G Guenther
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Zhili Xu
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Med. Col. of Wisconsin, Milwaukee, WI, USA
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
12
|
Lukova P, Apostolova E, Baldzhieva A, Murdjeva M, Kokova V. Fucoidan from Ericaria crinita Alleviates Inflammation in Rat Paw Edema, Downregulates Pro-Inflammatory Cytokine Levels, and Shows Antioxidant Activity. Biomedicines 2023; 11:2511. [PMID: 37760952 PMCID: PMC10526391 DOI: 10.3390/biomedicines11092511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Fucoidans are sulfated polysaccharides detected mainly in the cell walls of brown seaweeds. Here, we examined the effects of single doses of fucoidan derived from Ericaria crinita (formerly Cystoseira crinita) on carrageenan-induced paw inflammation in rats. The serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment were also evaluated. Subchronic treatment with fucoidan from E. crinita attenuated the inflammation during the late phase of the degraded carrageenan-induced paw edema (3rd to 5th hour after carrageenan injection) with peak activity at the 3rd hour after the application. Both doses of fucoidan from E. crinita (25 and 50 mg/kg bw) significantly decreased the levels of all tested pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) in the serum of rats with a model of system inflammation but had no effect on the anti-inflammatory cytokine IL-10. The results showed that the repeated application of fucoidan has a more prominent effect on the levels of some pro-inflammatory cytokines in serum in comparison to a single dose of the sulfated polysaccharide. This reveals the potential of E. crinita fucoidan as an anti-inflammatory agent. Furthermore, E. crinita fucoidan exhibited in vitro antioxidant capacity, determined by 2,2-diphenyl-1-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays as follows: IC50 = 412 µg/mL and 118.72 μM Trolox equivalent/g, respectively.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
13
|
Zheng Y, Wang X, Pan Y, Shi X, Yang L, Lou Y. Orientin suppresses osteoclastogenesis and ameliorates ovariectomy-induced osteoporosis via suppressing ROS production. Food Sci Nutr 2023; 11:5582-5595. [PMID: 37701239 PMCID: PMC10494641 DOI: 10.1002/fsn3.3516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
The aberrant differentiation of osteoclasts is a key feature of the pathogenesis of osteoporosis, which has a devastating impact on human health. While the effects of Orientin (Ori) on osteoporosis, particularly on RANKL-stimulated osteoclast production and activation, remain still unclear, Ori has been found to display several biological activities, including antioxidant and anti-inflammatory. In this work, we investigated the possible pathways through which Ori suppressed RANKL-induced osteoclast development and showed for the first time that it does so. The macrophages from the bone marrow (BMMs) were cultivated and then treated with Ori after being stimulated with RANKL. Then, TRAP-positive multinucleated cells were counted, and F-actin ring analysis was used to assess Ori's impact on mature osteoclast development. In addition, dihydroethidium (DHE) staining was used to evaluate the impact of Ori on RANKL-induced reactive oxygen species (ROS). In addition, we performed western blotting and quantitative RT-PCR analysis to investigate probable causes of these downregulation effects. We discovered that Ori inhibits the creation of osteoclasts, the gene and protein expressions unique to osteoclasts, and the ROS production. By activating Nrf2 and other ROS-scavenging enzymes, Ori reduces intracellular ROS levels. The expression of the main transcription factor of osteoclast development, c-Fos, was downregulated together with NFATc1, CTSK, and NFATc2, thanks to Ori's inhibition of RANKL-induced NF-κB. Consistent with its in vitro antiosteoclastogenic action, Ori therapy in the ovariectomized (OVX) rat model was also able to restore bone mass and improve microarchitecture in the distal femurs. Together, our results demonstrate that Ori is a flavonoid molecule with therapeutic promise for bone illnesses associated with osteoclasts, such as osteoporosis.
Collapse
Affiliation(s)
- Yan Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
- Department of EndocrinologyAffiliated Yueqing HospitalWenzhouChina
| | - Xing Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Ya‐Jing Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiao‐Feng Shi
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Lei Yang
- Department of OrthopedicThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yong‐Liang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
14
|
Hijazy HHA, Dahran N, Althagafi HA, Alharthi F, Habotta OA, Oyouni AAA, Algahtani M, Theyab A, Al-Amer O, Lokman MS, Alsharif KF, Albrakati A, Amin HK, Dawood SM, Kassab RB, Ellethy RA. Thymoquinone counteracts oxidative and inflammatory machinery in carrageenan-induced murine paw edema model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16597-16611. [PMID: 36184707 DOI: 10.1007/s11356-022-23343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Thymoquinone (TQ) is an active constituent in Nigella sativa (black cumin) and is extensively reported for its distinguished antioxidant and anti-inflammatory bioactivities. Despite the local protective response of acute inflammation, it contributes to the development of various disease conditions such as cell death, organ damage, or carcinogenesis. Hence, in this study, the effects of orally administered TQ (50 mg/kg and 100 mg/kg) for 14 days against edema development, oxidative stress, and inflammation were investigated in paw edema induced by carrageenan in mice. Indomethacin (10 mg/kg) was used as a reference drug. The results revealed that TQ reduced the paw edema volume in a time-dependent manner, attenuated acetic acid-provoked writhing movements, and reduced xylene-triggered ear edema. Hematological findings revealed marked normalization of altered counts of WBCs, and platelets. Furthermore, paw tissue levels of malondialdehyde and nitric oxide showed marked decreases together with increases in nuclear factor erythroid 2-related factor 2, glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase after TQ administration. Additionally, TQ decreased pro-inflammatory mediators, such as interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6, monocyte chemoattractant protein-1, C-reactive protein, myeloperoxidase, and nuclear factor kappa-B in the inflamed paw tissue. Moreover, appreciable decreases were recorded in cyclooxygenase-2 and its product prostaglandin E2 and the immune reaction of tumor necrosis factor-alpha in TQ-treated mice. Histopathological findings further validated the potential antiedematous, anti-inflammatory power of TQ in inflamed tissues. Conclusively, the results encourage the potent application of TQ to subside acute inflammatory events because of its striking antioxidant and anti-inflammatory properties in inflamed paw tissue.
Collapse
Affiliation(s)
- Hayfa Hussin Ali Hijazy
- Department of Family Education, Faculty of Education, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Osama Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hatem K Amin
- Biochemistry Department, Faculty of Pharmacy, Galala University, El-Galala City, Egypt
| | - Shauq Mumtaz Dawood
- Department of Biochemistry, College of Science, Osmania University, 500007, Hyderabad, Telangana State, India
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| | - Rania A Ellethy
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| |
Collapse
|
15
|
Shoaib S, Ansari MA, Ghazwani M, Hani U, Jamous YF, Alali Z, Wahab S, Ahmad W, Weir SA, Alomary MN, Yusuf N, Islam N. Prospective Epigenetic Actions of Organo-Sulfur Compounds against Cancer: Perspectives and Molecular Mechanisms. Cancers (Basel) 2023; 15:cancers15030697. [PMID: 36765652 PMCID: PMC9913804 DOI: 10.3390/cancers15030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Major epigenetic alterations, such as chromatin modifications, DNA methylation, and miRNA regulation, have gained greater attention and play significant roles in oncogenesis, representing a new paradigm in our understanding of cancer susceptibility. These epigenetic changes, particularly aberrant promoter hypermethylation, abnormal histone acetylation, and miRNA dysregulation, represent a set of epigenetic patterns that contribute to inappropriate gene silencing at every stage of cancer progression. Notably, the cancer epigenome possesses various HDACs and DNMTs, which participate in the histone modifications and DNA methylation. As a result, there is an unmet need for developing the epigenetic inhibitors against HDACs and DNMTs for cancer therapy. To date, several epigenetically active synthetic inhibitors of DNA methyltransferases and histone deacetylases have been developed. However, a growing body of research reports that most of these synthetic inhibitors have significant side effects and a narrow window of specificity for cancer cells. Targeting tumor epigenetics with phytocompounds that have the capacity to modulate abnormal DNA methylation, histone acetylation, and miRNAs expression is one of the evolving strategies for cancer prevention. Encouragingly, there are many bioactive phytochemicals, including organo-sulfur compounds that have been shown to alter the expression of key tumor suppressor genes, oncogenes, and oncogenic miRNAs through modulation of DNA methylation and histones in cancer. In addition to vitamins and microelements, dietary phytochemicals such as sulforaphane, PEITC, BITC, DADS, and allicin are among a growing list of naturally occurring anticancer agents that have been studied as an alternative strategy for cancer treatment and prevention. Moreover, these bioactive organo-sulfur compounds, either alone or in combination with other standard cancer drugs or phytochemicals, showed promising results against many cancers. Here, we particularly summarize and focus on the impact of specific organo-sulfur compounds on DNA methylation and histone modifications through targeting the expression of different DNMTs and HDACs that are of particular interest in cancer therapy and prevention.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F. Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Zahraa Alali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Sydney A. Weir
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Correspondence: (M.N.A.); (N.I.)
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
- Correspondence: (M.N.A.); (N.I.)
| |
Collapse
|
16
|
Okasha H, Aboushousha T, Coimbra MA, Cardoso SM, Ghareeb MA. Metabolite Profiling of Alocasia gigantea Leaf Extract and Its Potential Anticancer Effect through Autophagy in Hepatocellular Carcinoma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238504. [PMID: 36500595 PMCID: PMC9740247 DOI: 10.3390/molecules27238504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a poor-prognosis type of cancer with high resistance to chemotherapy, making the search for safe drugs a mandatory issue. Plant-derived products have potential to reduce negative side effects of cancer treatments. In this work, ability of a defatted methanolic extract of Alocasia gigantea leaves to fight HCC was evaluated in an animal model. Overall, treatment of HCC-induced mice with the methanolic extract at 150 mg/kg body weight for four consecutive weeks caused induction of autophagy through silencing of the relative expression of autophagy suppressor (mTOR) and inducement of autophagy markers (AMPK, Beclin-1, and LC-3). Moreover, it improved preservation of the hepatic histological architecture of the animals, with minor hepatocytic changes but scattered foci of hepatocytic apoptosis. Chemical profiling of the methanolic extract via ultra-high-performance liquid chromatography coupled to a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI-MS/MS) allowed identification of di-C-glycosyl flavones, mostly represented by 6-C-hexosyl-8-C-pentosyl apigenin isomers, which may possibly be associated with inducement of the autophagy pathway in HCC. Overall, these outcomes gave an initial visualization of the operative effect of some compounds in A. gigantea leaves that are potential treatment for HCC.
Collapse
Affiliation(s)
- Hend Okasha
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (S.M.C.); (M.A.G.); Tel.: +351-234-370-360 (S.M.C.); +20-(02)-01012346834 (M.A.G.); Fax: +351-234-370-084 (S.M.C.); +20-(02)-35408125 (M.A.G.)
| | - Mosad A. Ghareeb
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
- Correspondence: (S.M.C.); (M.A.G.); Tel.: +351-234-370-360 (S.M.C.); +20-(02)-01012346834 (M.A.G.); Fax: +351-234-370-084 (S.M.C.); +20-(02)-35408125 (M.A.G.)
| |
Collapse
|
17
|
Tan B, Chiranthanut N, Chansakaow S, Sireeratawong S, Khonsung P, Nimlamool W, Takuathung MN, Lertprasertsuke N. Anti-inflammatory effects of Pikad Tri-phol-sa-mut-than remedy, consisting of dried fruits of Aegle marmelos (L.) Corrêa, Coriandrum sativum L., and Morinda citrifolia L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115639. [PMID: 35964822 DOI: 10.1016/j.jep.2022.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation has been known to possess some essential roles in many diseases, especially those with chronic or severe conditions. Pikad Tri-phol-sa-mut-than, a Thai traditional herbal remedy, has long been used to treat gastrointestinal sicknesses, fever, and severe illness caused by the deformities of Tridosha. In particular, this recipe has also been applied for inflammation-related conditions including gout and rheumatoid arthritis. The Pikad Tri-phol-sa-mut-than recipe consists of dried fruits of three herbs including Aegle marmelos (L.) Corrêa, Morinda citrifolia L., and Coriandrum sativum L. Each of these plant components of Pikad Tri-phol-sa-mut-than exhibited anti-inflammatory activities. However, anti-inflammatory effect of Pikad Tri-phol-sa-mut-than remedy has not been reported. AIM OF THE STUDY The objective of this study was to elucidate the anti-inflammatory activities of Pikad Tri-phol-sa-mut-than extract (TS) against acute and chronic inflammation in rats. MATERIALS AND METHODS To study the effects of TS on acute inflammation, ethyl phenylpropiolate (EPP)-induced ear edema, carrageenan- and arachidonic acid (AA)-induced hind paw edema models were carried out. In addition, cotton pellet-induced granuloma formation was performed to specify the inhibitory effects of TS on chronic inflammation. RESULTS The topical application of TS significantly inhibited EPP-induced ear edema in rats. In the carrageenan- and AA-induced paw edema models, the oral administration of TS significantly reduced paw volumes, compared to those of the control groups. In addition, the 7-day oral treatment of TS demonstrated a significant suppressive effect on cotton pellet-induced granuloma formation. CONCLUSIONS The current study revealed that TS possesses anti-inflammatory activities against acute and chronic inflammation. Our studies support the use of TS in traditional medicine, and the development of TS as a novel natural product for treating diseases associated with inflammation.
Collapse
Affiliation(s)
- Bing Tan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Parirat Khonsung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Nirush Lertprasertsuke
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
18
|
Novel Bile Salt Stabilized Vesicles-Mediated Effective Topical Delivery of Diclofenac Sodium: A New Therapeutic Approach for Pain and Inflammation. Pharmaceuticals (Basel) 2022; 15:ph15091106. [PMID: 36145327 PMCID: PMC9506322 DOI: 10.3390/ph15091106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The oral delivery of diclofenac sodium (DNa), a non-steroidal analgesic, anti-inflammatory drug, is associated with various gastrointestinal side effects. The aim of the research was to appraise the potential of transdermal delivery of DNa using bilosomes as a vesicular carrier (BSVC) in inflamed paw edema. DNa-BSVCs were elaborated using a thin-film hydration technique and optimized using a 31.22 multilevel categoric design with Design Expert® software 10 software (Stat-Ease, Inc., Minneapolis, MI, USA). The effect of formulation variables on the physicochemical properties of BSVC, as well as the optimal formulation selection, was investigated. The BSVCs were evaluated for various parameters including entrapment efficiency (EE%), vesicle size (VS), zeta potential (ZP) and permeation studies. The optimized BSVC was characterized for in vitro release, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and incorporated into hydrogel base. The optimized DNa-BSVC gel effectiveness was assessed in vivo using carrageenan-induced paw edema animal model via cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), Hemooxygenase 1 (HO-1) and nuclear factor-erythroid factor2-related factor 2 (Nfr-2) that potentiate anti-inflammatory and anti-oxidant activity coupled with histopathological investigation. The resulting vesicles presented VS from 120.4 ± 0.65 to 780.4 ± 0.99 nm, EE% from 61.7 ± 3.44 to 93.2 ± 2.21%, ZP from −23.8 ± 2.65 to −82.1 ± 12.63 mV and permeation from 582.9 ± 32.14 to 1350.2 ± 45.41 µg/cm2. The optimized BSVCs were nano-scaled spherical vesicles with non-overlapped bands of their constituents in the FTIR. Optimized formulation has superior skin permeability ex vivo approximately 2.5 times greater than DNa solution. Furthermore, histological investigation discovered that the formed BSVC had no skin irritating properties. It was found that DNa-BSVC gel suppressed changes in oxidative inflammatory mediators (COX-2), IL-6 and consequently enhanced Nrf2 and HO-1 levels. Moreover, reduction of percent of paw edema by about three-folds confirmed histopathological alterations. The results revealed that the optimized DNa-BSVC could be a promising transdermal drug delivery system to boost anti-inflammatory efficacy of DNa by enhancing the skin permeation of DNa and suppressing the inflammation of rat paw edema.
Collapse
|
19
|
Albarakati AJA. Protocatechuic acid counteracts oxidative stress and inflammation in carrageenan-induced paw edema in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56393-56402. [PMID: 35332456 DOI: 10.1007/s11356-022-19688-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Protocatechuic acid (PCA), a phenolic compound found in teas, fruits, and vegetables, is widely recognized with its antioxidant and anti-inflammatory activities. Here, we verified the protective role of PCA on carrageenan (CGN)-induced paw edema in mice. Forty-five male Swiss albino mice were assigned into five groups: control group, CGN-injected group (1% w/v), PCA (25 mg/kg) + CGN group. PCA (50 mg/kg) + CGN group and diclofenac sodium (20 mg/kg) + CGN group. PCA and diclofenac sodium were administered orally for 5 consecutive days prior to the CGN injection. PCA pretreatment notably decreased the volume of the developed edema and alleviated the histopathological alterations induced by carrageenan. Additionally, PCA administration enhanced the cellular antioxidant capacity as demonstrated by the increased levels of catalase, superoxide dismutase, and reduced glutathione, in addition to the decreased malondialdehyde level in the edematous tissue. Interestingly, PCA administration was able significantly to suppress the developed inflammatory response upon carrageenan injection as indicated by the decreased levels and expression of pro-inflammatory cytokines and mediators including tumor necrosis factor alpha, interleukin-1 beta, interleukin-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-II, prostaglandin E2, monocyte chemoattractant protein-1, myeloperoxidase and nuclear factor kappa B. These results collectively confirm the protective effect of PCA against carrageenan-induced paw edema owing to its antioxidant and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
20
|
Ma YH, Wu MH, Chung LY, Yen CM, Juan YS, Lin RJ. Cestocidal activities of bioactive garlic compounds against Hymenolepis nana. Acta Trop 2022; 235:106580. [DOI: 10.1016/j.actatropica.2022.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/01/2022]
|
21
|
Arunsi UO, Chioma OE, Etusim PE, Owumi SE. Indigenous Nigeria medicinal herbal remedies: A potential source for therapeutic against rheumatoid arthritis. Exp Biol Med (Maywood) 2022; 247:1148-1178. [PMID: 35708153 PMCID: PMC9335509 DOI: 10.1177/15353702221102901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating disease associated with locomotion impairment, and conventional therapeutic drugs are not optimal for managing RA. There is an avalanche of medications used for the management of RA. Still, studies have shown that they are associated with severe side effects, including hepatotoxicity, retinopathy, and cardiotoxicity disorders of the central nervous system (CNS), skin, blood, and infections. Complementary and alternative medicine (CAM) is currently gaining attention as a novel panacea for managing debilitating diseases, such as RA. Nigerian folk herbal remedies are replete with a plethora of curative medicine, albeit unvalidated scientifically but with seemingly miraculous provenance. Studies of the identification of bioactive compounds present in these botanicals using advanced spectral analytical techniques have enhanced our understanding of the role of Nigerian herbal remedies in the treatment and management of RA. Interestingly, experimental studies abound that the bioactive compounds present in the extracts of plant botanicals protected animals from the development of RA in different experimental models and reduced the toxicity associated with conventional therapeutics. Validated mechanisms of RA amelioration in human and animal models include suppression of the expression of NF-κB, IL-1β, TNF-α, IL-6, IL-8, IL-17, IL-23, chemokines, TGF-β, RANKL, RANK, iNOS, arginase, COX-2, VEGFA, VEGFR, NFATC1, and TRAP in the synoviocytes. Decreased ROS, NO, MDA, carbonyl groups, and PGE2 in the synovial fluid increased the expression of PPARα/γ; antioxidant and anti-inflammatory molecules also improve RA etiology. In this mini-review, we discuss the global burden of RA, the novel role of plant-based botanicals as potential therapeutics against signaling pathways in RA. Also addressed is the possible repurposing/reprofiling of plant botanicals to increase their therapeutic index among RA patients that patronize traditional healers in Nigeria with a global projection.
Collapse
Affiliation(s)
- Uche O Arunsi
- Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK,Department of Biochemistry, Faculty of Biological and Physical Sciences, Abia State University, Uturu, 440001, Nigeria
| | - Ogbuka E Chioma
- Department of Social and Environmental Forestry, Faculty of Renewable Natural Resources, University of Ibadan, Ibadan 200005, Nigeria
| | - Paschal E Etusim
- Department of Animal and Environmental Biology, Faculty of Biological and Physical Sciences, Abia State University, Uturu 200, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria,Solomon Owumi.
| |
Collapse
|
22
|
Sipping MTK, Mediesse FK, Sombes AYN, Mfopa A, Boudjeko T. Antioxidant and anti-inflammatory activities of Ganoderma resinaceum (Boud) fruiting bodies extracts. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Ganoderma resinaceum is used to treat oxidative and inflammatory-related diseases such as cardiovascular and liver diseases. Thus, this study aimed to evaluate the antioxidant and anti-inflammatory activities of different extracts from G. resinaceum fruiting bodies. Methods: Aqueous crude (GRT), mycelial (MYC), exopolysaccharide (EPS I, EPS II) and water-soluble polysaccharide-rich (GRP I and GRP II) extracts of G. resinaceum were assessed for their free radical scavenging and metal chelating ions assays. The in vitro anti-inflammatory activity was evaluated by stabilization of erythrocytes’ membranes and protein denaturation assays. For the in vivo study, paw oedema was induced by administration of κ-carrageenan (0.1 mL; 1%) to male Wistar rats aged 4 to 6 weeks. Animals were pre-treated with G. resinaceum extracts (125 mg/kg) and diclofenac sodium (20 mg/kg). Inflammatory cytokine and chemokine levels were determined, and histological analysis of paw tissue was performed. Results: G. resinaceum polysaccharide-rich extracts (GRP I and GRP II) showed the best bioactivities. They scavenged DPPH (1,1-diphenyl-2-picrylhydrazyl, ABTS (2,2-azino-bis-3- ethylbenzylthiazoline-6-sulfonic acid, and NO (nitric oxide) radicals, and chelated ferrous ions, stabilized murine erythrocyte membranes, and inhibited protein denaturation. At 125 mg/kg, GRP I and GRP II restored the microarchitecture with a weak infiltration of immune cells in the subcutaneous tissues. Moreover, they decreased the overproduction of proinflammatory cytokines growth colony-stimulating factor (G-CSF), interferon gamma (IFNγ), tumour necrosis factor alpha (TNFα), chemokines (eotaxin, fractalkine) and increased the levels of anti-inflammatory cytokines (IL-10, IL-12p70). Conclusion: G. resinaceum polysaccharide extracts could be potent antioxidant and antiinflammatory agents.
Collapse
Affiliation(s)
- Marius Trésor Kemegne Sipping
- Laboratory of Phytoprotection and Valorization of Genetic Resources, Biotechnology Centre-Nkolbisson, University of Yaoundé 1, P.O. Box 17673, Etetak, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé 812, Cameroon
| | - Francine Kengne Mediesse
- Laboratory of Phytoprotection and Valorization of Genetic Resources, Biotechnology Centre-Nkolbisson, University of Yaoundé 1, P.O. Box 17673, Etetak, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plants Studies, P.O. Box. 13033, Yaoundé, Cameroon
| | - Annette Yannuvie Natia Sombes
- Laboratory of Phytoprotection and Valorization of Genetic Resources, Biotechnology Centre-Nkolbisson, University of Yaoundé 1, P.O. Box 17673, Etetak, Yaoundé, Cameroon
| | - Adamou Mfopa
- Laboratory of Phytoprotection and Valorization of Genetic Resources, Biotechnology Centre-Nkolbisson, University of Yaoundé 1, P.O. Box 17673, Etetak, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plants Studies, P.O. Box. 13033, Yaoundé, Cameroon
| | - Thaddée Boudjeko
- Laboratory of Phytoprotection and Valorization of Genetic Resources, Biotechnology Centre-Nkolbisson, University of Yaoundé 1, P.O. Box 17673, Etetak, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
23
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Elucidation of the Metabolite Profile of Yucca gigantea and Assessment of Its Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041329. [PMID: 35209125 PMCID: PMC8878216 DOI: 10.3390/molecules27041329] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
The acute inflammation process is explained by numerous hypotheses, including oxidative stress, enzyme stimulation, and the generation of pro-inflammatory cytokines. The anti-inflammatory activity of Yucca gigantea methanol extract (YGME) against carrageenan-induced acute inflammation and possible underlying mechanisms was investigated. The phytochemical profile, cytotoxic, and antimicrobial activities were also explored. LC-MS/MS was utilized to investigate the chemical composition of YGME, and 29 compounds were tentatively identified. In addition, the isolation of luteolin-7-O-β-d-glucoside, apigenin-7-O-β-d-glucoside, and kaempferol-3-O-α-l-rhamnoside was performed for the first time from the studied plant. Inflammation was induced by subcutaneous injection of 100 μL of 1% carrageenan sodium. Rats were treated orally with YGME 100, 200 mg/kg, celecoxib (50 mg/kg), and saline, respectively, one hour before carrageenan injection. The average volume of paws edema and weight were measured at several time intervals. Levels of NO, GSH, TNF-α, PGE-2, serum IL-1β, IL-6 were measured. In additionally, COX-2 immunostaining and histopathological examination of paw tissue were performed. YGME displayed a potent anti-inflammatory influence by reducing paws edema, PGE-2, TNF-α, NO production, serum IL-6, IL-1β, and COX-2 immunostaining. Furthermore, it replenished the diminished paw GSH contents and improved the histopathological findings. The best cytotoxic effect of YGME was against human melanoma cell line (A365) and osteosarcoma cell line (MG-63). Moreover, the antimicrobial potential of the extract was evaluated against bacterial and fungal isolates. It showed potent activity against Gram-negative, Gram-positive, and fungal Candida albicans isolates. The promoting multiple effects of YGME could be beneficial in the treatment of different ailments based on its anti-inflammatory, antimicrobial, and cytotoxic effects.
Collapse
|
25
|
Joshi MB, Kamath A, Nair AS, Yedehali Thimmappa P, Sriranjini SJ, Gangadharan GG, Satyamoorthy K. Modulation of neutrophil (dys)function by Ayurvedic herbs and its potential influence on SARS-CoV-2 infection. J Ayurveda Integr Med 2022; 13:100424. [PMID: 33746457 PMCID: PMC7962552 DOI: 10.1016/j.jaim.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, traditional medicines of Ayurveda have been in use to manage infectious and non-infectious diseases. The key embodiment of traditional medicines is the holistic system of approach in the management of human diseases. SARS-CoV-2 (COVID-19) infection is an ongoing pandemic, which has emerged as the major health threat worldwide and is causing significant stress, morbidity and mortality. Studies from the individuals with SARS-CoV-2 infection have shown significant immune dysregulation and cytokine overproduction. Neutrophilia and neutrophil to lymphocyte ratio has been correlated to poor outcome due to the disease. Neutrophils, component of innate immune system, upon stimulation expel DNA along with histones and granular proteins to form extracellular traps (NETs). Although, these DNA lattices possess beneficial activity in trapping and eliminating pathogens, NETs may also cause adverse effects by inducing immunothrombosis and tissue damage in diseases including Type 2 Diabetes and atherosclerosis. Tissues of SARS-CoV-2 infected subjects showed microthrombi with neutrophil-platelet infiltration and serum showed elevated NETs components, suggesting large involvement and uncontrolled activation of neutrophils leading to pathogenesis and associated organ damage. Hence, traditional Ayurvedic herbs exhibiting anti-inflammatory and antioxidant properties may act in a manner that might prove beneficial in targeting over-functioning of neutrophils and there by promoting normal immune homeostasis. In the present manuscript, we have reviewed and discussed pathological importance of NETs formation in SARS-CoV-2 infections and discuss how various Ayurvedic herbs can be explored to modulate neutrophil function and inhibit NETs formation in the context of a) anti-microbial activity to enhance neutrophil function, b) immunomodulatory effects to maintain neutrophil mediated immune homeostasis and c) to inhibit NETs mediated thrombosis.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana Kamath
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Sitaram J Sriranjini
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - G G Gangadharan
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
26
|
Semis HS, Gur C, Ileriturk M, Kaynar O, Kandemir FM. Investigation of the anti-inflammatory effects of caffeic acid phenethyl ester in a model of λ-Carrageenan-induced paw edema in rats. Hum Exp Toxicol 2021; 40:S721-S738. [PMID: 34789018 DOI: 10.1177/09603271211054436] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the present study, it is aimed to evaluate the effects of caffeic acid phenethyl ester (CAPE) against acute paw inflammation induced by carragenan (Carr) at macro and micro levels. Therefore, in this study, 1 hour after administering intraperitoneal of indomethacin (Ind) or CAPE (10 and 30 mg/kg body weight) to Sprague Dawley rats, Carr was injected intraplantarly into their right paws. The paw volumes of the rats were measured with a plethysmometer until the 4th hour. Also, X-ray and thermal camera images were taken to determine edema and temperature changes. At the end of the study, after the paw tissues and serums were taken, oxidative stress and inflammation status were determined using biochemical, molecular, and western blot techniques. In addition, lipid and protein profiles in paw tissue were determined using HPTLC and electrophoresis methods. The results depicted that a high dose of CAPE against Carr-induced inflammation may be almost as effective as Ind used as reference.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, 37503Ataturk University, Erzurum, Turkey
| | - Mustafa Ileriturk
- Department of Biochemistry, Faculty of Veterinary Medicine, 37503Ataturk University, Erzurum, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, 187466Kastamonu University, Kastamonu, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, 37503Ataturk University, Erzurum, Turkey
| |
Collapse
|
27
|
Szandruk-Bender M, Merwid-Ląd A, Wiatrak B, Danielewski M, Dzimira S, Szkudlarek D, Szczukowski Ł, Świątek P, Szeląg A. Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]Pyridazinone Exert Anti-Inflammatory Activity without Acute Gastrotoxicity in the Carrageenan-Induced Rat Paw Edema Test. J Inflamm Res 2021; 14:5739-5756. [PMID: 34754217 PMCID: PMC8572108 DOI: 10.2147/jir.s330614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Due to the risk of gastrointestinal damage and various tissue toxicity associated with non-steroidal anti-inflammatory drugs (NSAIDs) use, investigating new anti-inflammatory agents with efficacy comparable to that of NSAIDs but reduced toxicity is still a major challenge and a clinical need. Based on our previous study, new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 6-butyl-3,5,7-trimethyl-1-[[4-[[4-(4-nitrophenyl)piperazin-1-yl]methyl]-5-thioxo-1,3,4-oxadiazol-2-yl]methoxy]pyrrolo[3,4-d]pyridazin-4-one and 6-butyl-1-[[4-[[4-(4-chlorophenyl)-4-hydroxy-1-piperidyl]methyl]-2-thioxo-1,3,4-oxadiazol-5-yl]methoxy]-3,5,7-trimethyl-pyrrolo[3,4-d]pyridazin-4-one (hereafter referred to as the compounds 10b and 13b, respectively) seem to be promising anti-inflammatory agents. This study aimed to elucidate the effects of these two new derivatives on the course of experimental rat inflammation, liver and kidney function, and gastric mucosa. Methods The anti-inflammatory effect of compounds 10b and 13b was evaluated using the carrageenan-induced paw edema test in rats. The increase in paw volume (paw edema), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) levels, histological alterations, and inflammatory cell infiltration in paw tissue were determined. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities, serum urea and creatinine levels, as well as changes in gastric mucosa, were measured as indicators of hepatic, renal, and gastric toxicity. Results Pretreatment with both novel derivatives at 10 mg/kg and 20 mg/kg doses reduced paw edema, counteracted the increased PGE2 and TNF-α levels, reduced the influx of inflammatory cells, and decreased histopathological alterations in paw tissue. Compound 13b at a dose of 20 mg/kg was more effective than indomethacin in reversing the increased TNF-α levels and reducing the influx of inflammatory cells. Only compound 13b at all studied doses (5, 10, or 20 mg/kg) counteracted the increased MPO level in paw tissue. Both compounds neither caused alterations in ALT, AST, urea, creatinine parameters nor gastric mucosal lesions. Conclusion New compounds exert an anti-inflammatory effect, presumably via inhibiting inflammatory mediators release and inflammatory cell infiltration. Moreover, both possess a more favorable benefit–risk profile than indomethacin, especially compound 13b.
Collapse
Affiliation(s)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Danuta Szkudlarek
- Foundation of the Wroclaw Medical University, Wroclaw Medical University, Wrocław, Poland
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
28
|
Biological Functions of Diallyl Disulfide, a Garlic-Derived Natural Organic Sulfur Compound. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5103626. [PMID: 34745287 PMCID: PMC8570849 DOI: 10.1155/2021/5103626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/15/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Garlic is widely accepted as a functional food and an excellent source of pharmacologically active ingredients. Diallyl disulfide (DADS), a major bioactive component of garlic, has several beneficial biological functions, including anti-inflammatory, antioxidant, antimicrobial, cardiovascular protective, neuroprotective, and anticancer activities. This review systematically evaluated the biological functions of DADS and discussed the underlying molecular mechanisms of these functions. We hope that this review provides guidance and insight into the current literature and enables future research and the development of DADS for intervention and treatment of multiple diseases.
Collapse
|
29
|
Sharipov A, Tursunov K, Fazliev S, Azimova B, Razzokov J. Hypoglycemic and Anti-Inflammatory Effects of Triterpene Glycoside Fractions from Aeculus hippocastanum Seeds. Molecules 2021; 26:molecules26133784. [PMID: 34206308 PMCID: PMC8270310 DOI: 10.3390/molecules26133784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Horse chestnut (Aesculus hippocastanum L.)-derived drugs have shown their potential in biomedical applications. The seed of A. hippocastanum contains various kinds of chemical compounds including phenolics, flavonoids, coumarins, and triterpene saponins. Here, we investigated the chemical components in A. hippocastanum L. grown in Uzbekistan, which has not yet been studied in detail. We identified 30 kinds of triterpene saponins in an extract of A. hippocastanum L. Classifying extracted saponins into eight fractions, we next studied the hypoglycemic and the anti-inflammatory activities of escin and its derivatives through in vivo experiments. We came by data indicating the highest (SF-1 and SF-2) and the lowest (SF-5 and SF-8) antidiabetic and anti-inflammatory effects of those eight fractions. These results imply the prospective use of A. hippocastanum L. grown in Uzbekistan in the production of pharmaceutical drugs to treat diabetes and inflammation.
Collapse
Affiliation(s)
- Avez Sharipov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (K.T.); (B.A.)
| | - Khurshid Tursunov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (K.T.); (B.A.)
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany;
- Faculty of Chemistry and Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Bahtigul Azimova
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (K.T.); (B.A.)
| | - Jamoliddin Razzokov
- Department of Physics and Chemistry, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
- Correspondence:
| |
Collapse
|
30
|
Elshopakey GE, Almeer R, Alfaraj S, Albasher G, Abdelgawad ME, Abdel Moneim AE, Essawy EA. Zingerone mitigates inflammation, apoptosis and oxidative injuries associated with renal impairment in adriamycin-intoxicated mice. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1923528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alfaraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Essameldin Abdelgawad
- Biochemistry & Molecular Biotechnology Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
- Innovative Cellular Microenvironment Optimization Platform (ICMOP), Helwan University, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ehab A. Essawy
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
31
|
Jiang JL, Zhang WZ, Ni WX, Shao JW. Insight on structure-property relationships of carrageenan from marine red algal: A review. Carbohydr Polym 2021; 257:117642. [DOI: 10.1016/j.carbpol.2021.117642] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023]
|
32
|
Anticolitic Effect of Berberine in Rat Experimental Model: Impact of PGE2/p38 MAPK Pathways. Mediators Inflamm 2020; 2020:9419085. [PMID: 33061833 PMCID: PMC7542536 DOI: 10.1155/2020/9419085] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Berberine (BER), a natural isoquinoline alkaloid, has been demonstrated to have appreciable anticolitis effects. Nevertheless, the protective mechanism of BER in ulcerative colitis (UC) is barely understood. The present study was aimed at exploring the therapeutic efficacy of BER on UC in experimental colitis rat model. Rats were orally administered with BER for seven days at low and high doses (25 and 50 mg/kg/day) before AcOH intracolonic instillation. BER significantly retrieved colon inflammation and mucosal damage indicated by inhibition of macroscopic score and lessened the levels of inflammatory biomarkers (IL-1β, IL-6, TNF-α, MPO, and PGE2). Notable downregulation of mRNA expression of p38 MAPK and increased protein expression of TGF-β were achieved by BER treatment. The anti-inflammatory potential of BER was supported by the histopathological screening of colon mucosa. In addition, BER restored colonic antioxidant capacity through elevation of GSH level and antioxidant enzymatic activities (SOD, CAT, GPx, and GR) together with reductions of both MDA and NO levels. Marked downregulation of Nos2 mRNA expression is accompanied by increased Nrf2 and Hmox-1 expressions in colon specimens treated by BER. Furthermore, BER exhibited noticeable antiapoptotic activities through decreasing proapoptotic proteins (Bax and caspase-3) and lessening antiapoptotic Bcl-2 protein in the colon mucosa. Based on these findings, BER may improve colitis markedly which may be mediated by its striking antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
|
33
|
Abdel-Daim MM, Alkahtani S, Almeer R, Albasher G. Alleviation of lead acetate-induced nephrotoxicity by Moringa oleifera extract in rats: highlighting the antioxidant, anti-inflammatory, and anti-apoptotic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33723-33731. [PMID: 32529628 DOI: 10.1007/s11356-020-09643-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an environmental toxicant; its consumption can induce renal deficits. In this study, we explored the possible protective efficiency of Moringa oleifera extract (MOE) against lead acetate (PbAc)-mediated reprotoxicity. Four experimental groups of seven rats each were used: control, PbAc, MOE, and MOE+PbAc groups. All groups were given their respective treatment for 4 weeks. PbAc impaired the oxidative/antioxidative balance in the renal tissue, as shown by the decreased antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) and increased oxidants (lipid peroxidation and nitric oxide). Additionally, PbAc enhanced the progression of kidney inflammation by increasing tumor necrosis factor-alpha, interleukin-1 beta, and nuclear factor kappa B associated with upregulation of inducible nitric oxide synthase. Moreover, a dysregulation in the apoptotic-regulating proteins (Bax, caspase-3, and Bcl2) were recorded upon PbAc exposure. Remarkably, MOE oral administration restored redox homeostasis, suppressed the inflammatory and apoptotic responses in the kidney tissue. Our findings point out that MOE could be used as an alternative remedy to overcome the adverse effects of Pb exposure, which may be due to its potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
34
|
Alblihed MA. Hydroxytyrosol ameliorates oxidative challenge and inflammatory response associated with lipopolysaccharide-mediated sepsis in mice. Hum Exp Toxicol 2020; 40:342-354. [PMID: 32840384 DOI: 10.1177/0960327120949618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxytyrosol (HT) is among the main bioactive ingredients isolated from olive tree with a variety of biological and pharmacological activities. In the current study, the antioxidative and anti-inflammatory activities of HT were distinguished in the splenic tissue following lipopolysaccharide (LPS)-mediated septic response. Thirty-five Swiss mice were divided into five groups (n = 7): control, HT (40 mg/kg), LPS (10 mg/kg), HT 20 mg+LPS and HT 40 mg+LPS. HT was administered for 10 days, while a single LPS dose was applied. The obtained findings demonstrate that HT administration enhanced the survival rate and decreased lactate dehydrogenase level in LPS-challenged mice. Treatment with HT inhibited the incidence of oxidative damage in splenic tissue through decreasing lipoperoxidation and increasing antioxidant molecules, namely glutathione, superoxide dismutase and catalase. HT also decreased total leukocytes count, C-reactive protein, monocyte chemoattractant protein-1, and myeloperoxidase levels. Additionally, HT suppressed the production levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6. Moreover, mRNA expression of inducible nitric oxide synthase and nitric oxide production were increased after HT administration. Furthermore, HT supplementation resulted in a downregulation of p38 mitogen-activated protein kinase, inhibited the activation of the nuclear factor kappa-B from the nucleus to the cytoplasm, and attenuated infiltration of activated immune cells and tissue injury following LPS injection. Collectively, these findings demonstrate the antioxidative and anti-inflammatory properties of HT against LPS-mediated inflammation and sepsis. Therefore, HT could be applied as an alternative anti-inflammatory agent to minimize or prevent the development of systemic inflammatory response associated with septic shock.
Collapse
Affiliation(s)
- Mohamed A Alblihed
- Department of Medical Microbiology and Immunology, 158240College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
35
|
Alsharif KF, Almalki AA, Al-Amer O, Mufti AH, Theyab A, Lokman MS, Ramadan SS, Almeer RS, Hafez MM, Kassab RB, Abdel Moneim AE. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice. IUBMB Life 2020; 72:2121-2132. [PMID: 32710811 DOI: 10.1002/iub.2347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Sepsis results from a major systemic inflammatory response and can induce disorders in multiple organs. The present study evaluated the potential protective effects of oleuropein (OLE) against hyperinflammatory responses during lipopolysaccharide (LPS)-induced sepsis in mice. Sixty male Balb/c mice were randomly categorized into five groups of 12 animals each: control, intraperitoneally injected with OLE (50 mg/kg), injected with LPS (10 mg/kg, intraperitoneal), and two groups administered OLE (25 and 50 mg/kg) for 3 days prior to LPS injection. Twenty-four hours after lipopolysaccharide injection, the animals were sacrificed. Serum, liver, and kidney tissue samples were collected for biochemical analyses, histopathological examinations, and investigation of inflammation-related gene expression. OLE pretreatment significantly reduced liver damage parameters (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase) and kidney damage parameters (blood urea nitrogen, creatinine, and kidney injury molecule-1) in the septic mice. OLE pretreatment ameliorated LPS-induced liver and kidney histological changes. OLE significantly mitigated the increased levels of malondialdehyde in the liver and kidneys and reduced levels of reduced glutathione induced by LPS. LPS injection also resulted in increased expression of the proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and inflammation-related genes (Nos2, Hmgb1, Mpo, Cd46, Map2k4, and Map2k7) in the hepatic and renal tissues. OLE reduced these expressions to ameliorate the inflammatory response. Moreover, OLE pretreatment enhanced the survival rate of septic mice. In conclusion, OLE alleviated the inflammatory response to protect against LPS-induced sepsis in mice.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulraheem A Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad H Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S Ramadan
- Department of Biochemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Hafez
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|