1
|
Afridi S, Muzzammil M, Ali I, Shahi MH. Neuropeptide Signaling in Glioblastoma: A Comprehensive Review of the Current State and Future Direction. Neuromolecular Med 2025; 27:27. [PMID: 40227382 DOI: 10.1007/s12017-025-08849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by complex pathophysiology and significant clinical challenges. Emerging research emphasizes the crucial role of neuropeptides in GBM and its influence on tumor progression, immune modulation, and therapy resistance. This review highlighted the importance of neuropeptides and their receptors in maintaining brain homeostasis and the glioblastoma tumor microenvironment. We discussed new therapeutic frontiers, including neuropeptide receptors as therapeutic targets, renin-angiotensin system, peptide receptor modulation, targeted cytotoxic analogs (such as Bombesin and Somatostatin), and advances in targeted radiotherapy. The review highlighted the potential of neuropeptide-based targeted therapies to improve GBM patient outcomes and suggests future research directions. This underscores the importance of targeting neuropeptide-related pathways for innovative therapeutic strategies in GBM, aiming to enhance patient prognosis and effective treatment.
Collapse
Affiliation(s)
- Shahid Afridi
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Muzzammil
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Intezar Ali
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mehdi H Shahi
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
2
|
Hosseinzadeh Ranjbar M, Einafshar E, Javid H, Jafari N, Sajjadi SS, Assaran Darban R, Hashemy SI. Enhancing the anticancer effects of rosmarinic acid in PC3 and LNCaP prostate cancer cells using titanium oxide and selenium-doped graphene oxide nanoparticles. Sci Rep 2025; 15:11568. [PMID: 40185944 PMCID: PMC11971286 DOI: 10.1038/s41598-025-96707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Prostate cancer remains a significant health concern due to its high mortality rate, emphasizing the need for innovative therapeutic approaches. This study aims to explore the potential anticancer effects of a drug nanocomplex containing rosmarinic acid in the treatment of prostate cancer, aiming to contribute to the development of safer and more effective treatment options for cancer patients. Nanocomposite Graphene Oxide was synthesized following the Hummers' method. The resulted product dissolved in deionized water with rosmarinic acid to prepare the final product. To investigate the effects of rosmarinic acid@Se-TiO2-GO, PC3, LNCaP, and normal (HFF-1) cell lines were treated with varying concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, and 500 µg/ml) of the nanocomplex. Cell viability was assessed using the Resazurin test, while levels of reactive oxygen species (ROS), gene expression (Bcl-2 and Bax), and total antioxidant capacity were measured in both cancerous and normal cells. The Se-TiO2-GO nanoparticles demonstrated high entrapment efficiency and loading capacity for rosmarinic acid. The IC50 values after 24 and 48 h of RA treatment were significantly greater than those recorded for treatments involving rosmarinic acid@Se-TiO2-GO. Treatment with rosmarinic acid@Se-TiO2-GO resulted in decreased cell viability and increased apoptosis in PC3 and LNCaP cells, while showing no inhibitory effects on the normal cell line (HFF-1) at concentrations toxic to cancer cells. Additionally, a dose-dependent increase in ROS levels, a decrease in total antioxidant capacity, elevated Bax gene expression, and reduced Bcl-2 expression were observed in the cancer cells following treatment with the nanocomplex. The cytotoxic effects of rosmarinic acid@Se-TiO2-GO nanoparticles on prostate cancer cells appear to be mediated through the generation of oxidative stress and induction of apoptosis. The unique formulation of these nanoparticles holds promise for future prostate cancer treatment strategies.
Collapse
Affiliation(s)
| | - Elham Einafshar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Jafari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Sara Sajjadi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Assaran Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Sharawy MH, Abdel-Rahman AM, Abdel-Rahman N. Aprepitant ameliorates vancomycin-induced kidney injury: Role of GPX4/system Xc - and oxidative damage. Food Chem Toxicol 2025; 197:115264. [PMID: 39832709 DOI: 10.1016/j.fct.2025.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Vancomycin, a glycopeptide antibiotic, is used in cases of drug-resistant bacterial infections, but unfortunately is associated with acute kidney injury (AKI). We here explore the protective potential of aprepitant against vancomycin-induced AKI. Vancomycin (500 mg/kg/i.p) was given to rats for seven days and aprepitant (20 mg/kg/p.o) was administered one day before and for seven days concomitant with vancomycin. At the end of the experiment, kidney function, oxidative stress, autophagy and ferroptosis markers were assessed. We show that aprepitant reduced kidney/body weight ratio, serum creatinine and blood urea nitrogen levels. It improved renal structure and enhanced the antioxidant machinery as indicated by elevated catalase activity and GSH levels and reduced renal MDA. Aprepitant managed to inhibit ferroptosis by decreasing system Xc- and GPX4 renal levels. As a result, levels of autophagic markers ATG3, LC3A and LC3B were attenuated. These results were confirmed by electron microscopy examination of cellular structures. In addition, aprepitant increased p62 protein expression. Moreover, aprepitant decreased the apoptotic marker cleaved caspase-3 levels. Our results suggest a new repurposed role for aprepitant in protecting against AKI. This protective effect relies on its antioxidant effect and the influence of inhibiting ferroptosis which resulted in downregulation of autophagy and apoptosis.
Collapse
Affiliation(s)
- Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Ahmed M Abdel-Rahman
- Department of Nephrology, Urology and Nephrology Center, Mansoura University, 35516, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
4
|
Asgharzadeh S, Shareghi B, Farhadian S. Evaluation of the effects of amitraz on the enzyme activity and stability of lysozyme: Spectroscopic and MD simulation approach. CHEMOSPHERE 2025; 370:144004. [PMID: 39710282 DOI: 10.1016/j.chemosphere.2024.144004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The binding interaction of food preservatives and pesticides has emerged as a matter of paramount importance as it not only presents potential health hazards but also carries substantial consequences for food processing and preservation. Herein, the mechanism of interaction between lysozyme and Amitraz was explored through spectroscopic and computational techniques. Spectral investigations indicated the spontaneous nature and stability of the lysozyme-Amitraz complex. The corresponding CD and FT-IR studies proved the structural changes of lysozyme. The presence of amitraz led to a notable decrease in both the enzymatic activity and thermal stability of lysozyme. Molecular docking demonstrated the preferred mode of interaction, and molecular dynamics simulations confirmed the stability of the resultant complex. In conclusion, the alarming findings of the lysozyme-Amitraz interaction underscore its detrimental impact on food safety and human health. Accordingly, urgent measures are imperative to address and mitigate the potential hazards posed by such interactions in food production.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
5
|
Wei Y, Li H, Li Y, Zeng Y, Quan T, Leng Y, Chang E, Bai Y, Bian Y, Hou Y. Advances of curcumin in nervous system diseases: the effect of regulating oxidative stress and clinical studies. Front Pharmacol 2024; 15:1496661. [PMID: 39555102 PMCID: PMC11563972 DOI: 10.3389/fphar.2024.1496661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
In recent years, researchers have highly observed that neurological disorders (NSDs) with the aging of the population are a global health burden whose prevalence is increasing every year. Previous evidence suggested that the occurrence of neurological disorders is correlated with predisposing factors such as inflammation, aging, and injury. Particularly, the neuronal cells are susceptible to oxidative stress, leading to lesions caused by high oxygen-consuming properties. Oxidative stress (OS) is a state of peroxidation, which occurs as a result of the disruption of the balance between oxidizing and antioxidizing substances. The oxidative intermediates such as free radicals, hydrogen peroxide (H2O2), and superoxide anion (O2-) produced by OS promote disease progression. Curcumin, a natural diketone derived from turmeric, is a natural antioxidant with a wide range of neuroprotective, anti-inflammatory, anti-tumor, anti-aging, and antioxidant effects. Fortunately, curcumin is recognized for its potent antioxidant properties and is considered a promising candidate for the prevention and treatment of neurological diseases. Consequently, this review elucidates the mechanisms by which curcumin mitigates oxidative stress and emphasizes the potential in treating nervous system disorders, including depression, Alzheimer's disease, Parkinson's disease, epilepsy, subarachnoid hemorrhage, and glioblastoma. We aim to provide a new therapeutic option for the management of neurological diseases.
Collapse
Affiliation(s)
- Yuxun Wei
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Hong Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yue Li
- Molecular Urooncology, Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, München, Germany
| | - Yue Zeng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Tian Quan
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yanen Leng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - En Chang
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yingtao Bai
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yuan Bian
- Department of Oncology, 363 Hospital, Chengdu, China
| | - Yi Hou
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| |
Collapse
|
6
|
Zarei Shandiz S, Assaran Darban R, Javid H, Ghahremanloo A, Hashemy SI. The effect of SP/NK1R on expression and activity of glutaredoxin and thioredoxin proteins in prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5875-5882. [PMID: 38334824 DOI: 10.1007/s00210-024-02996-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Substance P (SP), an important neuropeptide, has a crucial role in the progression of several cancers, including prostate cancer, through interacting with the neurokinin-1 receptor (NK1R). Oxidative stress is also involved in the onset and progression of prostate cancer. However, no studies have been performed on the cross-talk between the SP/NK1R system and cellular redox balance in prostate cancer, and how it is involved in tumorogenesis. We aimed to investigate the effect of the SP/NK1R system and the blockage of NK1R with its specific antagonist (aprepitant) on the cellular redox status of the prostate cancer cell line (PC3 and LNCaP). We performed the resazurin assay to evaluate the toxicity of the aprepitant on the PC3 and LNCaP cell lines. The intracellular reactive oxygen species (ROS) level was measured after SP and aprepitant treatment. The alterations of expression and activity of two crucial cellular oxidoreductases, glutaredoxin, and thioredoxin were evaluated by qRT-PCR and commercial kits (ZellBio GmbH), respectively. Our results revealed that SP increased ROS production and decreased the expression and activity of glutaredoxin and thioredoxin. On the other hand, treatment of cells with aprepitant showed reverse results. In conclusion, we found that the SP/NK1R system could promote prostate cancer progression by inducing oxidative stress. In addition, the inhibition of NK1R by aprepitant modulated the effect of the SP/NK1R system on the cellular redox system. Aprepitant might therefore be introduced as a candidate for the treatment of prostate cancer; however, more studies are required to confirm the validation of this hypothesis.
Collapse
Affiliation(s)
- Sara Zarei Shandiz
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Assaran Darban
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Sánchez ML, Mangas A, Coveñas R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int J Mol Sci 2024; 25:7990. [PMID: 39063232 PMCID: PMC11277022 DOI: 10.3390/ijms25147990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma cells overexpress different peptide receptors that are useful for research, diagnosis, management, and treatment of the disease. Oncogenic peptides favor the proliferation, migration, and invasion of glioma cells, as well as angiogenesis, whereas anticancer peptides exert antiproliferative, antimigration, and anti-angiogenic effects against gliomas. Other peptides exert a dual effect on gliomas, that is, both proliferative and antiproliferative actions. Peptidergic systems are therapeutic targets, as peptide receptor antagonists/peptides or peptide receptor agonists can be administered to treat gliomas. Other anticancer strategies exerting beneficial effects against gliomas are discussed herein, and future research lines to be developed for gliomas are also suggested. Despite the large amount of data supporting the involvement of peptides in glioma progression, no anticancer drugs targeting peptidergic systems are currently available in clinical practice to treat gliomas.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Mangas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Grupo GIR USAL-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Zohreh Vahedi S, Farhadian S, Shareghi B, Asgharzadeh S. Interaction between the antioxidant compound safranal and α-chymotrypsin in spectroscopic fields and molecular modeling approaches. J Biomol Struct Dyn 2024; 42:4097-4109. [PMID: 37969053 DOI: 10.1080/07391102.2023.2272186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/21/2023] [Indexed: 11/17/2023]
Abstract
Among various herbal plants, saffron has been the subject of study in various medical and food fields. Among the compounds of saffron, safranal is one of them. Safranal is a monoterpene aldehyde. The precursor of safranal is called picrocrocin, whose hydrolysis leads to the production of safranal. picrocrocin has two sugar components and aglycone. sugar component was separated during the drying process of saffron and safranal is produced. Saffron is the cause of the saffron aroma. Previous studies have shown that safranal offers many benefits such as antioxidants, blood pressure regulation and anti-tumor qualities. On the other hand, α-Chy is an enzyme secreted by the pancreas into the intestine and then acts as an efficient protease. In this study, various methods, such as molecular dynamics (MD) simulation and molecular binding, and different spectroscopic techniques, as well as protein stability techniques, were used to investigate the possible interactions between safranal and α-Chy. UV spectroscopic studies were showing that the existence of safranal decreased α-Chy absorption intensity. safranal caused the intrinsic fluorescence of α-Chy to be quenched too. According to the Stern-Volmer equation, the interaction between safranal and α-Chy was of the static type. In thermodynamic calculations, the interaction between safranal and α-Chy was stabilized by hydrophobic forces. And it was found that this interaction continued spontaneously. These results were, thus, consistent with the Docking data simulation (with the negative ΔG° number and positive changes in enthalpy and entropy). The thermal stability of α-Chy was also measured, showing that its melting point was shifted to a higher threshold as a result of the interaction. also, MD simulation indicated that α-Chy became more stable in the presence of safranal. In this paper, all the results of the laboratory techniques were confirmed by molecular dynamic simulations, so the correctness of the results was confirmed. From this research, we hope to carefully observe the possible changes in the behavior and structure of the enzyme in the presence of safranal.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Hong X, Ma J, Zheng S, Zhao G, Fu C. Advances in the research and application of neurokinin-1 receptor antagonists. J Zhejiang Univ Sci B 2024; 25:91-105. [PMID: 38303494 PMCID: PMC10835208 DOI: 10.1631/jzus.b2300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/07/2023] [Indexed: 02/03/2024]
Abstract
Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and improving patients quality of life in several diseases and cancers.
Collapse
Affiliation(s)
- Xiangyu Hong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shanshan Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guangyu Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caiyun Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Ozdil B, Calik-Kocaturk D, Altunayar-Unsalan C, Acikgoz E, Oltulu F, Gorgulu V, Uysal A, Oktem G, Unsalan O, Guler G, Aktug H. Differences and similarities in biophysical and biological characteristics between U87 MG glioblastoma and astrocyte cells. Histochem Cell Biol 2024; 161:43-57. [PMID: 37700206 DOI: 10.1007/s00418-023-02234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Current cancer studies focus on molecular-targeting diagnostics and interactions with surroundings; however, there are still gaps in characterization based on topological differences and elemental composition. Glioblastoma (GBM cells; GBMCs) is an astrocytic aggressive brain tumor. At the molecular level, GBMCs and astrocytes may differ, and cell elemental/topological analysis is critical for identifying potential new cancer targets. Here, we used U87 MG cells for GBMCS. U87 MG cell lines, which are frequently used in glioblastoma research, are an important tool for studying the various features and underlying mechanisms of this aggressive brain tumor. For the first time, atomic force microscopy (AFM), scanning electron microscopy (SEM) accompanied by energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) are used to report the topology and chemistry of cancer (U87 MG) and healthy (SVG p12) cells. In addition, F-actin staining and cytoskeleton-based gene expression analyses were performed. The degree of gene expression for genes related to the cytoskeleton was similar; however, the intensity of F-actin, anisotropy values, and invasion-related genes were different. Morphologically, GBMCs were longer and narrower while astrocytes were shorter and more disseminated based on AFM. Furthermore, the roughness values of these cells differed slightly between the two call types. In contrast to the rougher astrocyte surfaces in the lamellipodial area, SEM-EDS analysis showed that elongated GBMCs displayed filopodial protrusions. Our investigation provides considerable further insight into rapid cancer cell characterization in terms of a combinatorial spectroscopic and microscopic approach.
Collapse
Affiliation(s)
- Berrin Ozdil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| | | | - Cisem Altunayar-Unsalan
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Volkan Gorgulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Aysegul Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Ozan Unsalan
- Department of Physics, Faculty of Science, Ege University, 35100, Izmir, Turkey
| | - Gunnur Guler
- Department of Physics, Biophysics Laboratory, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Huseyin Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
11
|
Jafarinezhad S, Assaran Darban R, Javid H, Hashemy SI. The SP/NK1R system promotes the proliferation of breast cancer cells through NF-κB-mediated inflammatory responses. Cell Biochem Biophys 2023; 81:787-794. [PMID: 37740877 DOI: 10.1007/s12013-023-01171-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Numerous molecules have been introduced to participate in the formation of breast cancer, the most common malignancy in women. Among them, neuropeptide substance P (SP) and its related receptor neurokinin-1 receptor (NK1R) have attracted unprecedented attention in tumorigenesis processes. In this study, we investigated the effect of the SP/NK1R pathway on the induction of oxidative stress in breast cancer and examine the therapeutic potential of NK1R inhibition in this malignancy. METHODS MCF-7 cells were treated with varying concentrations of SP and aprepitant, an FDA-approved NK1R antagonist, either as a single drug or in a combined modality. Resazurin assay was used to evaluate the anti-cancer ability of aprepitant. The alteration in the intracellular levels of reactive oxygen species (ROS) and gene expression were determined using ROS assay and the qRT-PCR analysis, respectively. RESULTS The stimulation of the SP/NK1R axis in the MCF-7 cells was coupled with the accumulation of ROS as well as upregulation of NF-κB and its related pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and IL-6. In contrast, the suppression of NK1R by aprepitant halted the viability of MCF-7 cells, at least partly due to p53-mediated upregulation of p21. Moreover, aprepitant attenuated the oncogenic properties of SP by preventing the oxidative property of this neuropeptide. CONCLUSION Overall, our results suggest that the SP/NK1R pathway might play a critical role in breast cancer pathogenesis, probably through inducing ROS/NF-κB-mediated inflammatory responses. Moreover, it seems that blockage of the axis has promising therapeutic value against breast cancer cells. Schematic representation proposed for the plausible mechanism by which the stimulation of the SP/NK1R might induce oxidative stress in breast cancer-derived MCF-7 cells. Once SP interacts with NK1R, this signaling axis could disturb the balance between the expression of p53 and NF-κB, an event that leads to the accumulation of ROS within MCF-7 cells. The produced ROS, in turn, elevates the expression of pro-inflammatory cytokines (TNF-α and IL-6) and downregulates the expression of p21. On the other hand, aprepitant, an antagonist of NK1R, could reduce the survival of proliferative capacity of MCF-7 cells by decreasing the intracellular levels of ROS and p53-mediated up-regulation of p21. Along with the effect on p53, aprepitant could also reduce the expression of NF-κB and its related pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Samine Jafarinezhad
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Assaran Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Ghoreyshi N, Ghahremanloo A, Javid H, Homayouni Tabrizi M, Hashemy SI. Effect of folic acid-linked chitosan-coated PLGA-based curcumin nanoparticles on the redox system of glioblastoma cancer cells. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:950-958. [PMID: 37463671 DOI: 10.1002/pca.3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES Oxidative stress is one of the carcinogenic mechanisms underlying the development of glioblastoma multiforme (GBM), a highly aggressive brain tumor type associated with poor prognosis. Curcumin is known to be an efficient antioxidant, anti-inflammatory, and anticancer compound. However, its poor solubility in water, inappropriate pharmacokinetics, and low bioavailability limit its use as an antitumor drug. We prepared PLGA-based curcumin nanoparticles changed with folic acid and chitosan (curcumin-PLGA-CS-FA) and evaluated its effects on GBM tumor cells' redox status. METHODS The nanoprecipitation method was used to synthesize CU nanoparticles (CU-NPs). The size, morphology, and stability were characterized by DLS, SEM, and zeta potential analysis, respectively. The CU-NPs' toxic properties were studied by MTT assay and measuring the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations. The study was completed by measuring the gene expression levels and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. RESULTS The size, polydispersity index, and zeta potential of CU-NPs were 77.27 nm, 0.29, and -22.45 mV, respectively. The encapsulation efficiency was approximately 98%. Intracellular ROS and MDA levels decreased after CU-NP treatment. Meanwhile, the CU-NPs increased gene expression and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. CONCLUSION CU-NPs might be effective in the prevention and treatment of glioblastoma cancer by modulating the antioxidant-oxidant balance.
Collapse
Affiliation(s)
- Nima Ghoreyshi
- Clinical Biochemistry Department, Medical Faculty, Shahrood Azad University, Shahrood, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
14
|
Al-Keilani MS, Bdeir R, Elstaty RI, Alqudah MA. Expression of substance P, neurokinin 1 receptor, Ki-67 and pyruvate kinase M2 in hormone receptor negative breast cancer and evaluation of impact on overall survival. BMC Cancer 2023; 23:158. [PMID: 36797689 PMCID: PMC9936699 DOI: 10.1186/s12885-023-10633-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Chronic inflammation is a hallmark of cancer, and it can be stimulated by many factors. Substance P (SP), through binding to neurokinin 1 receptor (NK1R), and pyruvate kinase M2 (PKM2) play critical roles in cancer development and progression via modulating the tumor microenvironment. This study aimed to investigate the prognostic significance of SP and PKM2 in combination with NK1R and Ki-67 in hormone receptor negative (HR-ve) breast cancer. METHODS Immunohistochemical expression levels of SP, NK1R, PKM2, and Ki-67 were measured in 144 paraffin-embedded breast cancer tissues (77 h -ve and 67 h + ve). SP, NK1R, and PKM2 were scored semiquantitatively, while Ki-67 was obtained by the percentage of total number of tumor cells with nuclear staining. The optimal cutoff value for SP, NK1R, PKM2, and Ki-67 were assessed by Cutoff Finder. RESULTS High SP expression in HR -ve breast cancer was associated with TNM stage (p = 0.020), pT stage (p = 0.035), pN stage (p = 0.002), axillary lymph node metastasis (p = 0.003), and NK1R expression level (p = 0.010). In HR + ve breast cancer, SP expression was associated with HER2 status (p = 0.001) and PKM2 expression level (p = 0.012). Regarding PKM2 expression level, it significantly associated with HER2 status (p = 0.001) and history of DCIS (p = 0.046) in HR-ve tumors, and with HER2 status (p < 0.001) and SP expression level (p = 0.012) in HR + ve tumors. Survival analysis revealed that high SP level negatively impacted overall survival in HR-ve tumors that had low NK1R level (p = 0.021). Moreover, high SP negatively impacted overall survival in HR-ve tumors that had low Ki-67 level (p = 0.005). High PKM2 negatively impacted overall survival in HR-ve cases with low SP (p = 0.047). CONCLUSION Combined expression levels of SP with NK1R or Ki-67, and PKM2 with SP could be used to predict survival in breast cancer patients with HR-ve tumors. Our findings suggest a role of SP/NK1R pathway and PKM2 in HR-ve breast cancer pathogenesis which should be further investigated to unveil the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- College of Pharmacy, Department of Clinical Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, 22110, Irbid, Jordan.
| | - Roba Bdeir
- College of Nursing, Department of Allied Health Sciences, Al-Balqa Applied University, Al-Salt 19117, P.O. Box 206, Salt, Jordan
| | - Rana I Elstaty
- College of Science and Art, Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, 22110, Irbid, Jordan
| | - Mohammad A Alqudah
- College of Medicine, Department of Microbiology, Pathology, and Forensic Medicine, The Hashemite University, P.O. Box 330127, 13133, Zarqa, Jordan
| |
Collapse
|
15
|
Habibian-Dehkordi S, Farhadian S, Ghasemi M, Evini M. Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/Amoxicillin complex in a neutral environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ehghaghi A, Zokaei E, Modarressi MH, Tavoosidana G, Ghafouri-Fard S, Khanali F, Motevaseli E, Noroozi Z. Antioxidant and anti-apoptotic effects of selenium nanoparticles and Lactobacillus casei on mice testis after X-ray. Andrologia 2022; 54:e14591. [PMID: 36266770 DOI: 10.1111/and.14591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Radiation can lead to various damages in the process of spermatogenesis that lead to a decrease in the number of sperm, an increase in spermatogenesis disorders, and defective sperm function. Radioprotectors are considered a good approach to reducing the damage caused by radiation. The goal of this work was to study how X-ray radiation affects testicular tissue and the process of spermatogenesis, as well as the radioprotective effects of selenium nanoparticles (SeNPs) and Lactobacillus casei (L. casei) as probiotic compounds, given alone or together. This study included 64 adult Syrian male mice weighing approximately 20 ± 5 g and aged 10 ± 1 weeks. Animals were randomly divided into eight groups: control group, SeNPs, probiotic, SeNPs and probiotic, X-ray radiation, SeNPs (X-ray), probiotic (X-ray), and SeNPs and probiotic (X-ray). Histology parameters and levels of oxidative stress biomarkers such as catalase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were examined. In addition, the level of apoptosis was measured in testicular cells that had been treated with SeNPs and L. casei as a probiotic. The results showed that the administration of SeNPs or probiotic diminished the effects of X-ray radiation. These compounds induced a significant decreased in malondialdehyde, caspase 3, and caspase 9 gene levels and a remarkable increased in catalase, superoxide dismutase, and Catsper gene expression. SeNPs and probiotic exhibited a potent antioxidant effect and elevated the mean number of spermatogonia cells, sperm cell count, spermatogenesis percentage, and sperm motility percentage. The prescribed compound exhibited an ideal radioprotective effect with the ability to reduce the side effects of ionizing radiation and to protect normal tissues. SeNPs and probiotic inhibit testicular injury and improve the antioxidant state in male mice.
Collapse
Affiliation(s)
- Alireza Ehghaghi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zokaei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faeze Khanali
- Department of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Mohamed MZ, Abed El Baky MF, Ali ME, Hafez HM. Aprepitant exerts anti-fibrotic effect via inhibition of TGF-β/Smad3 pathway in bleomycin-induced pulmonary fibrosis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103940. [PMID: 35931359 DOI: 10.1016/j.etap.2022.103940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Bleomycin is a well-recognized antineoplastic drug. However, pulmonary fibrosis (PF) is considered to be the principal drawback that greatly limits its use. Here, we sought to investigate ability of the neurokinin receptor 1 blocker, aprepitant, to prevent PF caused by bleomycin. Male adult Wistar rat groups were given a single intratracheal injection of bleomycin, either alone or in combination with aprepitant therapy for 3 or 14 days. Collagen deposition and a rise in transforming growth factor beta (TGF-β) immunoreactivity in lung tissue serve as evidence of bleomycin-induced PF. The serum levels of lactate dehydrogenase, alkaline phosphatase, and total antioxidant improved after aprepitant therapy.Additionally, it reduced the protein expressions of interferon alpha, tumor necrosis factor alpha, and lung lipid peroxidation. Moreover, aprepitant treatment led to an increase in the antioxidant indices glutathione, glutathione peroxidase, and catalase. Aprepitant is postulated to protect against bleomycin-induced PF by decreasing TGF-β, phosphorylating Smad3, and increasing interleukin 37, an anti-fibrotic cytokine, and G Protein-coupled Receptor Kinase 2. Aprepitant for 14 days considerably exceeded aprepitant for 3 days in terms of improving lung damage and having an anti-fibrotic impact. In conclusion, aprepitant treatment for 14 days may be used as an adjuvant to bleomycin therapy to prevent PF, mostly through inhibiting the TGF-/p-Smad3 fibrotic pathway.
Collapse
Affiliation(s)
- Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt.
| | | | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
18
|
The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death Dis 2022; 13:513. [PMID: 35641491 PMCID: PMC9156734 DOI: 10.1038/s41419-022-04963-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.
Collapse
|
19
|
Yadollahi E, Shareghi B, Farhadian S. Noncovalent interactions between Quinoline yellow and trypsin: In vitro and in silico methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
García-Aranda M, Téllez T, McKenna L, Redondo M. Neurokinin-1 Receptor (NK-1R) Antagonists as a New Strategy to Overcome Cancer Resistance. Cancers (Basel) 2022; 14:cancers14092255. [PMID: 35565383 PMCID: PMC9102068 DOI: 10.3390/cancers14092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nowadays, the identification of new therapeutic targets that allow for the development of treatments, which as monotherapy, or in combination with other existing treatments can contribute to improve response rates, prognosis and survival of oncologic patients, is a priority to optimize healthcare within sustainable health systems. Recent studies have demonstrated the role of Substance P (SP) and its preferred receptor, Neurokinin 1 Receptor (NK-1R), in human cancer and the potential antitumor activity of NK-1R antagonists as an anticancer treatment. In this review, we outline the relevant studies published to date regarding the SP/NK-1R complex as a key player in human cancer and also evaluate if the repurposing of already marketed NK-1R antagonists may be useful in the development of new treatment strategies to overcome cancer resistance.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), C/Dr. Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Teresa Téllez
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Lauraine McKenna
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
| | - Maximino Redondo
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), C/Dr. Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Correspondence:
| |
Collapse
|
21
|
Golestaneh M, Firoozrai M, Javid H, Hashemy SI. The substance P/ neurokinin-1 receptor signaling pathway mediates metastasis in human colorectal SW480 cancer cells. Mol Biol Rep 2022; 49:4893-4900. [DOI: 10.1007/s11033-022-07348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
|
22
|
Ashrafi N, Shareghi B, Farhadian S, Hosseini-Koupaei M. A comparative study of the interaction of naringenin with lysozyme by multi-spectroscopic methods, activity comparisons, and molecular modeling procedures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120931. [PMID: 35085994 DOI: 10.1016/j.saa.2022.120931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The present study applied steady-state fluorescence, UV-Vis spectrophotometry, molecular docking studies, and circular dichroism (CD) to investigate the interaction of naringenin with lysozyme in an aqueous medium. The UV-Vis measurement indicated the changes in lysozyme secondary and tertiary structure change as a function of the concentration of naringenin. Naringenin could be used to turn the static quenching mechanism into the intrinsic fluorescence of lysozyme. The negative amount of Gibbs free energy (ΔG°) suggested that the binding operation was spontaneous. Fluorescence studies also demonstrated the changes occurring in the Trp microenvironment upon the concatenation into lysozyme. Analysis of thermodynamic parameters also revealed that hydrophobic forces played a fundamental role in determining the complex stability; this was consistent with the previous modeling studies. Circular dichroism also suggested that the alpha-helicity of lysozyme was enhanced as ligand was bound. Naringenin inhibited lysozyme enzymatic activity, displaying its affinity with the lysozyme active site. Further, molecular docking studies demonstrated that naringenin could bind to both residues essential for catalytic activity in the proximity of Trp 62 and Trp 63.
Collapse
Affiliation(s)
- Narges Ashrafi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | | |
Collapse
|
23
|
|
24
|
The Therapeutic Potential of Aprepitant in Glioblastoma Cancer Cells through Redox Modification. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8540403. [PMID: 35281606 PMCID: PMC8913111 DOI: 10.1155/2022/8540403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Although there is no doubt regarding the involvement of oxidative stress in the development of glioblastoma, many questions remained unanswered about signaling cascades that regulate the redox status. Given the importance of the substance P (SP)/neurokinin 1 receptor (NK1R) system in different cancers, it was of particular interest to evaluate whether the stimulation of this cascade in glioblastoma-derived U87 cells is associated with the induction of oxidative stress. Our results showed that SP-mediated activation of NK1R not only increased the intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS) but also reduced the concentration of thiol in U87 cells. We also found that upon SP addition, there was a significant reduction in the cells' total antioxidant capacity (TAC), revealing that the SP/NK1R axis may be involved in the regulation of oxidative stress in glioblastoma cells. The significant role of SP/NK1R in triggering oxidative stress in glioblastoma has become more evident when we found that the abrogation of the axis using aprepitant reduced cell survival, probably through exerting antioxidant effects. The results showed that both MDA and ROS concentrations were significantly reduced in the presence of aprepitant, and the number of antioxidant components of the redox system increased. Overall, these findings suggest that aprepitant might exert its anticancer effect on U87 cells through shifting the balance of oxidant and antioxidant components of the redox system.
Collapse
|
25
|
Ebrahimi S, Alalikhan A, Aghaee-Bakhtiari SH, Hashemy SI. The redox modulatory effects of SP/NK1R system: Implications for oxidative stress-associated disorders. Life Sci 2022; 296:120448. [PMID: 35247438 DOI: 10.1016/j.lfs.2022.120448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress which refers to redox imbalance with increased generation of reactive oxygen species (ROS) has been associated with the pathophysiology of diverse disease conditions. Recently, a close, yet not fully understood, relation between oxidative stress and neuropeptides, in particular, substance P (SP), has been reported in certain conditions. SP has been shown to affect the cellular redox environment through activation of neurokinin-1receptor (NK1R). It seems that SP/NK1R system and oxidative stress can act either synergistically or antagonistically in a context-dependent manner, thereby, influencing the pathology of various clinical disorders either destructively or protectively. Importantly, the interactions between oxidative stress and SP/NK1R system can be pharmacologically targeted. Therefore, a better understanding of the redox modulatory properties of SP/NK1R signaling will pave the way for identifying new therapeutic possibilities for attenuating oxidative stress-mediated damage. Towards this end, we performed a comprehensive search through PubMed/Medline and Scopus databases and discussed all related existing literature regarding the interplay between oxidative stress and SP/NK1R system as well as their implication in various clinical disorders, to provide a clear view and hence better management of oxidative damage.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Yazdani F, Shareghi B, Farhadian S, Momeni L. Structural insights into the binding behavior of flavonoids naringenin with Human Serum Albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|