1
|
Zhang Z, Zhang Y, Peng H, Yu Q, Kang X, Liu Y, Zheng Y, Cheng F, Wang X, Li F. Decoding TGR5: A comprehensive review of its impact on cerebral diseases. Pharmacol Res 2025; 213:107671. [PMID: 39988005 DOI: 10.1016/j.phrs.2025.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Currently, unraveling the enigmatic realm of drug targets for cerebral disorders poses a formidable challenge. Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1, is a specific bile acid receptor. Widely distributed across various tissues, TGR5 orchestrates a myriad of biological functions encompassing inflammation, energy metabolism, fatty acid metabolism, immune responses, cellular proliferation, apoptosis, and beyond. Alongside its well-documented implications in liver diseases, obesity, type 2 diabetes, tumors, and cardiovascular diseases, a growing body of evidence accentuates the pivotal role of TGR5 in cerebral diseases. Thus, this comprehensive review aimed to scrutinize the current insights into the pathological mechanisms involving TGR5 in cerebral diseases, while contemplating its potential as a promising therapeutic target for cerebral diseases.
Collapse
Affiliation(s)
- Zehan Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yifei Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Hongye Peng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Qingqian Yu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xiangdong Kang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Ying Liu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Feng Li
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| |
Collapse
|
2
|
Zahiri J, Mirzaie M, Duan K, Xiao Y, Aamodt C, Yang X, Nazari S, Andreason C, Lopez L, Barnes CC, Arias S, Nalabolu S, Garmire L, Wang T, Hoekzema K, Eichler EE, Pierce K, Lewis NE, Courchesne E. Beyond the Spectrum: Subtype-Specific Molecular Insights into Autism Spectrum Disorder Via Multimodal Data Integration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.17.24313857. [PMID: 39399028 PMCID: PMC11469458 DOI: 10.1101/2024.09.17.24313857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Some toddlers with autism spectrum disorder (ASD) have mild social symptoms and developmental improvement in skills, but for others, symptoms and abilities are moderately or even severely affected. Those with profound autism have the most severe social, language, and cognitive symptoms and are at the greatest risk of having a poor developmental outcome. The little that is known about the underlying biology of this important profound autism subtype, points clearly to embryonic dysregulation of proliferation, differentiation and neurogenesis. Because it is essential to gain foundational knowledge of the molecular biology associated with profound, moderate, and mild autism clinical subtypes, we used well-validated, data-driven patient subtyping methods to integrate clinical and molecular data at 1 to 3 years of age in a cohort of 363 ASD and controls representative of the general pediatric population in San Diego County. Clinical data were diagnostic, language, cognitive and adaptive ability scores. Molecular measures were 50 MSigDB Hallmark gene pathway activity scores derived from RNAseq gene expression. Subtyping identified four ASD, typical and mixed diagnostic clusters. 93% of subjects in one cluster were profound autism and 93% in a different cluster were control toddlers; a third cluster was 76% moderate ability ASD; and the last cluster was a mix of mild ASD and control toddlers. Among the four clusters, the profound autism subtype had the most severe social symptoms, language, cognitive, adaptive, social attention eye tracking, social fMRI activation, and age-related decline in abilities, while mild autism toddlers mixed within typical and delayed clusters had mild social symptoms, and neurotypical language, cognitive and adaptive scores that improved with age compared with profound and moderate autism toddlers in other clusters. In profound autism, 7 subtype-specific dysregulated gene pathways were found; they control embryonic proliferation, differentiation, neurogenesis, and DNA repair. To find subtype-common dysregulated pathways, we compared all ASD vs TD and found 17 ASD subtype-common dysregulated pathways. These common pathways showed a severity gradient with the greatest dysregulation in profound and least in mild. Collectively, results raise the new hypothesis that the continuum of ASD heterogeneity is moderated by subtype-common pathways and the distinctive nature of profound autism is driven by the differentially added profound subtype-specific embryonic pathways.
Collapse
Affiliation(s)
- Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mehdi Mirzaie
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Caitlin Aamodt
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Xiaotong Yang
- Department of Computation Medicine and Bioinformatics, University of Michigan, MI, USA
| | - Sanaz Nazari
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Charlene Andreason
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Steven Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Lana Garmire
- Department of Computation Medicine and Bioinformatics, University of Michigan, MI, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Sabahat SE, Saqib M, Talib M, Shaikh TG, Khan T, Kailash SJ. Bile acid modulation by gut microbiota: a bridge to understanding cognitive health. Ann Med Surg (Lond) 2024; 86:5410-5415. [PMID: 39239005 PMCID: PMC11374218 DOI: 10.1097/ms9.0000000000002433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
The gut microbiota plays an important role in regulating the body's physiological system, and more recently its impact on bile acid metabolism and cognitive function has been investigated by many studies. In addition to their conventional function in fat digestion and absorption, bile acids are now considered crucial signaling molecules that control several metabolic processes and immunological responses. For this purpose, the authors conducted comprehensive research using relevant terms in an attempt to understand more about the gut microbiota and its impact on bile acid metabolism and cognitive health. The gut-brain axis refers to the network of routes through which gut bacteria communicate with the brain. Through its capacity to bio-transform primary bile acids into secondary bile acids, the gut microbiota plays a significant role in bile acid metabolism. Bile acids function as signaling molecules and act on the brain through nuclear and membrane-bound receptors, influencing neurotransmitter production, neuroinflammation, and neuroplasticity to modify this communication. Any dysregulation in this axis can result in cognitive dysfunction. The link between gut microbiota, bile acids, and cognitive health cannot be ignored. It is imperative to explore this link further by conducting large-scale trials to improve the cognitive health of patients with multiple comorbidities, especially those involving the gastrointestinal tract and nervous system.
Collapse
Affiliation(s)
| | - Muhammad Saqib
- Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
| | - Muneeba Talib
- Karachi Medical and Dental College, Karachi, Pakistan
| | | | | | | |
Collapse
|
4
|
Fang Y, Kang Z, Zhang W, Xiang Y, Cheng X, Gui M, Fang D. Core biomarkers analysis benefit for diagnosis on human intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2024; 24:525. [PMID: 39127651 DOI: 10.1186/s12884-024-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The pregnant women with intrahepatic cholestasis were at high risk of fetal distress, preterm birth and unexpected stillbirth. Intrahepatic cholestasis of pregnancy (ICP) was mainly caused by disorder of bile acid metabolism, whereas the specific mechanism was obscure. METHODS We performed proteomics analysis of 10 ICP specimens and 10 placenta specimens from patients without ICP through data-independent acquisition (DIA) technique to disclose differentially expressed proteins. We executed metabolomic analysis of 30 ICP specimens and 30 placenta specimens from patients without ICP through UPLC-MS/MS to identify differentially expressed metabolites. Enrichment and correlation analysis was used to obtain the direct molecular insights of ICP development. The ICP rat models were constructed to validate pathological features. RESULTS The heatmap of proteomics analysis showed the top 30 up-regulated and 30 down-regulated proteins. The metabolomic analysis revealed 20 richer and 4 less abundant metabolites in ICP samples compared with placenta specimens from patients without ICP, and enrichment pathways by these metabolites included primary bile acid biosynthesis, cholesterol metabolism, bile secretion, nicotinate and nicotinamide metabolism, purine metabolism and metabolic pathways. Combined analysis of multiple omics results demonstrated that bile acids such as Glycohyocholic acid, Glycine deoxycholic acid, beta-Muricholic acid, Noncholic acid, cholic acid, Gamma-Mercholic Acid, alpha-Muricholic acid and Glycochenodeoxycholic Aicd were significantly associated with the expression of GLRX3, MYL1, MYH7, PGGT1B, ACTG1, SP3, LACTB2, C2CD5, APBB2, IPO9, MYH2, PPP3CC, PIN1, BLOC1S1, DNAJC7, RASAL2 and ATCN3 etc. The core protein ACAT2 was involved in lipid metabolic process and animal model showed that ACAT2 was up-regulated in placenta and liver of pregnant rats and fetal rats. The neonates had low birth weight and Safranin O-Fast green FCF staining of animal models showed that poor osteogenic and chondrogenic differentiation of fetal rats. CONCLUSION Multiple metabolites-alpha-Muricholic acid, beta-Muricholic acid, Glycine deoxycholic acid and Glycochenodeoxycholic Acid etc. were perfect biomarkers to predict occurrence of ICP. Bile acids were significantly associated with varieties of protein expression and these proteins were differentially expressed in ICP samples. Our study provided several biomarkers for ICP detection and potential therapeutic targets for ICP development.
Collapse
Affiliation(s)
- Yan Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Zhe Kang
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Weiqiang Zhang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Yun Xiang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Mian Gui
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Dajun Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China.
| |
Collapse
|
5
|
Bays HE. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. OBESITY PILLARS 2024; 10:100108. [PMID: 38706496 PMCID: PMC11066689 DOI: 10.1016/j.obpill.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Background This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association (NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, dyslipidemia, and cardiovascular disease (CVD) risk. Methods This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer review by the OMA and NLA leadership. Results Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described with an increase in adiposity includes elevated triglycerides, reduced high density lipoprotein cholesterol (HDL-C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, dense LDL particles. Conclusions Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) levels represent priorities in reducing the risk of CVD.
Collapse
Affiliation(s)
- Harold Edward Bays
- Corresponding author. Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, 40213, USA.
| |
Collapse
|
6
|
Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253:103174. [PMID: 38579493 PMCID: PMC11129274 DOI: 10.1016/j.autneu.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
7
|
Mireault M, Rose CF, Karvellas CJ, Sleno L. Perturbations in human bile acid profiles following drug-induced liver injury investigated using semitargeted high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9731. [PMID: 38469943 DOI: 10.1002/rcm.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
RATIONALE Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in North America. To investigate the effect of drug-induced liver injury (DILI) on circulating bile acid (BA) profiles, serum from ALF patients and healthy controls were analyzed using a semitargeted high-resolution mass spectrometry approach to measure BAs in their unconjugated and amidated forms and their glucuronide and sulfate conjugates. METHODS Human serum samples from 20 healthy volunteers and 34 ALF patients were combined with deuterated BAs and extracted, prior to liquid chromatography high-resolution tandem mass spectrometry analysis. A mix of 46 standards helped assign 26 BAs in human serum by accurate mass and retention time matching. Moreover, other isomers of unconjugated and amidated BAs, as well as glucuronide and sulfate conjugates, were assigned by accurate mass filtering. In vitro incubations of standard BAs provided increased information for certain peaks of interest. RESULTS A total of 275 BA metabolites, with confirmed or putative assignments, were measured in human serum samples. APAP overdose significantly influenced the levels of most BAs, promoting glycine conjugation, and, to a lesser extent, taurine conjugation. When patient outcome was considered, 11 BAs were altered significantly, including multiple sulfated species. Although many of the BAs measured did not have exact structures assigned, several putatively identified BAs of interest were further characterized using in vitro incubations. CONCLUSION An optimized chromatographic separation tailored to BAs of ranging polarities was combined with accurate mass measurements to investigate the effect that DILI has on their complex profiles and metabolism to a much wider extent than previously possible. The analysis of complex BA profiles enabled in-depth analysis of the BA metabolism perturbations in ALF, including certain metabolites related to patient outcomes.
Collapse
Affiliation(s)
- Myriam Mireault
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Constantine J Karvellas
- Department of Critical Care Medicine and Gastroenterology/Hepatology, University of Alberta, Edmonton, Alberta, Canada
| | - Lekha Sleno
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
8
|
Bays HE, Kirkpatrick CF, Maki KC, Toth PP, Morgan RT, Tondt J, Christensen SM, Dixon DL, Jacobson TA. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. J Clin Lipidol 2024; 18:e320-e350. [PMID: 38664184 DOI: 10.1016/j.jacl.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association (NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, dyslipidemia, and cardiovascular disease (CVD) risk. METHODS This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer review by the OMA and NLA leadership. RESULTS Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described with an increase in adiposity includes elevated triglycerides, reduced high-density lipoprotein cholesterol (HDL-C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, dense LDL particles. CONCLUSIONS Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) levels represent priorities in reducing the risk of CVD.
Collapse
Affiliation(s)
- Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, Clinical Associate Professor, University of Louisville School of Medicine, 3288 Illinois Avenue, Louisville KY 40213 (Dr Bays).
| | - Carol F Kirkpatrick
- Kasiska Division of Health Sciences, Idaho State University, Pocatello, ID (Dr Kirkpatrick).
| | - Kevin C Maki
- Indiana University School of Public Health, Bloomington, IN (Dr Maki).
| | - Peter P Toth
- CGH Medical Center, Department of Clinical Family and Community Medicine, University of Illinois School of Medicine, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine (Dr Toth).
| | - Ryan T Morgan
- Oklahoma State University Center for Health Sciences, Principal Investigator at Lynn Health Science Institute, 3555 NW 58th St., STE 910-W, Oklahoma City, OK 73112 (Dr Morgan).
| | - Justin Tondt
- Department of Family and Community Medicine, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center (Dr Tondt)
| | | | - Dave L Dixon
- Deptartment of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy 410 N 12th Street, Box 980533, Richmond, VA 23298-0533 (Dr Dixon).
| | - Terry A Jacobson
- Lipid Clinic and Cardiovascular Risk Reduction Program, Emory University Department of Medicine, Atlanta, GA (Dr Jacobson).
| |
Collapse
|
9
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
10
|
Nabizadeh F, Valizadeh P, Fallahi MS. Bile acid profile associated with CSF and PET biomarkers in Alzheimer's disease. Aging Clin Exp Res 2024; 36:62. [PMID: 38451317 PMCID: PMC10920417 DOI: 10.1007/s40520-024-02729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Recent studies have shown that gut microbiota can affect the development of Alzheimer's disease (AD) through various mechanisms. Bile acids (BAs), which are the final byproducts of cholesterol metabolism created through both the human body and gut microbiome, appear to be influenced by gut microbiota and may impact AD pathological characteristics such as the accumulation of tau and amyloid-β. We aimed to investigate the associations between various serum BAs and CSF biomarkers (including Aβ, total tau, and p-tau). Additionally, we sought to examine the longitudinal changes in brain Aβ and tau through PET imaging in relation to BAs profile. METHODS The data of 828 subjects including 491 diagnosed with mild cognitive impairment (MCI), 119 patients diagnosed with AD, and 267 cognitively normal (CN) participants were obtained from ADNI. The baseline and longitudinal [18F] florbetapir and [18F] flortaucipir PET standard uptake value ratios (SUVR) measures were obtained to assess the accumulation of tau and Aβ. Moreover, baseline levels of serum BAs and CSF Aβ1-42, tau, and p-tau were used. RESULTS After FDR correction we observed that five BAs level and relevant calculated ratios were associated with CSF p-tau and tau, three with CSF Aβ1-42. Furthermore, three BAs level and relevant calculated ratios were associated with the tau-PET rate of change, and two with the Aβ rate of change. CONCLUSION The findings from our study suggest a correlation between altered profiles of BAs and CSF and imaging biomarkers associated with AD. These results provide supporting evidence for the link between the gut microbiome and the pathological features of AD.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Parya Valizadeh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
11
|
Longevity OMAC. Retracted: A Review of Bile Acid Metabolism and Signaling in Cognitive Dysfunction-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9764647. [PMID: 38234574 PMCID: PMC10791360 DOI: 10.1155/2024/9764647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/4289383.].
Collapse
|
12
|
Harnisch LO, Neugebauer S, Mihaylov D, Eidizadeh A, Zechmeister B, Maier I, Moerer O. Quantification of Bile Acids in Cerebrospinal Fluid: Results of an Observational Trial. Biomedicines 2023; 11:2947. [PMID: 38001948 PMCID: PMC10669160 DOI: 10.3390/biomedicines11112947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Bile acids, known as aids in intestinal fat digestion and as messenger molecules in serum, can be detected in cerebrospinal fluid (CSF), although the blood-brain barrier is generally an insurmountable obstacle for bile acids. The exact mechanisms of the occurrence, as well as possible functions of bile acids in the central nervous system, are not precisely understood. (2) Methods: We conducted a single-center observational trial. The concentrations of 15 individual bile acids were determined using an in-house LC-MS/MS method in 54 patients with various acute and severe disorders of the central nervous system. We analyzed CSF from ventricular drainage taken within 24 h after placement, and blood samples were drawn at the same time for the presence and quantifiability of 15 individual bile acids. (3) Results: At a median time of 19.75 h after a cerebral insult, the concentration of bile acids in the CSF was minute and almost negligible. The CSF concentrations of total bile acids (TBAs) were significantly lower compared to the serum concentrations (serum 0.37 µmol/L [0.24, 0.89] vs. 0.14 µmol/L [0.05, 0.43]; p = 0.033). The ratio of serum-to-CSF bile acid levels calculated from the respective total concentrations were 3.10 [0.94, 14.64] for total bile acids, 3.05 for taurocholic acid, 14.30 [1.11, 27.13] for glycocholic acid, 0.0 for chenodeoxycholic acid, 2.19 for taurochenodeoxycholic acid, 1.91 [0.68, 8.64] for glycochenodeoxycholic acid and 0.77 [0.0, 13.79] for deoxycholic acid; other bile acids were not detected in the CSF. The ratio of CSF-to-serum S100 concentration was 0.01 [0.0, 0.02]. Serum total and conjugated (but not unconjugated) bilirubin levels and serum TBA levels were significantly correlated (total bilirubin p = 0.031 [0.023, 0.579]; conjugated bilirubin p = 0.001 [0.193, 0.683]; unconjugated p = 0.387 [-0.181, 0.426]). No correlations were found between bile acid concentrations and age, delirium, intraventricular blood volume, or outcome measured on a modified Rankin scale. (4) Conclusions: The determination of individual bile acids is feasible using the current LC-MS/MS method. The results suggest an intact blood-brain barrier in the patients studied. However, bile acids were detected in the CSF, which could have been achieved by active transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anaesthesiology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Am Klinikum 1, D-07747 Jena, Germany; (S.N.); (D.M.)
| | - Diana Mihaylov
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Am Klinikum 1, D-07747 Jena, Germany; (S.N.); (D.M.)
| | - Abass Eidizadeh
- Interdisciplinary UMG Laboratories, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany; (A.E.); (B.Z.)
| | - Bozena Zechmeister
- Interdisciplinary UMG Laboratories, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany; (A.E.); (B.Z.)
| | - Ilko Maier
- Department of Neurology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| | - Onnen Moerer
- Department of Anaesthesiology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| |
Collapse
|
13
|
Xing Y, Li X, Ma L. Exploring the Intricate Nexus of Sarcopenia and Cognitive Impairment. Aging Dis 2023; 15:2334-2344. [PMID: 37962457 PMCID: PMC11567264 DOI: 10.14336/ad.2023.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Sarcopenia, a group of skeletal muscle diseases with high prevalence in older adults, usually manifests as loss of muscle mass and strength, and/or physical performance decline. Cognitive impairment, defined as impaired function in one or more cognitive domains such as memory, language, computation, comprehension, executive, and visuospatial skills, affects the quality of life and social functioning of patients. Both sarcopenia and cognitive impairment are common geriatric syndromes, and the two disorders interact and influence each other. Declining muscle function accelerates cognitive impairment, and cognitive impairment in turn affects muscle strength. Potential common pathological mechanisms between the two include chronic inflammation, mitochondrial dysfunction and oxidative stress, and gut microbiota disorder. Additionally, neuroendocrine connections including testosterone, insulin, and growth factors have important effects on muscle and brain function. Recently, the development of applied metabolomics technologies has shown significant potential in uncovering shared biochemical pathways and exploring potential biomarkers. Exercise, nutritional, and cognitive interventions are significant as nonpharmacologic approaches in the treatment of sarcopenia and cognitive impairment. However, the specific mechanism of interaction between two diseases, biomarkers and effective therapeutic medications still has knowledge gaps that need to be further explored.
Collapse
Affiliation(s)
| | | | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
14
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
15
|
Wang S, Xu C, Liu H, Wei W, Zhou X, Qian H, Zhou L, Zhang H, Wu L, Zhu C, Yang Y, He L, Li K. Connecting the Gut Microbiota and Neurodegenerative Diseases: the Role of Bile Acids. Mol Neurobiol 2023:10.1007/s12035-023-03340-9. [PMID: 37121952 DOI: 10.1007/s12035-023-03340-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
With the acceleration of global population aging, neurodegenerative diseases (NDs) will become the second leading cause of death in the world, which seriously threatens human life and health. Alzheimer's disease and Parkinson's disease are the most common and typical NDs. The exact mechanisms of the NDs occurrence and development remain unclear, which may be related to immune, oxidative stress, and abnormal aggregation of pathogenic proteins. Studies have suggested that gut microbiota (GM) influences brain function and plays an important role in regulating emotional and cognitive function. Recently, bile acids (BAs) have become the "star molecule" in the microbiota-gut-brain (MGB) axis research. BAs have been reported to exert anti-inflammatory, antioxidant, and neuroprotective activities in NDs. However, the role of BAs in the connection between GM and the central nervous system (CNS) is still unclear. In this review, we will review the possible mechanisms of BAs between GM and NDs and explore the function of BAs to provide ideas for the prevention and treatment of NDs in the future.
Collapse
Affiliation(s)
- Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongyan Liu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haipeng Qian
- Department of Nursing, AnHui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Li Zhou
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Haiqing Zhang
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Wu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuting Yang
- Computer Science and Technology of Department of Science and Engineering, Shiyuan College of Nanninng Normal University, Nanning, Guangxi Province, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
16
|
Samartsev VN, Khoroshavina EI, Pavlova EK, Dubinin MV, Semenova AA. Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes. MEMBRANES 2023; 13:membranes13050472. [PMID: 37233533 DOI: 10.3390/membranes13050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
It is now generally accepted that the role of bile acids in the organism is not limited to their participation in the process of food digestion. Indeed, bile acids are signaling molecules and being amphiphilic compounds, are also capable of modifying the properties of cell membranes and their organelles. This review is devoted to the analysis of data on the interaction of bile acids with biological and artificial membranes, in particular, their protonophore and ionophore effects. The effects of bile acids were analyzed depending on their physicochemical properties: namely the structure of their molecules, indicators of the hydrophobic-hydrophilic balance, and the critical micelle concentration. Particular attention is paid to the interaction of bile acids with the powerhouse of cells, the mitochondria. It is of note that bile acids, in addition to their protonophore and ionophore actions, can also induce Ca2+-dependent nonspecific permeability of the inner mitochondrial membrane. We consider the unique action of ursodeoxycholic acid as an inducer of potassium conductivity of the inner mitochondrial membrane. We also discuss a possible relationship between this K+ ionophore action of ursodeoxycholic acid and its therapeutic effects.
Collapse
Affiliation(s)
- Victor N Samartsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Ekaterina I Khoroshavina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Evgeniya K Pavlova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
17
|
Xu H, Xu Z, Long S, Li Z, Jiang J, Zhou Q, Huang X, Wu X, Wei W, Li X. The role of the gut microbiome and its metabolites in cerebrovascular diseases. Front Microbiol 2023; 14:1097148. [PMID: 37125201 PMCID: PMC10140324 DOI: 10.3389/fmicb.2023.1097148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
The gut microbiome is critically involved in maintaining normal physiological function in the host. Recent studies have revealed that alterations in the gut microbiome contribute to the development and progression of cerebrovascular disease via the microbiota-gut-brain axis (MGBA). As a broad communication network in the human body, MGBA has been demonstrated to have significant interactions with various factors, such as brain structure and function, nervous system diseases, etc. It is also believed that the species and composition of gut microbiota and its metabolites are intrinsically linked to vascular inflammation and immune responses. In fact, in fecal microbiota transplantation (FMT) research, specific gut microbiota and downstream-related metabolites have been proven to not only participate in various physiological processes of human body, but also affect the occurrence and development of cerebrovascular diseases directly or indirectly through systemic inflammatory immune response. Due to the high mortality and disability rate of cerebrovascular diseases, new treatments to improve intestinal dysbacteriosis have gradually attracted widespread attention to better ameliorate the poor prognosis of cerebrovascular diseases in a non-invasive way. This review summarizes the latest advances in the gut microbiome and cerebrovascular disease research and reveals the profound impact of gut microbiota dysbiosis and its metabolites on cerebrovascular diseases. At the same time, we elucidated molecular mechanisms whereby gut microbial metabolites regulate the expression of specific interleukins in inflammatory immune responses. Moreover, we further discuss the feasibility of novel therapeutic strategies targeting the gut microbiota to improve the outcome of patients with cerebrovascular diseases. Finally, we provide new insights for standardized diagnosis and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ziyue Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qiangqiang Zhou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiaopeng Huang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiaohui Wu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Li H, Zhu X, Xu J, Li L, Kan W, Bao H, Xu J, Wang W, Yang Y, Chen P, Zou Y, Feng Y, Yang J, Du J, Wang G. The FXR mediated anti-depression effect of CDCA underpinned its therapeutic potentiation for MDD. Int Immunopharmacol 2023; 115:109626. [PMID: 36584576 DOI: 10.1016/j.intimp.2022.109626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Emerging evidence from animal and human studies has suggested that small microbial metabolites generated in the gut influence host mood and behavior. Our previous study reported that patients with major depressive disorder (MDD) reduced the abundance of genera Blautia and Eubacterium, the microbials critically regulating cholesterol and bile acid metabolism in the gut. In this study, we further demonstrated that the levels of plasma bile acid chenodeoxycholic acid (CDCA) were significantly lower in Chinese MDD patients (142) than in healthy subjects (148). Such low levels of plasma CDCA in MDD patients were rescued in remitters but not in nonremitters following antidepressant treatment. In a parallel animal study, Chronic Social Defeat Stress (CSDS) depressed mice reduced the plasma CDCA and expression level in prefrontal cortex (PFC) of bile acid receptor (FXR) protein, which is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. We found that CDCA treatment restored the level of FXR in the CSDS mice, suggesting the involvement of bile acid receptors in MDD. We observed that CDCA decreased the activity of the NLRP3 inflammasome and caspase-1 and subsequently increased the levels of phosphorylation and expression of PFC glutamate receptors (GluA1) in the PFC. In addition, CDCA showed antidepressant effects in the tests of sucrose preference, tail suspension, and forced swimming in CSDS mouse model of depression. Finally, in agreement with this idea, blocking these receptors by a FXR antagonist GS abolished CDCA-induced antidepressant effect. Moreover, CDCA treatment rescued the increase of IL-1β, IL-6, TNF α and IL-17, which also were blocked by GS. These results suggest that CDCA is a biomarker and target potentially important for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Haoran Li
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Jinjie Xu
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Lei Li
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Weijing Kan
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Jiyi Xu
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Weiwei Wang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Yang Yang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Pei Chen
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Yuchuan Zou
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China.
| | - Jing Du
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China; School of Medicine, Yunnan University, Kunming 650091, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China.
| |
Collapse
|
19
|
Tzeng IS, Hsieh TH. Collocation of metformin and dipeptidyl peptidase-4 inhibitor is associated with increased risk of diabetes-related vascular dementia: A single hospital study in Northern Taiwan. Expert Opin Investig Drugs 2023; 32:171-176. [PMID: 36786091 DOI: 10.1080/13543784.2023.2178417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Recent studies have established a close link between diabetes mellitus (DM) and an increased risk of vascular dementia (VD). In this study, we evaluated the risk of VD in patients with type 2 diabetes who were on antidiabetic medications. METHODS There is a growing interest in observational and data-driven studies to answer specific research questions for defined populations. In line with this, 67,281 patients (age range, 61.95 ± 13.88 years; length of follow up, 3.2 ± 3.4 years) diagnosed with DM were divided into two groups:48,072 subjects who had not used dipeptidyl peptidase-4 (DPP-4) medication and 19,209 subjects who had taken DPP-4 medication. Each patient underwent follow-up examination after the date of the latest diagnosis. RESULTS Among 10,884 DM patients with dementia, the combination therapy of metformin and DPP-4 inhibitor may increase the risk of dementia compared with that in the control group (adjusted hazard ratio, 1.11; 95% confidence interval, 1.06-1.15; p ≤ 0.001). CONCLUSION In this study, patients who received a combination therapy of metformin and DPP-4 inhibitor for DM were at a higher risk of dementia than those who received monotherapy.
Collapse
Affiliation(s)
- I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
20
|
The Age-Accompanied and Diet-Associated Remodeling of the Phospholipid, Amino Acid, and SCFA Metabolism of Healthy Centenarians from a Chinese Longevous Region: A Window into Exceptional Longevity. Nutrients 2022; 14:nu14204420. [PMID: 36297104 PMCID: PMC9612356 DOI: 10.3390/nu14204420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
As centenarians provide a paradigm of healthy aging, investigating the comprehensive metabolic profiles of healthy centenarians is of utmost importance for the pursuit of health and longevity. However, relevant reports, especially studies considering the dietary influence on metabolism, are still limited, mostly lacking the guidance of a model of healthy aging. Therefore, exploring the signatures of the integrative metabolic profiles of the healthy centenarians from a famous longevous region, Bama County, China, should be an effective way. The global metabolome in urine and the short-chain fatty acids (SCFAs) in the feces of 30 healthy centenarians and 31 elderly people aged 60−70 from the longevous region were analyzed by non-targeted metabolomics combined with metabolic target analysis. The results showed that the characteristic metabolites related to longevity were mostly summarized into phosphatidylserine, lyso-phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, bile acids, and amino acids (p < 0.05). Six metabolic pathways were found significant relevant to longevity. Furthermore, acetic acid, propionic acid, butyric acid, valeric acid, and total SCFA were significantly increased in the centenarian group (p < 0.05) and were also positively associated with the dietary fiber intake (p < 0.01). It was age-accompanied and diet-associated remodeling of phospholipid, amino acid, and SCFA metabolism that expressed the unique metabolic signatures related to exceptional longevity. This metabolic remodeling is suggestive of cognitive benefits, better antioxidant capacity, the attenuation of local inflammation, and health-span-promoting processes, which play a critical and positive role in shaping healthy aging.
Collapse
|
21
|
Lirong W, Mingliang Z, Mengci L, Qihao G, Zhenxing R, Xiaojiao Z, Tianlu C. The clinical and mechanistic roles of bile acids in depression, Alzheimer's disease, and stroke. Proteomics 2022; 22:e2100324. [PMID: 35731901 DOI: 10.1002/pmic.202100324] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
The burden of neurological and neuropsychiatric disorders continues to grow with significant impacts on human health and social economy worldwide. Increasing clinical and preclinical evidences have implicated that bile acids (BAs) are involved in the onset and progression of neurological and neuropsychiatric diseases. Here, we summarized recent studies of BAs in three types of highly prevalent brain disorders, depression, Alzheimer's disease, and stroke. The shared and specific BA profiles were explored and potential markers associated with disease development and progression were summarized. The mechanistic roles of BAs were reviewed with focuses on inflammation, gut-brain-microbiota axis, cellular apoptosis. We also discussed future perspectives for the prevention and treatment of neurological and neuropsychiatric disorders by targeting BAs and related molecules and gut microbiota. Our understanding of BAs and their roles in brain disorders is still evolving. A large number of questions still need to be addressed on the emerging crosstalk among central, peripheral, intestine and their contribution to brain and mental health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wu Lirong
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhao Mingliang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li Mengci
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guo Qihao
- Department of gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ren Zhenxing
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Xiaojiao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chen Tianlu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|