1
|
Thakur M, Verma R, Kumar D, Sivakumar M, Malik T. Investigation Into the Impact of Solvents on the Phytochemical Composition, Antioxidant Capacities, and Antihyperglycemic Activities of Erigeron annuus (L.) Pers. BIOMED RESEARCH INTERNATIONAL 2025; 2025:6650124. [PMID: 40264643 PMCID: PMC12014270 DOI: 10.1155/bmri/6650124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025]
Abstract
This study aims to assess the phytochemical composition, antioxidant potential, and antidiabetic properties of Erigeron annuus (L.) Pers. The ethyl acetate fraction of Erigeron annuus leaves exhibited the highest extraction rate (22.42%). The preliminary qualitative phytochemical analysis in crude extract and fractions is often performed using chemical tests. For quantitative analysis, spectrophotometric methods are widely used to estimate the concentration of phytochemicals. The antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay, which measures the reduction of Fe3+ to Fe2+. Qualitative screening revealed the presence of tannins, flavonoids, phenols, saponins, and alkaloids. Notably, the ethyl acetate fraction showed significantly (p < 0.05) higher total phenolic content (70.01 ± 1.1 mg/g) and total flavonoid content (80.29 ± 1.03 mg/g). This fraction also demonstrated substantial α-amylase inhibitory activity and antioxidant potential, suggesting the ability of polyphenols to reduce α-amylase activity. The α-amylase inhibition (23.15 ± 1.22% to 67.31 ± 2.01%) activity and IC50 value (40.59 ± 0.03 μg/mL) were notably higher in the ethyl acetate fraction compared with the standard drug metformin (19.88 ± 1.51 μg/mL). Erigeron annuus ethyl acetate fraction exhibited significantly higher glucose levels (10.88% ± 1.29% to 65.11 ± 0.94%) and conducted a lipid peroxidation experiment utilizing egg yolk as the source of lipids with high content. The most bioactive fraction was evaluated for cytotoxicity against the HEK293 cell line. The cytotoxicity assay revealed that 50% cell viability was observed at a concentration of 50 μg/mL, indicating that the plant extract is nontoxic at concentrations below this threshold. Furthermore, the dominant fraction was further investigated using liquid chromatography-mass spectroscopy and high-performance thin-layer chromatography techniques from the selected plant. Moreover, an in vivo study will be performed to evaluate the antidiabetic efficacy of Erigeron annuus, isolate and characterize its bioactive components, and examine its molecular mechanism of action to improve its therapeutic applicability.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advance Innovation Technologies, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Manickam Sivakumar
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Tabarak Malik
- Department of Biomedical Science, Institute of Health, Jimma University, Jimma, Oromia Region, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Mohammadabadi T, Ben Ayad AE, Maheshwari A. Ginger: A Nutraceutical Supplement for Protection Against Various Cardiovascular Diseases in Clinical Trials. Cureus 2025; 17:e80841. [PMID: 40255738 PMCID: PMC12007927 DOI: 10.7759/cureus.80841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/01/2025] [Indexed: 04/22/2025] Open
Abstract
Cardiovascular diseases (CVDs) are increasing in prevalence, causing significant health issues and remaining one of the leading causes of death worldwide. Medical herbs continue to be used as an alternative treatment approach for several diseases, including various CVDs. Since ancient times, certain herbs have been safely used to alleviate the risk of developing CVD and control or improve the symptoms of medical conditions, such as in cases of congestive heart failure, angina, atherosclerosis, and systolic hypertension. Ginger is one of the medicinal herbs that neutral agents use to prevent and treat various CVDs. Ginger has antioxidant, anti-inflammatory, and immunomodulatory components and may improve cardiovascular risk factors. The natural components of ginger effectively inhibit inflammation, oxidative stress, and insulin resistance; may reduce fasting blood glucose, triglyceride, and low-density lipoprotein (LDL) levels; and prevent CVDs. Ginger can be an alternative that has lower side effects. Ginger's bioactive components may improve human blood lipid profile and decrease blood sugar levels. Further research is necessary to confirm ginger phytochemicals' efficacy and mechanism for various CVDs. The present review aims to summarize the effects of ginger's bioactive compounds on cardiovascular diseases.
Collapse
Affiliation(s)
- Taherah Mohammadabadi
- Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University, Mollasani, IRN
- Department of Newborn Health or Neonatology, Global Newborn Society, Newborn, Clarksville, USA
| | - Aimen E Ben Ayad
- Department of Pediatrics/Neonatology, Tawam Hospital, Al Ain, ARE
- Department of Pediatrics, United Arab Emirates University, Al Ain, ARE
- Department of Newborn Health or Neonatology, Global Newborn Society, Newborn, Clarksville, USA
| | - Akhil Maheshwari
- Department of Neonatology/Pediatrics, Boston Children's Health Physicians/New York Medical College, New York, USA
- Department of Pediatrics/Neonatology, Banaras Hindu University Institute of Eminence, Varanasi, IND
- Department of Newborn Health or Neonatology, Global Newborn Society, Newborn, Clarksville, USA
| |
Collapse
|
3
|
Imran M, Altamimi ASA, Afzal M, Babu MA, Goyal K, Ballal S, Sharma P, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Targeting senescence and GATA4 in age-related cardiovascular disease: a comprehensive approach. Biogerontology 2025; 26:45. [PMID: 39831933 DOI: 10.1007/s10522-025-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
The growing prevalence of age-related cardiovascular diseases (CVDs) poses significant health challenges, necessitating the formulation of novel treatment approaches. GATA4, a vital transcription factor identified for modulating cardiovascular biology and cellular senescence, is recognized for its critical involvement in CVD pathogenesis. This review collected relevant studies from PubMed, Google Scholar, and Science Direct using search terms like 'GATA4,' 'cellular senescence,' 'coronary artery diseases,' 'hypertension,' 'heart failure,' 'arrhythmias,' 'congenital heart diseases,' 'cardiomyopathy,' and 'cardiovascular disease.' Additionally, studies investigating the molecular mechanisms underlying GATA4-mediated regulation of GATA4 and senescence in CVDs were analyzed to provide comprehensive insights into this critical aspect of potential treatment targeting. Dysregulation of GATA4 is involved in a variety of CVDs, as demonstrated by both experimental and clinical research, comprising CAD, hypertension, congenital heart diseases, cardiomyopathy, arrhythmias, and cardiac insufficiency. Furthermore, cellular senescence enhances the advancement of age-related CVDs. These observations suggested that therapies targeting GATA4, senescence pathways, or both as necessary may be an effective intervention in CVD progression and prognosis. Addressing age-related CVDs by targeting GATA4 and senescence is a broad mechanism approach. It implies further investigation of the molecular nature of these processes and elaboration of an effective therapeutic strategy. This review highlights the importance of GATA4 and senescence in CVD pathogenesis, emphasizing their potential as therapeutic targets for age-related CVDs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
4
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
5
|
Bhosle S, Bagali S, Parvatikar PP, Das KK. Effect of bioactive compounds of Mucuna pruriens on proteins of Wnt/β catenin pathway in pulmonary hypertension by in silico approach. In Silico Pharmacol 2024; 12:110. [PMID: 39575208 PMCID: PMC11576684 DOI: 10.1007/s40203-024-00263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/10/2024] [Indexed: 11/24/2024] Open
Abstract
Modulation of the Wnt/β-catenin signaling pathway may aid in discovering new medications for the effective management of pulmonary artery hypertension (PAH). Given the therapeutic potential of Mucuna pruriens in several diseases, the present study aimed to analyze interactions of different bioactive compounds of Mucuna pruriens plant seeds with Wnt/β-catenin pathway targeting its various components like Wnt 3a, Frizzled 1, LRP 5/6, β-catenin, Disheveled, cyclin D1 by in silico analysis. The proposed work is based on computational analysis including ADME/T properties, by a Swiss ADME server. To understand the molecular interaction pattern Schrodinger, suit a stand-alone software was used to predict the interaction of bioactive molecules of Mucuna Pruriens with target proteins that are involved in Wnt/ β catenin pathway. Further, the simulation pattern of the top docked complex was subjected to MD simulation in Desmond for 100 ns. Bioactive molecules from Mucuna Pruriens have drug-like properties and minimal toxicity. Further, the docking study revealed that among the nine compounds, three compounds (Gallic acid, L-dopa, and β-sitosterol) showed good interaction with target proteins. As gallic acid showed good interaction with all target proteins, the docked complex was subjected to MD simulation which was stable throughout the simulation time in terms of RMSD and RMSF. These findings suggest that the bioactive molecules of Mucuna pruriens compounds have potential therapeutic value in the treatment of pulmonary vascular disease. Further, in vivo and in vitro studies are necessary to determine its efficacy and validate its pharmacological activity conclusively.
Collapse
Affiliation(s)
- Supriya Bhosle
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M.Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka 586103 India
| | - Shrilaxmi Bagali
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M.Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka 586103 India
| | - Prachi P. Parvatikar
- Faculty of Allied Health Science, BLDE (Deemed to be University), Vijayapur, Karnataka 586103 India
| | - Kusal K. Das
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M.Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka 586103 India
| |
Collapse
|
6
|
Mohsen E, Ezzat MI, Sallam IE, Zaafar D, Gawish AY, Ahmed YH, Elghandour AH, Issa MY. Impact of thermal processing on phytochemical profile and cardiovascular protection of Beta vulgaris L. in hyperlipidemic rats. Sci Rep 2024; 14:27539. [PMID: 39528593 PMCID: PMC11554672 DOI: 10.1038/s41598-024-77860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Beetroot (Beta vulgaris L.) is globally recognized for its outstanding color and flavor. It has been acknowledged for its therapeutic value since the ancient Romans. It is used to treat cardiovascular disorders. The therapeutic benefits of red beetroot are due to the substantial amounts of various bioactive metabolites, such as ascorbic acid, carotenoids, nitrates, phenolics, and betalains. However, the bioavailability and shelf life of these substances are significantly affected by the considerable variations in their processing methods among different countries. The longevity of the extracts is prolonged by employing well-established preservation techniques, such as boiling and steaming, which involve the application of heat. Our study aimed to analyze and compare the phytochemical composition of raw and heat processed beetroot using UPLC-QTOF-MS/MS. In addition, the study aimed to assess the effectiveness of processed beetroot in protecting against cardiovascular complications in a rat model of obesity induced by high-fat diet (HFD). UPLC-QTOF-MS/MS phytochemical profiling revealed the presence of 51 compounds, including organic acids, flavonoids, phenolics, betanins, and saponins. All the extracts demonstrated a significant decline in MDA, TNF- α, and IL-6 levels, suppressed the TGF-β expression, and restored the serum catalase level to normal. Among all the tested extracts, the steamed extract exhibited the slightest percentage change in body weight (10.2 ± 6.4) and effectively lowered the TNF-α level to normal levels. In contrast, the normal histological structure of heart muscle fibers was notably preserved in the cardiac sections of rats pretreated with steamed and boiled beetroot extracts. Additionally, mild caspase-3 immunoreactivity was observed in the cardiac muscles. The current study demonstrated that the steamed beetroot extract showed improved cardioprotective properties compared to the fresh and boiled extracts.
Collapse
Affiliation(s)
- Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University , Kasr El-Aini Street, Cairo , 11562, Egypt
| | - Marwa I Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University , Kasr El-Aini Street, Cairo , 11562, Egypt
| | - Ibrahim E Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA) , 6th of October City, Giza, 12566, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information , Cairo, 11571, Egypt.
| | - Aya Y Gawish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information , Cairo, 11571, Egypt.
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University , Giza, 12211, Egypt
| | | | - Marwa Y Issa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University , Kasr El-Aini Street, Cairo , 11562, Egypt
| |
Collapse
|
7
|
Pezzino S, Sofia M, Mazzone C, Litrico G, Greco LP, Gallo L, La Greca G, Latteri S. Innovative treatments for obesity and NAFLD: A bibliometric study on antioxidants, herbs, phytochemicals, and natural compounds. Heliyon 2024; 10:e35498. [PMID: 39220898 PMCID: PMC11365328 DOI: 10.1016/j.heliyon.2024.e35498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The increasing scientific interest in antioxidants and naturally derived compounds as potential remedies for obesity and non-alcoholic fatty liver disease (NAFLD) has led to extensive research. The objective of this bibliometric analysis is to present an updated perspective on the topic of antioxidants, herbs, phytochemicals, and natural compounds, in the control of obesity and NAFLD, to identify new areas for future research. Publications from the years 2012-2022 were retrieved using the Scopus database. The research trends were analyzed using the Biblioshiny and VOSviewer tools. The field has seen a significant increase in research activity, as indicated by an annual growth rate of 10 % in the number of published manuscripts. China, Korea, and the USA emerged as the most prominent contributors in this specific field, supported by their notable volumes of publications and citations. The density analysis revealed that the most frequently occurring authors' keywords related to herbal species are, in rank order, Camelia sinensis, Momordica charantia, Curcuma longa, Ilex paraguariensis, Panax ginseng, Moringa oleifera, Garcinia cambogia, Garcinia mangostana, Zingiber officinale, and Cinnamomum verum. In the group of antioxidants, phytochemicals, and natural compounds, the top 10 were resveratrol, curcumin, quercetin, vitamin E, alpha-lipoic acid, vitamin C, chlorogenic acid, lycopene, fucoxanthin, and berberine. The co-occurrence analysis unveiled significant themes and potential trends, including a notable interest in the impact of herbal species, antioxidants, phytochemicals, and natural compounds on obesity and NAFLD through the modulation of the gut microbiome. Another recurring theme that arises, is the ongoing investigation of molecular targets that demonstrate anti-adipogenesis properties. The analysis presented in this study provides valuable insights for researchers investigating the efficacy of antioxidants, herbs, phytochemicals, and natural compounds in addressing obesity and NAFLD. Through the use of bibliometric methods, the study offers a comprehensive overview. Furthermore, the findings of this analysis can serve as a foundation for future research in this specific domain.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luisa Gallo
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| |
Collapse
|
8
|
Tripathi S, Rani K, Raj VS, Ambasta RK. Drug repurposing: A multi targetted approach to treat cardiac disease from existing classical drugs to modern drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:151-192. [PMID: 38942536 DOI: 10.1016/bs.pmbts.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) are characterized by abnormalities in the heart, blood vessels, and blood flow. CVDs comprise a diverse set of health issues. There are several types of CVDs like stroke, endothelial dysfunction, thrombosis, atherosclerosis, plaque instability and heart failure. Identification of a new drug for heart disease takes longer duration and its safety efficacy test takes even longer duration of research and approval. This chapter explores drug repurposing, nano-therapy, and plant-based treatments for managing CVDs from existing drugs which saves time and safety issues with testing new drugs. Existing drugs like statins, ACE inhibitor, warfarin, beta blockers, aspirin and metformin have been found to be useful in treating cardiac disease. For better drug delivery, nano therapy is opening new avenues for cardiac research by targeting interleukin (IL), TNF and other proteins by proteome interactome analysis. Nanoparticles enable precise delivery to atherosclerotic plaques, inflammation areas, and damaged cardiac tissues. Advancements in nano therapeutic agents, such as drug-eluting stents and drug-loaded nanoparticles are transforming CVDs management. Plant-based treatments, containing phytochemicals from Botanical sources, have potential cardiovascular benefits. These phytochemicals can mitigate risk factors associated with CVDs. The integration of these strategies opens new avenues for personalized, effective, and minimally invasive cardiovascular care. Altogether, traditional drugs, phytochemicals along with nanoparticles can revolutionize the future cardiac health care by identifying their signaling pathway, mechanism and interactome analysis.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Kusum Rani
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| | - Rashmi K Ambasta
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| |
Collapse
|
9
|
Kazemi A, Golzarand M, Shojaei-Zarghani S, Babajafari S, Mirmiran P, Azizi F. Is variety more important than quantity of fruits and vegetables in relation to cardiovascular disease incidence and mortality? Results from a prospective cohort study. Int J Food Sci Nutr 2024; 75:306-316. [PMID: 38253525 DOI: 10.1080/09637486.2024.2304134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
We aimed to prospectively assess the association between variety and quantity of fruits and vegetables (FV) and cardiovascular diseases (CVD) incidence and mortality due to the limited evidence. Our analysis included 2,918 adults with a follow-up period of 29,559 person-years. An inverse association was detected between fruit intake and the risk of incidence and mortality from CVD. We found no association between diversity scores of fruits, vegetables, and FV with CVD risk. Subjects with high quantity-high variety, high quantity-low variety, and low quantity-high variety of fruits, vegetables, or FV exhibited no difference in CVD risk compared to the subjects with low quantity-low variety intake. Increasing the variety of FV was associated with increases in the intake of β-carotene, lycopene, lutein, vitamin C, selenium, fibre, fat, and protein after adjustment for the quantity and covariates. We detected an inverse association between fruit intake and the incidence and mortality rates of CVD.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Siavash Babajafari
- Nutrition Research Center, School of Nutrition and food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Uddandrao VVS, Chandrasekaran P, Saravanan G, Brahmanaidu P, Sengottuvelu S, Ponmurugan P, Vadivukkarasi S, Kumar U. Phytoformulation with hydroxycitric acid and capsaicin protects against high-fat-diet-induced obesity cardiomyopathy by reducing cardiac lipid deposition and ameliorating inflammation and apoptosis in the heart. J Tradit Complement Med 2024; 14:162-172. [PMID: 38481548 PMCID: PMC10927456 DOI: 10.1016/j.jtcme.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND AND AIM Phytoformulation therapy is a pioneering strategy for the treatment of metabolic disorders and related diseases. The aim of the present study was to investigate the protective effect of a phytoformulation consisting of hydroxycitric acid and capsaicin against obesity-related cardiomyopathy. EXPERIMENTAL PROCEDURE Sprague-Dawley rats were fed HFD for 21 weeks, and phytoformulation (100 mg/kg body weight) was administered orally for 45 days starting at week 16. RESULTS AND CONCLUSION We found that HFD supplementation resulted in significant hyperglycemia and caused an increase in cardiac lipid deposition, inflammation and apoptosis in the heart. Phytoformulation therapy not only significantly decreased blood levels of glucose, cholesterol, triglycerides, free fatty acids, and inflammatory cytokines in obese rats, but also protected cardiac tissue, as shown by histological analysis. Conversely, phytoformulation therapy decreased mRNA levels for sterol regulatory element-binding factor 1, fatty acid synthase, acetyl-CoA carboxylase, and fatty acid binding protein 1 genes involved in fatty acid synthesis and absorption in obese rats. It increased the levels of lysosomal acid lipase, hormone-sensitive lipase, and lipoprotein lipase genes involved in fatty acid degradation in the heart. In addition, the phytoformulation improved cardiac inflammation and apoptosis by downregulating the genes nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumour necrosis factor α, interleukin-6, toll-like receptor-4 (TLR-4), BCL2-associated X and caspase-3. In conclusion, our results show that the phytoformulation improved insulin sensitivity and attenuated myocardial lipid accumulation, inflammation, and apoptosis in the heart of HFD-induced obese rats by regulating fatty acid metabolism genes and downregulating NF-kB/TLR-4/caspase-3.
Collapse
Affiliation(s)
- V. V. Sathibabu Uddandrao
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, 637215, India
| | - P. Chandrasekaran
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, 637215, India
| | - G. Saravanan
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, 637215, India
| | - Parim Brahmanaidu
- Animal Physiology and Biochemistry Laboratory, ICMR-National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, 500078, India
| | - S. Sengottuvelu
- Department of Pharmacology, Nandha College of Pharmacy, Erode, Tamilnadu, 638052, India
| | - P. Ponmurugan
- Department of Botany, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - S. Vadivukkarasi
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, 637215, India
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Ghaziabad, Uttar Pradesh, 201015, India
| |
Collapse
|
11
|
Mariano LNB, da Silva RDCV, Niero R, Cechinel Filho V, da Silva-Santos JE, de Souza P. Vasodilation and Blood Pressure-Lowering Effect of 3-Demethyl-2-Geranyl-4-Prenylbellidifoline, a Xanthone Obtained from Garcinia achachairu, in Hypertensive Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:528. [PMID: 38498544 PMCID: PMC10892760 DOI: 10.3390/plants13040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
3-demethyl-2-geranyl-4-prenylbellidifoline (DGP), a natural xanthone isolated from Garcinia achachairu, has previously demonstrated remarkable diuretic and renal protective actions. The present study expands its actions on the cardiovascular system by evaluating its vasorelaxant and blood pressure-lowering effects in spontaneously hypertensive rats (SHRs). Aortic endothelium-intact (E+) preparations of SHRs pre-contracted by phenylephrine and exposed to cumulative concentrations of G. achachairu extract, fractions, and DGP exhibited a significant relaxation compared to vehicle-only exposed rings. The non-selective muscarinic receptor antagonist (atropine), the non-selective inhibitor of nitric oxide synthase (L-NAME), as well as the inhibitor of soluble guanylate cyclase (ODQ) altogether avoided DGP-induced relaxation. Tetraethylammonium (small conductance Ca2+-activated K+ channel blocker), 4-aminopyridine (a voltage-dependent K+ channel blocker), and barium chloride (an influx-rectifying K+ channel blocker) significantly reduced DGP capacity to induce relaxation without the interference of glibenclamide (an ATP-sensitive inward rectifier 6.1 and 6.2 K+ channel blocker). Additionally, administration of DGP, 1 mg/kg i.v., decreased the mean, systolic, and diastolic arterial pressures, and the heart rate of SHRs. The natural xanthone DGP showed promising potential as an endothelium-dependent vasorelaxant, operating through the nitric oxide pathway and potassium channels, ultimately significantly reducing blood pressure in hypertensive rats.
Collapse
Affiliation(s)
- Luísa Nathália Bolda Mariano
- Laboratory of Cardiovascular Biology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (L.N.B.M.); (J.E.d.S.-S.)
- Postgraduate Program in Pharmaceutical Sciences, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, Itajaí 88302-901, SC, Brazil
| | - Rita de Cássia Vilhena da Silva
- Postgraduate Program in Pharmaceutical Sciences, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, Itajaí 88302-901, SC, Brazil
| | - Rivaldo Niero
- Postgraduate Program in Pharmaceutical Sciences, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, Itajaí 88302-901, SC, Brazil
| | - Valdir Cechinel Filho
- Postgraduate Program in Pharmaceutical Sciences, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, Itajaí 88302-901, SC, Brazil
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Biology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (L.N.B.M.); (J.E.d.S.-S.)
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, Itajaí 88302-901, SC, Brazil
| |
Collapse
|
12
|
Singhai H, Rathee S, Jain SK, Patil UK. The Potential of Natural Products in the Management of Cardiovascular Disease. Curr Pharm Des 2024; 30:624-638. [PMID: 38477208 DOI: 10.2174/0113816128295053240207090928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Cardiovascular Disease (CVD) is one of the most prevalent diseases in the world, comprising a variety of disorders such as hypertension, heart attacks, Peripheral Vascular Disease (PVD), dyslipidemias, strokes, coronary heart disease, and cardiomyopathies. The World Health Organization (WHO) predicts that 22.2 million people will die from CVD in 2030. Conventional treatments for CVDs are often quite expensive and also have several side effects. This potentiates the use of medicinal plants, which are still a viable alternative therapy for a number of diseases, including CVD. Natural products' cardio-protective effects result from their anti-oxidative, anti-hypercholesterolemia, anti-ischemic, and platelet aggregation-inhibiting properties. The conventional therapies used to treat CVD have the potential to be explored in light of the recent increase in the popularity of natural goods and alternative medicine. Some natural products with potential in the management of cardiovascular diseases such as Allium sativum L., Ginkgo biloba, Cinchona ledgeriana, Ginseng, Commiphora mukul, Digitalis lanata, Digitalis purpurea L., Murrayakoenigii, Glycyrrhiza glabra, Polygonum cuspidatum, Fenugreek, Capsicum annuum, etc. are discussed in this article.
Collapse
Affiliation(s)
- Harshita Singhai
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| |
Collapse
|
13
|
Wal A, Verma N, Balakrishnan SK, Gahlot V, Dwivedi S, Sahu PK, Tabish M, Wal P. A Systematic Review of Herbal Interventions for the Management of Cardiovascular Diseases. Curr Cardiol Rev 2024; 20:e030524229664. [PMID: 38706368 PMCID: PMC11337612 DOI: 10.2174/011573403x286573240422104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Cardiovascular diseases represent a significant global health burden, necessitating diverse approaches for effective management. Herbal interventions have gained attention as potential adjuncts or alternatives to conventional therapies due to their perceived safety and therapeutic potential. This structured abstract provides a comprehensive review of herbal interventions for the management of CVDs, summarising key findings, mechanisms of action, and clinical implications. OBJECTIVE This systematic review aims to evaluate the impact of various herbal interventions employed for managing cardiovascular diseases. METHOD We conducted an extensive literature search across electronic databases, including PubMed, Scopus, and Web of Science, from inception to 2022. Studies were included if they investigated the use of herbal remedies for preventing or treating CVDs. Data extraction and synthesis focused on botanical sources, active compounds, mechanisms of action, and clinical outcomes. RESULT Numerous herbal interventions have demonstrated promising cardiovascular benefits. A number of medicinal herbs well identified to treat CVD are Moringaoleifera, Ginseng, Ginkgo biloba, Celosia argentea, Gongronematrifolium, Gynostemmapentaphyllum, Bombaxceiba, Gentianalutea, Allium sativum, Crataegus spp, Curcuma longa, Camellia sinensis, and Zingiber officinale. Mechanistic insights reveal that herbal interventions often target multiple pathways involved in CVD pathogenesis. These mechanisms encompass anti-inflammatory, antioxidant, anti-thrombotic, anti-hypertensive, and lipid-lowering effects. Additionally, some herbs enhance endothelial function, promote nitric oxide production, and exert vasodilatory effects, contributing to improved cardiovascular health. Clinical studies have provided evidence of the efficacy of certain herbal interventions in reducing CVD risk factors and improving patient outcomes. However, more rigorous, large-scale clinical trials are needed to establish their long-term safety and effectiveness. It is crucial to consider potential herb-drug interactions and standardise dosages for reliable therapeutic outcomes. CONCLUSION This comprehensive review highlights the potential of herbal interventions as valuable adjuncts or alternatives for managing cardiovascular diseases. Herbal remedies offer diverse mechanisms of action, targeting key CVD risk factors and pathways. While promising, their clinical utility warrants further investigation through well-designed trials to establish their safety and efficacy, paving the way for integrated approaches to cardiovascular disease management. Healthcare providers and patients should engage in informed discussions about the use of herbal interventions alongside conventional therapies in the context of CVD prevention and treatment.
Collapse
Affiliation(s)
- Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy) NH19 Kanpur Agra Highway, Bhauti Kanpur, Uttar Pradesh, India
| | - Neha Verma
- PSIT-Pranveer Singh Institute of Technology (Pharmacy) NH19 Kanpur Agra Highway, Bhauti Kanpur, Uttar Pradesh, India
| | | | - Vinod Gahlot
- HIMT College of Pharmacy, Institutional Area, Knowledge Park - 1, Greater Noida- 201310, India
| | - Sumeet Dwivedi
- Acropolis Institute of Pharmaceutical Education and Research Indore, MP, India
| | - Pankaj Kumar Sahu
- Department of Botany, Govt. S.S.P. College Waraseoni, District Balaghat, India
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy) NH19 Kanpur Agra Highway, Bhauti Kanpur, Uttar Pradesh, India
| |
Collapse
|
14
|
Rajpal VR, Koul HK, Raina SN, Kumar HMS, Qazi GN. Phytochemicals for Human Health: The Emerging Trends and Prospects. Curr Top Med Chem 2024; 24:v-vi. [PMID: 38745435 DOI: 10.2174/156802662404240226094145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College University of Delhi Delhi, 110007, India
| | - Hari K Koul
- Departments of Interdisciplinary Oncology Biochemistry & Molecular Biology and Urology, LSU-LCMC Cancer Center LSU Health Sciences Center, 1700 Tulane Avenue, 9th Floor New Orleans, LA 70112, United States
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, UP, India
| | | | - G N Qazi
- Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi India
| |
Collapse
|
15
|
and Alternative Medicine EBC. Retracted: Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9806430. [PMID: 37946712 PMCID: PMC10632047 DOI: 10.1155/2023/9806430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/5741198.].
Collapse
|
16
|
Huang SKH, Bueno PRP, Garcia PJB, Lee MJ, De Castro-Cruz KA, Leron RB, Tsai PW. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of Osmanthus fragrans (Thunb.) Lour. Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3168. [PMID: 37687413 PMCID: PMC10489841 DOI: 10.3390/plants12173168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Osmanthus fragrans (Thunb.) Lour. flowers (OF-F) have been traditionally consumed as a functional food and utilized as folk medicine. This study evaluated the antioxidant, anti-inflammatory and cytotoxic effects of OF-F extracts on prostate cancer cells (DU-145) and determined possible protein-ligand interactions of its compounds in silico. The crude OF-F extracts-water (W) and ethanol (E) were tested for phytochemical screening, antioxidant, anti-inflammatory, and anti-cancer. Network and molecular docking analyses of chemical markers were executed to establish their application for anticancer drug development. OF-F-E possessed higher total polyphenols (233.360 ± 3.613 g/kg) and tannin (93.350 ± 1.003 g/kg) contents than OF-F-W. In addition, OF-F-E extract demonstrated effective DPPH scavenging activity (IC50 = 0.173 ± 0.004 kg/L) and contained a high FRAP value (830.620 ± 6.843 g Trolox/kg). In cell culture experiments, OF-F-E significantly reduced NO levels and inhibited cell proliferation of RAW-264.7 and DU-145 cell lines, respectively. Network analysis revealed O. fragrans (Thunb.) Lour. metabolites could affect thirteen molecular functions and thirteen biological processes in four cellular components. These metabolites inhibited key proteins of DU-145 prostate cancer using molecular docking with rutin owning the highest binding affinity with PIKR31 and AR. Hence, this study offered a new rationale for O. fragrans (Thunb.) Lour. metabolites as a medicinal herb for anticancer drug development.
Collapse
Affiliation(s)
- Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Paolo Robert P. Bueno
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Metro Manila 1000, Philippines;
- School of Medicine, The Manila Times College of Subic, Zambales 2222, Philippines
- Department of Chemistry, College of Science, Adamson University, Metro Manila 1000, Philippines
| | - Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Metro Manila 1002, Philippines
| | - Mon-Juan Lee
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| |
Collapse
|
17
|
Witkowska AM, Salem JE. Pharmacological and Nutritional Modulation of Metabolome and Metagenome in Cardiometabolic Disorders. Biomolecules 2023; 13:1340. [PMID: 37759740 PMCID: PMC10526920 DOI: 10.3390/biom13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic disorders are major causes of morbidity and mortality worldwide. A growing body of research indicates that the gut microbiota, whether it interacts favorably or not, plays an important role in host metabolism. Elucidating metabolic pathways may be crucial in preventing and treating cardiometabolic diseases, and omics methods are key to studying the interaction between the fecal microbiota and host metabolism. This review summarizes available studies that combine metabolomic and metagenomic approaches to describe the effects of drugs, diet, nutrients, and specific foods on cardiometabolic health and to identify potential targets for future research.
Collapse
Affiliation(s)
- Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Joe-Elie Salem
- Department of Pharmacology, Pitié-Salpêtrière Hospital, Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Investigation Center (CIC-1901), Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, 75013 Paris, France;
| |
Collapse
|
18
|
Krishna PS, Nenavath RK, Sudha Rani S, Anupalli RR. Cardioprotective action of Amaranthus viridis methanolic extract and its isolated compound Kaempferol through mitigating lipotoxicity, oxidative stress and inflammation in the heart. 3 Biotech 2023; 13:317. [PMID: 37637004 PMCID: PMC10457263 DOI: 10.1007/s13205-023-03680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2023] Open
Abstract
The current study was designed to evaluate the cardio-protective efficacy of Amaranthus viridis L. methanolic extract (AVME) and kaempferol, which was isolated from AVME in isoproterenol (ISO)-induced cardiotoxicity in rats. The rats were pre-treated with AVME (250 mg/kg body weight) and kaempferol (50 mg/kg BW) for 30 days, respectively, and then administered with ISO (20 mg/100 g body weight) on the 31st and 32nd days. We assessed the protective effects of AVME and kaempferol against ISO-induced cardiotoxicity, oxidative stress, and inflammation. The study revealed that supplementation with AVME and kaempferol significantly attenuated cardiac lipotoxicity by reducing cholesterol and triglyceride levels and simultaneously increasing the levels of high-density lipoproteins. In addition, AVME and kaempferol suppressed oxidative stress by enhancing the activities of superoxide dismutase, catalase, and glutathione peroxidase in the heart. Further, they ameliorated cardiac inflammation by mitigating the production of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, and interleukin-1β). Hence, the study results and histopathological analysis emphasized that AVME and kaempferol could be prospective prophylactic agents against ISO-induced cardiotoxicity and may be considered nutraceuticals in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Pabbathi Sri Krishna
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, 500007 Telangana India
| | - Ramesh Kumar Nenavath
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, 500007 Telangana India
| | - Swathi Sudha Rani
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, 500007 Telangana India
| | - Roja Rani Anupalli
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, 500007 Telangana India
| |
Collapse
|
19
|
Bioactive Compounds (BACs): A Novel Approach to Treat and Prevent Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101664. [PMID: 36841315 DOI: 10.1016/j.cpcardiol.2023.101664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the leading disorders of serious death and cause huge economic loss to patients and society. It is estimated that about 18 million people have a high death ratio due to the incidence of CVDs such as (stroke, coronary heart disease, and non-ischemic heart failure). Bioactive compounds (BACs) are healthy nutritional ingredients providing beneficial effects and nutritional value to the human body. Epidemiological studies strongly shed light on several bioactive compounds that are favorable candidates for CVDs treatment. Globally, the high risk of CVDs and related results on human body parts made them a serious scenario in all communities. In this present review, we intend to collect previously published data concerned over the years concerning green-colored foods and their BACs that aim to work in the prevention, diagnosis, and/or systematic treating CVDs. We also comprehensively discussed the oral delivery of several bioactive compounds derived from fruits and vegetables and their bioavailability and physiological effects on human health. Moreover, their important characteristics, such as anti-inflammatory, lowering blood pressure, anti-obesity, antioxidant, anti-diabetics, lipid-lowering responses, improving atherosclerosis, and cardioprotective properties, will be elaborated further. More precisely, medicinal plants' advantages and multifaceted applications have been reported in this literature to treat CVDs. To the best of our knowledge, this is our first attempt that will open a new window in the area of CVDs with the opportunity to achieve a better prognosis and effective treatment for CVDs.
Collapse
|
20
|
Prakash J. Secondary Metabolites From Plants for Cardiovascular Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:155-171. [DOI: 10.4018/978-1-6684-6737-4.ch010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
One of the leading causes of mortality worldwide is cardiac vascular disease. According to the WHO report, CVDs affect 17.9 million people each year and will affect 22.2 million people by 2030. The plants include flavonoids, polyphenols, plant Sulphur compounds, and terpenoids, which are all active phytochemicals. Recent research has revealed that flavonoids are substances with strong biological effects that may help prevent chronic illnesses including cardiovascular disease. The prevention of low-density lipoprotein oxidation, which encourages vasodilatation, is a common flavonoid mode of action. Due to the rising frequency of CVD, numerous plants have been identified to contain a number of physiologically active chemicals with known biological effects; however, proper CVD preventive and treatment approaches are still needed. This study aims to emphasize the cardiovascular risk factors, in addition to explaining the processes through which naturally occurring bioactive chemicals exhibit their cardiovascular preventive effects.
Collapse
Affiliation(s)
- Jose Prakash
- B.S. Abdur Rahman Crescent Insititute of Science and Technology, India
| |
Collapse
|
21
|
Guo SS, Wang ZG. Salvianolic acid B from Salvia miltiorrhiza bunge: A potential antitumor agent. Front Pharmacol 2022; 13:1042745. [PMID: 36386172 PMCID: PMC9640750 DOI: 10.3389/fphar.2022.1042745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is a perennial herb widely found in China since ancient times with a high economic and medicinal value. Salvianolic acid B (Sal-B) is an important natural product derived from Salvia miltiorrhiza and this review summarizes the anticancer activity of Sal-B. Sal-B inhibits tumor growth and metastasis by targeting multiple cell signaling pathways. This review aims to review experimental studies to describe the possible anticancer mechanisms of Sal-B and confirm its potential as a therapeutic drug.
Collapse
Affiliation(s)
- Sha-Sha Guo
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Guo Wang
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhen-Guo Wang,
| |
Collapse
|
22
|
Antihypertensive Activity of the Alkaloid Aspidocarpine in Normotensive Wistar Rats. Molecules 2022; 27:molecules27206895. [PMID: 36296487 PMCID: PMC9609921 DOI: 10.3390/molecules27206895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The alkaloid Aspidocarpine was isolated from the bark of Aspidosperma desmanthum. Its structure was elucidated by the spectral data of 1H and 13C-NMR (1D and 2D) and high-resolution mass spectrometry (HRESIMS). The antihypertensive activity was investigated by intravenous infusion in Wistar rats. This alkaloid significantly reduced (p < 0.05) the systolic, median, and diastolic blood pressures of rodents, without causing motor incoordination and imbalance in the rotarod test. The results indicate that the alkaloid Aspidocarpine exerts its antihypertensive activity without causing sedation or the impairment of motor functions.
Collapse
|
23
|
Keskin M, Thiruvengadam M. Phytochemicals from Natural Products for the Prevention and Treatment of Non-communicable Diseases. Curr Top Med Chem 2022; 22:1907-1908. [PMID: 36372927 DOI: 10.2174/156802662223221019141622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Merve Keskin
- Vocational School of Health Services Bilecik Seyh Edebali University Bilecik, Turkey
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|