1
|
Saeed BI, Uthirapathy S, Kubaev A, Ganesan S, Shankhyan A, Gupta S, Joshi KK, Kariem M, Jasim AS, Ahmed JK. Ferroptosis as a key player in the pathogenesis and intervention therapy in liver injury: focusing on drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04115-w. [PMID: 40244448 DOI: 10.1007/s00210-025-04115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Globally, drug-induced hepatotoxicity or drug-induced liver injury (DILI) is a serious clinical concern. Knowing the processes and patterns of cell death is essential for finding new therapeutic targets since there are not many alternatives to therapy for severe liver lesions. Excessive lipid peroxidation is a hallmark of ferroptosis, an iron-reliant non-apoptotic cell death linked to various liver pathologies. When iron is pathogenic, concomitant inflammation may exacerbate iron-mediated liver injury, and the hepatocyte necrosis that results is a key element in the fibrogenic response. The idea that dysregulated metabolic pathways and compromised iron homeostasis contribute to the development of liver injury by ferroptosis is being supported by new data. Various ferroptosis-linked genes and pathways have been linked to liver injury, although the molecular processes behind ferroptosis's pathogenicity are not well known. Here, we delve into the features of ferroptosis, the processes governing ferroptosis, and our current knowledge of iron metabolism. We also provide an overview of ferroptosis's involvement in the pathophysiology of liver injury, particularly DILI. Lastly, the therapeutic possibilities of ferroptosis targeting for liver injury management have been provided. Natural products, nanoparticles (NPs), mesenchymal stem cell (MSC), and their exosomes have attracted increasing attention among such therapeutics.
Collapse
Affiliation(s)
- Bahaa Ibrahim Saeed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
| | - Ahmed Salman Jasim
- Radiology Techniques Department College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Zhang B, Meng C, Quan L, Duan L, Kang J, Zhou H. Exosomes derived from bone marrow mesenchymal stem cells alleviate lung ischemia-reperfusion injury in rats through miRNA-335/ SIRT3 pathway. Drug Deliv Transl Res 2025:10.1007/s13346-025-01844-6. [PMID: 40180761 DOI: 10.1007/s13346-025-01844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Lung ischemia-reperfusion injury (IRI) is a clinically challenging problem. Exosomes (EXOs) derived from bone marrow mesenchymal stem cells (BMSC-EXOs) can alleviate multiple organs IRI, but few reports on lung IRI. MiRNA-335 is a kind of miRNA in EXOs, which was also shown protective effects on lung IRI. This study hypothesizes that BMSC-EXOs might alleviate lung IRI through miRNA-335, and further to explore its mechanism. The Sprague-Dawley male rats were divided into sham, IRI, phosphate buffer saline (PBS), and EXO groups (n = 6). In the sham group, rats were underwent anesthesia without IRI model establishment. In the IRI, PBS, and EXO groups, rats were established lung IRI model and with no treatment, 30 µl PBS, or 20 µg EXOs (in 30 µl PBS), respectively. The miRNA-335 inhibitor and miRNA-335 mimic processed EXOs were also given to observe the effects of miRNA-335. The oxidative index, lung static compliance, inflammation response, oxidative stress injury, apoptosis, and mitochondrial were observed. The expression of miRNA-335 and silent matching type information regulation 2 homolog 3 (SIRT3) were also detected. The oxidative index, lung static compliance, inflammation response, oxidative stress injury, apoptosis, and mitochondrial injury were significantly deteriorated in the IRI group compared with those in the sham group, while those indicators have significantly improved in the EXO group, and the miRNA-335 and SIRT3 expressions increased (P < 0.05). And the miRNA-335 inhibitor processed EXOs suppressed the SIRT3 expression significantly, but the miRNA-335 mimic processed EXOs enhanced the SIRT3 expression significantly (P < 0.05). In conclusion, BMSC-EXOs maintained mitochondrial structural stability, and alleviated rat lung IRI by inhibiting lung inflammation, oxidative stress injury, and apoptosis, improved lung oxygenation capacity and static compliance, which might be achieved through the miRNA335/SIRT3 pathway.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Pain, Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin City, Hei Longjiang Province, 150001, China
| | - Chao Meng
- Department of Pain Management, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lini Quan
- Department of Pain, Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin City, Hei Longjiang Province, 150001, China
| | - Le Duan
- Department of Pain, Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin City, Hei Longjiang Province, 150001, China
| | - Jiyu Kang
- Department of Pain, Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin City, Hei Longjiang Province, 150001, China
| | - Huacheng Zhou
- Department of Pain, Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin City, Hei Longjiang Province, 150001, China.
| |
Collapse
|
3
|
Dai L, Wang Q. Targeting ferroptosis: opportunities and challenges of mesenchymal stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2025; 16:47. [PMID: 39901210 PMCID: PMC11792594 DOI: 10.1186/s13287-025-04188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by progressive β-cell death, leading to β-cell loss and insufficient insulin secretion. Mesenchymal stem cells (MSCs) transplantation is currently one of the most promising methods for β-cell replacement therapy. However, recent studies have shown that ferroptosis is not only one of the key mechanisms of β-cell death, but also one of the reasons for extensive cell death within a short period of time after MSCs transplantation. Ferroptosis is a new type of regulated cell death (RCD) characterized by iron-dependent accumulation of lipid peroxides. Due to the weak antioxidant capacity of β-cells, they are susceptible to cytotoxic stimuli such as oxidative stress (OS), and are therefore susceptible to ferroptosis. Transplanted MSCs are also extremely susceptible to perturbations in their microenvironment, especially OS, which can weaken their antioxidant capacity and induce MSCs death through ferroptosis. In the pathophysiological process of T1DM, a large amount of reactive oxygen species (ROS) are produced, causing OS. Therefore, targeting ferroptosis may be a key way to protect β-cells and improve the therapeutic effect of MSCs transplantation. This review reviews the research related to ferroptosis of β-cells and MSCs, and summarizes the currently developed strategies that help inhibit cell ferroptosis. This study aims to help understand the ferroptosis mechanism of β-cell death and MSCs death after transplantation, emphasize the importance of targeting ferroptosis for protecting β-cells and improving the survival and function of transplanted MSCs, and provide a new research direction for stem cells transplantation therapy of T1DM in the future.
Collapse
Affiliation(s)
- Le Dai
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China.
| |
Collapse
|
4
|
Tao Y, Zhou W, Chen C, Zhang Q, Liu Z, Xia P, Ye Z, Li C. O-sialoglycoprotein Endopeptidase (OSGEP) Suppresses Hepatic Ischemia-Reperfusion Injury-Induced Ferroptosis Through Modulating the MEK/ERK Signaling Pathway. Mol Biotechnol 2025; 67:689-704. [PMID: 38456959 PMCID: PMC11711258 DOI: 10.1007/s12033-024-01084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) was widely accepted as a critical complication of liver resection and transplantation. A growing body of evidence suggested that O-sialoglycoprotein endopeptidase (OSGEP) was involved in cell proliferation and mitochondrial metabolism. However, whether OSGEP could mediate the pathogenesis of HIRI has still remained unclarified. This study investigated whether OSGEP could be protective against HIRI and elucidated the potential mechanisms. The OSGEP expression level was detected in cases undergoing ischemia-related hepatectomy and a stable oxygen-glucose deprivation/reoxygenation (OGD/R) condition in hepG2 cells. Additionally, it was attempted to establish a mouse model of HIRI, thus, the function and mechanism of OSGEP could be analyzed. At one day after hepatectomy, the negative association of OSGEP expression level with the elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was noted. Moreover, it was attempted to carry out gain- and loss-of-function analyses of OSGEP in hepG2 cells to reveal its influences on OGD/R-induced injury and relevant signaling pathways. The findings suggested that OSGEP overexpression significantly protected hepG2 cells against ferroptotic cell death, while OSGEP consumption had opposite effects. Consistent with in vitro studies, OSGEP deficiency exacerbated liver functions and ferroptotic cell death in a mouse model of HIRI. The results also revealed that OSGEP mediated the progression of HIRI by regulating the MEK/ERK signaling pathway. Rescue experiments indicated that ERK1/2 knockdown or overexpression reversed the effects of OSGEP overexpression or knockdown on hepG2 cells under OGD/R condition. Taken together, the findings demonstrated that OSGEP could contribute to alleviate HIRI by mediating the MEK-ERK signaling pathway, which may serve as a potential prognostic marker and a therapeutic target for HIRI.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Zhuoyi Liu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China.
| |
Collapse
|
5
|
Liu L, Han F, Du N, Liu Y, Duan A, Kang S, Li B. New insights into the ferroptosis and immune infiltration in endometriosis: a bioinformatics-based analysis. Front Immunol 2025; 15:1507083. [PMID: 39872538 PMCID: PMC11769811 DOI: 10.3389/fimmu.2024.1507083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Background Ferroptosis, a recently discovered iron-dependent cell death, is linked to various diseases but its role in endometriosis is still not fully understood. Methods In this study, we integrated microarray data of endometriosis from the GEO database and ferroptosis-related genes (FRGs) from the FerrDb database to further investigate the regulation of ferroptosis in endometriosis and its impact on the immune microenvironment. WGCNA identified ferroptosis-related modules, annotated by GO & KEGG. MNC algorithm pinpointed hub FRGs. Cytoscape construct a ceRNA network, and ROC curves evaluated diagnostic efficacy of hub FRGs. Consensus cluster analysis identified ferroptosis subclusters, and CIBERSORT assessed immune infiltration of these subclusters. Finally, RT-qPCR validated hub FRG expression in clinical tissues. Results We identified two ferroptosis modules of endometriosis, and by enrichment analysis, they are closely linked with autophagy, mTOR, oxidative stress, and FOXO pathways. Furthermore, we identified 10 hub FRGs, and the ROC curve showed better predictive ability for diagnosing. RT-qPCR confirmed that the tissue expression of 10 hub FRGs was mostly consistent with the database results. Subsequently, we developed a ceRNA network based on 4 FRGs (BECN1, OSBPL9, TGFBR1, GSK3B). Next, we identified two ferroptosis subclusters of endometriosis and discovered that they are closely linked with endometriosis stage. Importantly, immune enrichment analysis illustrated that the expression levels of immune cells and immune checkpoint genes were significantly different in the two ferroptosis subclusters. Specifically, the ferroptosis subcluster with stage III-IV of endometriosis is more inclined to the immunosuppressive microenvironment. Conclusions Our study showed that ferroptosis may jointly promote endometriosis progression by remodeling the immune microenvironment, offering new insights into pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Lusha Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Han
- Department of Gynecology, Handan Central Hospital, Handan, China
| | - Naiyi Du
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yakun Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aihong Duan
- Department of Gynecology, Handan Central Hospital, Handan, China
| | - Shan Kang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Gynecology, Handan Central Hospital, Handan, China
| |
Collapse
|
6
|
Wu W, Xu B, Huang H, Mao Y, Gao Y, Bu W. The role of ferroptosis in liver injury after cold ischemia-reperfusion in rats with autologous orthotopic liver transplantation. J Artif Organs 2025:10.1007/s10047-024-01488-2. [PMID: 39760970 DOI: 10.1007/s10047-024-01488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Using autologous orthotopic liver transplantation (AOLT) model in rats, the effect of lipid reactive oxygen species (L-ROS) inhibitor Ferrostain-1 on ferroptosis signal pathway was observed to determine whether ferroptosis occurred in rat liver injury after cold ischemia-reperfusion (I/R). Thirty-two healthy adult SPF male SD rats, 8 ~ 10 weeks old, weight 240 ~ 260 g, were divided into four groups by the method of random number table (n = 8): sham group, I/R group, I/R + Fer-1 group, I/R + DFO group. In the I/R + Fer-1 group, ferristatin-1(5 mg /kg) was intraperitoneally injected 30 min before surgery; in the I/R + DFO group, DFO 100 mg/kg was injected intraperitoneally 1 h before operation and 12 h after operation. Blood samples were taken from the inferior hepatic vena cava 24 h after reperfusion. After anesthesia, the rats were killed and part of their liver tissue was removed. The pathological changes of liver tissue sections were observed under a high-power microscope, and the liver injury was evaluated. Serum malondialdehyde (MDA) and serum levels of ALT, AST and IL-6 were determined by the ELISA method, Reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), MDA, Fe2 + and superoxide dismutase (SOD) were determined in the liver tissue. Compared with the sham group, the serum levels of the IL-6,MDA, AST and ALT in I/R group were obviously higher (P < 0.05); The levels of MDA and Fe2+ in liver tissue were significantly increased (P < 0.05).The levels of SOD, GSH and GPX4 in liver tissue were decreased. The levels of serum MDA, IL-6, AST, and ALT in the I/R + Fer-1 and I/R + DFO groups were significantly lower than those in the I/R group at 24 h after reperfusion. In the I/R + Fer-1 group, the level of MDA in liver tissue decreased significantly, while the level of SOD, GSH and GPX4 in intestinal tissue increased (P < 0.05). In The I/R + DFO group, the levels of MDA and Fe2+ in liver tissue decreased significantly, while the level of SOD in intestinal tissue increased (P < 0.05). Ferroptosis is involved in pathophysiological process of liver injury after cold ischemia-reperfusion in AOLT rats.
Collapse
Affiliation(s)
- Wei Wu
- Department of Anesthesiology, CR & WISCO General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, 430080, China.
| | - Bei Xu
- Department of Anesthesiology, CR & WISCO General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Haibin Huang
- Department of Anesthesiology, CR & WISCO General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Ying Mao
- Department of Anesthesiology, CR & WISCO General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Yuan Gao
- Department of Anesthesiology, CR & WISCO General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Wenhao Bu
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| |
Collapse
|
7
|
Lusha E, Zhao P. PCSK9 inhibitor protects against myocardial ischemia-reperfusion injury via inhibiting LRP8/GPX4-mediated ferroptosis. Clin Hemorheol Microcirc 2025; 89:149-159. [PMID: 39422930 DOI: 10.3233/ch-242444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia-reperfusion injury is accompanied by ferroptosis mediated by reactive oxygen species and iron ions, which aggravates myocardial tissue damage. The present study aims to explore the molecular mechanism underlying the mitigating effects f PCSK9 on myocardial ischemia-reperfusion injury. MI/R rat model and OGD/R induced H9c2 model were established. The interaction between PCSK9 inhibitor and LRP8 was predicted by STRING database and verified by Immunoprecipitation assay experiment. CCK-8 kit results confirmed that PCSK9 inhibitor effectively protected against cardiomyocyte damage induced by OGD/R. TTC and histological examination via H&E staining revealed a significant alleviation of myocardial infarction and pathological alterations upon treatment with the PCSK9 inhibitor. Besides, DCFH-DA staining and biochemical kit results showed that PCSK9 inhibitor could regulate the changes of ferroptosis related indicators [ROS, iron level, MDA, SOD] and inhibit ferroptosis. Rescue experiments showed that PCSK9 inhibitors targeted LRP8 expression and inhibited GPX4/ROS-mediated ferroptosis in I/R-induced rats. Our study suggested that PCSK9 inhibitors could attenuate myocardial I/R injury, with the underlying mechanism intimately tied to the targeted modulation of LRP8/GPX4-mediated ferroptosis.
Collapse
Affiliation(s)
- E Lusha
- Department of Cardiology, Inner Mongolia People's Hospital, Huhhot, China
| | - Ping Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, Huhhot, China
| |
Collapse
|
8
|
Luan X, Chen P, Miao L, Yuan X, Yu C, Di G. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies. Mol Cell Biochem 2025; 480:19-41. [PMID: 38556592 DOI: 10.1007/s11010-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
Ferroptosis is a newly discovered type of regulated cell death participated in multiple diseases. Different from other classical cell death programs such as necrosis and apoptosis, ferroptosis involving iron-catalyzed lipid peroxidation is characterized by Fe2+ accumulation and mitochondria alterations. The phenomenon of oxidative stress following organ ischemia-reperfusion (I/R) has recently garnered attention for its connection to the onset of ferroptosis and subsequent reperfusion injuries. This article provides a comprehensive overview underlying the mechanisms of ferroptosis, with a further focus on the latest research progress regarding interference with ferroptotic pathways in organ I/R injuries, such as intestine, lung, heart, kidney, liver, and brain. Understanding the links between ferroptosis and I/R injury may inform potential therapeutic strategies and targeted agents.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Li X, Tao L, Zhong M, Wu Q, Min J, Wang F. [Ferroptosis and liver diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:747-755. [PMID: 39757742 PMCID: PMC11736349 DOI: 10.3724/zdxbyxb-2024-0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025]
Abstract
As the central organ of metabolism, the liver plays a pivotal role in the regulation of the synthesis and metabolism of various nutrients within the body. Ferroptosis, as a newly discovered type of programmed cell death caused by the accumulation of iron-dependent lipid peroxides, is involved in the physiological and pathological processes of a variety of acute and chronic liver diseases. Ferroptosis can accelerate the pathogenetic process of acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, and autoimmune hepatitis; while it can slower disease progression in advanced liver fibrosis and hepatocellular carcinoma. This suggests that targeted regulation of ferroptosis may impact the occurrence and development of various liver diseases. This article reviews the latest research progress of ferroptosis in various liver diseases, including acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, autoimmune hepatitis, liver fibrosis and hepatocellular carcinoma. It aims to provide insights for the prevention and treatment of acute and chronic liver diseases through targeting ferroptosis.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China.
| | - Liang Tao
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Meijuan Zhong
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Qian Wu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjia Min
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
10
|
Sishuai S, Lingui G, Pengtao L, Xinjie B, Junji W. Advances in regulating endothelial-mesenchymal transformation through exosomes. Stem Cell Res Ther 2024; 15:391. [PMID: 39482726 PMCID: PMC11529026 DOI: 10.1186/s13287-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Endothelial-mesenchymal transformation (EndoMT) is the process through which endothelial cells transform into mesenchymal cells, affecting their morphology, gene expression, and function. EndoMT is a potential risk factor for cardiovascular and cerebrovascular diseases, tumor metastasis, and fibrosis. Recent research has highlighted the role of exosomes, a mode of cellular communication, in the regulation of EndoMT. Exosomes from diseased tissues and microenvironments can promote EndoMT, increase endothelial permeability, and compromise the vascular barrier. Conversely, exosomes derived from stem cells or progenitor cells can inhibit the EndoMT process and preserve endothelial function. By modifying exosome membranes or contents, we can harness the advantages of exosomes as carriers, enhancing their targeting and ability to inhibit EndoMT. This review aims to systematically summarize the regulation of EndoMT by exosomes in different disease contexts and provide effective strategies for exosome-based EndoMT intervention.
Collapse
Affiliation(s)
- Sun Sishuai
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gu Lingui
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Pengtao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Xinjie
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wei Junji
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Hou Q, Ouyang S, Xie Z, He Y, Deng Y, Guo J, Yu P, Tan X, Ma W, Li P, Yu J, Mo Q, Zhang Z, Chen D, Lin X, Liu Z, Chen X, Peng T, Li L, Xie W. Exosome is a Fancy Mobile Sower of Ferroptosis. J Cardiovasc Transl Res 2024; 17:1067-1082. [PMID: 38776048 DOI: 10.1007/s12265-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 10/29/2024]
Abstract
Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.
Collapse
Affiliation(s)
- Qin Hou
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yinling He
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiamin Guo
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
12
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
13
|
Jennings H, McMorrow S, Chlebeck P, Heise G, Levitsky M, Verhoven B, Kink JA, Weinstein K, Hong S, Al‐Adra DP. Normothermic liver perfusion derived extracellular vesicles have concentration-dependent immunoregulatory properties. J Extracell Vesicles 2024; 13:e12485. [PMID: 39051751 PMCID: PMC11270586 DOI: 10.1002/jev2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) are major contributors to immunological responses following solid organ transplantation. Donor derived EVs are best known for their role in transplant rejection through transferring donor major histocompatibility complex proteins to recipient antigen presenting cells, a phenomenon known as ‛cross-decoration'. In contrast, donor liver-derived EVs are associated with organ tolerance in small animal models. Therefore, the cellular source of EVs and their cargo could influence their downstream immunological effects. To investigate the immunological effects of EVs released by the liver in a physiological and transplant-relevant model, we isolated EVs being produced during normothermic ex vivo liver perfusion (NEVLP), a novel method of liver storage prior to transplantation. We found EVs were produced by the liver during NEVLP, and these EVs contained multiple anti-inflammatory miRNA species. In terms of function, liver-derived EVs were able to cross-decorate allogeneic cells and suppress the immune response in allogeneic mixed lymphocyte reactions in a concentration-dependent fashion. In terms of cytokine response, the addition of 1 × 109 EVs to the mixed lymphocyte reactions significantly decreased the production of the inflammatory cytokines TNF-α, IL-10 and IFN-γ. In conclusion, we determined physiologically produced liver-derived EVs are immunologically regulatory, which has implications for their role and potential modification in solid organ transplantation.
Collapse
Affiliation(s)
- Heather Jennings
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Stacey McMorrow
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Peter Chlebeck
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Grace Heise
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mia Levitsky
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bret Verhoven
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - John A. Kink
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kristin Weinstein
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - David P. Al‐Adra
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
14
|
Su H, Wang Z, Zhou L, Liu D, Zhang N. Regulation of the Nrf2/HO-1 axis by mesenchymal stem cells-derived extracellular vesicles: implications for disease treatment. Front Cell Dev Biol 2024; 12:1397954. [PMID: 38915448 PMCID: PMC11194436 DOI: 10.3389/fcell.2024.1397954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
This comprehensive review inspects the therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) across multiple organ systems. Examining their impact on the integumentary, respiratory, cardiovascular, urinary, and skeletal systems, the study highlights the versatility of MSC-EVs in addressing diverse medical conditions. Key pathways, such as Nrf2/HO-1, consistently emerge as central mediators of their antioxidative and anti-inflammatory effects. From expediting diabetic wound healing to mitigating oxidative stress-induced skin injuries, alleviating acute lung injuries, and even offering solutions for conditions like myocardial infarction and renal ischemia-reperfusion injury, MSC-EVs demonstrate promising therapeutic efficacy. Their adaptability to different administration routes and identifying specific factors opens avenues for innovative regenerative strategies. This review positions MSC-EVs as promising candidates for future clinical applications, providing a comprehensive overview of their potential impact on regenerative medicine.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xingyi, China
| | | | - Lidan Zhou
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dezhi Liu
- Xingyi People’s Hospital, Xingyi, China
| | | |
Collapse
|
15
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Wu J, Li Z, Wu Y, Cui N. The crosstalk between exosomes and ferroptosis: a review. Cell Death Discov 2024; 10:170. [PMID: 38594265 PMCID: PMC11004161 DOI: 10.1038/s41420-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Exosomes are a subtype of extracellular vesicles composed of bioactive molecules, including nucleic acids, proteins, and lipids. Exosomes are generated by the fusion of intracellular multivesicular bodies (MVBs) with the cell membrane and subsequently released into the extracellular space to participate in intercellular communication and diverse biological processes within target cells. As a crucial mediator, exosomes have been implicated in regulating ferroptosis-an iron-dependent programmed cell death characterized by lipid peroxide accumulation induced by reactive oxygen species. The involvement of exosomes in iron, lipid, and amino acid metabolism contributes to their regulatory role in specific mechanisms underlying how exosomes modulate ferroptosis, which remains incompletely understood, and some related studies are still preliminary. Therefore, targeting the regulation of ferroptosis by exosomes holds promise for future clinical treatment strategies across various diseases. This review aims to provide insights into the pathophysiology and mechanisms governing the interaction between exosomes and ferroptosis and their implications in disease development and treatment to serve as a reference for further research.
Collapse
Affiliation(s)
- Jiao Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyu Li
- Department of Internal Medicine, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ning Cui
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Cui M, Chen F, Shao L, Wei C, Zhang W, Sun W, Wang J. Mesenchymal stem cells and ferroptosis: Clinical opportunities and challenges. Heliyon 2024; 10:e25251. [PMID: 38356500 PMCID: PMC10864896 DOI: 10.1016/j.heliyon.2024.e25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This review discusses recent experimental and clinical findings related to ferroptosis, with a focus on the role of MSCs. Therapeutic efficacy and current applications of MSC-based ferroptosis therapies are also discussed. Background Ferroptosis is a type of programmed cell death that differs from apoptosis, necrosis, and autophagy; it involves iron metabolism and is related to the pathogenesis of many diseases, such as Parkinson's disease, cancers, and liver diseases. In recent years, the use of mesenchymal stem cells (MSCs) and MSC-derived exosomes has become a trend in cell-free therapies. MSCs are a heterogeneous cell population isolated from a diverse range of human tissues that exhibit immunomodulatory functions, regulate cell growth, and repair damaged tissues. In addition, accumulating evidence indicates that MSC-derived exosomes play an important role, mainly by carrying a variety of bioactive substances that affect recipient cells. The potential mechanism by which MSC-derived exosomes mediate the effects of MSCs on ferroptosis has been previously demonstrated. This review provides the first overview of the current knowledge on ferroptosis, MSCs, and MSC-derived exosomes and highlights the potential application of MSCs exosomes in the treatment of ferroptotic conditions. It summarizes their mechanisms of action and techniques for enhancing MSC functionality. Results obtained from a large number of experimental studies revealed that both local and systemic administration of MSCs effectively suppressed ferroptosis in injured hepatocytes, neurons, cardiomyocytes, and nucleus pulposus cells and promoted the survival and regeneration of injured organs. Methods We reviewed the role of ferroptosis in related tissues and organs, focusing on its characteristics in different diseases. Additionally, the effects of MSCs and MSC-derived exosomes on ferroptosis-related pathways in various organs were reviewed, and the mechanism of action was elucidated. MSCs were shown to improve the disease course by regulating ferroptosis.
Collapse
Affiliation(s)
- Mengling Cui
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Fukun Chen
- Department of Radiology, Kunming Medical University & the Third Affiliated Hospital, Kunming, Yunnan, 650101, PR China
| | - Lishi Shao
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Chanyan Wei
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Weihu Zhang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Wenmei Sun
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Jiaping Wang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| |
Collapse
|
18
|
Zhang Y, Xie J. Ferroptosis-related exosomal non-coding RNAs: promising targets in pathogenesis and treatment of non-malignant diseases. Front Cell Dev Biol 2024; 12:1344060. [PMID: 38385027 PMCID: PMC10879574 DOI: 10.3389/fcell.2024.1344060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death, introduces a novel perspective on cellular demise. This study investigates the regulatory network of exosomal non-coding RNAs (ncRNAs), including miRNAs, circRNAs, and lncRNAs, in ferroptosis modulation. The primary goal is to examine the pathological roles of ferroptosis-related exosomal ncRNAs, particularly in ischemic reperfusion injuries. The research reveals intricate molecular interactions governing the regulatory interplay between exosomal ncRNAs and ferroptosis, elucidating their diverse roles in different non-malignant pathological contexts. Attention is given to their impact on diseases, including cardiac, cerebral, liver, and kidney ischemic injuries, as well as lung, wound, and neuronal injuries. Beyond theoretical exploration, the study provides insights into potential therapeutic applications, emphasizing the significance of mesenchymal stem cells (MSCs)-derived exosomes. Findings underscore the pivotal role of MSC-derived exosomal ncRNAs in modulating cellular responses related to ferroptosis regulation, introducing a cutting-edge dimension. This recognition emphasizes the importance of MSC-derived exosomes as crucial mediators with broad therapeutic implications. Insights unveil promising avenues for targeted interventions, capitalizing on the diverse roles of exosomal ncRNAs, providing a comprehensive foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Science, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| | - Jun Xie
- School of Life Science, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
19
|
Liu L, Ye Y, Lin R, Liu T, Wang S, Feng Z, Wang X, Cao H, Chen X, Miao J, Liu Y, Jiang K, Han Z, Li Z, Cao X. Ferroptosis: a promising candidate for exosome-mediated regulation in different diseases. Cell Commun Signal 2024; 22:6. [PMID: 38166927 PMCID: PMC11057189 DOI: 10.1186/s12964-023-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.
Collapse
Affiliation(s)
- Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Rui Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Junming Miao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yifei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - Zhibo Han
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China.
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, Tianjin, 300457, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
20
|
Lin Y, Gong H, Liu J, Hu Z, Gao M, Yu W, Liu J. HECW1 induces NCOA4-regulated ferroptosis in glioma through the ubiquitination and degradation of ZNF350. Cell Death Dis 2023; 14:794. [PMID: 38049396 PMCID: PMC10695927 DOI: 10.1038/s41419-023-06322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Tumor suppression by inducing NCOA4-mediated ferroptosis has been shown to be feasible in a variety of tumors, including gliomas. However, the regulatory mechanism of ferroptosis induced by NCOA4 in glioma has not been studied deeply. HECW1 and ZNF350 are involved in the biological processes of many tumors, but their specific effects and mechanisms on glioma are still unclear. In this study, we found that HECW1 decreased the survival rate of glioma cells and enhanced iron accumulation, lipid peroxidation, whereas ZNF350 showed the opposite effect. Mechanistically, HECW1 directly regulated the ubiquitination and degradation of ZNF350, eliminated the transcriptional inhibition of NCOA4 by ZNF350, and ultimately activated NCOA4-mediated iron accumulation, lipid peroxidation, and ferroptosis. We demonstrate that HECW1 induces ferroptosis and highlight the value of HECW1 and ZNF350 in the prognostic evaluation of patients with glioma. We also elucidate the mechanisms underlying the HECW1/ZNF350/NCOA4 axis and its regulation of ferroptosis. Our findings enrich the understanding of ferroptosis and provide potential treatment options for glioma patients.
Collapse
Affiliation(s)
- Yuancai Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Hailong Gong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jinliang Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Zhiwen Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Mingjun Gao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China.
| |
Collapse
|
21
|
Tian X, Wang Y, Yuan M, Zheng W, Zuo H, Zhang X, Song H. Heme Oxygenase-1-Modified BMMSCs Activate AMPK-Nrf2-FTH1 to Reduce Severe Steatotic Liver Ischemia-Reperfusion Injury. Dig Dis Sci 2023; 68:4196-4211. [PMID: 37707747 PMCID: PMC10570260 DOI: 10.1007/s10620-023-08102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important cause of graft dysfunction post-liver transplantation, where donor liver with severe steatosis is more sensitive to IRI. Liver IRI involves ferroptosis and can be alleviated by heme oxygenase-1-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs). AIMS To explore the role and mechanism of HO-1/BMMSCs in severe steatotic liver IRI. METHODS A severe steatotic liver IRI rat model and a hypoxia/reoxygenation (H/R) of severe steatosis hepatocyte model were established. Liver and hepatocyte damage was evaluated via liver histopathology and cell activity. Ferroptosis was evaluated through ferroptosis indexes. Nuclear factor erythroid 2-related factor 2 (Nrf2) was knocked down in severe steatotic hepatocytes. The role of Nrf2 and AMPK in HO-1/BMMSC inhibition of ferroptosis was examined using the AMP-activated protein kinase (AMPK) pathway inhibitor Compound C. RESULTS The HO-1/BMMSCs alleviated severe steatotic liver IRI and ferroptosis. HO-1/BMMSCs promoted ferritin heavy chain 1(FTH1), Nrf2, and phosphorylated (p)-AMPK expression in the H/R severe steatotic hepatocytes. Nrf2 knockdown decreased FTH1 expression levels but did not significantly affect p-AMPK expression levels. The protective effect of HO-1/BMMSCs against H/R injury in severe steatotic hepatocytes and the inhibitory effect on ferroptosis were reduced. Compound C decreased p-AMPK, Nrf2, and FTH1 expression levels, weakened the HO-1/BMMSC protective effect against severe steatotic liver IRI and H/R-injured severe steatotic hepatocytes, and reduced the inhibition of ferroptosis. CONCLUSIONS Ferroptosis was involved in HO-1/BMMSC reduction of severe steatotic liver IRI. HO-1/BMMSCs protected against severe steatotic liver IRI by inhibiting ferroptosis through the AMPK-Nrf2-FTH1 pathway. HO-1/BMMSCs activate AMPK, which activates Nrf2, promotes its nuclear transcription, then promotes the expression of its downstream protein FTH1, thereby inhibiting ferroptosis and attenuating severe steatotic liver IRI in rats. Glu: glutamic acid; Cys: cystine; GSH: glutathione; GPX4: glutathione peroxidase 4; HO-1/BMMSCs: HO-1-modified BMMSCs; Fer-1: ferrostatin-1; DFO: deferoxamine; FTH1: ferritin heavy chain1; p-AMPK: phosphorylated AMP-activated protein kinase; Nrf2: nuclear factor erythroid 2-related factor 2; IRI: ischemia-reperfusion injury; MCD: methionine-choline deficiency.
Collapse
Affiliation(s)
- Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, People's Republic of China
- NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xinru Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, People's Republic of China.
- Tianjin Key Laboratory of Organ Transplantation, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
22
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
23
|
Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S, Li RF. Mechanisms and regulations of ferroptosis. Front Immunol 2023; 14:1269451. [PMID: 37868994 PMCID: PMC10587589 DOI: 10.3389/fimmu.2023.1269451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Liu YB, Zhang L. Anti-oxidative activities and anti-ferroptosis of conditioned medium from umbilical cord mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2023; 59:658-664. [PMID: 37922019 DOI: 10.1007/s11626-023-00816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/28/2023] [Indexed: 11/05/2023]
Abstract
The therapeutic effect of MSC is closely related to its antioxidant capacity. There is no uniform standard for evaluating the antioxidant capacity of MSC. In this study, we compared the antioxidant capacity of control medium (CON) and conditioned medium (CM) from umbilical cord mesenchymal stem cells cultured for 48 h, about total antioxidant capacity, DPPH scavenging capacity, O2- and hydroxyl radical inhibiting capacity, and the detection of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, and catalase, and resistance to cellular oxidative damage caused by H2O2, SNAP, erastin, and RSL3. The results showed that CM had better DPPH scavenging capacity than CON. No significant differences were observed in antioxidant enzymes. CM did not resist the oxidative damage induced by H2O2 and SNAP, but it had a strong resistance to ferroptosis induced by erastin and RSL3, indicating that CM had excellent resistance to cell lipid peroxidation. CM could improve the cell shrinkage morphology induced by ferroptosis and reduce the production of lipid ROS. qPCR experiments proved that CM improved and regulated multiple pathways of ferroptosis, including genes related to iron metabolism such as FPN, FTH1, TFRC, and IREB2, and redox regulatory genes such as GPX4, AIFM2, DHODH, and TP53, and increased the antioxidant-related transcription factors NRF2 and ATF4.
Collapse
Affiliation(s)
- Yu-Bin Liu
- Division of (Bio) Pharmaceutics, Institute of Zhejiang University - Quzhou, Zhejiang, China
| | - Lin Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China.
| |
Collapse
|
25
|
Shao JL, Wang LJ, Xiao J, Yang JF. Non-coding RNAs: The potential biomarker or therapeutic target in hepatic ischemia-reperfusion injury. World J Gastroenterol 2023; 29:4927-4941. [PMID: 37731999 PMCID: PMC10507504 DOI: 10.3748/wjg.v29.i33.4927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the major complication of liver surgery and liver transplantation, that may increase the postoperative morbidity, mortality, tumor progression, and metastasis. The underlying mechanisms have been extensively investigated in recent years. Among these, oxidative stress, inflammatory responses, immunoreactions, and cell death are the most studied. Non-coding RNAs (ncRNAs) are defined as the RNAs that do not encode proteins, but can regulate gene expressions. In recent years, ncRNAs have emerged as research hotspots for various diseases. During the progression of HIRI, ncRNAs are differentially expressed, while these dysregulations of ncRNAs, in turn, have been verified to be related to the above pathological processes involved in HIRI. ncRNAs mainly contain microRNAs, long ncRNAs, and circular RNAs, some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity, and as therapeutic targets to attenuate HIRI. Here, we briefly summarize the common pathophysiology of HIRI, describe the current knowledge of ncRNAs involved in HIRI in animal and human studies, and discuss the potential of ncRNA-targeted therapeutic strategies. Given the scarcity of clinical trials, there is still a long way to go from pre-clinical to clinical application, and further studies are needed to uncover their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jia-Li Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Li-Juan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Ji Xiao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jin-Feng Yang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
26
|
Sitbon A, Delmotte PR, Goumard C, Turco C, Gautheron J, Conti F, Aoudjehane L, Scatton O, Monsel A. Therapeutic potentials of mesenchymal stromal cells-derived extracellular vesicles in liver failure and marginal liver graft rehabilitation: a scoping review. Minerva Anestesiol 2023; 89:690-706. [PMID: 37079286 DOI: 10.23736/s0375-9393.23.17265-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France -
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France -
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Claire Goumard
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Célia Turco
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Jérémie Gautheron
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
| | - Filomena Conti
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Lynda Aoudjehane
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Olivier Scatton
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- INSERM UMRS-959 Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University, Paris, France
| |
Collapse
|
27
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
28
|
Lu X, Guo H, Wei X, Lu D, Shu W, Song Y, Qiu N, Xu X. Current Status and Prospect of Delivery Vehicle Based on Mesenchymal Stem Cell-Derived Exosomes in Liver Diseases. Int J Nanomedicine 2023; 18:2873-2890. [PMID: 37283714 PMCID: PMC10239634 DOI: 10.2147/ijn.s404925] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
With the improvement of the average life expectancy and increasing incidence of obesity, the burden of liver disease is increasing. Liver disease is a serious threat to human health. Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stem cells (MSCs) can be used as an alternative therapy for liver disease, especially liver cirrhosis, liver failure, and liver transplantation complications. However, MSCs may have potential tumorigenic effects. Exosomes derived from MSCs (MSC-Exos), as the important intercellular communication mode of MSCs, contain various proteins, nucleic acids, and DNA. MSC-Exos can be used as a delivery system to treat liver diseases through immune regulation, apoptosis inhibition, regeneration promotion, drug delivery, and other ways. Good histocompatibility and material exchangeability make MSC-Exos a new treatment for liver diseases. This review summarizes the latest research on MSC-Exos as delivery vehicles in different liver diseases, including liver injury, liver failure, liver fibrosis, hepatocellular carcinoma (HCC), and ischemia and reperfusion injury. In addition, we discuss the advantages, disadvantages, and clinical application prospects of MSC-Exos-based delivery vectors in the treatment of liver diseases.
Collapse
Affiliation(s)
- Xinfeng Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
| | - Haijun Guo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Wenzhi Shu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Yisu Song
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Nasha Qiu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| |
Collapse
|
29
|
Lu Y, Hu J, Chen L, Li S, Yuan M, Tian X, Cao P, Qiu Z. Ferroptosis as an emerging therapeutic target in liver diseases. Front Pharmacol 2023; 14:1196287. [PMID: 37256232 PMCID: PMC10225528 DOI: 10.3389/fphar.2023.1196287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Ferroptosis is an iron-dependently nonapoptotic cell death characterized by excessive accumulation of lipid peroxides and cellular iron metabolism disturbances. Impaired iron homeostasis and dysregulation of metabolic pathways are contributors to ferroptosis. As a major metabolic hub, the liver synthesizes and transports plasma proteins and endogenous fatty acids. Also, it acts as the primary location of iron storage for hepcidin generation and secretion. To date, although the intricate correlation between ferroptosis and liver disorders needs to be better defined, there is no doubt that ferroptosis participates in the pathogenesis of liver diseases. Accordingly, pharmacological induction and inhibition of ferroptosis show significant potential for the treatment of hepatic disorders involved in lipid peroxidation. In this review, we outline the prominent features, molecular mechanisms, and modulatory networks of ferroptosis and its physiopathologic functions in the progression of liver diseases. Further, this review summarizes the underlying mechanisms by which ferroptosis inducers and inhibitors ameliorate liver diseases. It is noteworthy that natural active ingredients show efficacy in preclinical liver disease models by regulating ferroptosis. Finally, we analyze crucial concepts and urgent issues concerning ferroptosis as a novel therapeutic target in the diagnosis and therapy of liver diseases.
Collapse
Affiliation(s)
- Yuzhen Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
30
|
Guo G, Yang W, Sun C, Wang X. Dissecting the potential role of ferroptosis in liver diseases: an updated review. Free Radic Res 2023; 57:282-293. [PMID: 37401821 DOI: 10.1080/10715762.2023.2232941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Ferroptosis is a novel form of cell death, manifested by iron-dependent, non-apoptotic manner resulting from the intracellular accumulation of large clusters of reactive oxygen species (ROS) and lipid peroxides due to abnormal iron metabolism. Since the liver is the main organ of human body for storing iron, it is essential to perform in-depth investigation on the role and mechanistic basis of ferroptosis in the context of divergent liver diseases. We previously summarized the emerging role of ferroptosis among various liver diseases, however, the past few years have been a surge in research establishing ferroptosis as the molecular basis or treatment option. This review article concentrated on the accumulating research progress of ferroptosis in a range of liver diseases such as acute liver injury/failure (ALI/ALF), immune-mediated hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease and liver fibrosis. Ferroptosis may be a promising target for the prevention and treatment of various liver diseases, providing a strategy for exploring new therapeutic avenues for these entities.
Collapse
Affiliation(s)
- Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
31
|
Xiang X, Gao J, Su D, Shi D. The advancements in targets for ferroptosis in liver diseases. Front Med (Lausanne) 2023; 10:1084479. [PMID: 36999078 PMCID: PMC10043409 DOI: 10.3389/fmed.2023.1084479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis is a type of regulated cell death caused by iron overload and lipid peroxidation, and its core is an imbalance of redox reactions. Recent studies showed that ferroptosis played a dual role in liver diseases, that was, as a therapeutic target and a pathogenic factor. Therefore, herein, we summarized the role of ferroptosis in liver diseases, reviewed the part of available targets, such as drugs, small molecules, and nanomaterials, that acted on ferroptosis in liver diseases, and discussed the current challenges and prospects.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaohong Xiang
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- Department of Geriatrics, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Zhu L, Luo S, Zhu Y, Tang S, Li C, Jin X, Wu F, Jiang H, Wu L, Xu Y. The Emerging Role of Ferroptosis in Various Chronic Liver Diseases: Opportunity or Challenge. J Inflamm Res 2023; 16:381-389. [PMID: 36748023 PMCID: PMC9899014 DOI: 10.2147/jir.s385977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is a recently identified iron-dependent form of intracellular lipid peroxide accumulation-mediated cell death. Different from other types of cell death mechanisms, it exhibits distinct biological and morphological features characterized by the loss of lipid peroxidase repair activity caused by glutathione peroxidase 4, the presence of redox-active iron, and the oxidation of phospholipids-containing polyunsaturated fatty acids. In recent years, studies have shown that ferroptosis plays a key role in various liver diseases such as alcoholic liver injury, non-alcoholic steatohepatitis, liver cirrhosis, and liver cancer. However, the mechanism of ferroptosis and its regulation on chronic liver disease are controversial among different types of cells in the liver. Herein, we summarize the current studies on mechanism of ferroptosis in chronic liver disease, aiming to outline the blueprint of ferroptosis as an effective option for chronic liver disease therapy.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Shengnan Luo
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Shiyue Tang
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China
| | - Chenge Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaozhi Jin
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Faling Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lina Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yejin Xu
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China,Correspondence: Yejin Xu, Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People’s Republic of China, Email
| |
Collapse
|
33
|
Zhou L, Han S, Guo J, Qiu T, Zhou J, Shen L. Ferroptosis-A New Dawn in the Treatment of Organ Ischemia-Reperfusion Injury. Cells 2022; 11:cells11223653. [PMID: 36429080 PMCID: PMC9688314 DOI: 10.3390/cells11223653] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common pathological phenomenon that occurs in numerous organs and diseases. It generally results from secondary damage caused by the recovery of blood flow and reoxygenation, followed by ischemia of organ tissues, which is often accompanied by severe cellular damage and death. Currently, effective treatments for I/R injury (IRI) are limited. Ferroptosis, a new type of regulated cell death (RCD), is characterized by iron overload and iron-dependent lipid peroxidation. Mounting evidence has indicated a close relationship between ferroptosis and IRI. Ferroptosis plays a significantly detrimental role in the progression of IRI, and targeting ferroptosis may be a promising approach for treatment of IRI. Considering the substantial progress made in the study of ferroptosis in IRI, in this review, we summarize the pathological mechanisms and therapeutic targets of ferroptosis in IRI.
Collapse
Affiliation(s)
- Linxiang Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Correspondence: (J.Z.); (L.S.)
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Correspondence: (J.Z.); (L.S.)
| |
Collapse
|
34
|
Pan Y, Wang X, Liu X, Shen L, Chen Q, Shu Q. Targeting Ferroptosis as a Promising Therapeutic Strategy for Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:2196. [PMID: 36358568 PMCID: PMC9686892 DOI: 10.3390/antiox11112196] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a major challenge in perioperative medicine that contributes to pathological damage in various conditions, including ischemic stroke, myocardial infarction, acute lung injury, liver transplantation, acute kidney injury and hemorrhagic shock. I/R damage is often irreversible, and current treatments for I/R injury are limited. Ferroptosis, a type of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides, has been implicated in multiple diseases, including I/R injury. Emerging evidence suggests that ferroptosis can serve as a therapeutic target to alleviate I/R injury, and pharmacological strategies targeting ferroptosis have been developed in I/R models. Here, we systematically summarize recent advances in research on ferroptosis in I/R injury and provide a comprehensive analysis of ferroptosis-regulated genes investigated in the context of I/R, as well as the therapeutic applications of ferroptosis regulators, to provide insights into developing therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Yihang Pan
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xueke Wang
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiwang Liu
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lihua Shen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qixing Chen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| | - Qiang Shu
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| |
Collapse
|
35
|
Guo L, Zhang Q, Liu Y. The role of microRNAs in ferroptosis. Front Mol Biosci 2022; 9:1003045. [PMID: 36310600 PMCID: PMC9596748 DOI: 10.3389/fmolb.2022.1003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Ferroptosis is a newly discovered type of programmed cell death, which is closely related to the imbalance of iron metabolism and oxidative stress. Ferroptosis has become an important research topic in the fields of cardiomyopathy, tumors, neuronal injury disorders, and ischemia perfusion disorders. As an important part of non-coding RNA, microRNAs regulate various metabolic pathways in the human body at the post-transcriptional level and play a crucial role in the occurrence and development of many diseases. The present review introduces the mechanisms of ferroptosis and describes the relevant pathways by which microRNAs affect cardiomyopathy, tumors, neuronal injury disorders and ischemia perfusion disorders through regulating ferroptosis. In addition, it provides important insights into ferroptosis-related microRNAs, aiming to uncover new methods for treatment of the above diseases, and discusses new ideas for the implementation of possible microRNA-based ferroptosis-targeted therapies in the future.
Collapse
Affiliation(s)
- Liqing Guo
- Department of Otolaryngology, The Second Affiliated Hospital of Nanchang University, NanChang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Qingkun Zhang
- Department of Otolaryngology, The Second Affiliated Hospital of Nanchang University, NanChang, China
| | - Yuehui Liu
- Department of Otolaryngology, The Second Affiliated Hospital of Nanchang University, NanChang, China
- *Correspondence: Yuehui Liu,
| |
Collapse
|