1
|
Li L, Guo Z, Zhao Y, Liang C, Zheng W, Tian W, Chen Y, Cheng Y, Zhu F, Xiang X. The impact of oxidative stress on abnormal lipid metabolism-mediated disease development. Arch Biochem Biophys 2025; 766:110348. [PMID: 39961502 DOI: 10.1016/j.abb.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Oxidative stress arises from an imbalance between cellular oxidation and anti-oxidation mechanisms, leading to various harmful effects on physiological health. These include inflammatory neutrophil infiltration, increased secretion of proteases, and increased production of oxidative intermediates, all of which significantly contribute to aging and the onset of multiple diseases. This review explores abnormal lipid metabolism, characterized by dysregulation in lipid synthesis, catabolism, digestion, absorption, and transport, with the potential to lead to lipid droplet accumulation or deficit across tissues, thus causing adverse health outcomes. Importantly, the intricate relationship between oxidative stress and inflammation plays a central role in exacerbating metabolic disorders, including diabetes, obesity, hypertension, non-alcoholic fatty liver disease, atherosclerosis, and lung fibrosis. This review seeks to compile and integrate recent research findings on the influence of oxidative stress on abnormal lipid metabolism pathology. A deeper understanding of this connection could reveal new perspectives for advancing the treatment and management of metabolic disorders.
Collapse
Affiliation(s)
- Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Zhiliang Guo
- The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Yi Zhao
- Shandong Provincial Hospital Affiliated with Shandong's First Medical University, Shandong, China
| | - Chuanjie Liang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiang Zheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yalin Chen
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yi Cheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Fengwen Zhu
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
2
|
Sharma G, Duarte S, Shen Q, Khemtong C. Analyses of mitochondrial metabolism in diseases: a review on 13C magnetic resonance tracers. RSC Adv 2024; 14:37871-37885. [PMID: 39606283 PMCID: PMC11600307 DOI: 10.1039/d4ra03605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases have become a global health concern due to their widespread prevalence and profound impact on life expectancy, healthcare expenditures, and the overall economy. Devising effective treatment strategies and management plans for these diseases requires an in-depth understanding of the pathophysiology of the metabolic abnormalities associated with each disease. Mitochondrial dysfunction is intricately linked to a wide range of metabolic abnormalities and is considered an important biomarker for diseases. However, assessing mitochondrial functions in viable tissues remains a challenging task, with measurements of oxygen consumption rate (OCR) and ATP production being the most widely accepted approaches for evaluating the health of mitochondria in tissues. Measurements of cellular metabolism using carbon-13 (or 13C) tracers have emerged as a viable method for characterizing mitochondrial metabolism in a variety of organelles ranging from cultured cells to humans. Information on metabolic activities and mitochondrial functions can be obtained from magnetic resonance (MR) analyses of 13C-labeled metabolites in tissues and organs of interest. Combining novel 13C tracer technologies with advanced analytical and imaging tools in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) offers the potential to detect metabolic abnormalities associated with mitochondrial dysfunction. These capabilities would enable accurate diagnosis of various metabolic diseases and facilitate the assessment of responses to therapeutic interventions, hence improving patient health and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center Dallas Texas USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Sergio Duarte
- Department of Surgery, University of Florida Gainesville FL USA
| | - Qingyang Shen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| |
Collapse
|
3
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
4
|
Șoșdean R, Dănilă MD, Ionică LN, Pescariu AS, Mircea M, Ionac A, Mornoș C, Luca CT, Feier HB, Muntean DM, Sturza A. Monoamine Oxidase Contributes to Valvular Oxidative Stress: A Prospective Observational Pilot Study in Patients with Severe Mitral Regurgitation. Int J Mol Sci 2024; 25:10307. [PMID: 39408637 PMCID: PMC11477003 DOI: 10.3390/ijms251910307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Monoamine oxidases (MAOs), mitochondrial enzymes that constantly produce hydrogen peroxide (H2O2) as a byproduct of their activity, have been recently acknowledged as contributors to oxidative stress in cardiometabolic pathologies. The present study aimed to assess whether MAOs are mediators of valvular oxidative stress and interact in vitro with angiotensin 2 (ANG2) to mimic the activation of the renin-angiotensin system. To this aim, valvular tissue samples were harvested from 30 patients diagnosed with severe primary mitral regurgitation and indication for surgical repair. Their reactive oxygen species (ROS) levels were assessed by means of a ferrous oxidation xylenol orange (FOX) assay, while MAO expression was assessed by immune fluorescence (protein) and qRT-PCR (mRNA). The experiments were performed using native valvular tissue acutely incubated or not with angiotensin 2 (ANG2), MAO inhibitors (MAOI) and the angiotensin receptor blocker, irbesartan (Irb). Correlations between oxidative stress and echocardiographic parameters were also analyzed. Ex vivo incubation with ANG2 increased MAO-A and -B expression and ROS generation. The level of valvular oxidative stress was negatively correlated with the left ventricular ejection fraction. MAOI and Irb reduced valvular H2O2. production. In conclusion, both MAO isoforms are expressed in pathological human mitral valves and contribute to local oxidative stress and ventricular functional impairment and can be modulated by the local renin-angiotensin system.
Collapse
Affiliation(s)
- Raluca Șoșdean
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Maria D. Dănilă
- Department III—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (D.M.M.); (A.S.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
| | - Loredana N. Ionică
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
- Department X—Medical Semiotics I, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania
| | - Alexandru S. Pescariu
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Monica Mircea
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Adina Ionac
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Cristian Mornoș
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Constantin T. Luca
- Department VI—Cardiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (R.Ș.); (A.S.P.); (A.I.); (C.M.); (C.T.L.)
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
| | - Horea B. Feier
- Research Centre of the Institute of Cardiovascular Diseases, G. Adam Str. no 13A, 300310 Timișoara, Romania; (M.M.); (H.B.F.)
- Department VI—Cardiovascular Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Square no 2, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Department III—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (D.M.M.); (A.S.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
| | - Adrian Sturza
- Department III—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania; (D.M.M.); (A.S.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. no 2, 300041 Timișoara, Romania;
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania
| |
Collapse
|
5
|
Wang B, Yang Q, Che L, Sun L, Du N. Acyl-CoA thioesterase 13 ( ACOT13) attenuates the progression of autosomal dominant polycystic kidney disease in vitro via triggering mitochondrial-related cell apoptosis. Aging (Albany NY) 2024; 16:11877-11892. [PMID: 39172111 PMCID: PMC11386924 DOI: 10.18632/aging.206054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Autosomal dominant polycystic kidney disease (ADPKD) is the most common cause of end-stage kidney disease. It has been shown that Acyl-CoA thioesterase 13 (ACOT13) level was reduced in renal cystic tissues from ADPKD patients. However, the role of ACOT13 in ADPKD remains largely elusive. METHODS The data in the GSE7869 dataset were acquired from the GEO database to determine ACOT13 level between normal renal cortical tissues and renal cystic tissues. Next, the potential functions of ACOT13 were explored by gene set enrichment analysis (GSEA). Furthermore, ACOT13 level in ADPKD cells (WT9-12) was verified by RT-qPCR. The effects of ACOT13 on WT9-12 cell growth were evaluated using the EdU staining and flow cytometry assays. RESULTS Compared to normal group, ACOT13 mRNA level was obviously reduced in renal cystic tissues and WT9-12 cells. Meanwhile, GSEA results showed that compared to the low ACOT13 expression group, PI3K-Akt and MAPK signaling pathways were inactivated, and PPAR signaling pathway and fatty acid metabolism were activated in high ACOT13 expression group. Furthermore, overexpression of ACOT13 notably reduced WT9-12 cell proliferation and triggered cell cycle arrest. Moreover, ACOT13 overexpression remarkably triggered apoptosis, increased cleaved caspase 3 protein level, reduced ATP production and induced loss of mitochondrial membrane potential in WT9-12 cells, suggesting that ACOT13 overexpression could trigger mitochondrial-related apoptosis in WT9-12 cells. CONCLUSIONS Collectively, our results showed that overexpression of ACOT13 could suppress WT9-12 cell proliferation and trigger mitochondrial-mediated cell apoptosis, suggesting that ACOT13 may exert a protective role in ADPKD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Yang
- Department of Pathogenic Biology, School of Basic Medicine, Beihua University, Jilin 132013, China
| | - Lihe Che
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| | - Luyao Sun
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| | - Na Du
- Department of Infectious Disease, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Berkman AM, Goodenough CG, Durakiewicz P, Howell CR, Wang Z, Easton J, Mulder HL, Armstrong GT, Hudson MM, Kundu M, Ness KK. Associations between mitochondrial copy number, exercise capacity, physiologic cost of walking, and cardiac strain in young adult survivors of childhood cancer. J Cancer Surviv 2024; 18:1154-1167. [PMID: 38635100 PMCID: PMC11324404 DOI: 10.1007/s11764-024-01590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Childhood cancer survivors are at risk for cardiac dysfunction and impaired physical performance, though underlying cellular mechanisms are not well studied. In this cross-sectional study, we examined the association between peripheral blood mitochondrial DNA copy number (mtDNA-CN, a proxy for mitochondrial function) and markers of performance impairment and cardiac dysfunction. METHODS Whole-genome sequencing, validated by quantitative polymerase chain reaction, was used to estimate mtDNA-CN in 1720 adult survivors of childhood cancer (48.5% female; mean age = 30.7 years, standard deviation (SD) = 9.0). Multivariable logistic regression was performed to evaluate the associations between mtDNA-CN and exercise intolerance, walking inefficiency, and abnormal global longitudinal strain (GLS), adjusting for treatment exposures, age, sex, and race and ethnicity. RESULTS The prevalence of exercise intolerance, walking inefficiency, and abnormal GLS among survivors was 25.7%, 10.7%, and 31.7%, respectively. Each SD increase of mtDNA-CN was associated with decreased odds of abnormal GLS (adjusted odds ratio (OR) = 0.88, p = 0.04) but was not associated with exercise intolerance (OR = 1.02, p = 0.76) or walking inefficiency (OR = 1.06, p = 0.46). Alkylating agent exposure was associated with increased odds of exercise intolerance (OR = 2.25, p < 0.0001), walking inefficiency (OR = 2.37, p < 0.0001), and abnormal GLS (OR = 1.78, p = 0.0002). CONCLUSIONS Increased mtDNA-CN is associated with decreased odds of abnormal cardiac function in childhood cancer survivors. IMPLICATIONS FOR CANCER SURVIVORS These findings demonstrate a potential role for mtDNA-CN as a biomarker of early cardiac dysfunction in this population.
Collapse
Affiliation(s)
- Amy M Berkman
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chelsea G Goodenough
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Paul Durakiewicz
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Carrie R Howell
- Division of Preventive Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS-735, Memphis, TN, 38105, USA.
| |
Collapse
|
7
|
Liu B, Han Y, Ye Y, Wei X, Li G, Jiang W. Atmospheric fine particulate matter (PM 2.5) induces pulmonary fibrosis by regulating different cell fates via autophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171396. [PMID: 38438032 DOI: 10.1016/j.scitotenv.2024.171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The presence of respiratory diseases demonstrates a positive correlation with atmospheric fine particulate matter (PM2.5) exposure. The respiratory system is the main target organ affected by PM2.5, and exposure to PM2.5 elevates the likelihood of developing pulmonary fibrosis (PF). In this study, lung epithelial cell (BEAS-2B) and fibroblast (NIH-3T3) were used as in vitro exposure models to explore the mechanisms of PF. PM2.5 exposure caused mitochondrial damage in BEAS-2B cells and increased a fibrotic phenotype in NIH-3T3 cells. Epithelial cells and fibroblasts have different fates after PM2.5 exposure due to their different sensitivities to trigger autophagy. Exposure to PM2.5 inhibits mitophagy in BEAS-2B cells, which hinders the removal of damaged mitochondria and triggers cell death. In this process, the nuclear retention of the mitophagy-related protein Parkin prevents it from being recruited to mitochondria, resulting in mitophagy inhibition. In contrast, fibroblasts exhibit increased levels of autophagy, which may isolate PM2.5 and cause abnormal fibroblast proliferation and migration. Fibrotic phenotypes such as collagen deposition and increased α-actin also appear in fibroblasts. Our results identify PM2.5 as a trigger of PF and delineate the molecular mechanism of autophagy in PM2.5 induced PF, which provides new insights into the pulmonary injury.
Collapse
Affiliation(s)
- Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yangchen Han
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
10
|
Rihan M, Sharma SS. Cardioprotective potential of compound 3K, a selective PKM2 inhibitor in isoproterenol-induced acute myocardial infarction: A mechanistic study. Toxicol Appl Pharmacol 2024; 485:116905. [PMID: 38521371 DOI: 10.1016/j.taap.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Myocardial infarction (MI) or heart attack arises from acute or chronic prolonged ischemic conditions in the myocardium. Although several risk factors are associated with MI pathophysiology, one of the risk factors is an imbalance in the oxygen supply. The current available MI therapies are still inadequate due to the complexity of MI pathophysiology. Pyruvate kinase M2 (PKM2) has been implicated in numerous CVDs pathologies. However, the effect of specific pharmacological intervention targeting PKM2 has not been studied in MI. Therefore, in this study, we explored the effect of compound 3K, a PKM2-specific inhibitor, in isoproterenol-induced acute MI model. In this study, in order to induce MI in rats, isoproterenol (ISO) was administered at a dose of 100 mg/kg over two days at an interval of 24 h. Specific PKM2 inhibitor, compound 3K (2 and 4 mg/kg), was administered in MI rats to investigate its cardioprotective potential. After the last administration of compound 3K, ECG and hemodynamic parameters were recorded using a PV-loop system. Cardiac histology, western blotting, and plasmatic cardiac damage markers were evaluated to elucidate the underlying mechanisms. Treatment of compound 3K significantly reduced ISO-induced alterations in ECG, ventricular functions, cardiac damage, infarct size, and cardiac fibrosis. Compound 3K treatment produced significant increase in PKM1 expression and decrease in PKM2 expression. In addition, HIF-1α, caspase-3, c-Myc, and PTBP1 expression were also reduced after compound 3K treatment. This study demonstrates the cardioprotective potential of compound 3K in MI, and its mechanisms of cardioprotective action.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
11
|
Mone P, Agyapong ED, Morciano G, Jankauskas SS, De Luca A, Varzideh F, Pinton P, Santulli G. Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:13. [PMID: 39015481 PMCID: PMC11250775 DOI: 10.20517/jca.2023.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Aging represents a complex biological progression affecting the entire body, marked by a gradual decline in tissue function, rendering organs more susceptible to stress and diseases. The human heart holds significant importance in this context, as its aging process poses life-threatening risks. It entails macroscopic morphological shifts and biochemical changes that collectively contribute to diminished cardiac function. Among the numerous pivotal factors in aging, mitochondria play a critical role, intersecting with various molecular pathways and housing several aging-related agents. In this comprehensive review, we provide an updated overview of the functional role of mitochondria in cardiac aging.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Esther Densu Agyapong
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola 48033, Italy
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Vanvitelli University, Naples 80100, Italy
| | - Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola 48033, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples 80131, Italy
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
12
|
Camacho-Encina M, Booth LK, Redgrave RE, Folaranmi O, Spyridopoulos I, Richardson GD. Cellular Senescence, Mitochondrial Dysfunction, and Their Link to Cardiovascular Disease. Cells 2024; 13:353. [PMID: 38391966 PMCID: PMC10886919 DOI: 10.3390/cells13040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular diseases (CVDs), a group of disorders affecting the heart or blood vessels, are the primary cause of death worldwide, with an immense impact on patient quality of life and disability. According to the World Health Organization, CVD takes an estimated 17.9 million lives each year, where more than four out of five CVD deaths are due to heart attacks and strokes. In the decades to come, an increased prevalence of age-related CVD, such as atherosclerosis, coronary artery stenosis, myocardial infarction (MI), valvular heart disease, and heart failure (HF) will contribute to an even greater health and economic burden as the global average life expectancy increases and consequently the world's population continues to age. Considering this, it is important to focus our research efforts on understanding the fundamental mechanisms underlying CVD. In this review, we focus on cellular senescence and mitochondrial dysfunction, which have long been established to contribute to CVD. We also assess the recent advances in targeting mitochondrial dysfunction including energy starvation and oxidative stress, mitochondria dynamics imbalance, cell apoptosis, mitophagy, and senescence with a focus on therapies that influence both and therefore perhaps represent strategies with the most clinical potential, range, and utility.
Collapse
Affiliation(s)
- Maria Camacho-Encina
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Laura K. Booth
- Vascular Medicine and Biology Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (L.K.B.); (I.S.)
| | - Rachael E. Redgrave
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Omowumi Folaranmi
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Ioakim Spyridopoulos
- Vascular Medicine and Biology Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (L.K.B.); (I.S.)
| | - Gavin D. Richardson
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| |
Collapse
|
13
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
14
|
Longevity OMAC. Retracted: Mitochondrial Dysfunction and Cardiovascular Disease: Pathophysiology and Emerging Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9785792. [PMID: 38234576 PMCID: PMC10791180 DOI: 10.1155/2024/9785792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/9530007.].
Collapse
|
15
|
Sivakumar B, Nadeem A, Dar MA, Kurian GA. PM 2.5 Exposure-Linked Mitochondrial Dysfunction Negates SB216763-Mediated Cardio-Protection against Myocardial Ischemia-Reperfusion Injury. Life (Basel) 2023; 13:2234. [PMID: 38004374 PMCID: PMC10672572 DOI: 10.3390/life13112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
GSK3β is a promising target for treating various disease conditions, including myocardial ischemia-reperfusion injury (IR). This study investigated the potential of GSK3β as a novel drug for managing IR in rats exposed to PM2.5 for 1 day and up to 21 days. Female Wistar rats were exposed to PM2.5 at a concentration of 250 µg/m3 for 3 h daily for either a single day or 21 days. After exposure, the isolated rat hearts underwent 30 min of ischemia followed by 60 min of reperfusion. GSK3β inhibition effectively reduced IR injury in rat hearts from animals exposed to PM2.5 for 1 day but not in those exposed for 21 days. PM2.5 exposure disrupted the redox balance in mitochondria and reduced the gene expression of antioxidants (glutaredoxin and peroxiredoxin) and NRF2, which protects against oxidative stress. PM2.5 also impaired mitochondrial bioenergetics, membrane potential, and quality control, leading to mitochondrial stress. Importantly, PM2.5 increased the translocation of GSK3β into mitochondria and compromised the overall mitochondrial function, particularly in the 21-day-exposed rat myocardium. The results indicate that extended exposure to PM2.5 leads to oxidative stress that disrupts mitochondrial function and diminishes the effectiveness of GSK3β inhibitors in offering cardio-protection through mitochondria.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Dar
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences 3, 02-093 Warsaw, Poland;
| | - Gino A. Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| |
Collapse
|
16
|
Prem PN, Kurian GA. Cardiac damage following renal ischemia reperfusion injury increased with excessive consumption of high fat diet but enhanced the cardiac resistance to reperfusion stress in rat. Heliyon 2023; 9:e22273. [PMID: 38053866 PMCID: PMC10694322 DOI: 10.1016/j.heliyon.2023.e22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Renal ischemia-reperfusion (IR) injury inflicts remote cardiac dysfunction. Studies on rats fed with a high-fat diet (HD) showed contradictory results: some demonstrated increased sensitivity of the heart and kidney to IR injury, while others reported resistance. In this study, we examined cardiac dysfunction and compromised cardiac tolerance associated with renal IR in HD and standard diet (SD) fed rats. Male Wistar rats fed with HD or SD diet for 16 weeks were subjected to either renal sham or IR protocol (bilateral clamping for 45 min and reperfusion for 24 h). The hearts isolated from these rats were further subjected to normal perfusion or IR procedure to study cardiac response. Renal IR surgery negatively affected cardiac function with substantial changes in the cardiac tissues, like mitochondrial dysfunction, elevated oxidative stress, and inflammation. HD-fed rat hearts exhibited hypertrophy at the end of 16 weeks, and the consequential impact on the heart was higher in the animals underwent renal IR surgery than with sham surgery. However, the IR induction in the isolated heart from renal sham or renal IR operation showed significant tissue injury resistance and better physiological recovery in HD-fed rats. However, in SD-fed rats, only hearts from renal IR-operated rats showed resistance to cardiac IR, whereas hearts from renal sham-operated rats were more susceptible to IR damage. The augmented IR resistance in the heart with prior renal surgery was due to preserved mitochondrial bioenergetics function, reduced oxidative stress, and activation of the PI3K/AKT signaling axis.
Collapse
Affiliation(s)
- Priyanka N. Prem
- Vascular Biology Lab. School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A. Kurian
- Vascular Biology Lab. School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| |
Collapse
|
17
|
Pereira SP, Diniz MS, Tavares LC, Cunha-Oliveira T, Li C, Cox LA, Nijland MJ, Nathanielsz PW, Oliveira PJ. Characterizing Early Cardiac Metabolic Programming via 30% Maternal Nutrient Reduction during Fetal Development in a Non-Human Primate Model. Int J Mol Sci 2023; 24:15192. [PMID: 37894873 PMCID: PMC10607248 DOI: 10.3390/ijms242015192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.
Collapse
Affiliation(s)
- Susana P. Pereira
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Mariana S. Diniz
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- PDBEB—Ph.D. Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ludgero C. Tavares
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama—EUVG, 3020-210 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J. Nijland
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter W. Nathanielsz
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
18
|
Mishra PK, Kaur P. Mitochondrial biomarkers for airborne particulate matter–associated cardiovascular diseases. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 35:100494. [DOI: 10.1016/j.coesh.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
|
19
|
Berk M, Köhler-Forsberg O, Turner M, Penninx BWJH, Wrobel A, Firth J, Loughman A, Reavley NJ, McGrath JJ, Momen NC, Plana-Ripoll O, O'Neil A, Siskind D, Williams LJ, Carvalho AF, Schmaal L, Walker AJ, Dean O, Walder K, Berk L, Dodd S, Yung AR, Marx W. Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023; 22:366-387. [PMID: 37713568 PMCID: PMC10503929 DOI: 10.1002/wps.21110] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Populations with common physical diseases - such as cardiovascular diseases, cancer and neurodegenerative disorders - experience substantially higher rates of major depressive disorder (MDD) than the general population. On the other hand, people living with MDD have a greater risk for many physical diseases. This high level of comorbidity is associated with worse outcomes, reduced adherence to treatment, increased mortality, and greater health care utilization and costs. Comorbidity can also result in a range of clinical challenges, such as a more complicated therapeutic alliance, issues pertaining to adaptive health behaviors, drug-drug interactions and adverse events induced by medications used for physical and mental disorders. Potential explanations for the high prevalence of the above comorbidity involve shared genetic and biological pathways. These latter include inflammation, the gut microbiome, mitochondrial function and energy metabolism, hypothalamic-pituitary-adrenal axis dysregulation, and brain structure and function. Furthermore, MDD and physical diseases have in common several antecedents related to social factors (e.g., socioeconomic status), lifestyle variables (e.g., physical activity, diet, sleep), and stressful live events (e.g., childhood trauma). Pharmacotherapies and psychotherapies are effective treatments for comorbid MDD, and the introduction of lifestyle interventions as well as collaborative care models and digital technologies provide promising strategies for improving management. This paper aims to provide a detailed overview of the epidemiology of the comorbidity of MDD and specific physical diseases, including prevalence and bidirectional risk; of shared biological pathways potentially implicated in the pathogenesis of MDD and common physical diseases; of socio-environmental factors that serve as both shared risk and protective factors; and of management of MDD and physical diseases, including prevention and treatment. We conclude with future directions and emerging research related to optimal care of people with comorbid MDD and physical diseases.
Collapse
Affiliation(s)
- Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Megan Turner
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry and Amsterdam Public Health, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Wrobel
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Amy Loughman
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nicola J Reavley
- Centre for Mental Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Natalie C Momen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Oleguer Plana-Ripoll
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Adrienne O'Neil
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lana J Williams
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Adam J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lesley Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Seetal Dodd
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alison R Yung
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
20
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
21
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
22
|
Sun M, Jiang W, Mu N, Zhang Z, Yu L, Ma H. Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases. J Transl Med 2023; 21:347. [PMID: 37231493 DOI: 10.1186/s12967-023-04203-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of noncommunicable disease-related death worldwide, and effective therapeutic strategies against CVD are urgently needed. Mitochondria dysfunction involves in the onset and development of CVD. Nowadays, mitochondrial transplantation, an alternative treatment aimed at increasing mitochondrial number and improving mitochondrial function, has been emerged with great therapeutic potential. Substantial evidence indicates that mitochondrial transplantation improves cardiac function and outcomes in patients with CVD. Therefore, mitochondrial transplantation has profound implications in the prevention and treatment of CVD. Here, we review the mitochondrial abnormalities that occur in CVD and summarize the therapeutic strategies of mitochondrial transplantation for CVD.
Collapse
Affiliation(s)
- Mingchu Sun
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P.R. China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P.R. China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P.R. China.
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
23
|
Headley CA, Tsao PS. Building the case for mitochondrial transplantation as an anti-aging cardiovascular therapy. Front Cardiovasc Med 2023; 10:1141124. [PMID: 37229220 PMCID: PMC10203246 DOI: 10.3389/fcvm.2023.1141124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondrial dysfunction is a common denominator in both biological aging and cardiovascular disease (CVD) pathology. Understanding the protagonist role of mitochondria in the respective and independent progressions of CVD and biological aging will unravel the synergistic relationship between biological aging and CVD. Moreover, the successful development and implementation of therapies that can simultaneously benefit mitochondria of multiple cell types, will be transformational in curtailing pathologies and mortality in the elderly, including CVD. Several works have compared the status of mitochondria in vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in CVD dependent context. However, fewer studies have cataloged the aging-associated changes in vascular mitochondria, independent of CVD. This mini review will focus on the present evidence related to mitochondrial dysfunction in vascular aging independent of CVD. Additionally, we discuss the feasibility of restoring mitochondrial function in the aged cardiovascular system through mitochondrial transfer.
Collapse
|
24
|
Liu W, Zhao X, Wu X. Duhuo Jisheng Decoction suppresses apoptosis and mitochondrial dysfunction in human nucleus pulposus cells by miR-494/SIRT3/mitophagy signal axis. J Orthop Surg Res 2023; 18:177. [PMID: 36890588 PMCID: PMC9996943 DOI: 10.1186/s13018-023-03669-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that mitophagy is responsible for the pathogenesis of intervertebral disk (IVD) degeneration. Previous studies have shown that Duhuo Jisheng Decoction (DHJSD), a classic Fangji of traditional Chinese medicine, can delay IVD degeneration; however, its specific mechanism of action is unknown. In this study, we investigated the mechanism by which DHJSD treatment prevented IVD degeneration in IL-1β-treated human nucleus pulposus (NP) cells in vitro. METHODS Cell Counting Kit-8 was performed to explore the effects of DHJSD on the viability of NP cells exposed to IL-1β. The mechanism by which DHJSD delays IVD degeneration was explored using luciferase reporter assay, RT-qPCR, western blotting, TUNEL assay, mitophagy detection assay, Mito-SOX, Mitotracker and in situ hybridization. RESULTS We observed that DHJSD enhanced the viability of NP cells treated with IL-1β in a concentration-time dependent approach. Moreover, DHJSD lessened IL-1β-induced NP apoptosis and mitochondrial dysfunction and activated mitophagy in NP cells treated with IL-1β. Mitophagy suppressor cyclosporin A reversed the beneficial impacts of DHJSD in NP cells. In addition, the differential expression of miR-494 regulated IL-1β-induced NP apoptosis and mitochondrial dysfunction, and the protective impact of miR-494 on NP cells treated with IL-1β was achieved by mitophagy activation, which was regulated by its target gene, sirtuin 3 (SIRT3). Finally, we observed that DHJSD treatment could effectively delay IL-1β-induced NP apoptosis by affecting the miR-494/SIRT3/mitophagy signal axis. CONCLUSIONS These results show that the miR-494/SIRT3/mitophagy signaling pathway is responsible for the apoptosis and mitochondrial dysfunction of NP cells and that DHJSD may exert protective effects against IVD degeneration by regulating the miR-494/SIRT3/mitophagy signal axis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Department of Orthopedics, First Hospital of Wuhan, Wuhan, 430022, China
| | - Xiaolong Zhao
- Department of Orthopedics, First Hospital of Wuhan, Wuhan, 430022, China.,Department of Burn and Repair Reconstruction Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
García-Beltrán O, Urrutia PJ, Núñez MT. On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2023; 12:214. [PMID: 36829773 PMCID: PMC9952574 DOI: 10.3390/antiox12020214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Pamela J. Urrutia
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Marco T. Núñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile
| |
Collapse
|
26
|
Liu Y, Huang Y, Xu C, An P, Luo Y, Jiao L, Luo J, Li Y. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases. Int J Mol Sci 2022; 23:16053. [PMID: 36555691 PMCID: PMC9788331 DOI: 10.3390/ijms232416053] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuejia Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lei Jiao
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|